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A New Strain-Based Finite Element for Plane Elasticity Problems  
 

 

ABSTRACT 

 

In this paper, a new quadrilateral strain-based element is developed. The element has five 

nodes, four at the corners as well as an internal node. Through the introduction of the internal 

node, the numerical performance of the element proved to be superior to existing elements, 

even though a static condensation is required. From several numerical examples, it is shown 

that convergence can be achieved with the use of only a small number of finite elements. The 

proposed element can be used to solve general plane elasticity problems resulting in excellent 

results. The results obtained are comparable with those given by the robust element Q8.  

 
KEY WORDS: Strain-based, Quadrilateral element, Static condensation, Analytical 

integration. 

 

1. Introduction 

Since 1983, the strain-based finite element approach has been formulated by Sabir et al [1-

3] to analyze general plane elasticity problems. Among these elements is the SBRIE (Strain-

Based Rectangular In-plane Element) and SBRIE1 (Strain-Based Rectangular In-plane 

Element with An Internal Node) elements [4]. SBRIE assumes a linear variation of the direct 

strains and constant variation of the shear strain, while SBRIE1 assumes a linear variation of 

all three strain components. Unfortunately these elements can only be used for a regular form 

with appropriate coordinates, which tend to decrease the element’s use for practical problems. 

In this paper, a simple and efficient quadrilateral element having two degrees of freedom at 

each node is formulated by using the concept of static condensation. It is based on the strain 

approach and satisfies the equilibrium equations. However any singularity is eliminated by 

the use of local axes optimally oriented. From several numerical examples, it is shown that 

satisfactory results can be obtained while using only a few numbers of finite elements. This 

element can be used to solve general plane elasticity problems and excellent results can be 
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obtained for both deflections and stresses. The results obtained are highly superior than those 

obtained using the standard element Q4, and are comparable with those given by the robust 

element Q8. The simplicity and efficiency of this element make it an excellent alternative for 

analyzing complex civil engineering problems.   

2. Description and formulation of the new element “Q4SBE5” 

Figure 1a shows the geometry of the proposed element “Q4SBE5” (Strain Based 

Quadrilateral Element with Four Corner Nodes and an Internal Node) and the 

corresponding nodal displacements. The quadrilateral element has five nodes, four corner 

nodes in addition to an internal node. Each node (i) is attributed to two degrees of freedom 

(d.o.f) Ui, and Vi. Therefore, the displacement field should include ten independent constants.  

 

The strain components at any point in the Cartesian coordinate system are expressed in 

terms of the displacements as follow:  
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For the case that the strains above equal to zero, the integration of equations (1) leads to 

expressions of the form: 

   U  =  a1     -  a3  y  
 

         (2a) 

   V  =  a2   +   a3  x 
 

    (2b) 

Equations (2) represent the displacement field in terms of its three rigid body displacements.                                                                                                                 

The strains in equations (1) cannot be considered independent, they are in terms of two 

displacements U, V and hence must satisfy the compatibility equation. This equation can be 

obtained by eliminating U, V from equation (1), resulting in: 
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Equations (2) require three independent constants (a1, a2, a3) to account for the three 

components of the rigid body displacements. Therefore seven additional constants (a4, 

a5,….a10) are needed to define the displacements due to straining actions. These seven 

independent constants can be defined as follow: 
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The strains given by equation (4) satisfy the compatibility equation (3) as well as the two- 

dimensional equilibrium equations (5a, 5b): 
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By integrating equations (4) and substituting equations (2), we obtain the final displacement 

functions:  

U =  a4 x+ a5 xy  - a7 y
2
 (R +1)/2+ a8 y/2  + a9 (x

2
 – H y

2
)/2          

       
(6a) 

V=  - a5 x
2
(R + 1)/2+ a6 y+ a7 xy  + a8 x/2  + a10 (y

2
 – Hx

2
)/2   

 
  (6b) 

     The stiffness matrix is then calculated following well-known matrix expressions: 
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In this classical formulation, two problems can arise: a) the geometrical problem of distortion 

of finite elements of higher degrees; and b) the problem of locking for finite elements of 

relatively low degrees. 

      To avoid these problems, the strain-based approach with proper analytical integration is 

adopted [5].  

3. Evaluation of the element stiffness matrix [Ke] 

The element stiffness matrix [Ke] is obtained using the following expression:   

                      11  . 








  AdydxQDQAK

T

S

T

e                                                                (8a) 

[Ke] is a 10x10 matrix; however the 2 additional middle dofs are to be condensed out.  

