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Abstract

In this thesis, the propagation characteristics of the biological optical

waveguides, considering the materials as lossy in the optical frequen-

cies, have been analysed. It has been found that the losses present in

the biological materials in optical frequencies are not negligible, and

the loss values have significant effects on the propagation characteris-

tics of these waveguides.

In biological optical waveguides, each waveguide is surrounded by

parallel waveguides so that the propagation characteristics would be

different from that of single waveguide present in a homogeneous ma-

terial. In this thesis, the impacts of the presence of the neighbour-

ing waveguides on the propagation characteristics of a waveguide are

studied in details.

Dispersion characteristics of the waveguides have been investigated,

and the effects of the material loss, presence of the neighbouring

waveguides and the presence of multi-layer W-fibre like structure on

the dispersion characteristics have also been studied.

The modal characteristics, the time-domain evolution of the signal

and the diffraction characteristics have been integrated to explain

some of the still unanswered questions in the visual systems. An

attempt has been made to explain the Stiles-Crawford effect of human

retina in light of the findings of this thesis.

A full-vectorial H-field based finite element method (FEM) is used for

the modal solutions, Finite Difference Time Domain (FDTD) is used

to study the time evolution of the signals through the waveguides, and

the Diffraction profiles have been obtained by Rayleigh-Sommerfeld

(RS) diffraction integral.
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Chapter 1

Introduction

It is of considerable interest and importance about the Electromagnetic Wave

(EM) propagation through the biological media, and over the last few decades

several landmark studies such as by Johnson and Guy [1972], Sebbah [2012],

Ishimaru [1977], have conducted to assess the various aspects of the propagation

characteristics of EM radiation and interactions. In the rise of the applications

in wireless communications to evaluate the impacts of EM wave, especially in

Microwave range, on various human tissue have been studied in great details A

Peyman, S Holden [2000]. In the advent of interest in Vision Research, Biophoton-

ics Research, Biomedical Imaging, Optoelectronics Retinal Prosthesis Systems,

Computer Vision and some other similar fields have encouraged the researchers

to study interactions of EM wave in the other frequency ranges, especially in the

Visible spectrum and IR wavelengths. EM wave penetration, reflection, refrac-

tion, absorption, and scattering through various biological structures have been

studied by various research groups over a wide frequency range. The advances

in optical waveguide technologies have seen a rapid development in methods and

techniques in analysing EM wave-material interactions. It has been reported that

some biological micro-structures can work as waveguides for Visible and IR radi-

ations. Evolution over millions of years has perfected the engineering designs of

some of these structures to a point where it is very likely that studying them in

greater details might provide us with some novel designs as well as give us deeper

insights into the functionalities of these systems.

Although more than 100 years have been passed for the vision research, many

1



questions remained unexplained. A recent study by Franze et al. [2007] showed

that the Glial cells of Human retina act as an optical waveguide that helps to

increase the visual acuity, which earlier was considered has no impacts on vi-

sion other than providing the mechanical support to the retinal layers. There

is still an ongoing debate amongst the researchers whether the Glial cells are

acting as optical waveguides or not. Unavailability of the detailed material pro-

files of the system makes it tough to draw a well-accepted conclusion. Retinal

photoreceptors were shown by Biernson and Kinsley [1965] to have waveguide

properties. However, the relationship between the Glial cells waveguide and the

photoreceptor waveguide has not been established to date. Rhabdom present in

the Ommatidium of Insect compound eye was shown by Stavenga [1975] to have

waveguide properties. The supported mode shapes of these structures and the

roles played by them in vision have not been studied in great details.

The materials used in various waveguide devices are mostly have known ma-

terial properties with homogeneous material profiles. Most of the materials such

as SiO2, Silicon, Ge and Quartz have known refractive indices and loss values

over a broad range of operating frequencies. The loss values of these materials

are usually minuscule (tan δ ≈ 10−4 or less) and the propagation characteris-

tics obtained by ignoring these losses produce results with the reasonable level

of accuracies. Unlike the materials used in the waveguide devices, the materials

present in the biological structures are found to have a material loss that cannot

be ignored. Studies on these structures ignoring the lossy material might have

provided results that are probably inaccurate to some extent. It is thus worth

studying the impacts of the lossy materials on the propagation characteristics of

these structures in greater details that has the potential to give us new insight

into the systems as well as the potential to explain some unexplained phenomena.

The presence of finite apertures (Lens) makes most of the optical instruments

diffraction limited. Diffraction sets a fundamental limit to the achievable resolu-

tion by any optical instrument. The waveguide nature of the structures present

on the back of the biological optical instrument (eye) is receiving the input from

the projected image by the diffraction producing element (Lens), indicating that

a study relating the fundamental operating blocks might be necessary. Unfortu-

nately, to date, a study that addresses the relationships between Diffraction and

2



the optical waveguides and its impact on the visual process is not available in the

literature. It is thus worth studying the biological waveguide structures in visible

frequencies and their relationship with the Diffraction present in these systems.

The focus of this thesis will be on investigating in determining the impacts of

material loss present in the biological structures on their propagation character-

istics and relate the presence of diffraction with it. As a test case, Ommatidium

of insect (Drosophila melanogaster, Fruit fly (Fig. 1.1)) and the Glial cells of the

human retina will be considered.

1.1 Background

1.1.1 Insect eye - Compound eye

Most of the insect species have a compound eye. A compound eye of most of

the insects is composed of Ommatidium, the basic building blocks of the system.

Figure 1.2 shows the cross-section of a Drosophila Melanogaster Compound eye.

Each ommatidium, as shown in Fig. 1.3 is composed of a lens, crystalline cone,

rhabdom and at the end of the rhabdom the photoreceptors are located. The

Rhabdom is surrounded by layers containing pigments that act as an absorbing

medium for light. Light is focused by the lens and the crystalline cone on the

rhabdom and then the light has to be guided by the rhabdom to be absorbed by

the photoreceptors. It was shown in some studies by Neumann [2002] and Land

[1997] that they can work as a light guide as the refractive index of the rhabdom

was found to be higher than that of it surrounding materials. These studies

considered the rhabdom and its surrounding materials to be loss-less, which is

not accurate.

The presence of the tiny (≈ 20 µm) Lens at the beginning of the Ommatidium

section and the distance between the lens and the Rhabdom entrance (≈ 20 µm)

makes the system to show strong Diffraction effects. Besides being a Diffraction

limited system, the rhabdom entrance is in the Fresnel’s zone or near field. In

analysing the system’s performance thus requires that the roles played by Diffrac-

tion and the possible implications of the lossy surroundings of the Rhabdom be

taken into account.
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Figure 1.1: Image of a Drosophila, source: en.wikipedia.org

Figure 1.2: Insect Compound Eye Cross-section source: en.wikipedia.org

Figure 1.3: Ommatidium Cross-section Smith [2013]
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1.1.2 Absorbing surroundings of the Rhabdom

It is believed that each rhabdom is surrounded by light absorbing layers, pigment

layers so that any light tries to escape from the rhabdom can be absorbed by

them. It is also believed that the long and short pigment layers, surrounding the

Rhabdom as shown in Fig. 1.3 absorbs light that tries to escape the Rhabdom,

that means the surrounding materials cannot be loss-less as were considered by

the previous studies.

1.1.3 Mammal eye

A typical Mammal eye cross-section is shown in Fig. 1.4. The light passes through

the cornea, the anterior chamber filled with Aqueous Humor, Pupil, Lens, and

the Interior chamber filled with Vitreous Humor to reach the photosensitive layer

known as the Retina.

Figure 1.4: A typical Mammal Eye, source: wikimedia commons

Figure 1.6 shows the microstructure of the Retina and its various cell types.

The photoreceptors (Cone for colour vision in bright light and the rod for monochro-
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matic vision in dim light) are located at the back of the Retinal layers just before

the pigment cell layer. The light must pass through the different layers of the

retina, such as Horizontal cells, Bipolar Cells, Amacrine Cells and Ganglion Cells

to reach the photoreceptors. Photoreceptor cells converts the light into elec-

tricity and then the electric current is transferred by the Horizontal, Bipolar and

Amacrine cells to the Ganglion cells. Ganglion cells are in fact the neurons whose

axons form the optic nerve that transfers the visual information acquired by the

Retina to Brain for further processing and interpretations.

The seemingly inverted design of the Mammal retina had been a riddle for

the vision science researchers as the photoreceptors present at the back of the

Retinal layers receive optical stimulations that are passing through the different

layer and is expected to suffer severely scattering by them. Muller Cell or the Glial

cells, as shown in Fig. 1.7, present in the Retina that spans from the Ganglion

cell layer up to the photoreceptor layer were previously considered to provide

structural support to the Retinal different layers. It was shown by Reichenbach

et al. [2012] that the glial cells work as a light guide between the top surface and

the photoreceptor layer and, in fact, enhances the visual acuity to some extent.

The Glial cell matrix thus transfers the image information projected by the Eye-

Lens on the top surface of the Retina to the Photoreceptor layer, where it is being

guided and absorbed by the Photoreceptors. The presence of Bragg grating like

optical filter makes the cones sensitive to a certain colour of lights and makes the

rods exhibit a broadband response.

2 Background

the succeeding secondary and tertiary neurons of the retina (Rodieck, 1973; Masland,
2001). In general, rods and cones synaptically transmit the biochemical message to the
bipolar cells that in turn trigger the retinal ganglion cells. Thereby, di�erent types of
horizontally oriented amacrine and horizontal cells modify the serial information flow by
lateral inhibition processes. Finally, the ganglion cells generate action potentials that run
along their axons at the innermost layer of the retina. The optic nerve collects the axons of
all ganglions and delivers the information to the visual cortex in the brain (Figure 2.9 a).

Figure 2.8: The retinal tissue in the eye. (a) The retina is a thin cell layer that converts images
of the environment into a visual information which finally can be perceived by the brain.
(b) Photograph of a freshly isolated retina in aqueous solution. Images adapted from Ignacio
Icke, Wikimedia Commons and from Franze (2007). Scale bar 200 µm.

Under the microscope, the retina shows a distinct stratified structure where the di�erent
morphological elements of the retinal cells are well-organized in separate layers (Figure
2.9 a; Rodieck, 1973). The inner and outer segments of the photoreceptor cells form the
photoreceptor segment layer (PRS) while their cell bodies are densely packed in the outer
nuclear layer (ONL). Cellular processes and synaptic terminals of rod (spherules), cone
(pedicles), bipolar and horizontal cells are located in the following outer plexiform layer
(OPL). All layers containing substructures of the receptor cells belong to the so-called
outer part of the retina which again reflects the positioning away from the incoming light.
Similar to the outer part, the inner retina includes an inner nuclear (INL) and an inner
plexiform layer (IPL) formed by cellular structures of the downstreamed neurons. The
cell bodies of the ganglion cells are located in the ganglion cell layer (GCL) and their
axons in the nerve fiber layer (NFL). In addition to the neurons, the retina contains also
non-neuronal glial cells, the second cell type of the nervous tissue. The main glial cells of
the retina, the Müller cells, span the entire tissue from the inner retinal surface towards
the photoreceptor cells (Reichenbach and Bringmann, 2010).

22

Figure 1.5: Retina Layers and Cross-section Reichenbach et al. [2012]
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Figure 1.6: Photoreceptors in Mammal Retina, source: www.bioteaching.com
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Figure 1.7: Retinal Glial or Muller Cell, Original Drawing by Muller Müller [1851]
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1.1.4 Lossy surroundings of the Glial cells

Photocurrent goes in the upward direction through the Human retina, indicating

the presence of finite conductivities of the material, thereby lossy for EM wave.

The photoreceptors are surrounded by lossy materials as well. Freshly dissected

retina in aqueous solution, as shown in Fig. 1.5, shows that it is not transparent,

in contrast to the previous belief that the retina is mostly transparent in the

visible spectrum. So, the Glial cells are providing a safe passage for the light

through the seemingly non-transparent Retinal layers and it can be concluded

that the Glial cell surroundings are lossy in visible frequencies.

1.1.5 Diffraction in the visual systems

Diffraction occurs when a wave encounters an object or a finite aperture. In clas-

sical physics, the phenomenon of diffraction can be described as the interference

of waves according to Huygens-Fresnel principle (Papas [2014]). According to

this principle, each point on the wavefront acts as a new point source.
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Figure 1.8: Schematics of a single slit diffraction

Figure 1.8 shows a scenario where, a finite aperture of width ‘a’ is placed in

front of a propagating wave; a screen is located at a distance ‘d’ from the aperture.
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When the wave encounters the aperture, each point on the aperture now acts as

a new wave source and they interfere with each other as they propagate.

On the screen, the waves from different points reach with different phases,

and at some point when the wavefronts are in phase, constructive interference

produces higher intensities, where at some other points the destructive interfer-

ence produces lower intensities. A typical intensity profile on the screen is shown

on the right-hand side of Fig. 1.8.

The intensity profiles generated due to diffraction can be obtained from the

scalar solution of the Helmholtz wave equation. There are several methods avail-

able in the literature to compute the diffraction profiles, i.e. Kirchoff’s Diffraction

Integral Marchand and Wolf [1966], Rayleigh-Sommerfeld Diffraction Integral

Osterberg and Smith [1961], Fresnel’s Diffraction IntegralMendlovic et al. [1997],

Fraunhofer’s Diffraction IntegralMendlovic et al. [1997], etc. In diffraction theory,

the terms ‘near-field’ and ‘far-field’ are used that can be described by Fresnel’s

distance to characterise the properties of diffraction. The Fresnel’s distance is

given as,

df =
2D2

λ
(1.1)

where, df is the Fresnel’s distance, D is the aperture size, and λ is the operating

wavelength. ‘Near-field’ refers to the region where the distance is less than df ,

the region with distance higher than df refers to the ‘far-field’.

Figure 1.9: Diffraction by a Finite Aperture, source: wikipedia
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Due to the presence of finite apertures in the visual systems, the quality of

the image produced by them are limited by diffraction. The lens present at the

beginning of the insect ommatidium and the finite size of the pupil present in

mammal eye act as a finite aperture and produce diffraction. Figure 1.9 shows

the impact of Diffraction by a finite aperture (For the insect Ommatidium the

Lens, for the Mammal eye the pupil) produces airy patterns for a point source.

1.1.6 Challenges in modelling biological tissue

Treatment of biological tissue mathematically is a challenging task. Unlike the

dielectrics, where no moving charge is present thereby no conduction, biological

tissues can conduct electricity. Although they can conduct electricity, the charge

carriers are not electrons or holes like metals and semiconductors, but ions are

the charge carriers.

Figure 1.10: Electron Microscope Image of Biological Tissue, Cells

For a living tissue where the metabolism is present, should have different char-
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acteristics than that of a dead tissue. Incorporating the impacts of the presence

of metabolism is a difficult task. The biological tissues can be considered as lossy

dielectrics having finite conductivities mathematically to work with the Maxwell’s

equations. As long as the conductivity is not as high as good conductors, the

assumptions should produce reasonably accurate results. Figure 1.10 (source:

en.wikipedia.org) shows the electron microscope image of a typical biological tis-

sue that shows that the structure is highly inhomogeneous and full of scattering

particles.

Table 1.1 (source: http://niremf.ifac.cnr.it/) displays the material properties

of some of the biological tissues at 100 GHz frequency that shows that at this fre-

quency most of the materials are lossy. Here ε′ is the real part of the permittivity

of the material and tan δ = ε′′

ε′
is the loss tangent of the material where ε′′ is the

imaginary part of the material permittivity. For the visible range of frequencies,

most of these tissues are opaque thus highly lossy, some of the tissues such as

Retina is considered to be loss-less at visible frequencies, that is why the exact

values of losses present are not available in the literature.

Table 1.1: Permittivities of some Biological Tissues at 100 GHz

Specimen ε′ tan δ

Blood 8.29 1.37

skin 5.59 1.26

Brain 6.71 1.10

Bone 4.10 0.70

Liver 6.87 1.12

Lungs 4.00 0.96

Retina 8.10 1.30

Eye Sclera 8.11 1.30

Cornea 7.99 7.99

Vitreaous Humor 7.00 1.99
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1.1.7 Mathematical treatments for lossy medium

The absorbing material can be considered as a lossy dielectric having a permit-

tivity of ε = εr + jεi, where εr and εi are the real and imaginary parts of the

complex permittivity ε. For a lossless dielectric material εi → 0. Here the di-

electric and conduction losses both are combined into εi (Ramo et al. [2008]).

In this thesis, the notations εr = ε′ and εi = ε′′ have been used, and the simi-

lar notations for the refractive indices (n) have also been used. As long as the

material under consideration is not metal or plasma, the treatment of losses in

this manner produces results within an acceptable level. The refractive index is

given by n =
√
ε = nr + jni, where nr and ni are the real and imaginary parts

of the refractive index. For most of the structures found in biological tissue the

imaginary part of the refractive index ni are not available in the literature at

optical frequencies. The impacts of losses for these structures has largely been

ignored.

Unfortunately, the previous researchers did not pay sufficient attention to the

fact that the loss of the material could be (of any use) valuable in characterising

their optical properties of these biological structures. That might be the reason

the imaginary parts of the refractive indices are so scarce while the real parts are

often available in the literature. The presence of loss in the materials of a light

guide can change the propagation characteristics to a great extent. It is thus

worth investigating the impacts of the material losses of biological structures on

the propagation characteristics.

As the imaginary parts of the refractive indices are not available, the compu-

tational analysis can be carried out with a range of assumed values for the ni.

nr of the different components of rhabdom of Drosophila, Human Glial cell and

Photoreceptors of Human retina are however available.

1.1.8 Importance of the structure

Insect eye where, the abundance of the processing power of the brain is absent, the

structure must be playing a very crucial and important role. For the flying insects,

it requires to navigate, avoid an obstacle, searching for a particular object (i.e.

flower) in the field, track and avoid attacks, tracking moving objects; all requires
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a considerable amount of visual processing. The total amount of energy at their

disposal is very limited. For the nocturnal flying insects, the amount of available

light is very limited as well.

Despite having all these limitations of smaller available energy, lower computa-

tional power, lower available light (nocturnal); their visual system must perform

very well to survive in nature. A Huge number of well-survived insect species

suggests that they are performing very well indeed. The image capturing and

projection system (Insect compound eye) must be producing acceptable qual-

ity images for the accurate representation of the visual scene, provide sufficient

information for motion detection, navigation and tracking. Unavailability of a

high-performance processing unit behind the eye imposes the responsibility on

the physical structure of the eye so that it reduces the burden on the processing

to a great extent and less amount of further processing is required. Hence, the

structure of their eye must be playing a very vital role in insect’s visual system.

1.1.9 Previous studies on these structures

The refractive indices of the interior materials of Rhabdom, Glial cells and Pho-

toreceptors in the retina, are higher than their surrounding materials. Hence,

all these structures can guide EM wave and some studies Land [1997], Neumann

[2002] found that these structures can guide light in the visible spectrum.

Propagation characteristics of these tissue structures have been investigated

in the literature. In most of these studies, the fact that the biological tissues are

lossy in optical frequencies have been ignored. Human retina is considered to be

transparent in the visible spectrum, but a freshly dissected human retina in salt

water seems to be not transparent that indicate the retinal layers are not lossless

in optical frequencies as is assumed frequently. The rhabdom is surrounded by

absorbing materials, so undoubtedly the surrounding materials are lossy. The

same is true for the retinal photoreceptors.
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1.2 Overlooked problems

1.2.1 Presence of biological optical waveguide

A medium (core) can act as a light guide if it is embedded in another medium

(cladding) having a lower value of refractive index. Light is being guided by the

inner material if the condition ncore > ncladding is satisfied.

Figure 1.11: Optical waveguide

where, n1 and n2 are as shown in Fig. 1.11. If the incident angle is more

than the critical angle, then the light or the electromagnetic wave in medium

1 experiences total internal reflection and unable to escape the core material,

thereby guided in the core material. By using Snell’s law the critical angle, θc is

defined as,

θc = sin−1n1

n2

(1.2)
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refracted ray

medium 1

medium 2

Figure 1.12: Snell’s law

For a light guide, V = πd
λ

√
n2

1 − n2
2, if n1 > n2, n1 is core refractive index,

n2 is cladding refractive index, d is the diameter of the core, V is the normalised

frequency, V ≤ 2.405 ensures single mode condition Senior [1992], it has been

found that for the other waveguide types the value is around 2.4. Any material

surrounded by a lower index material exhibits properties similar to the waveguide

for EM wave.

In biology similar structures are available; Katz and Minke [2009] showed that

Rhabdom of insect ommatidium works as an optical waveguide, Baker [2010],

Franze et al. [2007] showed the waveguide nature of glial cells present in the

human retina and Labin and Ribak [2010], photoreceptors of mammal retina was

shown to exhibit waveguide properties that were shown by Bass et al. [2001]. The

propagations characteristics of these biological waveguides at optical frequencies

were shown before. Why these guides are present - are not entirely explained.

Lossless materials have been considered in these studies.
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1.2.2 Impacts of lossy surroundings

Propagation characteristics would be different from that of lossless case Balanis

[1989]. Potentially it could answer some of the unanswered riddles in the visual

system.

