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FORECASTING MORTALITY IN SUBPOPULATIONS USING
LEE-CARTER TYPE MODELS: A COMPARISON

IVAN LUCIANO DANESI [1]�, STEVEN HABERMAN [2]†,
AND PIETRO MILLOSSOVICH [3]†

Abstract. The relative performance of multipopulation stochastic mortality
models is investigated. When targeting mortality rates, we consider five exten-
sions of the well known Lee-Carter single population extrapolative approach.
As an alternative, we consider similar structures when mortality improvement
rates are targeted. We use a dataset of deaths and exposures of Italian regions
for the years 1974-2008 to conduct a comparison of the models, running a bat-
tery of tests to assess the relative goodness of fit and forecasting capability of
the different approaches. Results show that the preferable models are those
striking a balance between complexity and flexibility.

1. Introduction

Several aspects of modern societies are affected by the level and trend of mortality
rates. For example, the private and public retirement systems, as well as other
components of the social security system, are planned and modified according to
the values taken by current and forecast values of death rates.

Several mortality forecasting models have been proposed in the last few decades.
Among the extrapolative methods, that of Lee-Carter (see Lee and Carter [17])
has been the most successful and has since received a great deal of attention. This
model has been extensively studied and has been extended in several directions, see
Pitacco et al. [22] and De Jong and Tickle [8] for a review.

In many instances, one is interested in forecasting mortality rates for more than
one population. Although the separate modelling of each population under scrutiny
is possible, it would neglect any existing interaction that motivated the analysis in
the first place. Therefore one should focus on a framework where death rates in
the populations under study are jointly modelled, in order to allow for correlation
between mortality dynamics. As a first example, demographers have long been
interested in the study of mortality of males and females in a given population
(Lee and Carter [17]). More generally, a population could be split according to
some characteristics - smoking habit, occupation, income - in order to analyse the
mortality of each subgroup. A similar investigation may involve the populations
of related countries or regions of a given country (see for instance Delwarde et al.
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[9], Booth et al. [3]). As a final example, the joint modelling of two populations is
the key of any longevity basis risk assessment exercise, see Coughlan et al. [7].

The possibility of extending forecasting methods to related populations has
been explored by several researchers, including Lee and Carter [17], Li and Lee
[19], Brouhns et al. [4], Russolillo et al. [25], Li and Hardy [18], Dowd et al.
[10], Jarner and Kryger [16], Haberman and Villegas [13]. In the context of sin-
gle population forecasting models, extensive comparisons have been carried out by
Cairns et al. [6] and Haberman and Renshaw [11]. In this paper we investigate
the relative performance of multipopulation mortality models. More precisely, we
considered five parametric structures where death rates of related populations are
jointly modelled through a Lee-Carter type formulation. The models include many
(but are not limited to) existing contribution in the literature and allow for varying
degrees of interaction and complexities between the considered populations. We also
examine the performance of five similar parametric structures where the improve-
ment rates, rather than mortality rates themselves, are targeted. The feasibility of
such approach has been studied by Haberman and Renshaw [12]. Here, mortality
rates are transformed into improvement rates which are then modelled and fore-
casted. Finally, the inverse transformation is used to calculate the corresponding
forecasted mortality rates.

We fit the ten models to a data set of deaths and exposures spanning 18 regions
of Italy for the years 1974-2008 and the ages 20-89. We assess the performance of
the models against several indicators, including information criteria, in- and out-
of-sample goodness of fit of individual death rates and truncated residual lifetimes.
The analysis seems to indicate that the most preferred models are those achieving
a compromise between complexity of the parametric structure and flexibility in
fitting past and future trends.

The structure of the paper is as follows. In Section 2, we present a short overview
on Lee-Carter model and the proposed variations. In Section 3, the models are
applied to the Italian regional mortality data the indicators used to assess and
compare the different models are presented. Section 4 discusses the results.

2. The models

2.1. The Lee-Carter model. The original formulation of the model presented in
Lee and Carter [17] is

lnmx,t = αx + βxκt + εx,t,
∑
x

βx = 1,
∑
t

κt = 0,

where mx,t is the (central) mortality rate relative to age x and calendar year t.
The logarithm of mx,t is then specified through an age specific term, αx, which
represents the general mortality shape across age, a bilinear term βxκt and an error
term εx,t ∼ N(0, σ2). The bilinear term is composed of κt, an index representing
the change in the level of mortality across time, and βx, the age specific response to
variations in the time index. As the model written in this way is overparametrised,
the two additional constraints are introduced in order to identify the model.

In this formulation the random errors are homoskedastic, which is usually a
strong and often unrealistic hypothesis. To overcome this problem, Brouhns et al.
[4] proposed a modification of the Lee-Carter model where the number of deaths is
specified as a Poisson random variable:

Dx,t ∼ Poisson (ETRx,tmx,t)
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where Dx,t is the number of deaths aged x last birthday in calendar year t, ETRx,t
is the corresponding central exposed to risk and

logmx,t = αx + βxκt,
∑
x

βx = 1,
∑
t

κt = 0 (2.1)

which has the form of the Lee-Carter model, except for the error term.

2.2. The mortality improvement rate. An alternative approach proposed in
the literature is to model the improvement in mortality rates, rather than the
rate itself, see for example Mitchell et al. [21], Haberman and Renshaw [12] and
references therein. In Haberman and Renshaw [12], the year-on-year mortality
improvement rate is defined by

zx,t = 2
1−mx,t/mx,t−1

1 +mx,t/mx,t−1
. (2.2)

The expression in Equation (2.2) is immediately seen to be the ratio between the in-
cremental mortality improvement mx,t−1−mx,t and the average (mx,t +mx,t−1)/2
of two adjacent mortality rates. This formulation allows for some smoothing of
improvement rates, which are known to be noisy. Alternative definitions of im-
provement rates can be found in Richards et al. [24] and Baxter [1]. The values
of zx,t are then modelled as realizations of independent Gaussian random variables
Zx,t assuming constant dispersion, Zx,t ∼ N(ηx,t, σ

2). The following first moment
predictor structure is then considered:

ηx,t = βxκt,
∑
x

βx = 1. (2.3)

Clearly, the time indices κt in (2.3) have a different interpretation than those in
(2.1). As noted by Haberman and Renshaw [12], if mortality rates are modelled
through (2.1), the time indices in (2.3) are then approximately equal to the discrete
version of the log derivative of the corresponding time indices in (2.1).