 

               [Ke] = [A
-1 

]
T
 [K0 ] [A

-1 
]                                                                                          (8b)                                          

      With: 

              [K0] =      dydxQDQ
T

S

.                                  (8c) 

      Since [A] and its inverse can be evaluated numerically, the key to solving the problem 

relies on the accurate evaluation of the integral in (8c).  However, it is known that large 

distortions typically lead to erroneous results particularly when calculating the Jacobian. In 

this study, a simple expression to evaluate [K0] regardless of the degree of the polynomial of 

the kinematics field and the element distortion, is proposed (Fig.1b): 

                        I = [K0] = yxyxC d.d.
s



                                             (9) 

where x1, x2, x3 and x4 defined in Fig. 1b are the coordinates of nodes 1, 2, 3 and 4 in 

the X direction; and y1, y2, y3 and y4 are the functions of the quadrilateral sides, 1-2, 2-3, 3-4, 

4-1 respectively. 

The general solution of equation (9) for a quadrilateral is [5]:   
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The stiffness matrix is derived directly using exact and not reduced integration. 

4. Validation tests 

In this section, several well-established quadrilateral plane elements are compared with the 

present element "Q4SBE5" through numerical test problems. The performance of elements 

for distorted shapes is also tested.  

The present element is compared to the following elements: 

SBRIE: the strain based rectangular in-plane element [4] 

SBRIE2: The strain based rectangular in-plane element with an internal node [4]          

Q4: the standard four-node isoparametric element. 

Q8: the standard eight -node isoparametric element. 

PS5 Pian and Sumihara’s four- node five-beta mixed element [6] 

AQ: Cook’s quadrilateral counterpart [7] of Allman’s triangle [8] 

MAQ: a mixed counterpart of AQ using complete linear stress modes for all stress 

components, i.e. nine stress modes are involved. Since the assumed stress space is invariant, 

this element is trusted to be identical to Yunus et al’s mixed AQ [9] 

Q4R the quasi- conforming counterpart of AQ proposed by Lin et al. [10] 

Q4S: Mac-Neal and Harder’s refined membrane element with drilling degree of freedom [11] 

07 the Sze element [12] 

Q8: the Mac -Neal [13]  

Allman element [8] 

4.1. Bending of a cantilever beam (High order patch test)  

In this test problem, the behaviour of finite elements with a significant geometrical 

distortion is examined. This problem was critically analysed in [12] to test the behaviour and 

accuracy of elements 07 and 07*.  
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The problem consists of a cantilever beam having a rectangular section (l x t x h = 10 x 1 x 2), 

and subjected to two nodal forces (P =1000) forming a couple (Fig. 2a). 

Figures 2b and 2c show the stability, and confirm the excellent performance of the "Q4SBE5" 

element regardless of the geometrical distortion (with only one element along h!). This result 

can be explained because of the nature of the analytical integration carried out. The results 

confirm that element Q4SBE5 passes the High Order Patch Test [14, 15].   

The results of "Q4SBE5" are powerful and comparable with the exact solution. For the 

standard quadrilateral element Q4, poor precision is always detected (Figures 2b and 2c).  

4.2 Mac-Neal's elongated cantilever beam 

 In this example, the elongated cantilever beam of Mac-Neal and Harder [13] is studied 

(Fig.3a). The beam has a rectangular section (6 x 2 x 1), and is subjected to a moment at the 

end (M=10) as well as a load applied at its tip (P=1).  

The beam is modelled by six rectangular (Fig.3a), trapezoidal (Fig.3b) and parallelogram 

(Fig.3c) elements. 

The results obtained using Q4SBE5 are compared with those obtained using other well-

known quadrilateral elements (Table 1).  

In order to test the convergence of the Q4SBE5 element, the normalised tip deflection is 

evaluated and compared with those computed using other elements in Figures (4, 5) for the 

case of four different mesh configurations. 

Mac-Neal [11] noted that the trapezoidal shape of membrane finite elements with four 

nodes and without rotational degrees of freedom generates a locking problem, even if these 

elements pass the patch-test. This problem is known as "trapezoidal locking". The results 

obtained for elements Q4 and PS5(Table 1) clearly confirm the problem of trapezoidal 

locking.  
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However, this phenomenon does not apply to finite elements based on the strain 

approach. For the three meshes (Figures 3a, 3b, 3c), it is clear that the Q4SBE5 element does 

not suffer from trapezoidal locking. 

   In conclusion, it can be confirmed that the "Q4SBE5" element is very efficient for the 

case of problems dominated by bending, and that its performance remains stable with 

geometrical distortions. 

 

4.3. Allman’s cantilever beam 

4.3.1. Distortion sensitivity study    

 In the next test problem, the vertical displacement VA at the free end of a short cantilever is 

evaluated under the effect of a uniform vertical load with resultant W (Fig. 6a). This problem 

is considered by many researchers as a good test to validate the efficiency of plane elements 

for problems dominated by bending. The analytical solution for the vertical deflection at point 

A is calculated as follow [16]: 

 
 

0,3553PL
2EH

5υ4

3EI

PL
V

3

A 


                                                               (12)   

The results obtained for the two mesh cases (regular and distorted) are listed in Table 2. 