1.2.3 Impacts of neighbouring structures

The previous studies Neumann [2002] treated the structures as that of a single

core optical fibre, where it has been considered that the cladding material is

extended to infinity. In reality, each of the photo guides is embedded into a

photo-guide matrix. The propagation characteristics of a single guide are not

only determined by its structure and the material profiles but also the surrounding

structures present. These photoguide matrix structures are very similar to that

of multi-core optical fibres Nagashima et al. [2013]. By choosing appropriate

boundary conditions, we can address the presence of the surrounding guides.

1.2.4 W-fibre structure in insect rhabdom

Impacts of a 3-layer structure of rhabdom are yet to be explored - dispersion

flattening effects, cutoff wavelength shift due to the multi-layered structure needs

to be addressed.

1.2.5 Limitations of RAY optics based models

Some RAY optics based models of Human eye are presented by Navarro et al.

[1986], Neumann [2002], Navarro [2009], and Talu [2011]. At smaller retinal ec-

centricities the impacts of diffraction and spherical aberration can be determined,

but the paraxial approximation based calculations cannot be used for larger ec-

centricities, at the peripheral regions. What intensity profile is present at the

guide entrance cannot be explained by these models that are necessary for modal

analysis. RAY optics-based methods use the paraxial approximation, makes them

useful in determining intensity profiles in the Fraunhofer’s zone or far field.

Rhabdom entrance and Glial cell entrance both are in Fresnel’s zone or near

field region. Paraxial approximation based methods are not suitable for these
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cases. Even if we can determine the intensity profiles - would only valid for the

central 1-5 degrees in the visual field. If we go beyond that angle, the image

screen becomes curved.

RAY optics-based methods give us acceptable results when the propagation

distance is much large compared to the wavelength (r >> λ) and the propa-

gation angle remains small (paraxial approximation). Although, apart from the

foveal region of human eye, large angles are required to address the peripheral

retina, distance between the lens and the retina that is approximately 22 mm,

makes it suitable for the RAY optics based analysis, at the same time makes

it computationally too expensive to employ any Time Domain-based numerical

methods.

1.2.6 Point source position and excited modes

A point source directly ahead of the ommatidium should excite the fundamental

mode for the rhabdom. The other point sources in the surroundings would try

to excite the higher order modes that should be blocked by the ommatidium unit

to preserve the clarity of the transferred image by the ommatidium mosaic. The

exact mechanism of how these higher order modes are being attenuated highly

needs more in-depth study.

For the diurnal insects, it has been found that they have apposition eye, where

the nocturnal insects most commonly have superposition eye. In superposition

eye, each rhabdom takes excitations not only from the points directly ahead

of it but also excitations from the neighbouring points. As the light from the

neighbouring points fall at a higher angle, they would excite higher order modes

in them. Angle dependence of the modes is necessary but not was not explored

in details in the previous studies.

1.3 Aim of the Thesis

The prime objective of the thesis is to study the effects of the lossy surrounding

materials on the optical modal profiles of the biological structures that work as

optical waveguides (i.e. Rhabdom of Insect Ommatidium, Glial cells of Human
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Retina) in the visible spectrum. The study will characterize not only the indi-

vidual waveguides but also the impacts of the surrounding waveguides on the

characteristics. A link between the RAY optics based analysis and the modal

analysis of the optical waveguides will be studied. The angle dependence of the

excited optical mode within a waveguide and their consequences will be studies

in greater details.

1.4 Tools Available

1.4.1 Analytical solution

The scalar solution of Helmholtz equation can be obtained as presented by Bal-

anis [1989]. As the solution is scalar, the phase information cannot be obtained.

As human eye is not phase sensitive, so a scalar solution can be acceptable. All

these methods work well for regular geometries. Working with the inhomoge-

neous material is tough. This solution is suitable for large propagation distance.

Fraunhofer’s diffraction integral works in the Fraunhofer’s (Manakov [1973]) re-

gion, for the far field. This method is not suitable for large propagation angles.

Fresnel’s diffraction integral works well at near field with Fresnel’s approximation.

However, it is not suitable for the large angles. Kirchhoff’s diffraction integral

works well for the large angle, but the formula is mathematically inconsistent.

The Rayleigh-Sommerfeld diffraction integral(RS) formula is suitable for large

propagation angles, and the integral is mathematically consistent. As the analy-

sis of biological structures requires analysis over a large propagation angles, the

Kirchhoff’s diffraction integral or the RS diffraction integral can be used.

1.4.2 Ray Optics

Paraxial approximation (Lax et al. [1975]) makes the RAY optics based models

unsuitable for larger angles, and it is very difficult to address irregular geome-

tries with this method. Most of the biological materials have an inhomogeneous

material distribution that’s hard to simulate with the method. Incorporating ma-

terials with a loss in the RAY optics based model is not available in the literature.
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However, for a brief insight into the system, it might be helpful but not suitable

for analysis at sub-wavelength scale with irregularities.

1.4.3 Numerical solutions of Maxwell’s equations

1.4.3.1 Finite Difference based modal solutions

Regular grids used in this method makes the method not suitable where irregular

boundaries are present. The inhomogeneous material profile can be handled with

this method, and it is computationally less expensive than the finite element based

methods. However, the Cartesian grids used to approximate irregular boundaries

would produce results with higher numerical errors.

1.4.3.2 FEM based modal solutions

Finite element based mode solver, as they can use FE meshes, are excellent at

approximating structures with irregular boundaries. Inhomogeneous material

profiles can be addressed well, but the 2D FEM considers the structure and the

materials to be uniform in the direction of propagation, so a structure that has

variations in the direction of propagation is difficult to analyse using this method.

If it is required to obtain the mode profile at a 2D cross-section, this method can

provide us with reasonably accurate results although computationally it is more

expensive than the FD based method.

1.4.3.3 BPM

The research on integrated optical circuits (IOC) and planar optical devices, has

emerged from the necessity of calculating the propagation of a light wave in an

optical circuit having an arbitrary refractive index distribution. This type of

field propagation can be simulated numerically by the beam propagation method

(BPM), an approach that was developed in underwater acoustics and seismology

before it was adapted to optical waveguide problems by Feit and Fleck [1980].

Since then, it has been widely used for analyzing the performance of a light beam

propagated in a planar optical circuit that has a nearly stripelike waveguiding

structure and in which the refractive index varies smoothly compared with the
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wavelength. The main features of the BPM are that the electromagnetic fields are

Fourier transformed about the direction normal to that of light propagation and

that a stepwise method is used for successively calculating the electromagnetic

field along the axial direction.

In the BPM, the optical field is transported within one propagation step, from

the transverse plane at the longitudinal coordinate z to the transverse plane at

z + ∆z. Calculations are performed, to relate the optical fields at the input and

the output planes, which are based on the assumption that the dielectric profile

within one step, ∆z, remains unchanged Nolting and März [1995]. As the optical

field propagates through the medium, it is subject to diffraction due to its wave

nature, and the light rays of the wave experience a certain amount of phase shift,

depending on their x and y positions. The above influence can be applied one at

a time, provided that the space along the path be subdivided into tiny sections,

∆z. By doing so, the continuous medium can then be realized as a series of lenses

separated by short sections of homogeneous space, where the contribution of the

lenses in the phase shift is expressed in the solution of the wave equation. For

computational purposes, the wave between the lenses can be decomposed into its

spectrum of plane waves by applying a Fast Fourier Transform (FFT) algorithm,

and then it is reconstructed halfway, (∆z/2), before the next lens, by applying

the inverse FFT. The above process is repeated for each section along the whole

propagation path. The propagation step size ∆z, which must be at most one

wavelength of the light beam, must ensure that the contribution of evanescent

waves, which are part of the plane wave, is negligible, and that the rays associated

with the wave, travel parallel to the z-axis, with minimum phase shift.

The BPM is widely accepted as the most powerful method for the analysis

of non-uniform structures, but it is not as efficient as the methods specially de-

veloped for the analysis of uniform structures, where discretizations in both the

transverse and the longitudinal plane are required Chiang [1994]. To handle the

discretization in the transverse plane, two-dimensional methods can be employed,

such as the FDM Yevick and Hermansson [1989] and the FEM Buah et al. [1997].

The latter can be used in many devices, such as directional couplers, optical fi-

bres, bent optical waveguides, Bragg and Diffraction gratings, tapered waveguides

and optical Y-junctions. It can also be used in conjunction with other numerical
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techniques such as the Fresnel approximation Yevick and Hermansson [1989].

Beam Propagation Method (BPM) makes paraxial approximations (although

non-paraxial approximation is possible as well), so it is not suitable for an abrupt

change in field envelopes. It can address inhomogeneous material profiles in the

direction of propagation as well as in the cross-section but steps. Computationally

the method is much more expensive than the modal analysis but cheaper than the

time domain methods. BPM is unable to address reflections from the interfaces,

although its Bi-directional variation can do that, more expensive computationally.

1.4.3.4 FETD

The Finite Element (FE) based approaches are better for representing an arbi-

trarily shaped structure frequently found in the biological structures. To analyze

a structure that has an irregular structure, an irregular material profile, and dis-

continuities are present from where the wave can experience reflections, a Finite

Element Time Domain Method (FETD) would have been the ideal choice. The

FEM was introduced for the electromagnetic analysis during the 1970’s Silvester

[1969] to solve primarily the frequency domain problems Rahman and Davies

[1984],Hayata et al. [1986]. Researchers also tried FEM for time domain anal-

ysis Cangellaris et al. [1987]; Feliziani and Maradei [1994]; Hesthaven and T

[2001]; Koshiba et al. [2000]; Lee et al. [1997]; Songoro et al. [2010]. Although

these methods are sometimes more accurate in structural representation, how-

ever some of them may require an implicit solution of the computational domain

in each time step Gedney and Navsariwala [1995], some require the solution of

the large matrices Lee et al. [1997] and some require higher order solution of the

Maxwell’s equations Cangellaris et al. [1987]; Hesthaven and T [2001]; Songoro

et al. [2010]. However, the methods are computationally slightly more expensive

than the FDTD methods, but a well-tested code that is computationally less

expensive is not yet available to date that can address the irregular boundaries

(Raiyan Kabir et al. [2013]).
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1.4.3.5 FDTD

In 1966 Yee et al. [1966] proposed a finite difference based technique to solve

Maxwell’s equations over time to analyze time evolutions of Electromagnetic

waves. His proposed method is widely known as the Finite Difference Time Do-

main (FDTD) method. The method uses a rectangular Cartesian grid in 2D and

cuboid grid in 3D to discretize the computational domain and solves Maxwell’s

equations over the domain.

The method is numerically stable and robust. Explicit formulation and the

data-parallel nature of the method makes it very fast making it computationally

less expensive. For a computational domain with inhomogeneous material profiles

and with a geometry that can produce strong reflections, FDTD method has been

found to be very useful in dealing with it. Scattering, if present in the system,

can be analyzed by using this method. So, for analyzing biological structures,

where the inhomogeneous material and irregular structures can produce strong

reflections and scattering, the FDTD method can be very useful in analyzing the

characteristics of such systems. The method has, however, some disadvantages

when deployed in analyzing the biological structures. Due to the use of rectangu-

lar or cuboid grids in representing the structures, the method approximates the

curved of slanted boundaries with stair-casing, which in turn produces numerical

errors. The biological structures, as we know, are most of the cases irregular or

semi-irregular in nature; that is why the method is not the optimum choice for

biological applications. The method is not suitable for simulations over large dis-

tances (d >> λ) due to numerical dispersions. So, this method can be considered

as the candidate by which the time domain evolution can be analyzed for the

irregular structures with the irregular material profiles with less computational

power sacrificing the numerical errors due to the FD grid.

1.5 Methodology and Study steps

FEM mode solver presented in Rahman and Davies [1984], Rahman et al. [1991]

and Ng and Ooi [2006] will be used in the study. COMSOL 4.3 will be used to

obtain some of the modal solutions. The study focuses on the study of light propa-
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gation and guidance through biological optical waveguides having lossy materials.

Mode profiles, dispersion characteristics, impacts of losses on various character-

istics will be explored. The study will start with a simple structure and move

towards a complicated biological structure.

1.5.1 Planar structure

As a beginning, the study will be focused on a planar optical waveguide. The

reason behind choosing a planar waveguide is that the Analytic modal solution is

available for such waveguides that can be used to benchmark the algorithms. As

a planar structure can be considered as a limiting case of a rectangular structure,

the characteristics found by analysing a planar structure can be extrapolated to

get an approximate idea of the similar characteristics of the rectangular structure.

The study on this structure will focus on the following topics,

• Theoretical derivations for modal solutions

• Obtain Mode profiles

• FDTD simulations of these structures

1.5.2 3D structures

Propagation characteristics of 3D optical waveguides with lossy surrounding will

then be studied extending the knowledge acquired from planar waveguide studies.

The 3D waveguides with the following cross-sections will be explored,

• Rectangular waveguides

• Circular waveguides

• Hexagonal waveguides

• Irregular shaped waveguides

Two types of layered structures are studied

• 2 layers
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• 3 layers

The following boundary conditions for each of these case will be tried,

• Dirichlet boundary condition - field zero at the computational domain

• PML boundary condition

• Periodic boundary conditions - considering the array of guides

1.5.3 Test cases

After analysing different types of optical waveguides with various parameters, the

study will focus on analysing two biological structures that are known to work as

optical waveguides. The first case being the Rhabdom of the Ommatidium of the

compound eye of the Drosophila Melanogaster (Fruit Fly), and the second being

the Glial cells of the Retina of Human Eye.

1.5.3.1 Drosophila Melanogaster (Fruit fly) Compound Eye

The study will analyse the Rhabdom on the following key points,

• Mode profiles

• Single mode operating wavelength range

• 2 layers and 3 layers

• Periodic boundary conditions and its impact

• Coupling amongst the surrounding guides

• How loss is exploited

1.5.3.2 Glial cells of Human Retina

The characteristics of the Glial cells of Human Retina will be analysed focusing

on the following points,

• Mode profiles
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• Directional sensitivity - leading to an explanation of Stiles-Crawford effect

of first and second kind

• Impacts of lossy surroundings

1.5.3.3 Integrated Diffraction integral and Modal solutions

Rayleigh-Sommerfeld diffraction integral is used to determine the field intensity

profile at the glial cell entrance of the retina of the human eye. The field profile

at the entry of the rhabdom of the Ommatidium of insects’ compound eyes is

determined. Field profiles found from the modal solutions are compared with the

diffraction patterns. FDTD is used to assess the propagation characteristics of

such field profiles. The relationship between the field profiles found by the RS

diffraction integral and field patterns for the supported mode profiles of these

guides will be analysed.

The following topics are included in the step by step study,

1. RS diffraction integral to evaluate the field profiles from the pupil to the glial

cell entrance of Human eye; Lens to rhabdom entrance of the compound

eye of insect (Drosophila).

2. Ray optics to determine the angle of incidents over the retinal eccentricities.

3. Theoretical derivations for planar structures with lossy medium and their

numerical evaluations.

4. FEM to determine the mode profiles for rectangular, square, circular, hexag-

onal and irregular shaped guides with as well as without losses.

5. Test cases: Drosophila rhabdom and Glial cells of human retina.

6. Relate the ray optics, RS, FEM and FDTD findings.

7. Impacts of loss on mode profiles, dispersion and cutoff wavelength.

8. Single mode cutoff wavelengths for different structures.

9. Periodic boundary conditions on mode profiles, dispersion, and cutoff wave-

lengths.
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10. Coupling amongst the neighbouring guides.

11. Stiles-Crawford effect.

1.6 Thesis organization

The thesis is organised into five chapters. Chapter 2 gives detailed account of

the theories required to perform the simulations, such as Maxwell’s equation,

Finite Element Method (FEM), Finite Difference Time Domain Method (FDTD),

Beam Propagation Method (BPM), Rayleigh-Somerfield (RS) diffraction integral,

and RAY optics fundamentals. The theoretical development of the simulation

environment is given in Chapter 3. The necessary derivations are also included

in that chapter. Chapter 4 contains the results found and their implications for

vision. An explanation of the Retinal Stiles-Crawford effect is given in light of

the findings of the thesis is also provide in Chapter 4. Concluding remarks and

the scopes for the future research after this study is found in the last chapter of

this thesis.
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Chapter 2

Simulation Environment

2.1 Maxwell’s Equations

The Maxwell’s equations can characterise the propagation of Electromagnetic

wave. Maxwell’s equations comprise a set of four electromagnetic field vectors

that describe the governing laws of electromagnetic wave propagation. The vec-

tors are electric field intensity E (Volts/meter), the magnetic field intensity H

(Amperes/Meter), the electric flux density D (Coulombs/m2) and the magnetic

flux intensity B (Tesla). For a source-free region, time-dependent equations can

be expressed in differential and integral forms. In FEM, we formulate the problem

as a boundary value problem with a set of differential equations. The differential

form of Maxwell’s equations can be given as follows,

∇× E +
∂B

∂t
= 0 (2.1)

∇×H− ∂D

∂t
= 0 (2.2)

∇.D = ρ (2.3)

∇.B = 0 (2.4)
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D = εE (2.5)

B = µH (2.6)

Here, ρ is the electric charge density (Coulombs/m3). The permittivity ε and the

permeability µ of the medium can be given as,

ε = ε0εr (2.7)

µ = µ0µr (2.8)

where, ε0 is the permittivity of the free space (8.854× 10−12 Farads/meter), εr is

the relative permittivity of the medium, µ0 is the permeability of the free space

(4π × 10−7 N/A2) and µr is the relative permeability of the medium. When we

consider a material in optical frequencies another parameter, refractive index n

is very often used that can be expressed in terms of εr and µr as follows,

n =
√
εrµr (2.9)

for a non-magnetic material µr = 1, in this case,

n =
√
εr (2.10)

Boundary Conditions

At the material interface between two media, a set of conditions must be met

by the field equations, these are known as the boundary conditions. Figure 2.1

shows a structure with two mediums, Medium 1 with a refractive index n1 and

Medium 2 with a refractive index n2, and the unit normal vector n is the normal

to the interface directed from Medium 1 to Medium 2. For a medium with no

surface charge (J = 0) and no charges (ρ = 0), the boundary conditions are as

follows,
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1. The tangential components of the electric fields must be continuous

n× (E1 − E2) = 0 (2.11)

2. The tangential components of the magnetic fields must be continuous

n× (H1 −H2) = 0 (2.12)

3. The normal components of the electric flus density must be continuous

n.(D1 −D2) = 0 (2.13)

4. The normal components of the magnetic flux density must be continuous

n.(B1 −B2) = 0 (2.14)

If one of the media is a perfect conductor, at the interface the following con-

ditions must be met to ensure the continuity of the fields. Such a boundary is

known as the electric wall boundary condition.

n× E = 0 or n.H = 0 (2.15)

If one of the media is a perfect magnetic conductor, the magnetic wall boundary

condition can be given as,

n×H = 0 or n.E = 0 (2.16)

In analysing optical waveguide devices at the boundary of the waveguide,

additional boundary conditions are considered. The boundary conditions are as

follows,

Φ = 0 Homogenous Dirichlet (2.17)

Φ = k Inhomogenous Dirichlet (2.18)
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∂Φ

∂n
= 0 Homogenous Neuman (2.19)

Here the φ can be the electric or the magnetic field, k is a constant and n is

the unit normal to the interface. In Homogeneous Dirichlet the field value at the

computational boundary is considered to be 0, in Inhomogeneous Dirichlet it is

considered that constant valued field specified by the constant k is present at the

border and in Neumann boundary condition considers that the rate of change of

the field with respect to the surface normal n is 0.

medium 1

medium 2

Figure 2.1: Boundary between two media having refractive indices n1 and n2, n
being the unit vector normal to the interface

Wave Equation

For an isotropic, loss-less (J = 0, ρ = 0) and non-magnetic (µ = µ0) material

with a permittivity ε the Maxwell’s equation for the 3-D case can be written as

follows,

∇2E + k2E = 0 (2.20)

∇2H + k2H = 0 (2.21)

where the k (rad/m) being the wavenumber that is given as,

k = ω
√
εµ0 (2.22)

when ε = ε0 (free space), the free space wavenumber k0 is given by,

k0 = ω
√
ε0µ0 (2.23)
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Equations 2.20 and 2.21 are known as Helmholtz wave equations in 3-D.

2.1.1 Variational Formulation

The finite-element formulation can be based on the variational or Raleigh-Ritz

approach. These can be in scalar form, where only one electric or magnetic field

component is considered; or in vector form where the electric or magnetic field is

expressed in terms of at least two components. Most of the formulations applied

to FEM gives us a standard eigenvalue problem of the following form,

[A]{x} − λ[B]{x} = 0 (2.24)

where [A] and [B] are real symmetric sparse matrices, and B is positive defi-

nite. The eigenvalue λ can be chosen as β2 or k2, depending on the formulations

and the eigenvector x represents the nodal field values of the finite elements.