2.3. The parametric structures. From now on, the index i = 1, . . . , I denotes
subpopulation i among the I (with I ≥ 2) populations under study. For each
i, we assume that the following data are available: for ages x = x1, . . . , xk and
(consecutive) calendar years t = t1, . . . , tn,

• Di
x,t — number of deaths aged x last birthday in calendar year t

• ETRix,t — corresponding central exposure.

We then compute the corresponding central death rates and year-on-year improve-
ment rates

mi
x,t =

Di
x,t

ETRix,t
, zix,t =

1−mi
x,t/m

i
x,t−1

1 +mi
x,t/m

i
x,t−1

.

Note that, for each age and subpopulation, there are n death rates and n − 1
improvement rates that can be computed. From now on we assume, as in Brouhns
et al. [4], that the force of mortality, denoted µix,t, satisfies µix+u,t+u = µix,t for all
i, integers x and t and 0 ≤ u < 1. It follows that µix,t = mi

x,t and both quantities
can be used interchangeably.

The Brouhns et al. [4] version of the Lee-Carter model, recalled in (2.1), specifies
the numbers of deaths as Poisson random variables,

Di
x,t ∼ Poisson(ETRix,tm

i
x,t),
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independent across ages, years and subpopulations. The mean of these variables is
modelled through a number L of time factors, according to

logmi
x,t = αix +

L∑
j=1

βix,jκt,j . (2.4)

This expression is in spirit similar to those found in Booth et al. [2] and Hyndman
and Ullah [15].

When modelling improvement rates, it is assumed that the zix,t are realizations
of Gaussian random variables

Zix,t ∼ N(ηix,t, σ
2
i ),

independent across ages, years and subpopulations. Note that the variance is al-
lowed to vary among populations. We express the mean of these variables by
generalising (2.3) in a form similar to (2.4), that is

ηix,t =

L∑
j=1

βix,jκt,j , (2.5)

where again the meaning of the time indices is different from those in (2.4).
The aim of (2.4)-(2.5) is to introduce a general framework allowing for different

levels of complexities and interactions within and between the subpopulations. The
number L of factors will be typically related to the number of populations and the
chosen degree of complexity. Some particular cases of (2.4) and (2.5) are considered,
in order to make estimation feasible and to ease comparison between models. More
precisely, five specifications of (2.4), called P-models, are introduced. Subsequently,
the counterparts of these five models in terms of mortality improvement rates (2.5),
called M-models, are presented.

(1) P-double:
logmi

x,t = αix + βix,1κ
i
t,1 + βix,2κ

i
t,2,

with the identifiability constraints
∑
t κ

i
t,1 = 0,

∑
x β

i
x,1 = 1,

∑
t κ

i
t,2 = 0,∑

x β
i
x,2 = 1,

∑
t κ

i
t,1κ

i
t,2 = 0 and

∑
x β

i
x,1β

i
x,2 = 0 for all i.

(2) P-common:
logmi

x,t = αix + βix,1κt,1 + βix,2κ
i
t,2,

with the identifiability constraints
∑
t κt = 0,

∑
x β

i
x,1 = 1,

∑
t κ

i
t = 0,∑

x β
i
x,2 = 1,

∑
t κt,1κ

i
t,2 = 0 and

∑
x β

i
x,1β

i
x,2 = 0 for all i.

(3) P-simple:
logmi

x,t = αix + βixκ
i
t,

with the identifiability constraints
∑
t κ

i
t = 0,

∑
x β

i
x = 1 for all i.

(4) P-division:
logmi

x,t = αix + βixκ
i
t,

with κit = κ
(h)
t for i ∈ Jh, where J1, . . . , JI′ is a partition of {1, . . . , I};

the identifiability constraints are
∑
t κ

(h)
t = 0 and

∑
i∈Jh,x β

i
x = |Jh| for

h = 1, . . . , I ′. Here |J | is the cardinality of the set J .
(5) P-one:

logmi
x,t = αix + βixκt,

with the identifiability constraints
∑
t κt = 0 and

∑
i,x β

i
x = I.

(6) M-double:
ηix,t = βix,1κ

i
t,1 + βix,2κ

i
t,2,

with the identifiability constraints
∑
x β

i
x,1 = 1,

∑
x β

i
x,2 = 1,

∑
t κ

i
t,1κ

i
t,2 =

0 and
∑
x β

i
x,1β

i
x,2 = 0 for all i.
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(7) M-common:
ηix,t = βix,1κt,1 + βix,2κ

i
t,2,

with the identifiability constraints
∑
x β

i
x,1 = 1,

∑
x β

i
x,2 = 1,

∑
t κt,1κ

i
t,2 =

0 and
∑
x β

i
x,1β

i
x,2 = 0 for all i.

(8) M-simple:
ηix,t = βixκ

i
t,

with the identifiability constraint
∑
x β

i
x = 1 for all i.

(9) M-division:
ηix,t = βixκ

i
t,

with κit = κ
(h)
t for i ∈ Jh, where J1, . . . , JI′ is a partition of {1, . . . , I}; the

identifiability constraints are
∑
i∈Jh,x β

i
x = |Jh| for h = 1, . . . , I ′.

(10) M-one:
ηix,t = βixκt,

with the identifiability constraint
∑
i,x β

i
x = I.

2.4. Discussion of the models. Models (1) and (6) (P-double and M-double)
are inspired by Renshaw and Haberman [23] and Booth et al. [2], where a single
population Lee-Carter model with two bilinear components is considered. The
addition of a bilinear component aims at capturing possible time trends that a
single component would fail to reproduce.

Models (2) and (7) (P-common and M-common) exhibit a common and a pop-
ulation specific time index. They can be obtained as a restriction of (1) and (6)
respectively, where one of the two time indices is constrained to be the same across
all subpopulations. Model P-double, known as augmented common factor model
(see Li and Hardy [18]), is inspired by Li and Lee [19], where a common factor is
estimated on the considered populations and, in a second stage, a second bilinear
component, which can be interpreted as the spread from the common trend, is
estimated separately for every population.

Models (3) and (8) (P-simple and M-simple) are obtained from (2) and (7) by
removing the common factor. In other words, in each subpopulation mortality
is specified through a Lee-Carter model featuring a population specific bilinear
component.

The idea behind models (4) and (9) (P-division and M-division) is that, among
the I subpopulations under study, some can be grouped to form I ′ < I clusters.
It is implicit that the populations in each cluster share some common character-
istics and can be jointly modelled introducing a common time trend. Groups of
subpopulations can be identified through standard clustering techniques.