The results in the case of the distorted mesh (Fig.6c) confirm the excellent performance of 

element Q4SBE5. In this case, Q4SBE5 provides more accurate results than those of elements 

PS5ß, MAQ, QR4b, 07ß and Q4 (Table 2), and is comparable with those given by the robust 

element Q8, in terms of total number of degrees of freedom. 

4.3.2. Aspect ratio tests for cantilever  

In addition to the above test, an additional example is included here to study the sensitivity 

of the present element to the variation in aspect ratio. The response of a cantilever beam to a 

parabolic distributed shear applied at the tip as shown in Fig.7 is considered. From the results 

presented in Table 3, it is found that the displacement model (Q4) gives poor results, and 
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requires extensive mesh refinement in order to approach the correct solution. The Q4SBE5 

element however performs extremely well. 

4.4. Tapered panel under end shear   

This problem, proposed by Cook as a test for the accuracy of quadrilateral elements [7, 

17], is another popular test problem.  

The problem consists of a tapered panel with unit thickness, and with one edge subjected to a 

distributed shear load while the other edge is fully clamped (Fig. 8). 

The panel is analysed by using 2 x 2 and 4 x 4 meshes (Figs 8a, 8b). The normalised 

vertical deflection Vc at point C, maximum principal stress maxA at point A and minimum 

principal stress minB at point B are presented in Table 4. Principal stresses at points A and B 

are calculated based on the averaged stress components of the elements sharing nodes A and 

B, respectively.  

The results of the Q4SBE5 element are compared to those obtained using several other 

quadrilateral elements. It was shown that the displacements calculated using the Q4SBE5 are 

slightly better than those obtained using the other elements for both mesh cases (Table 4). 

 
The results for deflections and principal stresses for the refined mesh (4x4) are in good 

agreement to an accurate solution given in [17] using a (32x32) mesh (error 1 %). 

 

5. Civil engineering application (Boussinesq problem, [18]) 

Next we examine the Boussinesq problem in the theory of linear elasticity. In this problem, 

a force P is vertically applied at the center of the top surface of a semi-infinite plate. Under 

the assumption of plane stress conditions, the stress component xx  along the x axis is given 

by the following equation [16]: 

                xPxx ./2                                                                                           (13) 
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Due to the fact that infinite domains cannot be modelled using the finite element 

approximations studied so far, only a finite region of the semi-infinite domain shown in Fig.9 

is modelled. 

Assuming homogeneity and isotropy of the material, fixed boundary conditions has been 

assumed along the bottom and the right side edges. The results are shown in Fig.10 for the 

case where Young’s modulus E =32000KN/mm
2
, Poisson’s ratio  =0.25, Thickness =10 mm 

and applied force P = 100 N. 

It can be concluded that the numerical results agree rather well with those of the analytical 

solution.  

 

Conclusion  

The new strain based element "Q4SBE5" is proposed for the analysis of general plane 

elasticity problems. It is a simple element with five nodes, four corner nodes and an internal 

node, and has only two degrees of freedom per node. Several numerical examples were 

studied to evaluate the performance of the strain-based approach. In general excellent results 

were obtained when compared to existing elements in the literature. In addition, it can be said 

that "Q4SBE5" remains stable with geometrical distortions; which is partly explained by the 

nature of analytical integration carried out. It has been shown that excellent finite element 

solutions can be obtained with the use of only a small number of elements making the element 

very suitable for several civil engineering applications. 
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Appendices 

Appendix A: Matrix [Q] 
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Appendix C: Matrix [K0] 
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a and b are the element dimensions for the rectangular shape      
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Table 1 Normalised tip deflection for Mac-Neal's elongated beam 

Element 
Pure bending End shear 

Regular Trapezoidal Parallel Regular Trapezoidal Parallel 

Q4 0,093 0,022 0,031 0,093 0,027 0,034 

PS5

Pian, 4)
1,000 0,046 0,726 0,993 0,052 0,632 

AQ 

Cook, 86) 
0,910 0,817 0,881 0,904 0,806 0,873 

MAQ 

Yun, 89) 
0,910 0,886 0,890 0,904 0,872 0,884 

Q4 

Mac,89) 
- - - 0,993 0,986 0,988 

07 

Sze, 92) 
1,000 0,998 0,992 0,993 0,988 0,985 

 

Q4SBE5 

 

1,000 1,000 1,000 0,993 0,994 0,994 

Theory 1,000 

(0,270) 

1,000 

(0,1081) 
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 Table 2 Allman's short cantilever beam, Normalised vertical displacement at point A 

Formulation/ Element Mesh Normalized vertical 

displacement at A 

Allman  (All., 88)  Reg. 0,852 

Allman  (All., 88)  Dist. - 

PS5( Pian, 84)

PS5( Pian, 84) 

Reg. 