2.1.2 Scalar Approximation

The scalar approximation can be applied in the situations where the fields can be

describes as TE (Transverse Electric) or TM (Transverse Magnetic) modes. For

the quasi-TE modes over a region Ω with Ex being the dominant field component,

the formulation describes by Mabaya et al. [1981] as follows,

L =

∫ ∫

Ω

[(
∂Ex
∂x

)2

+

(
∂Ex
∂y

)2

− k2
0n

2E2
x + β2E2

x

]
dΩ (2.25)

For the quasi-TM mode with dominant Hx component, the formulation can

be written as follows,

L =

∫ ∫

Ω

[
1

n2

(
∂Hx

∂x

)2

+
1

n2

(
∂Hx

∂y

)2

− k2
0H

2
x +

1

n2
β2H2

x

]
dΩ (2.26)

2.1.3 Vector Formulation

The scalar formulation is inadequate to handle waveguides with inhomogeneous

or non-isotropic material profiles. For waveguides with 3-D geometry (2-D cross-
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section), where all 6 components of the fields (Electric : Ex, Ey and Ez ; Magnetic

Hx, Hy, and Hz) can be present, cannot be analysed by using a scalar formulation.

Although vector E field based formulations have been used earlier, but the vector

H field based formulation is found to be more suitable for analysing dielectric

optical waveguides, because the magnetic field is continuous everywhere, as long

as the material is non-magnetic for which µ = µ0, and the natural boundary

conditions correspond to that of an electric wall, therefore no enforced boundary

conditions are required. The formulation is as follows,

ω2 =

∫
(∇×H)∗.ε̂−1.(∇×H)dΩ∫

H∗.µ̂.HdΩ
(2.27)

here, ω is the angular frequency in radians, Ω is the waveguide cross-section,

ε̂ is the permittivity tensor and µ̂ is the permeability tensor. In order to obtain a

stationary solution for the function in equation 2.27, the expression in minimised

with respect to the components Hx, Hy and Hz. This minimization leads to the

matrix eigenvalue equation as of equation 2.24, where [A] is a complex Hermitian

matrix and [B] is a real symmetric and positive-definite matrix. The eigenvalue

λ is proportional to ω2 and the eigenvectors {x} are the H field values at the

node points of the elements. The iterative solution starts with an initial guess

of the propagation constant β for a given wavelength, equation 2.24 is then used

to determine a value of the eigenvector {x}, the obtained eigenvectors {x} is

then used to determine a new value for the propagation constant β; the process

continues until the values of β and {x} converges to a stable state. By choosing

different values of the initial guess β, it is possible to find out all the supported

modes for a given wavelength. By varying the operating wavelengths, the disper-

sion characteristics can be determined. Although the formulation is based on H

fields, by using the coupled Maxwell’s equations, it is possible to calculate the E

field components.

If the divergence condition,∇.H = 0, is not satisfied with the iterative solution

might produce non-physical solutions referred to as spurious solutions. Special

care must be taken to eliminate the spurious solutions that will be discussed in

another section of this Chapter.
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2.1.4 Natural Boundary Condition

The boundary condition that is automatically satisfied when left free in varia-

tional methods is known as the ’natural boundary condition’. The scalar for-

mulation of equation 2.25 has the continuity of ∂Ex

∂n
as the natural boundary

condition, and equation 2.26 has 1
n2

∂Hx

∂n
as the natural boundary condition. Here,

n is the outward normal unit vector to the interface. The vector formulation in

equation 2.27 has n.H = 0 (Electric wall) as the natural boundary condition.

Therefore, for conducting guide wall, it is not necessary to enforce any boundary

condition as the natural boundary condition is automatically satisfied. However,

for a guide with regular geometry, exploiting the boundary condition can lead

us with reduced matrix problem size. Proper use of symmetry and boundary

condition can be useful in cases where mode degeneration is present.

2.2 Numerical Solution of Maxwell’s equation

For three dimensional waveguides that are more commonly used in today’s pho-

tonics systems, the analytical solutions in closed form are not always obtainable.

Whenever exact analytical solutions are not available, the approximate solutions

are sought. Finite Element Method (FEM) is used in modal analysis of optical

waveguides by solving Maxwell’s Equations numerically and FDTD is used to

study the time evolution of electromagnetic fields within the waveguides. These

two numerical methods and various technical aspects of them are described in

the following sections.

2.2.1 Finite Element Method (FEM)

The finite element method tries to solve a complicated problem by replacing it

with several simpler ones. The physical problem described by the differential

equations are replaced by an appropriate functional J that is the variational

formulation for the desired result. The problem can be considered as obtaining

the solution of H over a region in the transverse plane satisfying the boundary

conditions. The axial dependence is assumed as e−jβz, and the discretization is

performed in the transverse plane.
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Chapter 2. Numerical Method

the boundary conditions and also the extremum requirement are satisfied. The axial

dependence is assumed in the form e�j�z, and the transverse plane is used for the

discretisation.
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Figure 2.3: Finite elements in two-dimension.

2.5.1 Domain Discretisation

The discretisation of the domain into sub-regions (finite elements) is considered as the

initial in the finite element method. The shapes, sizes, number and configurations

of the elements have to be chosen carefully such that the original body or domain is

simulated as closely as possible without increasing the computational e↵ort needed

for the solution. Each element is essentially a simple unit within which the unknown

can be described in a simple manner. There are various types of elements available

for use in finite element formulations. These elements can be defined to be as one,

two and three dimensional elements. When the geometry and material properties can

be described in terms of only one spatial coordinate, then a one-dimensional element

can be used. However, when the configuration and other details of the problem can

be described in terms of two independent spatial coordinates, the two-dimensional

elements shown in Fig. 2.3 can be used. The simplest and indeed the most basic

element typically considered for two-dimensional analysis is the triangular element.

The size of the element also dictates the accuracy of the final solution as the higher
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Figure 2.2: Finite Elements in 2D

2.2.1.1 Discretisation

The initial step of a finite element method is to discretise the domain into sub-

regions (finite elements). The shapes, sizes, number and configurations of the

elements have to be chosen carefully so that the domain under consideration is

approximated well without increasing the computational requirements too much.

Each element is a unit where the unknown quantities are described in a simple

manner. There are various types of elements available; one, two or three dimen-

sional. When the geometry and the material profiles can be described in terms

of only one spatial coordinate, then one-dimensional elements can be used. For a

two-dimensional case, the elements were shown in Fig. 2.2 can be used. The most

commonly used two-dimensional element is the triangular element. The accuracy

of the solution depends on the size and the order of the elements used, where in

general a smaller sized element produces more accurate results, however, smaller

element size means increased number of elements and increased computational

cost. Higher order elements tend to produce more accurate results at the expense

of increased computational load. A domain with an arbitrary cross-section in 2D

is discretised using first order triangular elements has been shown in Fig. 2.3.

After dividing the waveguide cross-section into many triangular elements, the

unknown H is discretised into the corresponding sub-regions. The nodal points
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after the discretization are the vertices of the elements, and the H field values in

these nodes are the unknown values of the method. Figure 2.3

Chapter 2. Numerical Method

order elements tend to provide more accurate solutions. A typical representation

of an arbitrary waveguide structure using triangular elements is shown in Fig. 2.4.

By dividing the waveguide cross section into triangular elements, the unknown H is

Approximate 
Boundary 

Nodal points 

Actual Boundary 

Element 

y 

x 

Figure 2.4: Finite element discretisation of a waveguide with triangular elements.

discretised into corresponding sub-regions. These elements are easier to analyse rather

than analysing the distribution over the whole cross section. As shown in Fig. 2.4, the

transverse plane is covered with a grid of discrete nodes which are the vertices of each

triangular element. The values of H at these nodal points are the basic unknowns.

The intersections of the sides of the triangular elements are called the nodal lines.

2.5.2 Shape Functions

In two-dimensional problems, the element assumes a linear interpolation between the

field values at the vertices of the triangle. Within each element the unknown field H,

is approximated by means of suitably chosen set of polynomials. These functions are

called ‘shape functions. For a simple triangular element the interpolation polynomial

should include a constant term and both the x and y terms rather than only one of

them. The field variable representation within an element should not alter the local co-

ordinate system. In order to achieve this ‘geometric isotropy, the polynomial should be

complete according to Pascals triangle as shown in Fig. 2.5. The final consideration

in selecting the order of the interpolation polynomial is to make the total number
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Figure 2.3: FEM discretisation of a 2D domain using triangular elements

2.2.1.2 Shape Function

In the two-dimensional problem, the field value within the element is found by

linear interpolation of the field values of the nodes. Within each element the

unknown field H is approximated by a suitably chosen polynomial. These poly-

nomials are known as the ‘shape function’. The polynomials of different degrees

can be formed according to Pascals triangle as shown in Fig. 2.4.Chapter 2. Numerical Method
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Figure 2.5: Pascal’s triangle for complete polynomials in two dimensions.

of terms in the polynomial equal to the number of nodal degrees of freedom of the

element. For example, the first degree polynomial involves three coe�cients and so

can be expressed in terms of three nodal values at the triangle vertices. The second

degree polynomial needs six coe�cients and can similarly be expressed in terms of

values of six nodes as shown in Fig. 2.5.

The continuous field function �(x, y) in the problem domain may be replaced by

a set of discrete values (�i, i = 1, 2, 3, ...., m), where m is the total number of nodes.

This function will be continuous across the triangles. To be admissible functions, they

must some specific conditions between the elements; usually the continuity of the field

across the boundaries is preferred. A typical first order triangular element used in

finite element discretisation is shown in Fig. 2.6. Inside each first over element, the

nodal field values � is interpolated continuously. This can be achieved by introducing

the interpolation functions, Ni(x, y). Thus, using the interpolation functions, the

elemental field values can be written as:

�e(x, y) =
3X

i=1

Ni(x, y) · �i (2.31)

where �i are the nodal field values. The functions Ni(x, y) are called ‘shape functions’.

Equation (2.31) can also be written in matrix form as:
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Figure 2.4: Pascal’s triangle
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The first-degree polynomial involves three coefficients and can be expressed

in terms of three nodal values at the triangular vertices. The second-degree

polynomial requires six coefficients and can be expressed in terms of values of six

nodes as shown in Fig 2.4.

The continuous field function φ(x, y) can be replaced with a set of discrete

values (φi, i = 1, 2, 3, ...,m), where m is the total number of nodes. A typical

first order triangular element used in these methods is shown in Fig. 2.5.Chapter 2. Numerical Method

�1

�2

�3

�e(x, y)

(x1, y1)

(x2, y2)

(x3, y3)

P (x, y)

1

2

3

�e(x, y)

x

y

Figure 2.6: Representation of a first order triangular element.

�e(x, y) =
h

N1 N2 N3

i
8
>>><
>>>:

�1

�2

�3

9
>>>=
>>>;

(2.32)

�e(x, y) = [N ] {�e} (2.33)

where [N ] is the shape function matrix and the column vector {�e} is vector cor-

responding to the field values at the 3 vertices of the triangular element. In order to

obtain the shape functions, Ni(x, y) (where i = 1, 2, 3), a linear approximation of the

of the field inside the element must be performed:

�e(x, y) = ↵1 + ↵2x + ↵3y (2.34)

for which ↵1, ↵2 and ↵3 are constants. By re-writing the above relation, such that the

following conditions are satisfied:

�e(xi, yi) = �i i = 1, 2, 3 (2.35)
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Figure 2.5: Representation of a first order triangular element

Inside the element the element field value φe(x, y) can be found by interpo-

lation, and an interpolation function Ni(x, y) is used in this regard. Using the

interpolations function, the element field value can be written as follows,

φe(x, y) =
3∑

i=1

Ni(x, y).φi (2.28)

where, φi are the nodal field values. The functions Ni(x, y) are known as ‘shape
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functions’. In matrix form the equation 2.28 can be written as follows,

φe(x, y) = [N1N2N3]





φ1

φ2

φ3





(2.29)

φe(x, y) = [N ]{φe} (2.30)

where, [N ] is the shape function matrix and the {φe} is a column vector whose

components are the field values at the three vertices of the triangular element.

In order to obtain the shape function Ni(x, y), i = 1, 2, 3, the fields inside the

elements can be approximated as,

φe(x, y) = α1 + α2x+ α3y (2.31)

here, α1, α2 and α3 are the constants. By rewriting the above relations we get,

φe(xi, yi) = φi i = 1, 2, 3 (2.32)

where, (xi, yi) (i=1, 2, 3) are the global coordinates of the vertices of the trian-

gular elements. The nodal field values φi can now be expressed as,

φ1 = φe(x1, y1) = α1 + α2x1 + α3y1

φ2 = φe(x2, y2) = α2 + α2x2 + α3y2

φ3 = φe(x3, y3) = α3 + α2x3 + α3y3

(2.33)

in matrix form,





φ1

φ2

φ3





=




1 x1 y1

1 x2 y2

1 x3 y3








α1

α2

α3





(2.34)

the constants α1, α2 and α3 can be determined by solving the matrix equation

2.34 and can be expressed as,

α1 =
1

2Ae
[φ1(x2y3 − x3y2) + φ2(x3y1 − x1y3) + φ3(x1y2 − x2y1)] (2.35)
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α2 =
1

2Ae
[φ1(y2 − y3) + φ2(y3 − y1) + φ3(y1 − y2)] (2.36)

α3 =
1

2Ae
[φ1(x3 − x2) + φ2(x1 − x3) + φ3(x2 − x1)] (2.37)

here, Ae is the area of the triangular element given by,

Ae =
1

2

∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣
=

1

2
[(x2y3 − x3y2) + (x3y1 − x1y3) + (x1y2 − x2y1)] (2.38)

Using the obtained values of αi, the equation for the field values can be written

as,

φe(x, y) = N1(x, y).φ1 +N2(x, y).φ2 +N3(x, y).φ3 (2.39)

so,

φe(x, y) = [N ]{φe} (2.40)

Ni(x, y) i = 1, 2, 3 are the shape functions that is given by,

[N ]T =



N1

N2

N3


 =

1

2Ae



x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1







1

x

y


 (2.41)

[N ]T =



N1

N2

N3


 =



a1 + b1x+ c1y

a2 + b2x+ c2y

a3 + b3x+ c3y


 (2.42)

ai, bi, ci (i=1, 2, 3) are the constants that are expressed as,

a1 = x2y3−x3y2

2Ae

b1 = y2−y3

2Ae

c1 = x3−x2

2Ae

(2.43)

the other constants a2, b2, c2, a3, b3, and c3 can be calculated in the similar

way by cyclic exchange of 1 → 2 → 3 in equation 2.43. The shape functions
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Ni can be expressed in terms of the areas of the triangles shown in Fig. 2.5 as

follows,

Ni =
area of sub triangle P23

area of sub triangle 123
(2.44)

N2 and N3 can be determined in the similar way and the Ni must satisfy the

following condition,
3∑

i=1

Ni = 1 (2.45)

2.2.1.3 Global and Element Matrices

The solution to the optical waveguide problem by FEM can be transformed into

an eigenvalue problem expressed in equation 2.24, where the matrices [A] and [B]

are global matrices comprises of the summation of the elements matrices. The

waveguide cross-section is discretized by using first order triangular elements;

each element is used to form the element matrices, combining the element ma-

trices results in the global matrices. This section describes the procedures for

formulating global matrices for variational formulation. Throughout this proce-

dure, the first order triangular elements are being used and the full vectorial H

field is being used. The the H field components Hx, Hy and Hz within each

elements can be written as,

Hx(x, y) =
[
N1 N2 N3

]


Hx1

Hx2

Hx3


 (2.46)

Hy(x, y) =
[
N1 N2 N3

]


Hy1

Hy2

Hy3


 (2.47)

Hz(x, y) =
[
N1 N2 N3

]


Hz1

Hz2

Hz3


 (2.48)
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here , Hxi, Hyi and Hzi (i=1, 2, 3) are the field components at the i nodes of the

elements. The magnetic field over the element [H]e can be expressed as,

[H]e =



Hx(x, y)

Hy(x, y)

Hz(x, y)


 =



N1 N2 N3 0 0 0 0 0 0

0 0 0 N1 N2 N3 0 0 0

0 0 0 0 0 0 N1 N2 N3







Hx1

Hx2

Hx3

Hy1

Hy2

Hy3

Hz1

Hz2

Hz3




(2.49)

in an more concise matrix form,

[H]e = [N ]{H}e (2.50)

here, {H}e is the column vector containing the three components of the nodal

field values and [N] is the shape function matrix. The curl equation can now be

written as,

(∇× H̃)e = ∇× [N ]{H̃}e =




0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0


 [N ]{H̃}e = [Q]{H̃}e

(2.51)

where the matrix [Q] is,

[Q] =




[0] −∂[N ]/∂z ∂[N ]/∂y

∂[N ]/∂z 0 −∂[N ]/∂x

−∂[N ]/∂y ∂[N ]/∂x 0


 (2.52)

where,

[0] =
[
0 0 0

]
and [N ] =

[
N1 N2 N3

]
(2.53)
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and,
∂N1

∂x
= b1

∂N2

∂x
= b2

∂N3

∂x
= b3

∂N1

∂y
= c1

∂N2

∂y
= c2

∂N3

∂y
= c3

(2.54)

The variational formulation of equation 2.27 can now be written as,

ω2 =

∫
(∇×H)∗.ε̂−1.(∇×H)dΩ∫

H∗.µ̂.HdΩ
(2.55)

ω2 =

∫
4([Q]{H}e)∗.ε̂−1.([Q]{H}e)dΩ∫
4([N ]{H}e)∗.µ̂.([N ]He)dΩ

(2.56)

ω2 =

∫
4{HT

e [Q]∗.ε̂−1.[Q]HedΩ
∫
4HT

e [N ]T .µ̂.([N ]He)dΩ
(2.57)

The equation can be rearranged to write,

Je =

∫

4
{HT

e [Q]∗.ε̂−1.[Q]HedΩ− ω2

∫

4
HT
e [N ]T .µ̂.([N ]He)dΩ (2.58)

here, ∆ represents the integration over the element. The total function J is

for the entire cross-section of the waveguide and can be obtained by adding the

Je of all the elements.

J =
n∑

e=1

Je (2.59)

here n is the total number o elements.

Minimisation of the functional of equation 2.59 can be found by taking deriva-

tive of the function with respect to the nodal field values and equating it to zero

as shown in the following equation,

∂J

∂{H}e
= 0 (2.60)

this results in,

∫

4
ε̂−1[Q]∗[Q]dΩ.{H} − ω2

∫

4
µ̂[N ]T [N ]dΩ.{H}e = 0 (2.61)
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the following eigenvalue equation is thus obtained,

[A]{H} − ω2[B]{H} = 0 (2.62)

where, [A] and [B] are defined as follows,

[A] =
n∑

e=1

=
n∑

e=1

∫

4

1

ε̂
[Q]∗[Q]dΩ (2.63)

and,

[B] =
n∑

e=1

[B]e =
n∑

e=1

µ̂

∫

4
[N ]T [N ]dΩ (2.64)

The matrix {H} contains all the H field values of the nodes over the entire

cross-section of the waveguide. [A]e and [B]e are the element matrices.

2.2.1.4 Spurious Solution

In eigenvalue problem along with the physical solutions, some non-physical so-

lutions can be found. For a physical solution the divergence ∇.H = 0 must be

satisfied in the ideal case, but in numerical solutions, this divergence value should

be a little value. For an eigenvector if it is found that the divergence value is too

high, this indicates the corresponding solution is possibly a spurious solution and

can be discarded.

2.2.2 Finite Difference Time Domain Method (FDTD)

FDTD algorithm starts with the time-dependent Maxwell’s equation in differen-

tial form as given in the following four equations,

∂B

∂t
= −∇× E−M (2.65)

∂D

∂t
= −∇×H− J (2.66)

∇.D = 0 (2.67)
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∇.B = 0 (2.68)

Here,

E : Electric Field

D : Electric Flux density

H : Magnetic Field

B : Magnetic Flus density

J : Electric Current

M : Equivalent Magnetic Current

For a linear, isotropic, non-dispersive material the following relationship holds,

D = εE = εrε0 (2.69)

B = µH = µrµ0H (2.70)

Here,

ε : Electric permittivity

εr : Relative permittivity

ε0 : Permittivity of the free space, 8.85× 10−12 Farads/meter

µ : Magnetic permeability

µr : Relative permeability, 4π × 10−7 H/m

µ0: Permeability of free space
The electric current density is considered as the sum of the conduction current

density and the source current density; the magnetic field density is considered

to be the sum of the magnetic current density and the magnetic source and the

relationships are given as,

J = Jsource + σE (2.71)

M = Msource + σ∗H (2.72)

here,

σ : Electric Conductivity (Siemens/meter)

σ∗ : Equivalent Magnetic Conductivity (Ohms/meter)
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Substituting these two equations into the Maxwell’s curl equations gives us

the following two equations,

∂H

∂t
= − 1

µ
∇× E− 1

µ
(Msource + σ∗H) (2.73)

∂E

∂t
= −1

ε
∇×H− 1

ε
(Jsource + σE) (2.74)

By expanding the curl equations above we get,

∂Hx

∂t
=

1

µ

[
∂Ey
∂z
− ∂Ez

∂y
− (Msourcex + σ∗Hx)

]
(2.75)

∂Hy

∂t
=

1

µ

[
∂Ez
∂x
− ∂Ex

∂z
− (Msourcey + σ∗Hy)

]
(2.76)

∂Hz

∂t
=

1

µ

[
∂Ex
∂y
− ∂Ey

∂x
− (Msourcez + σ∗Hz)

]
(2.77)

∂Ex
∂t

=
1

ε

[
∂Hz

∂y
− ∂Hy

∂z
− (Jsourcex + σEx)

]
(2.78)

∂Ey
∂t

=
1

ε

[
∂Hx

∂z
− ∂Hz

∂x
− (Jsourcey + σEy)

]
(2.79)

∂Ez
∂t

=
1

ε

[
∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez + σEz)

]
(2.80)

The six coupled differential equations 2.75 - 2.80 work as the basis for the

FDTD algorithm for EM wave propagation through different media in 3D.