Finally, models (5) and (10) (P-one and M-one), sometimes known as common
factor or joint κ model, assumes that there is a unique cluster of subpopulations.
This is equivalent to assuming that mortality improvement in all subpopulations
are driven by a single time index, while keeping different age varying coefficients.
Alternatively, (5) and (10) can be obtained from (2) and (7) by eliminating the
specific time factor. This model, or a version of it, was considered, among others,
by Li and Hardy [18], Russolillo et al. [25], Delwarde et al. [9].

Both set of models (1)-(5) and (6)-(10) are presented in decreasing order of
complexity and number of parameters, see Table 1. More precisely, each model
can be obtained from the preceding one by restricting appropriately some of the
parameters. In other words (1)-(5) and (6)-(10) are complete sequences of nested
models.
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Note that, in models (1), (2) and (6), (7), where more than one period index
appear for each subpopulation, the the orthogonality constraints suggested by Hunt
and Blake [14] are used.

The models considered allow for different degrees of interactions between the
subpopulations. Trivial correlation between improvement rates in different subpop-
ulations holds in models such as P-one and M-one where a single time index drive
changes in all groups. Models P-division and M-division imply perfectly correlated
improvement rates within each cluster, while allowing for non perfect correlation
between different clusters. Models P/M-simple, -common and -double all feature
at least a subpopulation specific time index so that improvement rates correlation
is never trivial and its range is allowed to vary with the complexity of the model.

number of number of number of
model time factors parameters constraints

P-double 2I (3k + 2n)I 6I
P-common I + 1 (2k + n)(I + 1) 4I + 2
P-simple I (2k + n)I 2I

P-division I ′ 2kI + nI ′ 2I ′

P-one 1 2kI + n 2

M-double 2I 2(k + n′)I 4I
M-common I + 1 (k + n′)(I + 1) 3I + 1
M-simple I (k + n′)I I

M-division I ′ kI + n′I ′ I ′

M-one 1 kI + n′ 1

Table 1. Number of time factors, parameters and
constraints for the ten models (n′ = n− 1).

3. The application

This section introduces the dataset used and the statistics and indices employed
to assess the models. The comments on the corresponding outputs are deferred to
Section 4.

3.1. The dataset. The models presented in Section 2 are applied to a multiple
population mortality dataset containing the mortality rates of Italian regions. Italy
is divided into 18 regions out of the official 20, since two small sized regions (Val
d’Aosta and Molise) are merged with one of their neighbours.

In general, regions of a country are related as they share some common char-
acteristics. However, it is also true that Italian regions are inhomogeneous, either
economically as well as along other dimensions, and this is reflected in the mortality
experience. In this application I = 18, and the index i = 1, . . . , 18 is used for indi-
cating the regions, in this order: Piemonte-Valle d’Aosta, Lombardia, Trentino-Alto
Adige, Veneto, Friuli-Venezia Giulia, Liguria, Emilia-Romagna, Toscana, Umbria,
Marche, Lazio, Abruzzo-Molise, Campania, Puglia, Basilicata, Calabria, Sicilia,
Sardegna. The geographical areas can be seen in Figure 1.

The data cover a span of 35 years, from 1974 to 20081. In the analysis the focus
is on male mortality data for the age range 20-89.

Figure 2, contain four plots representing logmi
x,t for four fixed ages and three

out of the eighteen populations (Lombardia, Lazio and Sicilia). These plots confirm
that the evolution of mortality follows similar patterns for the different populations.

1The data were provided by Istat (www.istat.it).
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Figure 1. Italy divided in the considered 18 areas.
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Figure 2. Evolution of logmi
x,t for fixed ages and 3 regions: Lombardia

(solid line), Lazio (dashed line) and Sicilia (dotted line).

Before estimating models P-division and M-division, we need to decompose the
Italian regions into cluster of similar regions. We use a standard clustering algo-
rithm where the dissimilarity index is given by the life expectancy at birth, com-
puted in [20]. The final I ′ = 5 clusters are the following:

I1 = {1, 2, 3, 4, 5, 6}, I2 = {7, 8, 9}

I3 = {10, 11, 12}, I4 = {13, 18}, I5 = {14, 15, 16, 17}

3.2. Estimation procedure. The models are estimated using the first 25 years
of observed data, from 1974 to 1998, while the remaining 10 years, from 1999 to
2008, are used in order to assess the quality of the out-of-sample forecast.
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The parameters of the ten models are estimated by maximum likelihood using
gradient based optimization techniques. The initial values of the parameters in the
optimisation algorithm were set using the following criteria:

• for P-models, the starting values are obtained by assuming the normal
distribution for the errors and using the procedure described in Lee and
Carter [17];

• for M-models, the starting values are obtained using the first (or the first
two) components of the singular value decomposition of the improvement
rates matrix;

• in all the models containing common factors (that is (2), (4), (5) and (7),
(9), (10)), the chosen starting values for the common parameters are those
computed on the larger subpopulation.

Note that models where no common time factor is present, namely (1), (3) and
(6), (8), the model likelihood factorizes into the subpopulation likelihoods and
estimation can then be done separately for each subpopulation. In models (4) and
(9), estimation can be done separately for each cluster of subpopulations.

We denote by m̂i
x,t, ẑix,t and η̂ix,t the estimated values of mi

x,t, zix,t and ηix,t.

3.3. Forecast procedure. Forecasting requires to model the time varying coeffi-
cients as a time series. According to the model considered, a different number of
time series is involved in the application (see Table 1). When more than one period
index appears in each subpopulation — as in (1), (2) and (6), (7) —, then the two
(groups of) indices are modelled as independent time series, consistently with the
orthogonality constrained imposed in that case, see Hunt and Blake [14].

As a general rule, if a VARIMA(p, 1, q) time series is used to specify the time
indices in P-models, then, following Haberman and Renshaw [12], a VARMA(p, q)
should be used for M-models targeting improvement rates. Let then

yt =

∣∣∣∣∣∣∣
y1
t
...
ymt

∣∣∣∣∣∣∣ ,
be the vector of time indices that is to be specified, where the dimension m vary
according to the model:

• P-double and M-double — two groups of eighteen time varying coefficients;
• P-common and M-common — one group of eighteen specific plus one com-

mon time varying coefficient;
• P-simple and M-simple — one group of eighteen time varying coefficients;
• P-division and M-division — one group of five cluster specific time varying

coefficients;
• P-one and M-one — one time varying coefficient.