Dist. 

0,978 

0,925 

AQ(Cook, 86) Reg. 0,918 

AQ(Cook, 86) Dist. 0,947 

MAQ(Yunus et al., 89) Reg. 0,918 

MAQ(Yunus et al., 89) Dist. 0,952 

QR4 (Lin. et al., 90) Reg. 0,978 

QR4 (Lin. et al., 90) Dist. 0,977 

07(Sze et al., 92) 

07(Sze et al., 92) 

Reg. 

Dist. 

0,978 

0,978 

Q4 Reg. 0,679 

Q4  Dist. 0,596 

Q8 (Mac., 88)  Reg. 0,985  

Q8 (Mac., 88) Dist. 0,994  

Q4SBE5 Reg. 0,983 

Q4SBE5 Dist. 0,995 

Exact solution (Timoshenko,  1970)  
1,000 

(0,3553) 
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Table 3 Normalized deflection at point A, of a cantilever beam under a tip load     

 

Element 

aspect 

ratio a/b 

Normalised tip deflection 

1.0 0 4.0 8.0 

Mesh 2 x 8 2 x 4 2 x 2 2 x 1 

SBRIE 0.972 0.957 0.905 0.738 

Q4 0.888 0.699 0.378 0.134 

SBRIE2 0.97 0.922 0.836 0.666 

Q4SBE5 0.988 0.973 0.922 0.750 

Analyt. 1.000 (0.3558) 
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         Table 4 Normalised prediction for tapered panel under end shear 

Element model  
2 x 2 mesh 4 x 4 mesh 

VC maxA minB VC maxA minB 

Q4  0,496 0,437 0,533 0,766 0,756 0,719  

AQ  

(Coo., 86) 
0,890 0,780 0,900 0,965 0,936 1,010 

Ref. (All., 88) 0,848 0,771 0,856  0,953 0,956 0,997 

FRQ 

 (Aya.,  93) 
0,914 0,741 0,775 0,973 0,932 0,985  

PS5

Pian, 84) 
0,884 0,786 0,771 0,963 0,950 0,924 

MAQ 

Yun, 89) 
0,890 0,779 0,886 0,965 0,941 0,967 

QR4 

(Lin, 90) 
0,941 0,879 1,059 0,980 0,990 0,997 

Ref. (Ber., 85) 0,852 0,720 0,898 0,938 0,902 0,849 

Ref.(Ibr., 90) 0,865 - - 0,962 - - 

Ref. (Sim., 89) 0,884 - - 0,963 - - 

07  

Sze, 92) 
0,945 0,835 1,069 0,981 0,982 1,012 

Q4SBE5 1,0652 1,508 1,171 1,011 1,004 0,992 

32 x 32 mesh 

Ref. Ber., 85 

1,000 

(23,90) 

1,000 

(0,236) 

1,000 

(-0,201) 

1,000 

(23,90) 

1,000 

(0,236) 

1,000 

(-0,201) 

 



  

 

 

 

 

 

Fig.1a:  Co-ordinates and nodal points for the element” Q4SBE5 

 

 

 

 

 

 

 

 

 

Fig.1b: Quadrilateral element 
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a) Pure Bending of a Cantilever beam; Data and Meshes 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

b) Vertical Displacement at Point A.  Normalised results 
 

 

 

 

 

 

 

 

 

 

 

 

 

c) Normal stress at Point B.  Normalised results 

Fig.2. Pure bending of a cantilever beam 
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Fig.3 Mac-Neal's elongated beam subject to (1) end shear and (2) end bending. 
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NEL= Number of elements 

Fig.4    Convergence Curves for deflection at point A 

Mac- Neal’s cantilever beam under pure bending 
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Fig.5 Convergence Curves for deflection at point A    

      Mac-Neal’s cantilever beam under end shear 
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 Fig.6  Allman's cantilever beam; Data and mesh 
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Fig.7 Cantilever beam subjected to parabolically distributed shear 

Aspect ratio tests 
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                             (a) 2 x 2 mesh                                                  (b) 4 x 4 mesh 

                                                                                                      Boundary conditions: 

    Thickness t =1 in;  Py = 1 pi (uniformly distributed load)       U = V = 0   (DE) 

            

Fig.8 Tapered panel subjected to end shear; data and meshes 

          

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Domain for Boussinesq problem 
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Fig.10. Stress σxx along x Axis (θ=90
0
) 
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