2.2.3 FDTD algorithm

Yee’s Algorithm is the most popular in implementing Maxwell’s curl equation for

solving both the electric and the magnetic field components in space and time.

The arrangement of the E and the H field components are taken as shown in

Fig. 2.6. Here each E field component is surrounded by H components and when

two neighbouring cells are attached each H field component is surrounded by E
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Figure 2.6: Yee’s lattice source: wikipedia

components.

In this algorithm, the E and the H field components are placed in fact in two

different grids staggered in space by half space steps. The algorithm evaluates

the E and the H field components at alternate half-time steps. All the E compo-

nents in the modelled space are computed using the H components stored in the

memory from the previous computation. The magnetic components H are then

computed by the just computed E components. The process is repeated until the

time-stepping is concluded. The Fig. 2.7 illustrates the space-time steps of the

algorithm in updating the field components.

The advantage of this algorithm is that the coupled equations form a system

of equations that are fully explicit. That is why it is not required to solve a system

of linear equations; the necessary computer memory and time is proportional to

the computational domain.

The following notations for points in space and time has been assumed,

(i, j, k) = (i∆x, j∆y, k∆z) (2.81)

u(i∆x, j∆y, k∆z, n∆t) = uni,j,k (2.82)

where ∆x, ∆y and ∆z are the space increments in x, y and z directions

respectively and i, j and k are integers; ∆t is the time increment and n is an
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E E E E

1-1-1-1 t=2.tit

H H H
• • • t=1.5.:it

E E E E

1 1 1 1 t=.tit

.. .. ..
H H H
• • • t=O.5.:it

.. E ..
E E E

-J 1 1 1 t=o
x=O x=.:ix x=2.:ix x=3.:ix

Fig. 3.2 Space-time chart of the Yee algorithm for a one-dimensional wave propagation example showing
the use of central differences for the space derivatives and leapfrog for the time derivatives.
Initial conditions for both electric and magnetic fields are zero everywhere in the grid,

Here, Ax, tiy, and tiz are, respectively, the lattice space increments in the x, y, and z coordinate
directions, and i, j, and k are integers. Further, we denote any function u of space and time
evaluated at a discrete point in the grid and at a discrete point in time as

u(if!.x, jtiy, kf:,.z, n&) = . L
I, j, (3.22)

where tit is the time increment, assumed uniform over the observation interval, and n is an
integer.

Figure 2.7: Space-time diagram for 1D wave propagation in FDTD, source: Taflove
and Hagness [2005]
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integer. The updating coefficients are given by the following equations. Updating

coefficients - E field components at location (i, j, k)

Ca

∣∣∣
i,j,k

=

(
1− σi,j,k∆t

2εi,j,k

)/(
1 +

σi,j,k∆t

2εi,j,k

)
(2.83)

Cb1

∣∣∣
i,j,k

=

(
∆t

2εi,j,k∆x

)/(
1 +

σi,j,k∆t

2εi,j,k

)
(2.84)

Cb2

∣∣∣
i,j,k

=

(
∆t

2εi,j,k∆y

)/(
1 +

σi,j,k∆t

2εi,j,k

)
(2.85)

Updating coefficients - H field components at location (i, j, k)

Da

∣∣∣
i,j,k

=

(
1−

σ∗i,j,k∆t

2µi,j,k

)/(
1 +

σ∗i,j,k∆t

2µi,j,k

)
(2.86)

Db1

∣∣∣
i,j,k

=

(
∆t

2µi,j,k∆x

)/(
1 +

σ∗i,j,k∆t

2µi,j,k

)
(2.87)

Db2

∣∣∣
i,j,k

=

(
∆t

2µi,j,k∆y

)/(
1 +

σ∗i,j,k∆t

2µi,j,k

)
(2.88)

In case of a cubic lattice ∆x = ∆y = ∆z and ∆1 = ∆2 = ∆ thus Cb1 = Cb2 and

Db1 = Db2 . The finite Difference equations for space regions at particular time

step for objects with distinct electrical and magnetic properties can be expressed

as follows,

m = MEDIA
Ex

∣∣
i,j+1/2,k+1/2

Ex
∣∣n+1/2

i,j+1/2,k+1/2
= Ca(m)Ex

∣∣n+1/2

i,j+1/2,k+1/2
+ Cb(m)

[
Hz

∣∣n
i,j+1,k+1/2

−Hz

∣∣n
i,j,k+1/2

+Hy

∣∣n
i,j+1/2,k

−Hy

∣∣n
i,j+1/2,k+1

− Jsourcex
∣∣n
i,j+1/2,k+1/2

∆
]

(2.89)

m = MEDIA
Ey

∣∣
i−1/2,j+1,k+1/2
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Ey
∣∣n+1/2

i−1/2,j+1,k+1/2
= Ca(m)Ey

∣∣n−1/2

i−1/2,j+1,k+1/2
+Cb(m)

[
Hx

∣∣n
i−1/2,j+1,k+1

−Hx

∣∣n
i−1/2,j+1,k

+Hz

∣∣n
i−1,j+1,k+1/2

−Hz

∣∣n
i,j+1/2,k+1

− Jsourcey
∣∣n
i−1/2,j+1/2,k+1/2

∆
]

(2.90)

m = MEDIA
Ez

∣∣
i−1/2,j+1/2,k+1

Ez
∣∣n+1/2

i−1/2,j+1/2,k+1
= Ca(m)Ez

∣∣n−1/2

i−1/2,j+1/2,k+1
+Cb(m)

[
Hy

∣∣n
i,j+1/2,k+1

−Hy

∣∣n
i−1,j+1/2,k+1

+Hx

∣∣n
i−1/2,j,k+1

−Hx

∣∣n
i−1/2,j+1,k+1

− Jsourcez
∣∣n
i−1/2,j+1/2,k+1

∆
]

(2.91)

m = MEDIA
Hx

∣∣
i−1/2,j+1/2,k+1

Hx

∣∣n+1

i−1/2,j+1,k+1
= Da(m)Hx

∣∣n
i−1/2,j+1,k+1

+Db(m)
[
Ey
∣∣n+1/2

i−1/2,j+1/2,k+3/2
−Ey

∣∣n+1/2

i−1/2,j+1,k+1/2

+ Ez
∣∣n+1/2

i−1/2,j+3/2,k+1
− Ez

∣∣n+1/2

i−1/2,j+3/2,k+1
−Msourcex

∣∣n+1/2

i−1/2,j+1,k+1
∆
]

(2.92)

m = MEDIA
Hy

∣∣
i−1/2,j+1/2,k+1

Hy

∣∣n+1

i,j+1/2,k+1
= Da(m)Hy

∣∣n
i,j+1/2,k+1

+Db(m)
[
Ez
∣∣n+1/2

i+1/2,j+1/2,k+1
−Ez

∣∣n+1/2

i−1/2,j+1/2,k+1

+ Ex
∣∣n+1/2

i,j+1/2,k+1/2
− Ex

∣∣n+1/2

i,j+1/2,k+3/2
−Msourcey

∣∣n+1/2

i,j+1/2,k+1
∆
]

(2.93)

m = MEDIA
Hz

∣∣
i−1/2,j+1/2,k+1
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Hz

∣∣n+1

i,j+1,k+1/2
= Da(m)Hz

∣∣n
i,j+1,k+1/2

+Db(m)
[
Ex
∣∣n+1/2

i,j+3/2,k+1/2
− Ex

∣∣n+1/2

i,j+1/2,k+1/2

+ Ey
∣∣n+1/2

i−1/2,j+1,k+1/2
− Ey

∣∣n+1/2

i+1/2,j+1,k+1/2
−Msourcez

∣∣n+1/2

i,j+1,k+1/2
∆
]

(2.94)

where, MEDIA(i, j, k) is an integer array for each vector field components.

The following indexing scheme is used in the algorithm,

Ex

∣∣∣
n

i+1/2,j,k
, i = 1, . . . , Nx, j = 1, . . . , Ny + 1, k = 1, . . . , Nz + 1 (2.95)

Ey

∣∣∣
n

i,j+1/2,k
, i = 1, . . . , Nx + 1, j = 1, . . . , Ny, k = 1, . . . , Nz + 1 (2.96)

Ez

∣∣∣
n

i,j,k+1/2
, i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1, k = 1, . . . , Nz (2.97)

Hx

∣∣∣
n−1/2

i+1/2,j,k
, i = 1, . . . , Nx + 1, j = 1, . . . , Ny, k = 1, . . . , Nz (2.98)

Hy

∣∣∣
n−1/2

i,j+1/2,k
, i = 1, . . . , Nx, j = 1, . . . , Ny + 1, k = 1, . . . , Nz (2.99)

Hz

∣∣∣
n−1/2

i,j,k+1/2
, i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz + 1 (2.100)

Where, for example Hx

∣∣∣
n−1/2

i,j+1/2,k+1/2
is located at

(
(i− 1)∆x, (j− 1/2)∆y, (k−

1/2)∆z
)

space point and t = (n− 1/2)∆t.
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2.2.4 Numerical Stability

There is a limit on the time step, ∆t in ensuring the stability of the algorithm,

where the choice of ∆t is given by,

∆t ≤ 1

c
√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

(2.101)

where c is the propagation speed of the wave. Hence the Courant factor is defined

as,

S = c.∆t

√
1

(∆x)2
+

1

(∆y)2
+

1

(∆z)2
(2.102)

and the stability condition is,

S < 1 (2.103)

2.3 Perfectly Matched Layer (PML)

An essential consideration in applying FDTD method to solve Electromagnetic

field the problem is that the domain is considered to be open. However, as the

computer storage is limited, it is not, however, possible to solve the problem

with unlimited computational domain. The computational domain is taken large

enough so that the region of interest lies within the computational domain. As a

consequence of taking a finite computational domain is that fro the boundary of

the computational domain we get numerical wave reflection to satisfy the bound-

ary conditions. The solution obtained thus is affected by the artificial reflected

waves generated from the computational limit. To address this problem, several

techniques are being used such as the absorbing boundary condition (ABC) in-

troduced by Mur [1981]. One of the most popular and efficient ways to limit the

computational domain is introducing perfectly matched layer (PML) introduced

by Berenger [1994]. The PML matches the propagating wave to cancel reflections

from the computational boundary.

The finite difference system of equation of Maxwell’s equation presented before

in 3D can be reduces to 2D; Transverse Magnetic mode with respect to z TMz
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with Ez, Hx, and Hy field components; Transverse Electric mode with respect to

z TEz with Hz, Ex, and Ey field components; assuming ∂
∂z
→ 0. The updating

equations for 2D TMz case are,

ε0
∂Ezx
∂t

+ σxEzx =
∂Ey
∂x

(2.104)

ε0
∂Ezy
∂t

+ σyEzy = −∂Hx

∂y
(2.105)

µ0
∂Hx

∂t
+ σ∗yHx =

∂(Ezx − Ezy)
∂y

(2.106)

µ0
∂Hy

∂t
+ σ∗xHy =

∂(Ezx + Ezy)

∂x
(2.107)

and,

Ezx = Ez + Ex (2.108)

Ezy = Ez + Ey (2.109)

Based on the Fig. 2.8, the eight regions and the PML defined in each region are

as follows,

1. PML(σx1, σ
∗
x1, σy2, σ

∗
y2)

2. PML(0, 0, σy2, σ
∗
y2)

3. PML(σx2, σ
∗
x2, σy2, σ

∗
y2)

4. PML(σx1, σ
∗
x1, 0, 0)

5. PML(σx2, σ
∗
x2, 0, 0)

6. PML(σx1, σ
∗
x1, σy1, σ

∗
y1)

7. PML(0, 0, σy1, σ
∗
y1)

8. PML(σx1, σ
∗
x1, σy1, σ

∗
y1)
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Figure 2.8: Structure of a 2D PML

The PML reflection factor is given by,

R(θ) = e−2ησx,0∆(gd/∆−1) cos θ/ ln g (2.110)

where, g is a scaling factor, d is the thickness of the PML medium, ∆ is the

space increment, η =
√
µ1/ε1 and the θ is the angle of incidence relative to the

wave-directed surface normal. The equation above can be rearranged to get,

σx,0 = − ln [R(0)] ln (g)

2η∆ (gd/∆ − 1)
(2.111)

where, for d = 10, R(0) = 10−16, and 2 ≤ g ≤ 3 is found to be optimal choice.
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2.3.1 Uniaxial PML Implementation

A two-step procedure is employed to update the components of E and H field

components in implementing Uniaxial PML (UPML) presented by Taflove and

Hagness [2005]. Coefficients are updated first and they are used to compute the

field components in the PML. For the electric field, the Dx coefficient is as follows,

Dx

∣∣∣
n+1

i+1/2,j,k
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Dx

∣∣∣
n

i+1/2,j,k
+

(
2ε∆t

2εκy + σy∆t

)

(Hz

∣∣∣
n+1/2

i+1/2,j+1/2,k
−Hz

∣∣∣
n+1/2

i+1/2,j−1/2,k

∆y
−
Hy

∣∣∣
n+1/2

i+1/2,j+1/2,k
−Hy

∣∣∣
n+1/2

i+1/2,j−1/2,k

∆z

)
(2.112)

The Ex is given by,

Ex

∣∣∣
n+1

i+1/2,j,k
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Ex

∣∣∣
n

i+1/2,j,k
+

(
1

ε(2εκz + σz∆t)

)

[
(2εκx + σx∆t)Dx

∣∣∣
n+1

i+1/2,j,k
− (2εκx + σx∆t)Dx

∣∣∣
n

i+1/2,j,k

]
(2.113)

Bx coefficient is given by,

Bx

∣∣∣
n+3/2

i,j+1/2,k+1/2
=

(
2εκy − σy∆t
2εκy + σy∆t

)
Bx

∣∣∣
n+1/2

i,j+1/2,k+1/2
+

(
2ε∆t

2εκy + σy∆t

)

(Ez
∣∣∣
n+1

i,j+1,k+1/2
− Ez

∣∣∣
n+1/2

i,j,k+1/2

∆y
−
Ey

∣∣∣
n+1

i,j+1/2,k+1
− Ey

∣∣∣
n+1

i,j+1/2,k

∆z

)
(2.114)

Updating the Hx component is updated as follows,

Hx

∣∣∣
n+3/2

i,j+1/2,k+1/2
=

(
2εκz − σz∆t
2εκz + σz∆t

)
Hx

∣∣∣
n+1/2

i+1/2,j,k+1/2
+

(
1

ε(2εκz + σz∆t)

)

[
(2εκx + σx∆t)Bx

∣∣∣
n+3/2

i,j+1/2,k+1/2
− (2εκx + σx∆t)Bx

∣∣∣
n+1/2

i,j+1/2,k+1/2

]
(2.115)
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the other field components Ey, Ez, Hy and Hz can be updated in a similar

way.

2.4 Diffraction

2.4.1 Kirchoff’s Diffraction Integral

Kirchoff’s diffraction integral solves the homogeneous wave equation (Helmholtz

equation) at an arbitrary point P in terms of the solution of the wave equation

and its first order derivative at all points on a surface that encloses P . The

geometric arrangements for deriving Kirchoff’s diffraction integral is shown in

Fig. 2.9. Here, the point source is P0, P is the point at which we wish to

determine the field intensity, A1 is the aperture, A1 − A2 − A3 constitute the

surface that encloses P , r is the distance between the point source and any point

Q on A1, s is the distance between Q and P , n is the normal unit vector to the

surface A1 and j =
√
−1. The solution provided by the Integral theorem for a

monochromatic wave can be written as,

U(P ) = − 1

4π

∫

S

[
U
∂

∂n

(
ejks

s

)
− ejks

s

∂U

∂n

]
dS (2.116)

here, k = 2π
λ

is the wave vector, λ is the operating wavelength, and S is the

surface of A1. The following assumptions are made,

• U and ∂U
∂n

are discontinuous at the boundary of the aperture

• r and s are much higher than λ

The assumption, U and ∂U
∂n

are discontinuous at the boundary of the aperture,

requires U and ∂U
∂n

to be zero in A2. The contribution from A3 is considered

zero as well. For most of the possible geometries, these assumptions are not

true, That is why this integral is mathematically inconsistent. However, if A3 is

positioned far away from P and 1/r and 1/s are negligible compared to k, the

integral provides us with reasonably accurate results. If we assume that a point
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P0

Q

P R

A3

A2

A2

A1

n

r
s

Figure 2.9: Geometric arrangements for Kirchhoff’s diffraction integral

source is placed at point P0 described by the following equation,

U(r) =
aejkr

r
(2.117)

here, a is the amplitude of the point source. After simplification the integral

can be written as,

U(P ) = − ia
2λ

∫

S

ejk(r+s)

rs
[cos (n, r)− cos (n, s)] dS (2.118)
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where, (n, r) and(n, s) are the angles between n and P0Q, PQ vectors respec-

tively. This integral can be computed by using numerical integration, i.e. Simp-

son’s 1/3rd rule.

2.4.2 Rayleigh-Somerfeld Diffraction Integral

Figure 2.10 shows the geometric arrangements for evaluating the Rayleigh-Sommerfeld

diffraction integral. It is assumed that an aperture is present at z = 0 plane and

it is illuminated by a point source placed far away from it, U0(x, y, z) is the inci-

dent wavefront from the point source, Ω refers to the area of the aperture, r0 is

the position vector of a point on the aperture, a screen is located at z = z0 plane,

r is the position vector of a point located on the screen with the coordinates

(x0, y0, z0).

x

y

(x,y,0)

z

(x0,y0,z0)

r0

r

aperture screen

Figure 2.10: Geometric arrangements for evaluating RS diffraction formula

The following assumptions are made,

• On the aperture U0(x, y, 0) = U(x, y, 0)

• Outside the aperture on the aperture screen, U(x, y, 0) = 0
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The Rayleigh-Somerfeld diffraction integral is now given by the following equa-

tion,

U(x0, y0, z0) = −
∫ ∫

Ω

U(x, y, 0)
2z0

|r0 − r|

(
jk − 1

|r0 − r|

)
exp(jk|r0 − r|)

4π|r0 − r|
dxdy

(2.119)

This equation can be computed by numerical integration techniques.

2.5 Summary

This Chapter provides a comprehensive description of the computational tools

used in this thesis. As the Maxwell’s equations can characterise the light (Elec-

tromagnetic wave), at the beginning this Chapter the Maxwell’s equations in the

differential form are provided. A comprehensive description of the formulation

of H-field based finite element method is presented next. The various aspects of

the formulation, i.e. Discretisation, Shape function, Formation of Element and

Global matrices, Boundary conditions, and the eliminations of spurious modes

have been presented. Finite Difference Time Domain (FDTD) method used to

study the time evolution of the signals is presented then. The criteria for nu-

merical stability of the algorithm and the implementation strategy of a Perfectly

Matched Layer (PML) is also discussed. Finally, the diffraction integral is de-

scribed. This Chapter thus serves as the computational foundations for the tools

used in this thesis.
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Chapter 3

Simulation of the Visual System

3.1 Planar Structure

For a planar waveguide, it is considered that the core material is sandwiched

between the cladding material and it is assumed that the structure is infinitely

extended in the y direction as shown in Fig. 3.1. The core material width along

x direction is assumed as d and the direction of propagation is considered to be

in the z direction. The core has a refractive index of n1 and both the upper and

lower cladding have refractive index of n2, where n1 > n2.

Figure 3.1: Planar Waveguide Schematics
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A typical field profile for a Planar waveguide guide (x vs. βz) and the RAY

optics analogy is shown in Fig. 3.2. Here the RAY direction is assumed as the

normal to the wavefront, k is the wave vector normal to the wavefront, kz is

the wave vector component along z-axis, kx is the wave vector component along

x-axis, and θ is the angle made by the RAY with the normal of the core-cladding

interface.

Figure 3.2: Planar Field profiles at XZ plane for TE

here,

kz = k1 sin θ

neff = n1 sin θ

and

kz = β

the angle θ can be defined by Eq. 3.1.

