

City, University of London Institutional Repository

Citation: Mahbub, K., Spanoudakis, G. & Zisman, A. (2011). A monitoring approach for

runtime service discovery. Automated Software Engineering, 18(2), pp. 117-161. doi:
10.1007/s10515-010-0077-5

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1596/

Link to published version: https://doi.org/10.1007/s10515-010-0077-5

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Monitoring Approach for Runtime Service
Discovery

Authors: K. Mahbub, G. Spanoudakis, A. Zisman

Affiliation: School of Informatics, City University London
Phone: +44 (0) 20 7040 4042

Fax: +44 (0) 20 7040 0244

Email: {k.mahbub | g.spanoudakis | a.zisman}@soi.city.ac.uk

Abstract. Effective runtime service discovery requires identification of services based on different service
characteristics such as structural, behavioral, quality, and contextual characteristics. However, current
service registries guarantee services described in terms of structural and sometimes quality characteristics
and, therefore, it is not always possible to assume that services in them will have all the characteristics
required for effective service discovery. In this paper, we describe a monitor-based runtime service
discovery framework called MoRSeD. The framework supports service discovery in both push and pull
modes of query execution. The push mode of query execution is performed in parallel to the execution of a
service-based system, in a proactive way. Both types of queries are specified in a query language called
SerDiQueL that allows the representation of structural, behavioural, quality, and contextual conditions of
services to be identified. The framework uses a monitor component to verify if behavioural and contextual
conditions in the queries can be satisfied by services, based on translations of these conditions into
properties represented in event calculus, and verification of the satisfiability of these properties against
services. The monitor is also used to support identification that services participating in a service-based
system are unavailable, and identification of changes in the behavioural and contextual characteristics of
the services. A prototype implementation of the framework has been developed. The framework has been
evaluated in terms of comparison of its performance when using and when not using the monitor
component.

Keywords: runtime service discovery, proactive discovery, service monitoring, query

1 Introduction

Runtime service discovery has been recognised as an important aspect to support service-based
systems. More specifically, runtime service discovery, also known as dynamic service discovery,
is concerned with the identification of services that can replace services participating in service-
based systems during the execution of these systems. Several approaches have been proposed to
support runtime service discovery (see [13][14][29] for example). However, most of these
approaches do not consider different characteristics of a service ranging from structural, to
behavioural, quality, and contextual aspects when trying to identify the services. Moreover,
existing approaches for runtime service discovery support the discovery process in pull mode in a
reactive way, where services are identified when there is a need to do so.

There are several situations that may trigger the need for runtime service discovery including,
(i) unavailability or malfunctioning of a participating service, (ii) changes in the structure,
behaviour, quality, or context characteristics of a participating service, (iii) changes in the context
of the service-based system, or (iv) availability of a “better” service due to the provision of a new
service or changes in the characteristics of an existing service. Given the above situations and the

need to provide better precision when identifying services to replace existing services at runtime,
it is necessary to consider different characteristics of the services such as structural, behavioral,
quality, or contextual characteristics. However, it is not possible to assume that services will
always be described in terms of all the above characteristics. Current approaches for service
registries guarantee the existence of structural descriptions of services, typically in the form
ofWSDL [2] specifications [19][24][25]. In order to fulfill the need to identify services based on
other criteria and not only structural characteristics, it is necessary to have a mechanism to verify
the behavioural and contextual characteristics of services even when there are no available
behavioural specifications and up-to-date contextual values of distinct aspects of the services
(e.g., location, availability, response time) in the registries.

In this paper, we describe a monitor-based runtime service discovery framework (MoRSeD)
that we have develop to address the above limitation. This framework extends our previous
runtime service discovery framework [78][79][80] with a monitor component to support (i) the
identification of service unavailability, (ii) the identification of changes in the behavioural and
contextual characteristics of the services participating in a service-based system and services that
are candidates for replacing services in the system, and (iii) the evaluation of behavioural and
contextual criteria in service discovery queries against candidate services. The monitor verifies
the satisfiability of behavioural and contextual properties of the services against messages
exchanged between a service-based system and the services deployed by it. The behavioral
properties represent the existence, order, dependency, and conditional iterations of functionalities
of the services (e.g., all users need to be authenticated before having access to the service); while
contextual properties represent contextual values of the various functionalities in a service (e.g.,
the service should not take more than 10 seconds to display a map of the area where the suer is
located). The monitor is based on our previous work [4][6][59] supporting monitoring of
behavioural and contextual characteristics of service-based systems.