In the present application, for P-models a (multidimensional) random walk with
drift, defined by

yt = Φ0 + yt−1 + ξt,

where Φ0 is the drift vector and ξt is a white noise process with ξt ∼ N(0,Σξ), is
used. For M-models, we use a simple regression to a constant

yt = Φ0 + ξt,

where again ξt is a white noise process.
Once the time varying coefficients have been forecast, the values m̂i

x,t for t > tn
can be computed for P-models. As for the M-models, forecast central death rates
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are computed using forecast improvement rates ẑix,t by applying iteratively the
formula

m̂i
x,tn+j = m̂i

x,tn+j−1

2− ẑix,tn+j

2 + ẑix,tn+j

, j = 1, 2, 3, . . . . (3.1)

The procedure starts for j = 1 with m̂i
x,tn replaced by m̂i∗

x,tn computed according
to

m̂i∗
x,tn = mi

x,tn−1

2− zix,tn
2 + zix,tn

,

where mi
x,tn−1 and zix,tn are the simple averages of mi

x,tn−2, m
i
x,tn−1, m

i
x,tn and

of zix,tn−1, z
i
x,tn , respectively. This adjustment is adopted in order to lessen the

dependence on the last observed value.

3.4. Goodness of fit indices based on information criteria. The two pe-
nalised log-likelihood indices most commonly used to assess the goodness of fit are
(see Burnham and Anderson [5]) the Akaike information criterion (AIC) and the
Bayes information criterion (BIC), defined respectively by

AIC = 2d− 2`, BIC = d log(g)− 2`,

with d the dimension of the parametrised prediction structure (see the second col-
umn in Table 1) and g is the sample size (g = I ·k·n for P-models and g = I ·k·(n−1)
for M-models). By construction, the BIC puts a higher penalty on the number of
parameters compared to the AIC. The maximized log-likelihood ` is given for P-
models by

` =
∑
i, x, t

(
Di
x,t log m̂i

x,t − ETRix,tm̂
i
x,t

)
up to an additive constant independent of the chosen model, and by

` = −1

2

∑
i, x, t

(
log(2πσ̂2

i ) +
(zix,t − η̂ix,t)2

σ̂2
i

)

for M-models, where

σ̂i
2 =

∑
x,t

(zix,t − η̂ix,t)2

(n− 1)k

is the maximum likelihood estimate of σ2
i .

When d is large relative to g, typically if g/d < 40, an adjusted version of the
Akaike information criterion defined by

AICc = AIC +
2d(d+ 1)

g − d− 1

can be considered, see [5]. Clearly AICc converges to AIC as g gets large relative
to d.

The best models are those corresponding to smaller values of the index. Note
that the indices cannot be compared across the two main model structures, but
only among the P-models and the M-models separately. For this reason, the results
are presented separately in Table 2. To ease the comparison, differences between
an index and the minimum value, denoted by ∆, are displayed.
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P-double P-common P-simple P-division P-one
d 4572 2955 2934 2622 2526
` -28332454 -28332976 -28334463 -28334716 -28335099
g 31500 31500 31500 31500 31500

AIC 56674052 56671861 56674794 56674676 56675251
∆-AIC 2191 0 2933 2815 3389

rank-AIC 2 1 4 3 5
g/d 7 11 11 12 12

AICc 56675605 56672473 56675397 56675183 56675731
∆-AICc 3132 0 2924 2679 3218

rank-AICc 4 1 3 2 5
BIC 56712264 56696558 56699316 56696725 56696538

∆-BIC 15901 196 2953 228 0
rank-BIC 5 2 4 3 1

M-double M-common M-simple M-division M-one
d 3312 1731 1674 1375 1283
` 42056 39903 38760 37058 36617
g 30240 30240 30240 30240 30240

AIC -77489 -76345 -74173 -71366 -70668
∆-AIC 0 1144 3316 6122 6821

rank-AIC 1 2 3 4 5
g/d 9 17 18 22 24

AICc -76674 -76134 -73977 -71235 -70554
∆-AICc 0 539 2697 5438 6120

rank-AICc 1 2 3 4 5
BIC -49943 -61948 -60250 -59931 -59997

∆-BIC 12005 0 1698 2018 1951
rank-BIC 5 1 2 4 3
Table 2. Penalised log-likelihood indices for the ten models (when

applicable, values are rounded to the nearest integer).

3.5. Mean absolute percentage and residual analysis. The in-sample or out-
of-sample goodness of fit of a model can be measured with the Mean Absolute
Percentage Error (MAPE), defined by

MAPEi =
1

n1 · k
∑
x,t

∣∣∣∣∣mi
x,t − m̂i

x,t

mi
x,t

∣∣∣∣∣ (3.2)

where n1 is either the number of in-sample or out-of-sample years. In the current
case, k = 70 and n1 = 25 for P-models and n1 = 24 for M-models (in-sample) or
n1 = 10 (out of sample). The MAPE for the in-sample fitting are summarized in
Table 3 and in Table 4 for the out-of-sample forecast.

A graphical analysis of the residual plots, constructed by plotting the scaled
residuals with respect to age, year and cohort, can be useful for investigating if
the models are able to describe the general shape of the data and to capture any
systematic patterns. The scaled residuals are defined by

rix,t =
Di
x,t − ETRix,tm̂i

x,t√
ETRix,tm̂i

x,t

for P-models, and by

rix,t =
zix,t − η̂ix,t√

σ̂2
i

for M-models. It should be noted that the scaled residuals are computed with
respect to the target quantity in the fitting procedure: the number of deaths Di

x,t

for P-models and the mortality improvement rates for M-models. The residual plots
for the ten models for the region Lombardia are presented in Figures 3 and 4.