θ = sin−1neff
n1

(3.1)

Effective index, neff is a critical parameter in describing the characteristics of

the propagating mode. An increase in the effective index neff means the mode

is more confined to the core with the refractive index n1 and it also means that

the mode makes a smaller angle with the axis of the core (θ approaches 90◦).
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Table 3.1: Relationship between confinement factor and neff

neff Confinement

n1 100% field is confined in the core

n2 0% field is confined in the core

Lower order modes have higher neff , means, more confinement, the lowest

order mode or the fundamental mode have the highest neff . The confinement

factor is defined as,

Cf =
Power in the core

Total mode power
(3.2)

The higher order modes have subsequently lower neff with lower confinement

factor. For a mode whose incident angle satisfies the condition θ ≥ θc, is no longer

guided by the core, where the θc is the critical angle at the n1−n2 interface that

is defined by

θc = sin−1n2

n1

(3.3)

here the symbol n1 and n2 have their usual meaning and n1 > n2 is assumed.

If neff ≈ n1, the θ ≈ 90◦, is the case when the propagation vector k makes a very

small angle to the guide axis (z- axis in the current case).

mode 1

mode 2

mode 3

Figure 3.3: Propagation angle and the corresponding field profiles

Figure 3.3 shows that the higher mode angle corresponds to a higher order
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mode. The relationship between the mode angle (θ) and the the propagating

modes can be found in Table 3.3 and in Fig. 3.4.

For the Maxwell’s equation in the planar structure, we assume the ∂
∂y
→ 0,

that means the structure in infinitely extended in the y direction and no field

variation along y. This assumption breaks the Maxwell’s equation into two sep-

arate sets,

TE TM

non-zero Ey, Hx and Hz non-zero Hy, Ex and Ez

Table 3.2: TE and TE modes with their respective field components

One set with no electric field component in the direction of propagation (z),

known as the Tansverse Electric (TE) wave and another set with no magnetic

field components in the z direction, known as the Transverse Magnetic (TM)

wave.

For TE polarization,

E = ŷEy

and

H = x̂Hx + ẑHz

The power flow, P is defined as the cross-product of the electric field E and the

magnetic field H that is given as,

P = E×H (3.4)

=



x̂ ŷ ẑ

0 Ey 0

Hx 0 Hz


 (3.5)

P = −x̂EyHx + ẑEyHz (3.6)
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propagating in the XZ plane, the P making an angle θ with the z axis where,

tan θ =
Hz

Hx

(3.7)

in order to keep the angle θ small, theHx should be the dominant field component.

For TM polarization,

E = x̂Ex + ẑEz

and

H = x̂Hy

P = E×H (3.8)

=



x̂ ŷ ẑ

Ex 0 Ez

0 Hy 0


 (3.9)

P = x̂HyEz − ẑHyEx (3.10)

propagating in the XZ plane, the P making an angle θ with the z axis where,

tan θ =
Ez
Ex

(3.11)

in order to keep the angle θ small, the Ex should be the dominant field component.

When a plane wave is reflected from a dielctric-dielectric interface, it experiences

a phase change φ that is given by,

φ12 =

√√√√1−
(
n2

n1

)2

sin2θ
for TE (3.12)

φ12 =

(
n1

n2

)2

√√√√1−
(
n2

n1

)2

sin2θ
for TM (3.13)
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A RAY that propagates at an angle θ with the z axis, forms standing wave profiles

or the mode profiles along the x direction if it satisfies the following condition,

2k0n1d sin θ − 2φ12 − 2φ13 = 2mπ (3.14)

where,

k0 = 2π
λ

is the free space propagation constant

λ : free space wavelength

n1 : core refractive index

φ12 : phase change at the 1-2 interface due to reflection

φ13 : phase change at the 1-3 interface due to reflection

m : mode number

d : guide thickness along x direction
Assuming a symmetric structure with n1 = n3 the equation takes the following

form,

k0n1d sin θ = 2

√√√√1−
(
n2

n1

)2

sin2θ
+mπ for TE (3.15)

k0n1d sin θ =

(
n1

n2

)2

√√√√1−
(
n2

n1

)2

sin2θ
+mπ for TM (3.16)

The equations can be solved numerically for θ using Newton-Raphson method,

the Table 3.3 shows different values of the values for TE polarisation. Figure

3.4 displays the mode angle (θ) against the normalised height (d/λ) for the first

few supported modes of the planar waveguide for TE polarisation. The planar

waveguide structure as shown in Fig. 3.1 is used for these calculations.
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Table 3.3: Mode angles for various normalised heights (d/λ) of a Planar waveg-
uide, NA = 0.15

d/λ mode 1 mode 2 mode 3 mode 4 mode 5

0.50 53.73 – – – –

0.75 33.81 – – – –

1.00 25.52 50.85 – – –

1.25 20.79 38.81 65.98 – –

1.50 17.69 31.83 49.89 – –

1.75 15.49 27.15 41.20 59.93 –

2.00 13.84 23.77 35.38 49.40 70.33

2.50 11.53 19.16 27.87 37.64 49.11

3.00 9.97 16.15 23.14 30.78 39.21

3.50 8.84 14.03 19.86 26.16 32.94

4.00 7.99 12.44 17.45 22.81 28.52
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Figure 3.4: Mode angles vs normalised height (d/λ) of a Planar waveguide, NA =
0.15
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Helmholz equation

We assume propagation as e−jβz in the z direction, and if ∂
∂y
→ 0, the solution

breaks into TE and TM type. For TE polarization, the Helmholtz equation for

Ey can be written as,

d2Eyi
dx2

= (β2 − k2
i ), i = 1, 2, 3 (3.17)

here, i representing the layers, ki = 2π
λ
ni is the propagation constant in the i th

medium, and β = 2π
λ
neff . The solution of equation 3.17 is exponential or sinu-

soidal depending upon the parameter β2− k2
i is positive or negative respectfully.

As we are considering the medium 1 as the guiding medium, k1 < β. In the upper

and lower cladding β > k1 and β > k3 must be true. The solutions in region 2

and region 3 must be exponentially decreasing and in region 1 (core) it should

be sinusoid. From Ey, the other two components Hx and Hz can be determined

using the Maxwell’s equation,

∇× E = −jωµH (3.18)

In layer 2,

Ey2 = Ae−qx

Hx2 = − β

ωµ
Ae−qx

Hz2 =
q

jωµ
Ae−qx




x > d/2 (3.19)

in layer 1,

Ey1 = B coshx+ C sinhx

Hx1 = − β

ωµ
[B coshx+ C sinhx]

Hz1 =
h

jωµ
[B sinhx− C coshx]





− d/2 ≤ x ≤ d/2 (3.20)
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in layer 3,

Ey3 = Depx

Hx3 = − β

ωµ
Depx

Hz3 =
p

jωµ
Depx




x < −d/2 (3.21)

here, q2 = β2−k2
2, h2 = k2

1−β2 and p2 = β2−k2
3. The tangential components

of Electric and Magnetic fields must be continuous at the interfaces x = d/2 and

x = −d/2. By applying the continuity conditions the coefficients A, B, C and

D can be eliminated to get the following transcedental equation for a symmetric

mode and n2 = n3,

hd

2
tan

hd

2
=
qd

2
(3.22)

The equation can be solved graphically to get h and q, hence the β can be

found. To plot the propagation characteristics, the following definitions are used,

the normalised frequency,

V =
πd

λ

√
n2

1 − n2
2 (3.23)

the normalised propagation constant,

b =
n2
eff − n2

2

n2
1 − n2

2

(3.24)

and the effective index is given by,

neff =
β

k0

(3.25)

The qd/2 vs. hd/2 curves have been plotted in Fig. 3.5, where the green

lines are for the symmetric and the red ones are for the antisymmetric modes.

Intersections between the circle having the radius of V and the qd/2 vs hd/2

curves based on equation 3.22 gives us the neff values of the supported modes.
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Figure 3.5: qd/2 vs hd/2 curves for the detrimental equation of planar structure,
d = 2µm, NA = 0.15
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Figure 3.6: FDTD simulations of the incident angles and the supported modes
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FDTD simulations of the incident angles and the first two supported modes

have been presented in Fig. 3.6 that indicates that the Poynting vector of the first

mode makes less angle with the waveguide axis than that of the second mode.

3.2 Introducing loss

Permittivity is a complex number for a lossy material, and this can be written

as,

ε = ε′ + jε′′ (3.26)

The loss tangent is defined as the ratio of imaginary to real part of the permit-

tivity,

tan δ =
ε′′

ε′
(3.27)

The loss tangent can also be defined in terms of material conductivity as follows,

tan δ =
σ

ωε′
(3.28)

Here, σ is the conductivity of the material, and ω is the angular frequency. The

imaginary part of the permittivity is related to the conductivity of the material

as follows,

ε′′ =
σ

ω
(3.29)

Refractive index of a lossy material must be complex as well since n =
√
ε,

n = n′ + jn′′ (3.30)

Here, we are assuming that the dielectric and conduction loss both accounted

into ε′′. The propagation constant is complex as well and is given by,

γ = α + jβ (3.31)

α represents the loss of the mode in the waveguide guide.

Let us consider a case where the core is loss-less with a refractive index n2; the

cladding (both the lower and upper) is lossy with refractive index n1 = n′1 + jn′′1
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and the structure is symmetric; hence, the upper and bottom cladding have the

same material. Here n′1 and n′′1 are the real and imaginary parts of the cladding

refractive indices, respectively. Schematic diagram of such a structure is shown

in Fig. 3.7.

Figure 3.7: Planar Waveguide with lossy cladding

For TE polarisation and symmetric modes the field equations are as follows,

Ey1 = Ae−q
′x cos q′′x (3.32)

Hz1 =
Ae−q

′x

jωµ
[q′ cos q′′x+ q′′ sin q′′x] (3.33)

Ey2 = Be−h
′x cosh′′x (3.34)

Hz2 =
Be−h

′′x

jωµ
[h′′ cosh′x+ h′′ sinh′x] (3.35)

Boundary condition for tangential electric field,

Ey1 = Ey2|x=d/2
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leads to,

Ae−
q′d
2 cos

q′′d

2
= Be−

h′′d
2 cos

h′d

2
(3.36)

and for tangential magnetic field,

Hz1 = Hz2|x= d
2

leads to,

Ae−
q′d
2

jωµ

[
q′ cos

q′′d

2
+ q′′ sin

q′′d

2

]
(3.37)

=
Be−

h′′d
2

jωµ

[
h′′ cos

h′d

2
+ q′′ sin

h′x

2

]
(3.38)

After eliminating the constants A and B the detrimental equation takes the

following form,

q′ − h′ tan
h′d

2
= h′′ − q′′ tan

q′′d

2
(3.39)

Assuming the complex propagation constant in the core γ = α + jβ, h′, h′′, q′

and q′′ can be written as,

h′ =
M(M2 + 4α2β2)1/4

√
M2 + α2β2

(3.40)

h′′ =
αβ(M2 + 4α2β2)1/4

√
M2 + α2β2

(3.41)

q′ =
N(N2 + 4(αβ + k′1k

′′
1)2)1/4

√
(N2 + (αβ + k′1k

′′
1)2

(3.42)

q′′ =
(αβ + k′1k

′′
1)(N2 + 4(αβ + k′1k

′′
1)2)1/4

√
(N2 + (αβ + k′1k

′′
1)2

(3.43)

where

M = k2
2 − β2 + α2 = h′2 − h′′2
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and

N = β2 − α2 − k′21 + k′′21 = q′2 − q′′2

Normalised frequency of this structure is defined as

v = Re

(
πd

λ

√
n2

2 − n′21 + n′′21 − j2n′1n′′1
)

(3.44)

after simplification it takes the following form,

v =
πd

λ
((n2

2 − n′21 + n′′21 )2 + 4n′21 n
′′2
1 )1/4 n2

2 − n′21 + n′′21√
(n2

2 − n′21 + n′′21 )2 + n′21 n
′′2
1

(3.45)

for lossless cladding, where n′′1 = 0, the equation takes the well known form,

V =
πd

λ

√
n2

2 − n′21 (3.46)

The parameter M is plotted against tan δ for a 2 µm guide at the wavelength

λ = 550 nm in Fig. 3.8.
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Figure 3.8: Lossy Guide Parameters
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The core refractive index and the real part of the cladding refractive index

is kept constant. The parameter M is appears to be an increasing function of

tan δ. Figure 3.8 shows the parameter N under same conditions, and it appears

to be decreasing with tan δ for very low loss tangent, reaches a minimum point at

around tan δ ≈ 1.0, increases beyond that loss tangent. Figure 3.8 shows how the

normalised frequency V varies with the imaginary part of the cladding refractive

index. It is evident from the figure that the V decreases at very low loss values

with increasing material loss, reaches a minimum at some point (corresponds to

tan δ ≈ 0.12), and then increase with increasing the material loss. Increased V

means the cutoff wavelength λc to be increased. Figure 3.8 shows the variations

of the parameters M , N , v, h′, h′′, q′ and q′′ with tan δ for fixed d = 2 µm.

Abscissa for all the plots of figure 3.8 are tan δ.
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Figure 3.9: Confinement factor and Loss vs tan δ

With the increasing material loss, the field confinement increases but the
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waveguide loss has maxima at a certain material loss value, beyond that point

the guide loss decreases as can be seen in Fig. 3.9. When the cladding is lossy

the field in the core is exponentially decreasing sinusoid instead of sinusoid as in

the lossless case.
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Figure 3.10: Field along guide dimension for lossy cladding
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Figure 3.11: Field profile for lossy cladding

Here, Fig. 3.10 shows that multiplying the sinusoid by an exponentially de-

creasing function results in narrowing down the first lobe toward the centre. That
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might be the reason we observe an increase in confinement factor with a rise in

tan δ of the cladding material as shown in Fig. 3.9. The field profile in Fig. 3.11

shows that the field is exponentially varying sinusoid.
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Figure 3.12: Sinc function plot

Intensity profile has a striking similarity to the plot of the absolute value of

sinc(x) in shown in Fig. 3.12. The interesting point to note here that the field

pattern in an Airy disc generated by a finite aperture is very similar to these

theoretical field patterns of a lossy guide. The connection between them, if there

in any, shall be considered in details in the later parts of the results section.

3.3 Importance of Evanescent Fields

For a guided wave although the power flows through the core region, from the

solution of the Maxwell’s equation we can see that the field components are not

zero at the cladding region. Usually for a waveguide with loss-less materials, it

is found that the field in the cladding region decreases exponentially to zero, this

field in the cladding region in known as the evanescent field. The guided mode

propagates through the core region at a phase velocity defined by the neff of

that mode, and for a guide mode neff > ncladding, but the evanescent field in the
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cladding region travels at the same velocity as of the core region field. Although

the evanescent field does not carry power, it must be present in order the mode

to effectively guided. If we remove the evanescent field by any means, the fields

present in the core region will eventually loose some of its power and will produce

the evanescent field to propagate properly.

A Finite Difference Time Dimain (FDTD) method is implemented in MAT-

LAB to produce the simulation results presented in this section and onward. It

is assumed that ∆x = ∆y = ∆z = ∆ = 50 nm and ∆t = 9.62 × 10−17 sec. is

used by using equation 2.101.

Figure 3.13: Point source in single mode guide
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When a point source is present in the core of a waveguide, it starts to radiate

in all directions. At the core-cladding interface, the wavefronts that make an

angle more than the critical angle radiates to the cladding. The waveform that is

equal to the angle to that of a supported mode would be guided through the core

region. Figure 3.13 shows a point source placed inside the core of a single-moded

waveguide excites only the fundamental mode and is guided by the core.

Figure 3.14: Point source in a multi-mode guide

Figure 3.14 shows that a point source excites the first two modes in the core
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region where the waveguide is multi moded and supports upto the second mode.

As the materials used in these two cases were loss-less, the evanescent fields are

exponentially decreasing as expected.

Figure 3.15 shows that when a plane wave source is placed in the core region

of the multimoded waveguide where the wavefront of the source makes very small

angle with the guide axis excites only the first mode that is guided by the core.Intessity Plot of Insect Rhabdom Cross−section 500nm,
 1.339,1.347,1,343, tanδ: 0,.015,.15, PS 6.25um
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Figure 3.15: Plane wave in a multimode guide

Figure 3.16 shows when the plane wave source’s wavefront is adjusted to make

a higher angle with the guide axis in a multimoded waveguide, it is possible to

excite only the second mode. By adjusting the angle it is however possible to

excite other higher modes as well.Intessity Plot of Insect Rhabdom Cross−section 500nm,
 1.339,1.347,1,343, tanδ: 0,.015,.15, PS 6.25um
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Figure 3.16: Plane wave incident at an angle to excite the higher order modes

In a multimode waveguide, if a source is placed whose field profile resembles

that of a supported mode of the waveguide, the mode would travel unperturbed

through it. Figure 3.17 shows when the mode profile of the first mode is placed as

the source in a waveguide with a lossless material, it is guided by the waveguide

unperturbed.
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Figure 3.17: Mode input - mode output; multimode
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In the previous sections, it has been shown that for a waveguide with lossy

cladding has supported modes where for the fundamental mode the core region

is exponentially decreasing sinusoid, and field profile at the cladding region is

sinusoidally varying decreasing sinusoid. The exponential term in the core and

the sinusoidal term in the cladding region depends on the loss value present in

the cladding material.

Figure 3.18: Gaussian input - mode output; multimode guide

For a waveguide with a lossless material the mode shape of the fundamental

or the lowest order mode can be approximated by a Gaussian function. Figure
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3.18 shows when a Gaussian profile is placed a the input of a waveguide with

lossy cladding, the mode shape evolves to that of an exponentially decreasing

sinusoidal profile. It can be concluded from the figure that the field confinement

is increased due to the loss present in the cladding material.

Figure 3.19: Lossy Mode input - mode output
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Figure 3.19 shows that when the mode profile of a lossy mode is used as the

source of the waveguide, the mode shape remains unchanged. Due to the material

loss, the neff should be a complex number, and the mode should be lossy. It is

evident from the figure that the mode experiences power loss as it propagates

through the waveguide but the field profile as well as the confinement remains

unchanged.

3.4 Waveguide Loss Calculation

For the lossy case the effective index is a complex value, which is given by,

neff = nr + jni (3.47)

here nr and ni are the real and imaginary parts of the effective index neff respec-

tively. The real part of the propagation constant is related to the imaginary part

of the effective index as,

α =
2π

λ
ni (3.48)

The waveguide loss in dB can be written by,

Loss = −8.6859αz (3.49)

Loss(dB/µm) = −8.6859α (3.50)

it is considered here that the λ is expressed in µm.
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3.5 Planar guide as a limiting case of rectangu-

lar guide

Figure 3.20: Rectangular guide - mode along dimension; planar guide field along
dimension
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Figure 3.21: neff changes with b/a ratio; NA=0.15, λ = 550 nm
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Here, neff1 and neff2 are the effective indices of the planar and rectangular guide

having the same height. The width of the rectangular guide is varied to observe

the impact. It is evident from the Fig. 3.21, as the width of the rectangular guide

approaches infinity, neff2 approaches neff1, where the blue dotted line represents

neff1 and the black solid line is for neff2.

3.6 Selection of Wavelength Range

The wavelengths range of 390 nm - 740 nm is considered as the visible spectrum

as shown in Fig. 3.23. Although the sun radiates, as shown in the sun spectra

in Fig. 3.22, wavelength as small as 100 nm to far infrared (3000 nm), but the

wavelengths below 300 nm are absorbed in the Earth’s atmosphere, so at Earth’s

surface, the sunlight contains only wavelengths above 300 nm. The simulation

carried out in this study uses λ = 50 nm as the lowest wavelength. This allows

our propagation characteristics still valid for six times the dimensions employed

in the study. Although the focuses the dimension around 2 µm (typical dimension

of insect rhabdom), we can analyse the guides with dimension 12µm (Glial cell

dimension at some cross-sections) using the same set of results.

Figure 3.22: Sun spectra on the Earth surface source:
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Figure 3.23: Visible spectrum source:

The normalised frequency V = πd
λ

√
n2

1 − n2
2 used in propagation character-

istics is a function of d/λ ratio, that means a guide with twice the dimension

has the same effective index (neff ) if the λ is doubled as long as the refractive

index profile remains the same. As neff determines the phase velocity as well

as the angle the poynting vector makes with the guide axis, the results obtained

from the simulation for 2 µm guide can be extended for higher as well as lower

dimension guides.