Our runtime service discovery framework supports identification of services based on service
discovery queries that can be executed in a pull and/or push mode. In the push mode of query
execution, service discovery is performed in parallel to the execution of the service-based system
using pre-subscribed queries and services. The subscribed queries are associated with specific
service binding points in the service based system and aim to maintain up-to-date sets of
candidate replacement services for these binding points. In pull mode, a query associated with a
binding point is executed anytime that the service bound to this point becomes unavailable and,
therefore, needs to be replaced with an alternative service. Regardless of the mode of their
execution, queries in MoRSeD are specified in an XML-based query language, called SerDiQueL
[80] that allows the expression of logical combinations of conditions about various characteristics
of services to be identified, namelystructural, behavioural, quality, and contextual conditions.

To illustrate the work described in this paper, and the circumstances in which it is necessary
to replace services participating in service-based systems, we present a scenario of a service-
based system that will be used throughout the paper.

The service-based system used in this scenario is called Route-Planner and allows users to
request information from a PDA about optimal routes to be taken when driving. More specifically
the system offers services that (a) identify the exact current location of a user, (b) allow users to
find an optimal route for a certain location given the exact location of the user by using a Global
Positioning System (GPS), (c) display colored electronic maps of the area where the user is
located and the route to be taken supported by the use of e-AZ Map service, (d) provide traffic
information in the area where the user is located and in the route that the user is supposed to take
to get to his/her destination by using Road Traffic Service (RTS), and (e) compute new routes at
regular intervals due to traffic changes. The Route-Planner system has been implemented as a
BPEL2 [7] process and all the services used in the system (i.e., GPS, e-AZ Map, RTS) have been
implemented as Axis2 [8] web services.

Consider a user of the Route-Planner system trying to find an optimal route from his current
position “CP” to destination “DP”. However, after invoking Route-Planner to find an optimal
route to destination “DP”, Route-Planner fails to provide the optimal route since it cannot access
the service that identifies the user’s exact current location (the service is unavailable). In this
case, it is necessary to identify an alternative service for calculating the user’s current location so
that Route-Planner can continue its execution. After such service is identified and bound to
Route-Planner, the user is presented with the route to be taken. The user starts following the
route, but during the journey the response time of the Road Traffic Service becomes very slow as
RTS is a free of charge service and there are many applications using this service at the time
(there is a change in the context of the service). Thus, it is necessary to identify a service that can
provide traffic information with an acceptable response time so that the overall performance of
the system is not compromised. Following the identification of an adequate replacement service
for RTS and its binding to Route-Planner, the user continues its journey. After using the system
for a while, however, Route-Planner realizes that the battery of the PDA where it runs is running
out of power (there is a change in the context of the system environment). As the user does not
have any battery charger in the car in order to save battery consumption, it is necessary to identify
a service that provides monochrome electronic instead of colored maps, since the display of
colored maps consumes more electric power. Assuming that such service is identified and used to
replace the e-AZ Map service in the system. The user continues the journey and destination “DP”
is reached without any more problems. After a couple of days, however, a new service that
provides electronic maps in both monochrome and colored formats, at a cheaper price than the
one being used by Route-Planner, becomes available. Given that a decrease in the cost of using
Route-Planner system and the possibility of switching between colored and monochromatic maps
when necessary are important requirements of the system, the new available service is identified
and bound to the system. Hence, the next time that the user accesses Route-Planner, he/she will
pay less whilstbeing able to see maps in different display modes.

The remainder of this paper is structured as follows. In Section 2 we present the monitor-
based runtime service discovery framework with its main components, the service discovery
process, and the service monitoring process. In Section 3 we describe how service queries
represented in SerDiQueL are translated into monitoring properties. In Section 4 we discuss
implementation and evaluation aspects of our work. In Section 5 we give an account of related
work. Finally, in Section 6 we discuss concluding remarks and future work.

2 Monitor-based Runtime Service Discovery Framework

Figure 1 shows the overall architecture of the monitor-based runtime service discovery
(MoRSeD) framework and its main components. These components are described below.

The Web Service Interface supports the interaction between a service-based system (client)
and the framework. For this purpose, it exposes interfaces through which client systems can send
service discovery queries and create service and query subscriptions in MoRSeD and receive
back results of executing these queries.

The Service Requestor orchestrates the functionality offered by the other components in the
framework. This component prepares the service query submitted to MoRSeD for evaluation;
invokes other components of the framework in order to execute a query, organises the results of
the query and returns these results to a client application through the web service interface. The
Service Requestor also manages query subscriptions for push mode execution, and receives
information that can trigger the execution of such queries in the push mode, including (a)
information from service registry listeners about services that become available in them, and (b)
information from the monitor about the services deployed in a client service-based system or their

replacement candidate service that become unavailable, changes in their characteristics and/or
context, changes in the context of the client service-based system, and behavioural and contextual
matchings of potential candidate services during the execution of a query.