Since the models are used to evaluate the general trend of mortality, an index
which spans several years of forecast would be a more appropriate way for comparing
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Figure 3. Age, year and cohort residual plots for P-models. Region: Lombardia.
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Figure 4. Age, year and cohort residual plots for M-models. Region: Lombardia.
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REGION P-double P-common P-simple P-division P-one M-double M-common M-simple M-division M-one
1 4.04 4.51 5.21 5.3 5.3 9 9.15 10.41 11.38 13.54
2 4.18 4.84 5.94 5.9 5.9 9.49 12.66 13.11 17.35 14.04
3 5.84 6.56 6.74 6.94 6.99 16.59 18.25 18.18 14.22 20.4
4 3.78 4.63 5.2 5.36 5.37 10.15 10.33 12.07 13.02 15.21
5 5.32 6.16 6.05 6.5 6.58 12.19 15.62 13.36 18.19 16.45
6 4.86 5.59 6.4 6.83 6.75 14.18 10.51 15.24 28.11 14.24
7 4.65 5.12 6.32 6.29 6.31 11.29 11.2 19.17 19.82 13.91
8 4.4 4.71 5.21 5.3 5.3 12.48 9.79 15.64 17.32 11.96
9 6.94 7.5 7.69 7.76 8.2 16.47 11.62 17.43 17.05 15.63
10 4.98 5.67 6.12 6.19 6.28 11.93 9.33 13.13 10.41 12.28
11 4.02 4.31 4.99 5.22 5.3 7.39 8.04 9.67 12.83 10.72
12 5.38 5.95 5.8 5.97 5.96 15.61 12.57 16 11.78 13.26
13 3.45 4.05 4.08 4.1 4.41 9.67 8.74 10.26 10.33 10.81
14 4 4.75 5.42 5.46 5.51 9.35 8.15 13.07 12.61 10.56
15 7.42 8.51 8.01 8.28 8.92 13.9 12.38 14.49 15.68 17.79
16 4.43 5.57 5.51 5.66 5.75 13.19 12.1 13.66 12.84 14.26
17 3.76 4.45 4.93 5.02 5.09 8.06 11.31 10.28 10.77 12.73
18 4.88 5.47 6.35 7.05 6.94 10.81 9.85 12.71 14.2 14.33

mean 4.8 5.46 5.89 6.06 6.16 11.76 11.2 13.77 14.88 14.01
st. dev. 1.05 1.13 0.94 1.01 1.09 2.72 2.51 2.7 4.25 2.45

Table 3. MAPE of fitted with respect to observed data.
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the predictive capacity of the models. We use the truncated expected residual
lifetime computed along cohort trajectories. We truncate the expectation at 10
years in order not to introduce a mortality extrapolation at higher ages. The
probabilities of death qix,t can be calculated by

qix,t ≈ 1− exp(−mi
x,t).

The expected residual lifetime truncated after 10 years for population i, denoted
by ei

x:10
, is computed by

ei
x:10

=

∑10
j=1 l

i
x+j(tn + j)

[
1− 1

2q
i
x+j,tn+j

]
lix(tn)

,

where lix+j(tn+j), j ≥ 1 is the number of survivors after j years in a fictitious pop-
ulation aged x in year tn, with initial arbitrary size lix(tn) (the last available year),
see Haberman and Renshaw [12]. The population size lix+j(tn + j) is recursively
computed through

lix+j(tn + j) =
[
1− qix+j−1,t+j−1

]
lix(tn + j − 1), j = 1, 2, 3, . . . .

This index is computed for all the regions for ages 60, 70 and 80. The results are
summarised in Tables 5, 6 and 7, for ages 60, 70 and 80, respectively.

4. Discussion

In this section we compare the models employing the diagnostic tools, and indices
introduced in Section 3. The values of these statistics are presented in Tables 2-
7 and Figures 3-4. The analysis indicates that, when targeting death rates, the
P-common model gives the best compromise between parsimony and goodness of
fit (in and out of sample), followed by the P-division model. When modeling
improvement rates, the corresponding structure M-common again provides a good
balance between parsimony and in-sample goodness of fit. Alternatively, M-division
and M-simple can be considered, in particular when out-of-sample performance is
important.

Parsimony vs. goodness of fit. The penalised log-likelihood indices (see Table 2)
give mixed indication of the relative model performance among the two families
considered. First, the AIC ranks P- and M-models according to their complexity,
so that models with more parameters perform better. The BIC reverts this ranking
by awarding models with a simpler structure, with the exception of the common
structures (models (2) and (6), which turn out to be the most robust with respect
to both criteria.

The goodness of fit of the P- and M-common structures is confirmed by Figures
3-4, where plots of residuals vs. calendar year, age and cohort are depicted for one
region (similar plots for other regions, available upon request, present essentially the
same behaviour). These plots show that simpler structures, such as P/M-simple,
P/M-division and P/M-one seems to evidence a pattern in residuals when plotted
against calendar years.

In- and out-of-sample performance. Tables 3 and 4 contain respectively in- and
out-of-sample performance for all the regions considered. The values of MAPE
seem high, but it should be recalled that individual death rates are rather volatile.
Note that models targeting improvement rates in-sample performance is uniformly
worse than those targeting death rates. However, the difference between the two
approaches is less striking when considering out-of-sample results. It should be
mentioned that, in the M-approach, central death rates are obtained from improve-
ment rates through iterative multiplication, see (3.1). In general, more complex
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REGION P-double P-common P-simple P-division P-one M-double M-common M-simple M-division M-one
1 16.09 14.85 18.47 19.55 27.38 18.9 33.37 19.19 19.55 21.85
2 25.9 28.27 37.75 35.98 41.55 20.24 35.27 30.3 25.25 29.62
3 14.86 13.68 16.3 18.31 32.01 17.61 35.12 20.53 19.32 24.21
4 16.06 13.64 15.91 16.58 29.16 17.28 32.32 19.43 17.3 22.52
5 16.44 15.94 16.38 14.08 26.85 17.94 34.35 18.89 25.77 23.42
6 31.84 35.93 46.42 45.14 43.39 24.71 42.45 33.79 55.36 35.56
7 23.22 27.78 34.83 34.73 37.03 23.44 37.65 30.28 29.73 29.09
8 15.94 14.49 19.28 19.63 25.62 16.84 32.85 20.59 21.52 18.41
9 17.16 15.46 19.14 16.69 21.26 22.43 37.66 24.96 24.34 22.04
10 14.2 14.72 18.42 17.67 22.81 17.1 33.9 16.84 18.06 17.22
11 19.56 19.02 24.98 25.19 27.49 16.36 34.04 17.69 21.54 22.1
12 8.81 9.78 8.84 10.21 15.12 13.91 29.7 14.06 10.9 12.32
13 11.24 9.6 12.36 12.82 16.87 11.87 29.73 12.21 12.39 12.19
14 14.33 15.65 20.53 19.35 23.29 16.94 33.37 21.04 17.78 17.89
15 18.47 16.93 18.58 18.65 21.88 19.91 34.99 19.89 20.1 19.9
16 15.6 14.17 18.44 21.47 25.57 17.08 32.46 17.07 17.08 16.52
17 12.89 16.58 21.83 22.53 25.41 12.87 31.44 14.76 14.97 13.59
18 20.59 19.92 25.43 24.87 26.07 20.21 34.04 19.82 18.35 19.69

mean 17.4 17.58 21.88 21.86 27.15 18.09 34.15 20.63 21.63 21.01
st. dev. 5.26 6.53 9.02 8.56 7.27 3.3 2.91 5.63 9.36 5.94