3.7 Selection of Methods

The FEM and FDFD methods can be used to solve the eigenvalue problem for-

mulated by discretising the simulation domain for Maxwell’s equations. As pre-

viously discussed, the FD based methods do not work well for approximating

irregular geometries due to their staircase representation for slanted or curved

edges that are frequently encountered in biological structures. Figure 3.24 shows

how the FD based meshing approximates the curved boundaries by stair casing,

while the meshing used for FE based methods can follow the curves with reason-

able accuracies. Despite being computationally more expensive than FD based

methods, FE based methods can produce results with much better accuracies

because of the advantage it gets from meshing.
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Figure 3.24: Approximating irregular geometries with FE and FD based methods

FE based discretization performs well for domains containing irregular shapes

or boundaries. Figure 3.25 shows some examples of computational domains where

the FE based meshing can approximate the domain very well, FD based meshing

would not produce excellent approximation in these cases due to their stair-

casing problem. In FE based meshing it is also possible to refine the mesh sizes at

locations where higher accuracies are required. Therefore, an FE-based method is

the ideal choice for simulating biological structures, despite being computationally

more expensive.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Examples of approximating some complicated geometries in FE
based mesh (Burkardt [2011])
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3.8 Rectangular guide

The theoretical analysis of a rectangular dielectric waveguide, even with a simple

refracting index profiles is very complicated. Goell [1969] and Marcatili [1969]

did some groundbreaking analysis on this type of optical waveguide. For more

complicated shape and refracting index profiles numerical solution of Maxwell’s

equations can provide us with the solutions with reasonable accuracies, and in

most of the cases the only way to address the problem.

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5

(f) mode 6 (g) mode 7 (h) mode 8 (i) mode 9 (j) mode 10

(k) mode 11 (l) mode 12 (m) mode 13 (n) mode 14 (o) mode 15

(p) mode 16 (q) mode 17 (r) mode 18 (s) mode 19 (t) mode 20

Figure 3.26: First 20 modes of a rectangular waveguide, dimension 2µm× 2µm,
NA=0.15
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Numerical solution of Maxwell’s equations is carried out to obtain the mode

profiles for a rectangular waveguide using H field based full vectorial Finite El-

ement Method (Rahman and Agrawal [2013]). 20000 elements have been used

to discretize the computational domain. The core and the cladding refractive

indices are taken as 1.347 and 1.339 respectively, with no material loss in the

core and the cladding region. To obtain higher modes, the operating wavelength,

λ = 50 nm is considered. Width and height of the core are taken as equal; the

width = 2µ m is taken. Figure 3.26 shows the Hy field distribution of the first 20

supported modes of such a waveguide. In all of the modes, the Hy is the dominant

field component. For a guided mode the condition ncore ≥ neff ≥ ncladding must

be satisfied, here the lowest order mode has the highest neff , the modes have

subsequently lower neff .
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Figure 3.27: The first and the second modes of the rectangular waveguide with
fields along the axis

For a rectangular waveguide, the field patterns have symmetries along two

directions, x and y. The mode 1 has no zero crossing in the field in x- and y-

directions, this mode is commonly known as the H11
y mode, where the subscript
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y represents the dominant field component and the superscript 11 represents one

variation in the x-direction and one variation in the y-direction. The mode 2

is the H21
y mode, has two variations in the x-direction and one variation in y

direction. Figure 3.27 shows the field variations of the first two modes along the

y-axis at the centre of the guide core. The other modes as shown in Fig. 3.26

have higher variations in the x and/or y directions.

3.9 Circular guide

Optical fibres are the most well-known examples of an optical waveguide with a

circular cross-section. Fortunately, the analytic solution of this type of waveguide

is available in the literature Yeh and Shimabukuro [2008]. The typical structure of

a waveguide with circular cross-section is shown in Fig. 3.28. For this waveguide

ncore = 1.347 and ncladding = 1.339 is assumed and the mode profiles have been

generated using FEM mode solver with similar parameters that of the rectangular

waveguide. The diameter of the core is taken as 2µ m.

Figure 3.28: Circular Optical Waveguide structure

For waveguides with a circular cross-section, the mode profiles have two axes

of symmetries, radial direction (ρ) and angular direction (φ). Figure 3.29 shows
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the first 20 supported modes of the circular optical waveguide. Mode 1 of this

circular waveguide has one variation along ρ but no variations along φ; mode 2

has on variation in rho and one variation in φ; the other higher order modes have

higher variations in the field along ρ and/or φ.

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5

(f) mode 6 (g) mode 7 (h) mode 8 (i) mode 9 (j) mode 10

(k) mode 11 (l) mode 12 (m) mode 13 (n) mode 14 (o) mode 15

(p) mode 16 (q) mode 17 (r) mode 18 (s) mode 19 (t) mode 20

Figure 3.29: First 20 modes of a Circular waveguide, core diameter 2µm,
NA=0.15

Figure 3.30 shows the comparison of field profiles between the mode 1 and the

mode 4. Both of the modes have no variations along φ; mode 1 has one variation

along ρ and mode 4 has two variations along ρ.
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mode 1

mode 4

Figure 3.30: Comparisons of the field profile of mode 1 and mode 4 of a circular
optical waveguide

The first 2 modes of both rectangular and circular waveguides have similar

field profiles.

3.10 Hexagonal guide

The analytic solution of Hexagonal waveguide structure requires rigorous mathe-

matics and in most of the cases with various refractive index profiles, it is impossi-

ble to find the analytic solution. In analysing biological structures, the hexagonal

structure is essential as the hexagonal structure is frequently found in nature. To
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obtain the mode profile of a hexagonal structure, we have to rely on the numerical

methods.

A typical structure of a hexagonal waveguide if shown in Fig. 3.31, where

ncore = 1.347 and ncladding = 1.339 is assumed and the mode profiles have been

generated using FEM mode solver with the similar parameters as considered for

the circular and rectangular waveguide. Side to side distance is taken as 2µ m.

Figure 3.31: Hexagonal Optical Waveguide Structures

Figure 3.32 shows the first 20 modes of a Hexagonal waveguide. The number-

ing of modes is used as proposed by Bauer and Reiss [1978]. The first mode has

similar field profile as that of the circular and rectangular waveguide.
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(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5

(f) mode 6 (g) mode 7 (h) mode 8 (i) mode 9 (j) mode 10

(k) mode 11 (l) mode 12 (m) mode 13 (n) mode 14 (o) mode 15

(p) mode 16 (q) mode 17 (r) mode 18 (s) mode 19 (t) mode 20

Figure 3.32: First 20 modes of a Hexagonal waveguide, side-side distance 2µm,
NA=0.15

3.11 Irregular guide

First a waveguide with elliptical cross-section is considered, where the major axis

= 2.2µ m and the minor axis = 1.8µ m is taken. The first 20 modes of this

elliptic waveguide are presented in Fig. 3.33. The mode patterns are more or less

similar to that of the circular waveguide, but the interesting point to note here
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that the first mode and the second mode have very similar characteristics in all

these waveguide considered so far.

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5

(f) mode 6 (g) mode 7 (h) mode 8 (i) mode 9 (j) mode 10

(k) mode 11 (l) mode 12 (m) mode 13 (n) mode 14 (o) mode 15

(p) mode 16 (q) mode 17 (r) mode 18 (s) mode 19 (t) mode 20

Figure 3.33: First 20 modes of a Elliptical waveguide, major axis 2.2µm, minor
axis 1.8µm, NA=0.15

As the biological structures do not have pure geometric shapes in their struc-

tures, to analyse biological structures, it is required to analyse structures with

irregular shapes. The hexagonal structures found in the biological structures are

pseudo hexagon rather that pure geometric hexagon. However, the mode profiles

of a pseudo-hexagonal waveguide should be very similar to that of pure hexagonal

structure if the structural dimensions and the material profiles are similar. We

have considered at this point a waveguide with an irregular cross-section that is
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shown in Fig. 3.34.

y

xz

Figure 3.34: Guide having irregular cross-section Structure

(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4 (e) mode 5

(f) mode 6 (g) mode 7 (h) mode 8 (i) mode 9 (j) mode 10

(k) mode 11 (l) mode 12 (m) mode 13 (n) mode 14 (o) mode 15

(p) mode 16 (q) mode 17 (r) mode 18 (s) mode 19 (t) mode 20

Figure 3.35: First 20 modes of a irregular cross-section waveguide, approximate
dimension 2µm NA=0.15
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Figure 3.35 shows the field profiles obtained for the first 20 supported modes

of the waveguide with an irregular cross-section. The first two modes have very

similar field profiles as that of the other waveguide types.

3.12 Comparisons about the mode profiles of

waveguides with different cross-sections

The fundamental or the lowest order modes of all these guides with similar di-

mensions have similar neff , indicating the phase velocities and the mode angles

are similar. The field profiles are similar to some extent.
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Figure 3.36: Structures and the propagation characteristics of the first and the
second modes for the first mode of Rectangular, Hexagonal, Circular and irregular
cross-sections with similar dimensions

Rectangular guides are usually analysed in Cartesian coordinates and the in
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numbering the modes the field variations along X and Y directions are considered,

i.e. an Hx
32 mode has 3 variations in the X direction, and 2 variations in the Y

direction, with Hx being the dominant field component as shown in the Fig. 3.37.

Figure 3.37: Hx
32 field profiles for a rectangular waveguide

(a) (b)

Figure 3.38: Different types of symmetries present in the field profiles of a Hexag-
onal guide
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In analysing the circular guide, the Polar coordinate system is preferred over

the Cartesian one, where the mode is considered to have radial (ρ) and angular (θ)

variations. A Hρ
32 mode has a dominant ρ component in the H field, with three

variations in the radial direction and two variations in the angular dimension.

The number of symmetries present in a Hexagonal guide makes it difficult

to use the mode numbering scheme with Cartesian or Polar coordinate systems.

Bauer and Reiss [1978] proposed a method of numbering the modes as modei,

i = 1, 2, 3, . . ..

Despite having one variation along θ, modes as shown in the Fig. 3.38, are

different, must have different neff . It has been found that the neff are very close

to each other, but the propagation angles are much different. The hexagonal

cross-section waveguide thus should be more sensitive to the polarisation that

the other guide shapes. It has been reported that the eyes of some insects are

sensitive to the polarisation of the light and it plays a vital role in their daily life;

the study has the potential to shed some light on the matter.

3.13 Summary

This Chapter provides the derivations required in this study. The Chapter, first

deals with a planar waveguide structure derive the necessary equations that rep-

resent the various field components considering lossless materials. The neces-

sary equations for a planar waveguide structure are then derived considering the

cladding material as lossy. Angle dependence of the waveguide modes is presented

in this Chapter then. The propagation characteristics of waveguides with a differ-

ent cross-section, i.e. Rectangular, Circular, Hexagonal, Elliptical and irregular,

have been presented in the Chapter. Comparisons among the propagation char-

acteristics of different waveguides are presented in the later parts of the Chapter.

As the theoretical analysis is possible for the planar structure, the results ob-

tained for the planar structure from the numerical methods are compared with

the theoretical results to validate the numerical methods. For the more compli-

cated structures where the theoretical analysis is complicated, numerical methods

have been used in their study. This Chapter thus serves as a brief introduction

to the various aspects related to the analysis of biological optical waveguide.
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Chapter 4

Results and Discussion

This chapter provides the simulations results and discusses the implications of

the obtained results. Theoretical derivations for planar waveguide structure is

compared with the simulations results to justify the validity of the simulations

results. As the theoretical analysis is extremely complicated, impossible in some

cases, for 3D waveguides structures; results obtained from Numerical simulations

has been presented. Effects of material loss on the propagation characteristics

of optical waveguides have been explored after that. At the later parts of this

chapter, the impacts of multi-layer waveguide structures and the presence of the

surrounding waveguides on the propagation characteristics have been provided.

The results obtained from the different waveguide structures is then utilised to ex-

plore in characterising the Ommatidium of Drosophila Melanogaster’s Compound

eye and the Glial cell of Human Retina. An explanation of the Stiles-Crawford

effect of Human eye is provided at the end of this chapter.

4.1 Planar Waveguide

In a planar waveguide, the core with higher refractive index (n2) is sandwiched

between the upper cladding (n1) and lower cladding (n3) having lower refractive

indices than the core. In a symmetric structure, we assume that n1 = n3 and

n2 > n1. The schematics of a planar structure is found in Fig. 4.1, where the

direction of propagation is considered along the z direction and the waveguide is
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infinitely extended along the y direction; as a result we assume that the variation

of the field along the y direction is zero ( δ
δy
→ 0).

Figure 4.1: Schematics of a planar waveguide

4.2 Waveguides with Lossy Materials

In the previous chapter, propagation characteristics of waveguides having lossless

material have been considered. In most of the practical cases the waveguide

materials are not lossless because the material loss is tiny for dielectric materials

(SiO2, MICA, Quartz) and semiconductors, typically tan δ ≈ 10−4, the effects

of loss on the propagation characteristics can be ignored. It has been shown in

Chapter 4 that the material loss of the waveguide material has profound effects

on the propagation characteristics. In this chapter, the impact of material loss on

different aspects of waveguide characteristics will be explored. As the waveguides

having various types of the cross-section (i.e. Rectangular, Hexagonal, Circular,

and Irregular) have similar propagation characteristics as well as the field profiles

as far as we restrict our attention to the lowest order mode, the majority of the

results in this chapter is on rectangular guide unless specified otherwise. The

core is considered to be loss-less with real refractive index ncore, the cladding is

lossy with complex refractive index ncladding = nreal + jnimag, Fig. 4.2 shows the
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schematics of the cross-section of the waveguide in XY plane, where the direction

of propagation is considered to be in the z direction. To observe the effects of

loss, we assume ncore = 1.347, nreal = 1.339 and nimag is varied for obtaining

different tan δ that is defined as,

tan δ =
2nrealnimag
n2
real − n2

imag

(4.1)

x

y

z

width

h
e
ig
h
t

Figure 4.2: Schematic diagram of the XY plane cross-section of a rectangular
guide with lossless core and lossy cladding materials

Propagation Characteristics

Figure 4.3 shows the normalised effective index (b) with respect to normalised

frequency (v) for different tan δ curves for the H11
x mode or the lowest order

quasi-TM mode of a rectangular guide with 2µm× µm cross-section dimension.

As the frequency is increased, or, in other words, the wavelength is decreased,
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the effective index, neff is increased. An increase in the neff means the mode is

more confined to the core and there is room for possible higher order modes with

lower neff . As we increase the tan δ, the figure shows that the neff is decreased.

A possible consequence for this lowered neff is less room for the higher order

modes. The curves for tan δ = 0 and tan δ = 0.0015 seems to be very similar

that proves that our previous assumptions that very little materials loss have a

negligible impact on the propagation characteristics.
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Figure 4.3: Normalised neff vs normalised frequency of H11
x mode (v) for a 2 ×

2µm rectangular waveguide for different tan δ, ncore = 1.347, ncladding = 1.339

An increase in the loss part of the cladding refractive index (tan δ) results

in a decrease in the real part of the effective index (neff ) at the same time an

increase in the imaginary part of neff . Figure 4.4 shows that, for a loss-less

cladding, or when the loss is very low (≈ 10−8), for a rectangular guide having a

dimension of 2µ m×2µ m, the real part of neff of the lowest order mode is about

1.342 and the imaginary part is ≈ 0. For tan δ > 10−4, the real part of the neff
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starts to decrease, while the imaginary part starts to increase. A decrease in the

Real{neff} means an increase in the phase velocity of the propagating mode as

well as a decrease in the tangential components of the field components. As the

Imag{neff} represents the loss experienced by the propagating mode, an increase

in the imaginary part represents an increase in mode power loss. At this point, it

can be asked,“What would happen if we continue to increase the material loss?”.

For an extremely high value of material loss tan δ > 0.15, the modal loss shows

interesting characteristics that would be shown later in this chapter.

Figure 4.4: Effective index vs Loss tangent for Rectangular guide with 2 µmX2
µm dimension, ncore = 1.347, ncladding = 1.339, λ = 550 nm FEM simulation

A waveguide with lossy dielectric (complex refractive index) has its effective

index (neff ) as a complex number, implies that the propagating mode is lossy. In

analysing such lossy waveguides, several FEM-based numerical methods capable

of producing complex effective index can be deployed. Two of these methods are
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full vectorial FEM mode solver using complex eigenvalue solver CSSITER Rah-

man and Agrawal [2013] and using perturbation method Rahman and Agrawal

[2013].
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Figure 4.5: Propagation characteristics vs Loss tangent for d=2µm, λ=550 nm,
Rectangular guide

Perturbation method uses a real solver ignoring the imaginary parts initially,

then tries to determine the imaginary part based on the real part and an inte-

gration performed over the structural domain while the CSSITER is capable of

dealing with the complex quantity as it uses a complex eigenvalue solver. Fig-

ure 4.5 shows the propagation characteristics of the Hx
11 mode of a rectangular

dielectric waveguide with a dimension of 2µm × 2µm, wavelength, λ = 550 nm

where, the top left figure shows the real neff vs tan δ, the top right figure shows

the loss vs tan δ, the bottom left one displays the field confinement factor vs
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tan δ and the bottom right graph shows the mode spot size vs tan δ. As evident

from all the sub-figures of Fig 4.5, there is good agreement between the results

produced by the two methods as mentioned earlier as long as the material loss

stays minuscule, more precisely tan δ < 10−3. At higher material loss values, the

two methods produce significantly different results. There is a good agreement

between the results obtained from CSSITER with the other commercially avail-

able Softwares such as COMSOL at higher loss values. These findings suggest

that despite being computationally less costly, the Perturbation method is not a

suitable candidate if higher losses are sought.
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Figure 4.6: Loss vs Guide Width (d) for Different Loss Tangents, ncore = 1.347,
ncladding = 1.339, λ = 550 nm

Waveguide loss, in this thesis expressed in dB/µm, not only depends on the

material loss but also on the waveguide dimensions or more precisely on d/λ ratio,

where d stands for the waveguide cross-section dimension and λ is the operating

wavelength. Higher ratio leads to lower guide loss. Loss values calculated against

a range of guide dimensions for a rectangular waveguide with ncore = 1.347,
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ncladding = 1.339, λ = 550 nm, using CSSITER has been presented in Fig. 4.6. It

is clear from the figure that as we increase the d/λ ratio, the guide loss decreases.

An increase in the material loss keeping the d/λ ratio leads to higher guide loss.

By choosing the three parameters (d, λ and tan δ), it can be possible to set a

waveguide at any desired guide loss condition.

It has been shown in Fig. 4.4 that an increase in waveguide material tan δ

results in a reduction in neff , where the operating wavelength was kept constant

at λ = 550 nm. The visible spectrum is referred to the wavelength range of 390

nm-740 nm. To analyse the performance of any waveguide device that works

in the visible spectrum has to be evaluated for the entire spectrum if possible.

The wavelength range has been taken as 350 nm-750 nm to include the visible

spectrum, and for this wavelength range the real part of the neff is presented in
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Figure 4.7: Real neff vs tan δ for different wavelengths for a 2 µm×2 µm rectan-
gular waveguide, ncore = 1.347, ncladding = 1.339

Fig. 4.7 for the waveguide with same parameters as before. For all wavelengths
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in the range increase in tan δ means a decrease in the real neff . Longer wavelength

at the same tan δ leads to lower Real{neff}. Figure 4.8 shows the variations of

the imaginary parts of the neff against tan δ at various wavelength in the same

wavelength range. The simulation is done, at this instance, for tan δ value as high

as 0.5. The interesting point to note that the imaginary parts of neff continue to

increase with increasing tan δ up to a certain value of the material loss, but starts

to decrease beyond that point with further increase in the material loss. Increase

in the operating λ results in a rise in the Imag{neff}, consequently increase in

the waveguide loss as the waveguide loss is directly proportional to the imaginary

part of neff . It has been shown before that the field confinement of a guided mode

increases with tan δ of the cladding material. It is possible to achieve the same

waveguide loss with other field confinements by adjusting the cladding material

loss.
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Figure 4.8: Imaginary neff vs tan δ, for a 2 µm×2 µm rectangular waveguide,
ncore = 1.347, ncladding = 1.339 at different wavelengths
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Effects on Field Profile

Typically the mode profile of a rectangular dielectric waveguide can be repre-

sented by sinusoidal variations in the core and exponentially decaying fields for

the evanescent field in the cladding. It has been shown in Chapter 4 that a

Gaussian profile can approximate the lowest order mode for a planar dielectric

waveguide for a lossless case and lossy cladding the field profile at the core is ex-

ponentially decreasing sinusoid, the field profile at the cladding is exponentially

decreasing sinusoid as well. There is good agreement between the theoretical and

the numerical results for the planar waveguide. As the rectangular waveguide can

be considered as an extension of the planar waveguide, the similar types of field

profile should be found for the rectangular case as well. As was shown in Chapter

4 that there are similarities, at least amongst the lowest order modes, in field pro-

files for rectangular, circular, hexagonal and irregular cross-section waveguides,

from the results shown for the rectangular case can be used to conclude for the

other waveguide types as well.
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Figure 4.9: Hx along dimension for Different Loss Tangents, for a 2 µm×2 µm
rectangular waveguide, ncore = 1.347, ncladding = 1.339

Numerical simulations performed on a waveguide with rectangular cross-section

has been used to determine the field profile along the guide axis of the lowest or-
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der H11
x mode is presented in Fig. 4.9. Waveguide cross-section, in this case,

like the preceding section, is taken as 2 µm × 2 µm, with the similar material

profile. It is evident from the Fig. 4.9 that the field profile is comparable to

a Gaussian profile for a lossless case, as the tan δ is increased the core shows

exponentially decreasing sinusoidal profile and the cladding shows sinusoidally

varying exponentially decreasing profile. With increasing tan δ, the field is more

confined to the core. Figure 4.10 displays the impacts of the loss present in the

cladding material upon the field profile, which clearly indicates that an increase

in the material loss pushes the modal field towards the centre of the waveguide,

thereby increases the field confinement.
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Figure 4.10: Field intensity along guide width for Rectangular guide with 2 µm×2
µm dimension

Dispersion

In Optics, dispersion Cole and Cole [1941] is referred to the phenomenon in

which the phase velocity of a wave depends on its frequency. Usually, most of

the materials are dispersive in nature for a wide band of frequencies. An optical

instrument that operates in the visible spectrum (390 nm-750 nm) experiences

dispersion as the operating wavelength band is quite wide; thus, the design of
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such an instrument must take the effects of dispersion into active consideration.