Fig. 1 Architecture of the proactive service discovery framework

The Service Matchmaker is responsible for executing queries. To do this, the service
matchmaker parses structural and quality characteristics of a query evaluates them against
structural and quality of service specifications, and computes the distances between a query and
candidate services based on the evaluation of structural, behavioural, contextual, and quality
characteristics of a service (see Sect. 2.1),. The evaluation of the behavioural and contextual
characteristics is assisted by the monitor of MoRSeD.

The Service Registry Intermediary supports the use of different service registries by
providing an interface for accessing services in them. MoRSeD supports services from registries
that are based on a faceted service specification scheme developed in the SeCSE project [1]. In
this scheme facets are used to specify different aspects of a service (e.g., service inteface, quality,
and behaviour). In the framework, we assume services described in terms of structural facets
describing the operations of services with their data types using WSDL [2], quality of service
facets describing quality aspects of services represented in XML-based schema, and context
facets represented in XML format which describe context operations associated with service
operations that are executed at runtime in order to generate context values. MoRSeD framework
uses the SeCSE service registry as the external service registry. This registry has been
implemented using an eXist database [3] backend that is accessed by the service registry
intermediary through remote method invocation (RMI).

The Service Listener notifies the service requestor about new services that become available
and changes in the structural and quality descriptions of existing services in the registry. These
notifications are based on subscriptions for structural and quality information made by the service
requestor.

The Monitor is responsible for identifying services that become unavailable, changes in the
behavioural or contextual characteristics of the services deployed in a service-based system and

their replacement candidate services, and changes in the context of the service-based system. It is
also responsible for verifying whether the behavioural and contextual conditions specified in
service discovery queries are satisfied by services.

In the following we describe the service discovery and monitoring processes used by MoRSeD
framework.

2.1 Service Discovery Process

MoRSeD can execute service discovery in both pull and push modes. The pull mode of query
execution is performed to (a) identify services that may be initially bound to a service-based
system, (b) as a first step in the push mode of query execution, (c) due to changes in the context
of an application environment, and (d) when a client application requests a service to be
identified. On the other hand, the push mode of query execution is performed in parallel to the
execution of a service-based system, in a proactive way, in order to identify services due to any of
situations (i) to (iv) described in Section 1.

In both pull and push modes of query execution, services are identified based on matching of
service discovery queries specified in SerDiQueL [80] against services. A service discovery
query represents the characteristics of a service to be identified. SerDiQueL allows for the
representation of different criteria, namely: (a) structural, describing the interface of a required
service, (b) behavioural, describing the functionality of a required service, and (c) constraints,
describing additional conditions for a service. These additional conditions may be concerned with
quality characteristics of a service (e.g., the time or cost to execute an operation in a service), or
interface or functional characteristics of a service that cannot be described in terms of the
structural and behavioural descriptions used in SerDiQueL (e.g., the provider of a service or the
receiver of a message). The constraints in a query can be classified as contextual and non-
contextual. A contextual constraint is concerned with information that changes dynamically
during the execution of a service-based system or its participating services. A non-contextual
constraint is concerned with information that does not change dynamically. The constraints can
also be hard or soft. A hard constraint needs to be satisfied by all candidate services for a query,
while a soft constraint does not need to be satisfied by all candidate services but is used to rank a
service with respect to a query. A detailed description of SerDiQueL is out of the scope of this
paper, but can be found in [80]. In Section 3, we present description of parts of SerDiQueL to
facilitate understanding of the material described in this section.

The matching of service discovery queries against services is executed in a two-stage process.
The first stage is called filtering stage. In this stage, hard non-contextual constraints in a query are
evaluated against service specifications and a set of candidate services that comply with these
constraints are identified. The matchmaker requests the service registry intermediary to retrieve
services from the external service registries that match the hard constraints of a query, when they
are present, or to retrieve all the services when the hard constraints are not present in a query. The
results of the first-stage matching process are sent to the service requestor.