Table 4. MAPE of forecast data with respect to observed data
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REGION Observed P-double P-common P-simple P-division P-one M-double M-common M-simple M-division M-one
1 9.32 9.31 0.15 9.29 0.31 9.31 0.15 9.3 0.28 9.24 0.93 9.33 0.07 9.35 0.28 9.33 0.08 9.33 0.06 9.31 0.14
2 9.26 9.24 0.21 9.27 0.09 9.23 0.35 9.27 0.02 9.19 0.81 9.3 0.44 9.33 0.68 9.27 0.08 9.31 0.45 9.28 0.2
3 9.32 9.31 0.16 9.31 0.16 9.32 0.04 9.31 0.21 9.24 0.95 9.34 0.21 9.35 0.23 9.33 0.09 9.33 0.05 9.31 0.18
4 9.29 9.27 0.21 9.27 0.28 9.27 0.29 9.27 0.28 9.2 0.98 9.33 0.38 9.36 0.68 9.32 0.33 9.35 0.55 9.31 0.16
5 9.25 9.23 0.17 9.2 0.54 9.2 0.57 9.22 0.28 9.15 1.06 9.29 0.48 9.33 0.83 9.31 0.61 9.27 0.22 9.28 0.37
6 9.32 9.31 0.14 9.32 0 9.32 0.04 9.3 0.23 9.24 0.84 9.3 0.21 9.33 0.04 9.29 0.31 9.31 0.13 9.29 0.36
7 9.36 9.35 0.14 9.34 0.19 9.34 0.18 9.34 0.17 9.3 0.65 9.4 0.45 9.41 0.5 9.36 0 9.36 0.01 9.4 0.38
8 9.37 9.35 0.16 9.36 0.08 9.35 0.15 9.35 0.19 9.31 0.6 9.39 0.26 9.42 0.62 9.37 0.07 9.37 0.08 9.4 0.39
9 9.37 9.36 0.17 9.35 0.2 9.35 0.24 9.37 0.01 9.34 0.4 9.38 0.1 9.4 0.33 9.37 0 9.37 0.01 9.41 0.42
10 9.42 9.41 0.13 9.4 0.23 9.4 0.22 9.42 0.09 9.38 0.42 9.41 0.19 9.43 0.12 9.41 0.13 9.42 0.02 9.42 0
11 9.32 9.3 0.16 9.31 0.13 9.3 0.18 9.29 0.28 9.26 0.61 9.35 0.4 9.36 0.49 9.35 0.39 9.33 0.17 9.33 0.16
12 9.35 9.34 0.08 9.34 0.07 9.34 0.11 9.32 0.28 9.3 0.54 9.32 0.35 9.36 0.06 9.32 0.33 9.34 0.09 9.34 0.14
13 9.2 9.18 0.15 9.18 0.22 9.18 0.18 9.18 0.22 9.15 0.54 9.19 0.02 9.23 0.34 9.19 0.03 9.2 0.02 9.21 0.17
14 9.37 9.35 0.15 9.34 0.26 9.34 0.29 9.35 0.17 9.32 0.5 9.38 0.09 9.4 0.33 9.34 0.26 9.36 0.14 9.38 0.08
15 9.33 9.32 0.1 9.33 0.05 9.33 0.04 9.33 0.1 9.31 0.14 9.29 0.42 9.32 0.05 9.29 0.35 9.29 0.36 9.31 0.2
16 9.35 9.33 0.16 9.34 0.14 9.34 0.09 9.32 0.3 9.3 0.56 9.33 0.15 9.38 0.31 9.33 0.16 9.35 0.05 9.35 0
17 9.34 9.33 0.13 9.31 0.34 9.3 0.38 9.3 0.43 9.27 0.69 9.35 0.1 9.37 0.32 9.34 0.05 9.33 0.05 9.36 0.28
18 9.29 9.27 0.22 9.27 0.21 9.27 0.26 9.28 0.15 9.26 0.33 9.29 0.01 9.32 0.3 9.29 0.02 9.29 0.02 9.31 0.16

mean 0.15 0.19 0.21 0.21 0.64 0.24 0.36 0.18 0.14 0.21
st.dev. 0.04 0.13 0.14 0.11 0.25 0.16 0.23 0.17 0.16 0.13