Dispersion of an Optical waveguide depends not only on their material dispersion

but also on their geometry. Dispersion of an Optical waveguide is given by,

D = −2πc

λ

d2β

dω2
(4.2)

where λ = 2πc/ω is the vacuum wavelength, c is the speed of the wave in free

space, and β = 2π
λ
neff . Equation 4.2 is the generalised case where the waveguide

dispersion and the material dispersion both are taken into account.
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Figure 4.11: Dispersion vs Frequency for a 2µm Rectangular guide for different
tan δ

Figure 4.11 presents the waveguide dispersion curves for a rectangular waveg-

uide (2µ m dimension) over a wide range of frequencies (50 nm - 800 nm) for dif-

ferent tan δ. The visible spectrum is defined as the frequency range of 0.4× 1015

Hz to 0.75 × 1015 Hz. As seen in the figure, the waveguide is highly dispersive

in the visible frequency band, suggests that the waveguide works in this range

would be affected severely by the dispersion. Any broadband pulse propagates
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through the waveguide would experience pulse broadening as a result of this dis-

persion. A flatter dispersion curve in the wavelengths under consideration means

less broadening of the propagated pulse. As we increase the material loss of the

cladding material, the dispersion curve becomes more and more flat, indicating

the reduction in the pulse broadening at the expense of the modal loss.

Cutoff wavelength (λc)

Depending upon the waveguide dimension, operating wavelength and the material

profiles of an optical waveguide, several waveguide modes are supported. For a

rectangular waveguide the lowest order mode can be Hx
11 or Hy

11 depending upon

the dominant field component where the Hx field is dominant in the former and

the Hy field is dominant in the later case; along X and Y direction there is

no zero crossing of the field components. The subscript represents the number

of variations in X and Y direction respectively, so any subscript higher than

1 represents higher order modes. According to Senior and Jamro [2009], the

normalised frequency v < 2.405 ensures that the waveguide supports only the

lowest order or the fundamental mode. The normalised frequency is defined as,

v =
πd

λ
NA (4.3)

where, the NA =
√
n2
core − n2

cladding is the numerical aperture, d is the waveguide

diameter, and the λ is the operating wavelength. λc denotes the wavelength at

which the waveguide is marginally single-moded (a further reduction in wave-

length supports the second mode).

Figure 4.12 shows the propagation characteristics for the first two lowest or-

der modes of a waveguide having a numerical aperture NA = 0.146. The results

demonstrate that the waveguide remains single-moded up to the normalised fre-

quency v ≈ 2.4, an increase in v beyond that value, means an increase in the d/λ

ratio, leads to more than one supported modes. If it is sought that the waveg-

uide to operate as single-moded over the operating frequency range, we have to

make sure that the condition v < 2.405 is satisfied by adjusting the waveguide

parameters. It is evident from Fig. 4.12 that as the tan δ is increased the cut-

off normalised frequency, vc = πd
λc
NA, is increased. Higher cladding loss allows

the waveguide to operate in the single-moded condition for smaller wavelengths
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(higher frequencies) keeping the waveguide dimension (d) and the numerical aper-

ture NA the same.
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Figure 4.12: Effective index for the first 2 modes with different loss tangents

Effects on Confinement Factor and Waveguide Loss

Several factors i.e. field confinement factor, material loss, field shapes, the

magnitude of the evanescent field, etc., affects the loss experienced by a mode

propagated through an Optical waveguide. For ideal case (no imperfections at

the core-cladding interface, no bending) for a waveguide having lossless dielectric

material, a supported mode does not suffer loss even though the evanescent field

might be present in the cladding material. If the cladding material is lossy, the

presence of the evanescent field present in the cladding introduces loss to the

guided mode. In this case, the confinement factor (equation 4.4) plays a signifi-

cant role in the Loss experienced by the propagating mode. Higher confinement

factor means that more field to be confined to the core region, as the core is

considered to be lossless in this study, the contribution to the Loss is only from

the field that is propagating through the lossy cladding material, thereby higher
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confinement tend to reduce the modal loss. Figure 4.13 shows the confinement

factor and the waveguide loss against tan δ of the cladding material. The field

confinement factor shows that it is increasing with increasing tan δ. This phe-

nomenon can be explained considering the extreme case of a perfect conductor (if

the cladding is considered to be a perfect metal, a metallic waveguide filled with

dielectric core), where the conductivity, σ → ∞, loss tangent, tan δ → ∞, the

field should be 100% confined in the dielectric core. The tangential components

of the fields at the dielectric-metal interface according to Rahman and Agrawal

[2013] should be zero. As the loss tangent increases, the field components of the

at the core-cladding interface should decrease as we are approaching towards the

metallic case. Consequently, the field confinement should increase. There is good

agreement between our explanation on the confinement factor and the simulation

results shown in Fig. 4.13.

10−3 10−2 10−1 100

10−1

100

tanδ

C
on

fin
em

en
t F

ac
to

r a
nd

 L
os

s 
dB

/µ
m

 

 

Confinement Factor:
Loss in  dB/µm

Figure 4.13: Confinement factor and Loss vs tan δ

The Fig 4.13 also shows that when the cladding material is lossless, the prop-

agating mode experiences no loss, as we continue to increase tan δ the guide
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loss continue to rise to a certain value of the loss, beyond that point the guide

loss starts to drop with further increase in the cladding material loss. The rea-

son behind this phenomenon might be the fact that beyond the maximum loss

point, the confinement factor starts to dominate over the loss contributed by the

material-evanescent field interaction. It is possible set the waveguide to a point

where, the propagating mode experiences same amount of loss to that of a less

lossy cladding case, but we can achieve higher confinement factor that can be

very useful in controlling the coupling amongst the neighbouring waveguides in

case we have a waveguide array instead of a single waveguide.

Confinement Factor =
Power in the Core

Total Mode Power
(4.4)

4.3 Waveguide Array

The most common form of optical waveguide in use at present in the world is the

Optical fibre, unless it is a multicore fibre, it is generally composed of a core having

higher refractive index (ncore), a cladding having lower refractive index (ncladding),

and it is considered that the field magnitude beyond the cladding region is zero,

although theoretically a tiny value of the field can be present even at the infinity.

So, for a single core optical fibre, or a waveguide having a single core and a thick

cladding region, does not suffer interference of field from other structures. In case

another core is introduced in the vicinity of the optical waveguide core, there is

a possibility of power transfer between the waveguides and this phenomenon can

be explained by coupled mode theory presented by Yariv [1973]. Even and odd

supermode excited in the two waveguide cores interact with each other and the

power transfer takes place from the one core to the other. The Coupling Length

(Lc) is referred to as the distance at which the entire power from one waveguide

is transferred into the other core and is defined as,

Lc =
π

βe − βo
(4.5)

where, βe and βo are the propagation constants of the even and odd supermodel

respectively. Usually, a smaller separation between the waveguide core leads
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to a smaller coupling length. This phenomenon of power transfer between the

waveguides present at a short distance can be a catastrophe if it is required to send

two different signals through the two waveguides. Lower Lc means lower guide

length at which signals can be transferred successfully without being affected

by the signal of the neighbouring guide. If the number of neighbouring guide

increases, the impact would be more. If we consider an array of such waveguide

where, similar guides surround each guide, it would be interesting to study the

behaviour and the impacts on the propagation characteristics. The boundary

condition suitable for studying these types of structures would be to consider a

single guide with the periodic boundary condition at the computational boundary.

Propagation Characteristics
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Figure 4.14: Effective index for the first 2 modes with different Guide separation,d

The propagation characteristics of a rectangular waveguide using periodic
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boundary condition are presented in Fig. 4.14. Here the parameter d is the

distance between the edge of the waveguide core and the edge of the neighbouring

guide core and is denoted by ’Per’. A very high value of d means the neighbouring

guide is far away and the interaction between them can be considered negligible;

it has been assumed that a ’Per’=14 (Guide dimension 2) as the condition for

a single core guide with no surrounding guides. As can be seen in the figure,

reducing the distance between the neighbouring guides results in an increase in

the effective index of the lowest-order mode, while a decrease in the effective index

of the second mode. This result indicates that the gap between the first and the

second mode of being widens as we reduce the separation between the waveguide

cores. Moreover, this implies also that the single mode cutoff wavelength (λc)

decreases, thereby we have a wider range of frequencies at which the guide remain

single-moded. Decreasing d would make the coupling length (Lc) be decreasing

that would reduce the working length of the waveguide to some extent.

As the cladding material is considered lossy, a reduction in the guide sepa-

ration distance, ’d’, means the area where the field suffers loss is being reduced

that in turns reduce the power loss of the propagating mode.

Effects on Field Profile

The presence of neighbouring guides has profound impacts not only upon the neff

but also upon the field profiles of the guided modes. The field profiles of the Hx
11

mode of a rectangular guide along the guide axis for the various guide to guide

distance (Per, d) has been presented in Fig. 4.15. It is evident from the figure

that a reduction in the guide to guide distance results in a change of the field

profile in the upward direction and at the outer boundary of the cladding the field

value is found to be non-zero. So the neighbouring guides’ presence pushes both

the field value as well as the neff upward, indicating a reduction in the phase

velocity of the propagating mode, especially the fundamental mode.
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Figure 4.15: Field intensities of a Rectangular Guide along Guide axis for Differ-
ent Per, d; loss-less cladding is considered

Cutoff wavelength (λc)

Figure 4.16 shows that as we decrease the guide to guide distance the cutoff

wavelength (λc) for the second mode decreases. The implication of this result is

that reducing the guide to guide distance of a waveguide array allows us a much

wider frequency range to operate at the single-moded condition.
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Figure 4.16: Mode 2 cutoff comparison with single guide and periodic guides with
different periodicity

Coupling Length

Figure 4.17 shows the schematics diagram of a typical directional coupler

where the core materials as before have been considered lossless and the cladding

material is taken as lossy. Simulations have been carried out to determine propa-

gation characteristics to determine the Coupling Length (Lc) defined in Eqn. 4.5

at λ = 550 nm for various guide to guide separation d. The evaluated Lcs have

been presented in Fig. 4.18. As the loss tangent (tan δ) is increased, the coupling

length initially decreased for a small loss values, as according to Chinni et al.

[1995] for small loss values (tan δ < 10−4) increasing material loss decreases the

coupling length, so our simulated results are in good agreement with the article.

The coupling length reaches a minimum value for a particular tan δ, a further in-

crease in material loss in the cladding tends to increase the Lc. A decrease in the
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guide to guide distance (d) increases the Lc. If transferring information through

the waveguide at a larger distance is sought, the coupling length (Lc) should be as

high as possible to reduce signal contamination by the neighbouring guides. The

use of lossy cladding material allows us to operate increase the coupling length

even if we reduce the guide to guide separation to a small value.

x
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Figure 4.17: Schematics of a Directional Coupler
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Figure 4.18: Coupling Length of a Directional Coupler with lossy cladding
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4.4 Multi-layer Waveguide Structures

In Optical fibre communication dispersion plays a very crucial role as signals

having multiple frequency components if passed through a dispersive fibre suffers

pulse broadening that decreases the system performance Keiser [2003]. To over-

come the difficulties introduced by the dispersion present in the system dispersion

flattening fibres are widely being used. One of the most popular structures of

fibre is the W-fibre Reeves et al. [2003] that has a special refractive index profile

and a schematics diagram of such a waveguide has been presented in Fig. 4.19,

where the core, inner cladding and the outer cladding have refractive indices n1,

n2 and n3 respectively. Here n1 > n3 > n2 is assumed. The name of such fibres

comes from the refractive index profiles, shown in Fig. 4.19, looks like capital

’W’.

Figure 4.19: Schematics and the Refractive index (n) profiles of a W-fibre like
waveguide

The dispersion characteristics of a W-fibre like waveguide is determined nu-

merically for various material loss values. At first a scattering boundary condition

is considered at the outer border of the outer cladding, the dispersion curves for

various tan δ is shown in Fig. 4.20. The simulation is performed over the visible

spectrum and the result shows that for the higher frequencies (smaller wave-

lengths, bluish) the dispersion curve is flatter for the lower values of material

loss. Figures 4.21 and 4.22 show the dispersion curves for ’Dirichlet’ and ’Peri-
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odic’ boundary conditions respectively under the same parameters. The use of

Dirichlet boundary condition seems to change the dispersion curve more flat at

higher material loss values. Use of periodic boundary condition shows no signifi-

cant improvement in flattening dispersion over the Dirichlet boundary condition.

We can conclude from these results that multi-layer waveguide having W-fibre

like refractive index profile helps to flatten the dispersion characteristics of such

waveguides and the neighbouring guides have negligible effects on the dispersion

characteristics.
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Figure 4.20: Dispersion for Circular insect ommatidium with 3 layers and scat-
tering boundary condition
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Figure 4.21: Dispersion for Circular insect ommatidium with 3 layers and Dirich-
let boundary condition
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Figure 4.22: Dispersion for Circular insect ommatidium with 3 layers and Periodic
boundary condition
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4.5 Drosophila Melanogaster Ommatidium

Figure 4.23 shows the cross-section of the Ommatidium of a Drosophila Melanogaster

Compound eye that shows the real refractive indices available in the literature for

the different microstructures. The structure starts with a Cornea with refractive

index ncornea = 1.490. At the air-cornea interface, due to the high refractive index

contrast, it is expected a strong reflection. Some external structures, however,

reduce the reflection effect, in this, we are not considering the reflection man-

agement system as our principal focus in on the guiding mechanism present in

the system and how the lossy materials affects the propagation characteristics

through the structures. Right after the Cornea a cuticular lens is located with

nlens = 1.452 at the beginning that gradually reduces to 1.435 at the second sur-

face of the lens; the Lens diameter being ≈ 15µ m. A crystalline cone segment is

found after the Lens having a refractive index of 1.348 that is surrounded by the

long pigment cell layer (n = 1.311). The cone segment is attached to the Lens

end by an aperture having a dimension ≈ 6µ m. As the cone is surrounding by

a lower index lossy material, there is little chance for the light entered from the

Lens to the Cone section to leave the structure. The Lens is focusing light at the

end of the cone section where the Rhabdom is located. Rhabdom has a refractive

index of 1.347 that has little difference with the Cone refractive index of 1.348,

indicating a tiny amount of reflection present at the Cone-Rhabdom interface.

The Rhabdom has a hexagonal cross-section and surrounded by a layer of lower

refractive index (1.339) and absorbing material. The thickness of the first ab-

sorbing layer is about 2µ m. A second absorbing layer surrounds the Rhabdom

and the first layer with a refractive index of 1.343 and with a thickness about

2− 3µ m. The entire structure is then surrounded by a 2µ m thick long pigment

cell layer (1.351). The finite aperture present after the Lens would produce the

diffraction and the focused beam must be placed at the Rhabdom entrance. At

the Rhabdom entrance, the field profile is thus the diffraction profile generated

by the Lens-Aperture assembly that is shown in Fig. 4.24.
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indices, so for a proper analysis these must be very accurately determined. Note
that (n21 – n

2
2) = (n1 – n2) · (n1 + n2).

We can use the formula to make a quick estimate of how light (we assume a
wavelength of 500 nm) propagates in the ommatidium of a compound eye of a
honeybee. The rhabdom, the light-sensitive structure to the right in Fig. 11.15,
has a diameter of 4000 nm and a refractive index (n1) of 1.347, as compared to
the refractive index of the surrounding substance (n2), 1.339.
Thus, V = 2!(4000/500) · (1.3472 – 1.3392)1/2 = 2! · 8 · (0.008 · 2.686)1/2 = 0.92,

and in this structure only one mode can propagate. The crystalline cone (to
the left of it in the diagram), as the name implies, has a conical shape rather
than a cylindrical one, but since most of it has a diameter much larger than the
rhabdom, and the refractive index difference at the boundary to neighboring
cells is 3.7 times larger, we can guess that more than one mode can propagate in
it. As we shall see below, interesting things can happen in the junction between
crystalline cone and rhabdom. Different modes are associated with different
energy distribution in the cross section of the conductor (and in the near field
outside it). The total energy distribution of all the modes is not obtained by
adding the energy distributions, but by adding the electromagnetic fields of the
modes and squaring the sum, provided that the modes are coherent (in step with
one another, in analogy with the famous Young’s double slit experiment).

As an example of where the mode theory can lead us, I shall try to explain
a discovery which also illustrates what was said above: “recent research has
revealed that some eyes are a little better than previously thought.” Nilsson,
Land, and Howard (1984) and van Hateren and Nilsson (1987) found that the
vision of certain butterflies with apposition eyes is sharper than what could be
explained with simple-minded optics. The lens projects a bright point in the
environment as an Airy disk into the crystalline cone. This Airy disk is wider than
the rhabdom in that particular ommatidium, and consequently one might think
that the neighboring rhabdoms would be affected by light from the bright point.

Figure 11.15. Outer part of an ommatidium in the apposition eye of the honeybee, Apis
mellifera. To the right is the outermost part of the light-sensitive structure, the rhabdom
(all of the rhabdom not shown). It has a cross section of 4 mm (4000 nm). (Adapted from
Varela and Wiitanen 1970.)

Figure 4.23: Cross section of a Drosophila melanogaster Ommatidium source:
Photobiology

As the Rhabdom is surrounded by a lower refractive index material, it can be

said in the context of the optical waveguide theory that it should act a waveguide.

point source

Lens Crystalline cone Rahabdom

Diffraction profile

Figure 4.24: Impact of diffraction on the field profile at the Rhabdom entrance

As the surrounding materials of the guide are lossy, the modes propagated

through the guide would be lossy and be reducing in magnitude as it propagated

through the Rhabdom when it reached the end of the guide the remaining power

would be tiny, and a small amount of reflection is expected from the end of

the Rhabdom. As it propagates though the rhabdom, it is being absorbed by

the Rhabdom that in results in the excitation to the photoreceptor. The exact

amount of loss present in the surrounding material is not known, but an analysis
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considering the length of the guide as 80µ m shows that if we expect no reflected

power from the end, if −30dB loss over the length is considered the required

value of the imaginary refractive index would be 0.005 (tan δ ≈ 0.015) for the

wavelength λ = 400 nm and 0.01 (tan δ ≈ 0.015) for λ = 800 nm. From the

propagation characteristics, it is evident that the guide remains single moded

for the normalised frequency, v ≈ 2.4, for a NA = 0.15 and a guide dimension

of 2µ m the corresponding wavelength λ = 391 nm. For the wavelengths more

than (λ > 390 nm), this value will result in the guide to operate in single mode

condition. As the visible spectrum spans the wavelength range of 390 nm-750

nm, the rhabdom as waveguide maintains the first mode for all wavelength in

this range. As the angle of incidence required for the first mode with the axis

of the waveguide is very small (≈ 5◦ − 10◦), only the point source present on

the image directly ahead of the Ommatidium would excite the first mode in the

waveguide, which would be propagated through the guide for the entire visible

spectrum at ease. Any point source from which the RAY reaches the Ommatidium

at a higher angle would excite the next higher order mode, would eventually be

blocked by the Rhabdom waveguide. In this way, each Ommatidium transfers

the information present directly ahead of it and the other surrounding points less

corrupt the information as the information coming from them would try to excite

the higher mode in the guide and are being blocked.

FDTD simulation has been performed on the structure of an insect om-

matidium, where it is assumed that ∆x = ∆y = ∆z = ∆ = 50 nm and

∆t = 9.62 × 10−17 sec. is used by using equation 2.101, the operating wave-

length λ = 550 nm. It is assumed that the rhabdom has a refractive index of

1.347, the next layer has 1.339 and the third layer has 1.343. As the core (rhab-

dom) has a higher refractive index, it should act as a waveguide. The source is

assumed to be far away from the structure, so it is assumed that the plane wave

is reached as input.

Figure 4.25 shows the simulation results where it is assumed that the sur-

rounding regions of the rhabdom are lossless. The result shows that the lens

focuses the incoming waves at the rhabdom entrance but the wave is not well

guided by the core, a considerable amount of power is lost to the cladding re-

gion. The power lost through the cladding region might interfere with the other
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neighbouring guides.
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Figure 4.25: FDTD simulation of insect ommatidium, 3 layers, loss-less

Figure 4.26 shows that when the first cladding is highly lossy, the core is

guiding the mode that is well confined, but dying out too soon along the core.
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Figure 4.26: FDTD simulation of insect ommatidium, 3 layers, conductivity σ =
5000 for the first cladding, the second cladding is loss-less

Figure 4.27 shows that when the second layer is considered highly lossy and

the first layer is loss-less, the mode is guided by the core and the chances of

interference to the neighbouring guide is lower than the loss-less case.