Table 5. Expected residual lifetime at age 60 (10 years truncated). Each couple of columns refers to a model:
the left column contains the estimated index, the right one the percentage error with respect to the observed value.
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REGION Observed P-double P-common P-simple P-division P-one M-double M-common M-simple M-division M-one
1 8.36 8.35 0.11 8.34 0.26 8.35 0.15 8.32 0.46 8.21 1.84 8.29 0.84 8.3 0.77 8.3 0.77 8.3 0.74 8.27 1.1
2 8.23 8.21 0.21 8.24 0.09 8.19 0.51 8.25 0.19 8.11 1.48 8.28 0.62 8.31 0.99 8.21 0.27 8.26 0.31 8.23 0.07
3 8.42 8.41 0.03 8.42 0.09 8.43 0.21 8.41 0.04 8.27 1.68 8.38 0.46 8.41 0.11 8.39 0.27 8.42 0.01 8.36 0.61
4 8.34 8.33 0.11 8.3 0.54 8.32 0.21 8.33 0.18 8.2 1.72 8.31 0.33 8.35 0.12 8.32 0.26 8.32 0.27 8.28 0.78
5 8.26 8.25 0.17 8.18 0.99 8.18 0.93 8.23 0.38 8.1 1.88 8.24 0.19 8.31 0.65 8.27 0.17 8.23 0.35 8.23 0.38
6 8.39 8.38 0.11 8.39 0.05 8.38 0.07 8.35 0.47 8.23 1.9 8.28 1.33 8.34 0.59 8.28 1.31 8.34 0.64 8.3 1.06
7 8.48 8.48 0.07 8.46 0.32 8.47 0.19 8.46 0.24 8.36 1.44 8.48 0.1 8.43 0.59 8.35 1.62 8.34 1.63 8.44 0.57
8 8.42 8.41 0.17 8.4 0.2 8.42 0.01 8.42 0.06 8.33 1.09 8.31 1.31 8.4 0.21 8.31 1.33 8.31 1.35 8.39 0.37
9 8.46 8.45 0.09 8.43 0.38 8.43 0.32 8.49 0.29 8.39 0.79 8.32 1.65 8.39 0.82 8.29 2 8.3 1.95 8.38 1
10 8.55 8.53 0.15 8.51 0.37 8.51 0.41 8.53 0.17 8.46 1 8.45 1.18 8.51 0.45 8.45 1.11 8.49 0.62 8.49 0.6
11 8.28 8.26 0.23 8.25 0.38 8.25 0.36 8.24 0.49 8.18 1.27 8.22 0.78 8.24 0.58 8.22 0.76 8.16 1.49 8.21 0.95
12 8.51 8.52 0.03 8.51 0.04 8.52 0.03 8.46 0.62 8.4 1.37 8.43 0.97 8.5 0.21 8.43 1 8.49 0.28 8.46 0.62
13 8.1 8.08 0.23 8.07 0.4 8.08 0.17 8.08 0.28 8.02 1.01 8.09 0.1 8.15 0.63 8.09 0.07 8.1 0.06 8.13 0.42
14 8.4 8.39 0.2 8.39 0.21 8.38 0.3 8.4 0.05 8.33 0.91 8.35 0.59 8.42 0.17 8.32 1 8.38 0.24 8.38 0.32
15 8.38 8.36 0.2 8.44 0.71 8.45 0.83 8.46 0.91 8.4 0.24 8.42 0.49 8.48 1.16 8.42 0.44 8.42 0.46 8.49 1.32
16 8.41 8.39 0.23 8.39 0.15 8.4 0.09 8.36 0.5 8.31 1.15 8.33 0.88 8.43 0.24 8.33 0.91 8.38 0.35 8.39 0.23
17 8.32 8.3 0.21 8.29 0.31 8.29 0.31 8.29 0.4 8.22 1.16 8.26 0.68 8.32 0.08 8.27 0.55 8.27 0.57 8.32 0.04
18 8.31 8.29 0.25 8.29 0.25 8.28 0.3 8.31 0.05 8.27 0.5 8.36 0.59 8.41 1.16 8.36 0.62 8.36 0.64 8.4 1.06

mean 0.16 0.32 0.3 0.32 1.25 0.73 0.53 0.8 0.66 0.64
st.dev. 0.07 0.24 0.25 0.23 0.47 0.44 0.36 0.53 0.56 0.38

Table 6. Expected residual lifetime at age 70 (10 years truncated). Each couple of columns refers to a model:
the left column contains the estimated index, the right one the percentage error with respect to the observed value.
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REGION Observed P-double P-common P-simple P-division P-one M-double M-common M-simple M-division M-one
1 6.36 6.35 0.16 6.31 0.81 6.34 0.27 6.3 0.93 6.14 3.45 6.18 2.77 6.12 3.7 6.21 2.31 6.23 2.05 6.19 2.63
2 6.29 6.28 0.11 6.29 0.12 6.2 1.31 6.3 0.22 6.11 2.88 6.17 1.9 6.21 1.2 6.06 3.64 6.06 3.54 6.1 3.02
3 6.51 6.49 0.33 6.47 0.55 6.51 0.03 6.48 0.48 6.28 3.51 6.21 4.64 6.38 1.92 6.27 3.73 6.4 1.66 6.27 3.67
4 6.45 6.45 0.04 6.44 0.05 6.45 0.01 6.44 0.19 6.25 3.13 6.24 3.29 6.28 2.63 6.31 2.21 6.3 2.34 6.25 3.12
5 6.27 6.24 0.45 6.19 1.29 6.22 0.79 6.26 0.12 6.09 2.89 6.19 1.25 6.26 0.1 6.23 0.7 6.18 1.49 6.12 2.44
6 6.4 6.38 0.16 6.4 0.13 6.39 0.04 6.35 0.78 6.19 3.25 6.33 0.95 6.33 1.07 6.32 1.11 6.44 0.74 6.35 0.65
7 6.51 6.5 0.24 6.52 0.11 6.55 0.56 6.54 0.47 6.39 1.84 6.35 2.44 6.31 3.09 6.19 4.88 6.19 4.93 6.35 2.47
8 6.41 6.38 0.57 6.39 0.3 6.4 0.28 6.39 0.38 6.27 2.18 6.24 2.73 6.37 0.66 6.2 3.27 6.2 3.26 6.3 1.77
9 6.35 6.3 0.79 6.26 1.51 6.26 1.55 6.32 0.46 6.21 2.23 6.25 1.62 6.33 0.4 6.21 2.23 6.21 2.23 6.32 0.53
10 6.47 6.44 0.5 6.45 0.26 6.46 0.13 6.49 0.36 6.39 1.16 6.28 2.88 6.35 1.75 6.3 2.63 6.35 1.8 6.38 1.35
11 6.26 6.23 0.37 6.25 0.14 6.25 0.16 6.23 0.47 6.13 1.93 6.21 0.8 6.23 0.37 6.21 0.66 6.19 1.07 6.2 0.83
12 6.54 6.51 0.38 6.47 1.03 6.49 0.71 6.42 1.88 6.34 3.1 6.33 3.22 6.46 1.23 6.35 2.96 6.46 1.26 6.46 1.14
13 6.14 6.11 0.35 6.07 1.07 6.12 0.34 6.1 0.6 6.01 2.11 5.99 2.45 6.04 1.49 5.99 2.37 6.01 2.02 6.06 1.23
14 6.31 6.28 0.51 6.29 0.3 6.3 0.27 6.33 0.29 6.23 1.28 6.17 2.23 6.23 1.26 6.11 3.24 6.09 3.49 6.24 1.16
15 6.49 6.47 0.32 6.29 3.01 6.31 2.78 6.32 2.57 6.26 3.53 6.32 2.54 6.42 1.05 6.32 2.62 6.37 1.79 6.28 3.23
16 6.36 6.31 0.68 6.32 0.53 6.34 0.24 6.29 1.04 6.23 2.06 6.22 2.13 6.36 0.02 6.22 2.13 6.29 1 6.32 0.63
17 6.12 6.07 0.74 6.14 0.36 6.13 0.26 6.11 0.04 6.04 1.33 6.04 1.25 6.12 0.03 6.07 0.74 6.04 1.18 6.14 0.46
18 6.47 6.46 0.2 6.42 0.79 6.42 0.85 6.47 0.01 6.41 0.98 6.43 0.66 6.52 0.66 6.43 0.68 6.49 0.24 6.52 0.79

mean 0.38 0.69 0.59 0.63 2.38 2.21 1.26 2.34 2.01 1.73
st.dev. 0.22 0.73 0.7 0.66 0.86 1.02 1.05 1.21 1.17 1.08

Table 7. Expected residual lifetime at age 80 (10 years truncated). Each couple of columns refers to a model:
the left column contains the estimated index, the right one the percentage error with respect to the observed value.
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models tend to have a better in-sample performance while the relative difference
is again diminished for out-of-sample. An exception is M-common, whose out-of-
sample behaviour is notably worse than the other models of the same family.

The predictive capacity of the models can be analysed also through the 10 years
truncated expected residual lifetime at ages 60, 70 and 80 and the corresponding
MAPE, contained in Tables 5-7. As these expectations depend on a set of death
probabilities, a smoothing effect of the noise embedded in death rates is apparent
as can be seen in the performance which is now satisfying in absolute terms. The
decreasing performance pattern observed in the three tables is due to the increasing
volatility of death rates with age. Among P-models, the most complex structure,
P-double, clearly dominates the other models, with P-one predictive capacity being
seriously undermined. The intermediate models, P-common, -simple and -division,
present a similar performance. As for M-models, results are mixed, with predictive
capacity not always related to model complexity. With the exception of age 60,
M-common seems to be the most performing model.

References

[1] S. D. Baxter. Should projections of mortality improvements be subject to a
minimum value? British Actuarial Journal, 13:375–464, 2007.

[2] H. Booth, J. Maindonald, and L. Smith. Applying Lee-Carter under conditions
of variable mortality decline. Population Studies, 56(3):325–336, 2002.

[3] H. Booth, R. J. Hyndman, L. Tickle, and P. de Jong. Lee-Carter mortality
forecasting: A multi-country comparison of variants and extensions models.
Demographic Research, 15(9):289–310, 2006.

[4] N. Brouhns, M. Denuit, and J.K. Vermunt. A Poisson log-bilinear approach
to the construction of projected lifetables. Insurance: Mathematics and Eco-
nomics, 31(3):373–393, 2002.

[5] P. Burnham and R. Anderson. Multimodel inference: Understanding AIC and
BIC in model selection. Sociological Methods & Research, 33(2):261–304, 2004.

[6] A. Cairns, D. Blake, K. Dowd, D. Coughlan, D. Epstein, A. Ong, and I. Bale-
vich. A quantitative comparison of stochastic mortality models using data from
England & Wales and the United States. North American Actuarial Journal,
13(1):1–35, 2009.

[7] G. Coughlan, M. Khalaf-Allah, Y. Ye, S. Kumar, A. Cairns, D. Blake, and
K. Dowd. Longevity hedging 101: A framework for longevity basis risk analysis
and hedge effectiveness. North American Actuarial Journal, 15(2):150–176,
2011.

[8] P. De Jong and L. Tickle. Extending Lee–Carter mortality forecasting. Math-
ematical Population Studies, 13(1):1–18, 2006.

[9] A. Delwarde, M. Denuit, M. Guillen, and A. Vidiella. Application of the
Poisson log-bilinear projection model to the G5 mortality experience. Belgian
Actuarial Bulletin, 6(1):54–68, 2006.

[10] K. Dowd, A. Cairns, D. Blake, G. Coughlan, and M. Khalaf-Allah. A gravity
model of mortality rates for two related populations. North American Actuarial
Journal, 15(2):334–356, 2011.

[11] S. Haberman and A. Renshaw. A comparative study of parametric mortality
projection models. Insurance: Mathematics and Economics, 48(1):35–55, 2011.

[12] S. Haberman and A. Renshaw. Parametric mortality improvement rate mod-
elling and projecting. Insurance: Mathematics and Economics, 50(3):309–333,
2012.



20 I. L. DANESI, S. HABERMAN, AND P. MILLOSSOVICH

[13] S. Haberman and A. Villegas. On the modelling and forecasting of socio-
economic mortality differentials: an application to deprivation and mortality
in England. North American Actuarial Journal, 18(1):168–193, 2014.

[14] A. Hunt and D. Blake. Identifiability in age/period mortality models. 2014.
[15] R. J. Hyndman and Md. S. Ullah. Robust forecasting of mortality and fertility

rates: A functional data approach. Computational Statistics & Data Analysis,
51(10):4942–4956, 2007.

[16] S. F. Jarner and E. M. Kryger. Modelling adult mortality in small populations:
The SAINT model. ASTIN Bulletin, 41(2):377–418, 2011.

[17] R. D. Lee and L.R. Carter. Modelling and forecasting U.S. mortality. Journal
of the American Statistical Association, 87(14):659–675, 1992.

[18] J.S. Li and M.R. Hardy. Measuring basis risk in longevity hedges. North
American Actuarial Journal, 15(2):177–200, 2011.

[19] N. Li and R. D. Lee. Coherent mortality forecasts for a group of populations:
an extension of the Le–Carter method. Demography, 42(3):575–594, 2005.

[20] G. Minelli, V. Manno, S. M. D’Ottavi, M. Masocco, G. Rago, M. Vichi,
L. Frova, S. Marchetti, M. Demaria, and S. Conti. La mortalità in Italia
nell’anno 2009. Rapporti ISTISAN, (12/15), 2012.

[21] D. Mitchell, P. Brockett, R. Mendoza-Arriaga, and K. Muthuraman. Modeling
and forecasting mortality rates. Insurance: Mathematics and Economics, 52
(2):275–285, 2013.

[22] E. Pitacco, M. Denuit, S. Haberman, and A. Olivieri. Modelling Longevity
Dynamics for Pensions and Annnuity Business. Oxford University Press, 2009.

[23] A. Renshaw and S. Haberman. Lee-Carter mortality forecasting with age-
specific enhancement. Insurance: Mathematics and Economics, 33(2):255–272,
2003.

[24] S. J. Richards, J. G. Kirkby, and I. D. Currie. The importance of year of birth
in two-dimensional mortality data. British Actuarial Journal, 12(1):5–61, 2005.

[25] M. Russolillo, G. Giordano, and S. Haberman. Extending the Lee–Carter
model: a three-way decomposition. Scandinavian Actuarial Journal, 2011(2):
96–117, 2011.