Insect2700X400_2D_10000Steps_Lens1_49_sourceDist_600_lineSource_loss5000SecondL
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Figure 4.27: FDTD simulation of insect ommatidium, 3 layers, conductivity σ = 0
for the first cladding, σ = 5000 for the second cladding

Figure 4.28 shows that when a lower value of the loss is considered for the first

layer and a higher value of the loss is envisaged for the second layer, the mode is

well guided as well as well confined within the core.
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Figure 4.28: FDTD simulation of insect ommatidium, 3 layers, loss-less

The surrounding material of the Rhabdom is lossy, in light of our previous

results we know that for a guide with lossy surroundings supports the fundamen-

tal mode having a pattern very similar to the diffraction pattern produced by

the finite aperture, and if the same trend is projected at the Rhabdom entrance

that would be guided by it without suffering any coupling and insertion loss.

The finite aperture of the Lens-Pupil assembly present at the beginning of the

Ommatidium is producing a field pattern at the Rhabdom entrance, which is the

field pattern of the supported mode of the Rhabdom. The lossy surrounding is

increasing the field confinement within the Rhabdom that might be helping to

reduce the coupling between the surrounding other Ommatidium units. The lossy

surrounding is thus playing a dual role in the performance of the waveguide firstly

by moving the cutoff wavelength (λc) to make the entire visible spectrum single

moded and secondly by increasing the field confinement factor thereby reducing

the interactions between the neighbouring guides. Wavelength λ < 390 nm are

considered as ultraviolet light, and the propagation characteristics suggests that

at this region of the spectrum the guide would support the first as well as the

second mode, indicating that each Rhabdom at these wavelengths would carry

information not only about the point directly ahead of it but also some pieces of

information from the surrounding points in the image plane as well. Operating in

ultraviolet light would thus result in a slightly blurred vision. Theoretically, the

Rhabdom should support the fundamental mode even at wavelength λ > 750 nm

or the IR spectrum, the field confinement factor becomes too small making the

spot size of the supported mode too large compared to the waveguide dimension.

At that case, the propagated mode would interfere with the other surrounding

guides making a possible blurred vision. In a hexagonal arrangement, each waveg-

uide (Rhabdom) is surrounded by six other neighbouring similar waveguides. As
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we have shown that the presence of the surrounding guides increases the gap

between the first mode with the second mode, the hexagonal guide array is thus

making the single-moded operating range stronger. However, as we can see that

the cutoff frequency is increased, means that the λc is decreased, we can conclude

that the presence of the other surrounding guides makes the Rhabdom operate

as single moded even in the Ultraviolet spectrum. It has been reported that

some insect might see the ultraviolet frequencies, our result, strongly supports

this claim. The waveguide (Rhabdom) is seemingly operating for a very wide

frequency range (near ultraviolet - 750nm) and the waveguide array is acting as

a communication channel, the waveguide dispersion is potentially affecting the

operation. As we have shown before that the 3-layer W-fibre like structure flat-

tens the dispersion characteristics of such guides. The Rhabdom, first absorbing

layer and the second absorbing layer of the Ommatidium have refractive indices

of 1.347, 1.339 and 1.343 respectively, indicating that the structure resemblance

that of the W-fibre refractive index profile, thereby might be reducing the dis-

persion characteristics of the waveguide system significantly. Figure 4.29 shows a

point
source

lowest order mode

higher order mode
ommatidia

Figure 4.29: Schematics of the position of the point source and the excited modes
in rhabdom of compound insect eye

schematics diagram of the relative position of the ommatidia units with respect

to a point source located at a distance. The information from the point source

reaches the Ommatidium entrance that is located straight ahead of it that makes

a tiny angle with the waveguide axis; this would excite the fundamental mode in

the core, and would be guided and absorbed by the photoreceptors, to produce

visual stimuli. The information from the same point source reaches the other

neighbouring Ommatidia, would excite the higher order modes in the code; in
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the visible spectrum the core supports only the first mode, thereby the mode

would eventually be radiated to the cladding region to be absorbed. It can be

concluded that this way, each Ommatidium unit contributes to the visual stim-

uli that are coming straight ahead of it and discarding the information from the

other neighbouring point sources.

4.6 Glial Cells of Human Retina

Figure 4.30 shows a typical Muller Glial cell of Human retina. Quantitative phase

microscopy on enzymatically dissociated retinal neurons revealed a refractive in-

dex of 1.35 - 1.36 which is very close to earlier estimates for the retinal tissue

(n ≈ 1.36) (Figure 4.30; Nordenson [1934]; Franze et al. [2007]). It should be

noted that these values were measured on the somata of the neurones, i.e. the

subcellular part with the densest architecture. Surprisingly, the refractive index

of both Mller cell processes was shown to be significantly higher (1.376 - 1.380)

and corresponds very well to that of light guiding photoreceptor outer segments

(n ≈ 1.40; Sidman [1957]).

2 Background

Driven by the idea of Müller cells being wave guides, my group started to investigate the
optical properties of the retina in the late nineties (Reichenbach and Bringmann, 2010;
Reichenbach et al., 2012). Quantitative phase microscopy on enzymatically dissociated
retinal neurons revealed a refractive index of 1.35 - 1.36 which is very close to earlier esti-
mates for the retinal tissue (n ¥ 1.36) (Figure 2.13; Nordenson, 1934; Chen, 1993; Franze
et al., 2007). It should be noted that these values were measured on the somata of the
neurons, i.e. the subcellular part with the most dense architecture. Surprisingly, the refrac-
tive index of both Müller cell processes was shown to be significantly higher (1.376 - 1.380)
and corresponds very well to that of light guiding photoreceptor outer segments (n ¥ 1.40;
Sidman, 1957). In addition, an observed decrease of the index of refraction towards the

Figure 2.13: Müller cells are potential wave guides within the retina. Schematic drawing of a
Müller cell, the darker the color the higher the refractive index. Despite refractive index variations
and changing diameters, the V-parameter for 500 nm (blue) and 700 nm (red) stay nearly constant
along the cell. All values are specific for guinea pig retinae. Image courtesy of J. Grosche, adapted
from Franze et al. (2007).

endfoot region (n ¥ 1.359) was believed to reduce the reflection at the border to the low
refractive vitreous (n ¥ 1.335). As described by equation 2.29, guidance of light is not
only dependent on the refractive index di�erence between the structure and its surround-
ing but also on the object’s diameter and the wavelength. Figure 2.13 summarizes the
results calculated by Franze et al. (2007). Despite the complex morphology of Müller cells,
the V-parameter, i.e. the light guiding capability, remains nearly constant along the entire
length of the cell body.

To find direct evidence for the wave guide nature of Müller cells, Franze et al. (2007)
developed a setup based on a dual-beam laser trap (Guck et al., 2001). In this setup, two
counterpropagating infrared laser beams were used to align individual suspended Müller
cells between the tips of two opposing glass fibers. The refractive index of the solution was
adjusted to the well-known mean value of the retina (n ¥ 1.36). Additionally, visible laser

30

Figure 4.30: Muller Glial cell of Human retina source: Franze et al. [2007]

Besides, an observed decrease in the index of refraction towards the end foot

region (n 1.359) was believed to reduce the reflection at the border to the low

refractive vitreous (n ≈ 1.335). Guidance of light is not only dependent on the

refractive index difference between the structure and its surrounding but also on

the objects diameter and the wavelength or the normalised frequency, V. Despite
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the complex morphology of Muller cells, the V-parameter, i.e. the light guiding

capability, remains nearly constant along the entire length of the cell body.

As along the Glial cell the V-parameter (normalised frequency) is fairly con-

stant over the entire visible spectrum and for the higher wavelengths (RED light)

the V parameter is ≈ 2.8 that is slightly above the first mode cutoff of 2.405,

indicates that at that wavelength the fundamental mode is being guided properly

but along with that a fraction of the second mode should propagate as well. The

required V parameters for allowing the third mode be 5.4 indicates that even at

the BLUE end of the spectrum where the V-parameter is ≈ 4.0, the guide would

not support the third mode.

As discussed before that the light falls on the Retina surface is being guided

by the Glial cell, reaches the photoreceptors located at the back of the retinal

layers; the photoreceptors then absorb the light and the photocurrent is being

produced; the photocurrent is then traveled in the upward direction through the

bipolar, amacrine and horizontal cells to reach the Ganglion cell; Ganglion cells

then transfers the collected information through the optic nerve to the brain. It

indicates that the surrounding layers of the Glial cell are conductive and thus

behave as lossy material for light. As the field profile of the modes supported by

a waveguide surrounded by lossy material resemblance that of the field patterns

generated by a finite aperture, to project the correct field profile at the guide

entrance the presence of the finite aperture is necessary. The finite aperture, in

this case, is the pupil of the human eye, which is considered to be a disadvan-

tage as it limits the lowest resolution achievable by the system, but the system

has exploited this phenomenon in its favour by introducing loss at the guide sur-

rounding making the coupling between the diffraction pattern and the supported

mode similar. Like the Rhabdom of insect Ommatidium, the Glial cells are em-

bedded into a 3D Glial cell array. The presence of the other surrounding Glial

cells might be affecting the propagation characteristics of the Glial cell by mak-

ing the separation between the modes larger. We can conclude that unlike the

Rhabdom of the insect Ommatidium, the Glial cells support up to the second

mode indicate that in the human eye, each photoreceptor is not transferring the

information only from the point directly ahead of it, but also some information

from the surrounding points of the image plane.
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4.7 Stiles-Crawford Effect

Stiles-Crawford (SC) effect refers to the directional sensitivity of the Cone pho-

toreceptors of the Human eye. Since its discovery in 1933 by Stiles and Craw-

ford [1933] several experimental verifications by numerous scientists over several

decades have been performed. Despite being attempted by numerous studies Sny-

der and Pask [1973], Moon and Spencer [1944], Gao et al. [2008], Atchison and

Scott [2002], a complete explanation of the effect is still not available in the liter-

ature. Recently in 2008 75th anniversary Enoch and Lakshminarayanan [2009] of

the effect was observed. There are two types of SC effect, Stiles-Crawford effect

of First kind (SC-1) and Stiles-Crawford effect of Second kind (SC-2). In this

study, we shall try to explain the SC effect in the light of the results obtained

from the combined Diffraction integral, FDTD and modal analysis.

SC 1

The Stiles-Crawford effect of First kind is defined as follows,

“ Same intensity excitation of the same wavelength enters through the side of

the aperture has less impact than the excitation enters through the centre of the

aperture”

The light excitation that enters through the centre excites the fundamental

mode that is more confined in the core and guided properly by the Glial cell of

Human Retina and reaches the photoreceptors (Cone) present at the back of the

Retinal layers. As the fundamental mode is more confined within the waveguide,

more power is being carried by it, so the cone photoreceptor’s received power is

more. As the first mode is well confined within the Glial cell, and the surrounding

lossy material improves the confinement factor to some extent, the mode has

subtle coupling effects with the surrounding other guides. Light entering through

the edge of the pupil falls at the Glial cell entrance makes a higher incident

angle, the excited mode is most likely be a higher order one. As the higher order

mode has lower neff , as a results less confined than the first mode, is more likely

to interact with the surrounding guides and would carry less power. The cone

photoreceptor that receives power from a higher order mode would receive less
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power as a consequence.

SC 2

The Stiles-Crawford effect of Second kind is defined as follows,

”The observed colour of a monochromatic light entering the eye near the edge

of the pupil is different compared to that for the same wavelength light entering

near the centre of the pupil, regardless of the overall intensities of the two light”

Let us assume a monochromatic green light ray has entered through the edge

of the pupil. On reaching the Glial cell entrance, it would be incident at an angle

as a consequence would most likely excite a higher order mode. The higher order

mode guided by the Glial cell would be less confined and would interact with

the surrounding guides much more than the first mode would. At the end of

the Glial cell, let us assume we have three Cone photoreceptors being sensitive

to three colours RED, GREEN and BLUE. Blue light guided by the first mode

would excite the BLUE cone more than the other two cone types; as a result,

the perceived colour would have been BLUE. However, the Blue light guided as

the second or higher order mode would enter at an angle to all three types of

cone photoreceptors and would produce excitations not only in the BLUE cone

but also in the other two types. As a consequence, the mixed responses from the

three cone types would produce a perceived colour that would not be a perfect

BLUE.

4.8 Summary

This Chapter presents the results obtained for the waveguide structures stud-

ied in this thesis. Propagation characteristics of a planar waveguide considering

lossy cladding are presented a the beginning. Impacts of the losses on the var-

ious aspects of the propagation characteristics have been discussed after that.

Waveguides with 3D geometry are analysed then. Impacts of the presence of the

neighbouring guides and 3-layer waveguide structure on the propagation charac-

teristics have been discussed after that. The results obtained from the previous

sections is the applied to discuss the propagation characteristics of the Ommatid-
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ium of insect Compound eye and the Glial cell of Mammal retina. An explanation

of the Stiles-Crawford effect of Human retina is given at the end of this Chapter.

This Chapter thus presents the key results and discusses the implications of the

results.
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Chapter 5

Conclusions

The primary objective of this thesis has been to analyse biological optical waveg-

uides in optical frequencies incorporating various practical aspects present in the

biological tissues such as lossy material, the presence of neighbouring waveguides,

multi-layers structure and the impacts of finite apertures present in visual sys-

tems. The objective outlined at the beginning of the thesis has been achieved

through detailed analysis throughout the thesis. As an analysis tool H-field based

full vectorial finite element methods has been used in modal analysis, Finite Dif-

ference Time Domain (FDTD) has been used to investigate the time evolution of

the signals through the structures under considerations and Rayleigh-Sommerfeld

(RS) diffraction integral has been used to study the impacts of finite aperture on

the field profile reached the waveguide entrance.

Chapter 1 shows that the assumption that the Rhabdom of insect ommatidium

and the Glial cells of Human retina works as an optical waveguide and their

surrounding materials are lossy at optical frequencies. The cross-section of these

waveguides are found to be hexagonal or can be considered as a hexagon with

some random variations.

In Chapter 2 comprehensive descriptions of the computational tools used in

this study are provided. A detailed analysis of the development of the FEM

method has been presented and the various technical aspects of implementing

the method, such as discretization, shape function, boundary conditions, element

and global matrices formulation, have also been presented in this Chapter. A

comprehensive description of the FDTD algorithm and it various technical aspects
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have been present in this Chapter. A brief description of the Diffraction integrals

used in this work has been provided this Chapter as well.

As for the planar waveguide structure the analytical solution can be deter-

mined, in Chapter 3 an analytic solution for the planar waveguide has been

derived as a solution of the Maxwell’s equations. The analytic solution thus ob-

tained is then used to benchmark the results found from the numerical simulations

and it has been found that both the results matches with reasonable accuracies.

It has been shown that there is a relationship between the angle between the

power flow direction (Poynting vector) with the waveguide axis and the order of

the propagating mode; the higher order mode makes more angle with the waveg-

uide axis. So if the waveguide core receives power at an angle, depending upon

the angle, the corresponding mode is excited within the code and being guided

by it. The FDTD simulations have verified this phenomenon of angle dependence

of the excited mode.

As one of the prime objectives of the study is to analyse the impacts of the

material loss on the propagation characteristics of the biological optical waveguide

where some exhibit material loss in optical frequencies, a theoretical derivation

on the planar waveguide has been carried out. It has been found that as we

increase the material loss in the cladding the analytic solution indicates that the

field confinement increases, and the field profile shows a fluctuating behaviour

that can be regarded as an exponentially varying sinusoidal variation. This field

shape has paramount consequences in the analysis and the functionalities of the

waveguides with lossy cladding that has been shown in the later parts of this work.

Numerical simulations by modal analysis and FDTD confirms the fact that the

field confinement increases as we increase the material loss in the cladding.

It has been found that the waveguide loss increases with increase in material

loss (tan δ) in the cladding, but the waveguide loss reaches a maximum value,

further increase in tan δ results in a decrease in the waveguide loss. The fasci-

nating finding is that the material loss present in the cladding material of the

biological optical waveguide is present there on purpose, it is making the field

more confined within the core and manages to keep the waveguide loss within a

reasonable limit.

It has been shown that if we can launch a field profile that matches one of
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the supported modes of the waveguide, that propagates through the waveguide

unperturbed if the material is lossless; for a lossy cladding the shape of the modal

field profiles remains unchanged although it loses power as it propagates through

the waveguide.

It has been shown that when light passes through a finite aperture, it ex-

periences diffraction, as a consequence on a screen a point source projects a

diffraction pattern that resembles the field profile required for a waveguide with

lossy cladding. The finite dimension of the Lens present at the beginning of

the Ommatidium of insect Compound eye produces a diffraction pattern that is

the field pattern required by the Rhabdom that has lossy surrounding material;

so the projected field is propagated through the Rhabdom without experiencing

much insertion loss. In the case of Human retina, the finite aperture of the pupil

serves as the aperture that projects the diffraction pattern at the Glial cell en-

trance on the top retinal layer and the field profile matches with the field profile

of the supported mode. It can be concluded that Nature has introduced the op-

tical waveguides with lossy cladding that deals with the physical constraints of

diffraction.

The results obtained from a planar waveguide can be used to get the propaga-

tion characteristics of the Rectangular waveguides when the modes are not near

the mode cut-off. The results obtained for the planar waveguide can be extended

to use for the rectangular waveguide. As the analytic solution of the waveguide

with 2D cross-section is difficult, in some cases impossible, to obtain, we have

to rely on the numerical solutions. The numerical simulations on Rectangular

waveguide confirm that the fact that the field has a fluctuating pattern, confine-

ment increases, and waveguide loss decreases beyond a certain point is valid for

this case as well. As the waveguide under considerations has a hexagonal cross-

section, in reality irregular in shape that can be approximated by hexagons, it

is required to perform the analysis on an irregular structure. However, deal-

ing with hexagonal or irregular structure is technically difficult, where dealing

with Rectangular structure is much easier. Some analysis of the mode profiles

of waveguides with Rectangular, Circular, Hexagonal, Elliptic and irregular with

similar dimensions and material profiles have been carried out that shows that

the mode profiles of the first two lowest order modes for all of them are similar.
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That is why in most of the analysis, a waveguide with rectangular cross-section

has been used. The hexagonal shape shows that it must be polarisation sensi-

tive, and it has been reported that some of the insect eyes might be polarisation

sensitive.

It has been found that the average refractive indices of biological materials

in optical frequencies lies between 1.33 - 1.38, and the numerical aperture (NA)

for the biological optical waveguides to be ≈ 0.15. Under these conditions, the

optimum waveguide width is ≈ 2 µm, and interesting point to note that insect

Rhabdom has an approximate diameter of 2 µm and the Glial cell’s average

diameter is 2.4 µm. In optical frequencies smaller than 1 µm dimension waveguide

would suffer severe waveguide loss.

It has been found that the increase in tan δ of the cladding material has

positive impacts on the dispersion characteristics of biological optical waveguides.

Increased tan δ flattens out the dispersion characteristics that indicates these

waveguides can operate in a broad spectrum of frequencies in the presence of

material loss.

It has been found that the higher tan δ allows a waveguide to operate under

the single-moded condition for smaller wavelengths. This result indicates that

the waveguides with lossy cladding increase its single mode operating range.

It has been found that the presence of the neighbouring guides widens the

gap between the first mode and second mode, thereby increases the single mode

operating wavelength range. The 3-layer (1.347-1.339-1.343) structure present in

the insect Ommatidium is found to improve the dispersion characteristics of the

waveguide.

Stiles-Crawford effect of Human Retina refers to the directional sensitivity

of the cone photoreceptors and it has been found that these sensitivities can

be explained in light of the results found from modal analysis and Diffraction

Integrals.

In summary the loss present in the surrounding materials of biological optical

waveguide increases the single mode operating wavelength range and makes these

waveguides single-moded over the visible frequencies, increases the field confine-

ment within the core in turn decreases the interference with the neighbouring

guide, the presence of the neighbouring guides improves the single mode oper-
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ating condition, and the 3-layer structure in insect ommatidium improves the

dispersion characteristics.

5.1 Future works

In this thesis, the impacts of scattering by the biological tissues on the prop-

agation characteristics have been ignored. Future study can be carried out to

determine the effects of scattering on the behaviour of these biological waveg-

uides. It has been found that the Glial cell with its lossy surrounding acts as

an optical waveguide, and the guided mode by the Glial cell has to be absorbed

by the Rod and Cone Photoreceptors present at the back of the Mammal retina.

Previous studies showed that the photoreceptors have waveguide properties in the

optical frequencies. It would be interesting to explore the coupling between the

Glial cells and the Photoreceptors that would require junction analysis, and this

study has the potential to explain the Stiles-Crawford effect in greater details.
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