The second stage in the matching process is a ranking stage. This stage is executed in a three
sub-stage process based on the computation of partial distances concerned with each sub-stage
and the computation of an overall distance that considers all partial distances and weight
associated with these distances. In the first sub-stage, structural and behavioural characteristics of
a query are evaluated against the candidate services returned by the first stage in the process. In
this case, a structural-behavioural partial distance is computed for each candidate service with
respect to a query. When the query does not have hard constraints, the structural-behavioural
partial distances are evaluated for all the services in the registry. In the second sub-stage, soft
non-contextual constraints are evaluated against the set of candidate services and a soft non-

contextual partial distance is computed for each candidate service. In the third sub-stage,
contextual constraints are evaluated against the candidate services and contextual partial
distances are computed for each candidate service. The overall distance between a query and each
candidate service is calculated by the average of all the partial distances. The result of the ranking
stage is a set of candidate services that have an overall distance with a query that is below a
certain distance threshold. This distance threshold is either specified in the query or has a default
value of 0.5. The candidate services that comply with the threshold are sorted by ascending order
of distances between them and the query. The results of the second-stage matching process are
sent to the service requestor that organises them in the necessary format required by the web-
service interface.

In MoRSeD framework, in order to identify services that match a query, it is necessary that
the query have at least structural criteria. This is important given that services cannot be identified
for an application unless the interface through which the application will use the service is
known. If any of the other criteria, or any of their combinations, is not present in a query (e.g.,
hard, behavioural, non-contextual, and contextual constraints), the respective stage of the
matching process is not executed and the overall distance is calculated based on the criteria
present in the query.

The structural matching between a query and services is performed by evaluating the
structural criteria in a query and structural specifications of services expressed in WSDL [2] by
comparing signatures of service and query operations. In this process, an operation in a candidate
service matches a query operation only if the two operations have the same number of input and
output parameters, the data types of the input parameters of the service operation are super-types
of the input parameters of the query operation, and the data types of the output parameters of the
service operation are subtypes of the output parameters of the query operation. To evaluate the
conditions regarding the parameters of query and service operations, MoRSeD compares graphs
representing the data types of the parameters of each operation and the linguistic distances of the
names of the parameters. This matching process uses a variant of the VF2 algorithm [82] for
detecting graph morphisms that we have developed for static service discovery [84][85]. The
structural distance between a query operation and a service operation is computed by the average
of the linguistic distance of the names of the operations, the names of the parameters based on
WordNet lexicon [83], the distance between the types of input parameters, and the distance
between the types of the output parameters. The exact formula for the structural distance and
more details of the data type graph construction and graph morphism detection can be found in
[79].

The behavioural matching between a query and services is performed by verifying if the
behavioural criteria in a query can be satisfied by a service. This verification is executed by the
monitor component (see Figure 1) based on requests received by the service requestor for
monitoring specific properties. More specifically, the behavioural properties to be monitored are
derived from the translation of behavioural criteria in a SerDiQueL query into event calculus
(EC) [5] in terms of events and fluents. A detailed description of this translation is presented in
Section 3. The satisfiability of properties by the services is verified by the analyzer component of
the monitor based on invocations of the services by the service client component and the events
collected for these services by the event collector component (see Subsection 2.2 for details about
the monitor). The monitor deploys a service client for each service that needs to be monitored.
The service client component is responsible for the invocation of services and the generation of
runtime events intercepted by the event collector. The event collector component is responsible to
gather runtime information during the execution of services and to make this information
available during the verification of the different properties. The result of a behavioural matching
between a service and a query is a binary value indicating whether a specific service satisfies the
behavioural property (value zero) or a service does not satisfy the behavioural property (value

one). The services that do not satisfy the behavioural properties are not considered as possible
candidate services during the computation of the ranking stage.

Based on the evaluation of the structural criteria and behavioural properties, structural-
behavioural partial distances between a query Q and possible candidate services that satisfy the
behavioural properties are computed.

The matching of soft non-contextual constraints between a query and services is executed by
evaluating the soft non-contextual criteria in a query and service specification facets. More
specifically, the soft non-contextual constraint expressions in a query are evaluated against
elements in service specifications. The result of this evaluation is a binary value indicating
whether a specific constraint is satisfied (value zero) or not (value one). After the evaluation of
individual constraints, a partial soft non-contextual distance constraint partial distance is
calculated for a query Q and a service S taking into consideration weights associated with all soft
con-contextual constraints in a query. The function used to calculate the soft non-contextual
constraint partial distance is detailed in [79].

The matching of contextual constraints between a query and service is executed by evaluating
the context constraints of a query and context information of a service. As in the case of
behavioural matching, this evaluation is executed by the monitor component (see Figure 1) based
on requests received by the service requestor for monitoring specific contextual properties. The
contextual properties to be monitored are derived from the translation of contextual criteria in a
SerDiQueL query into event calculus (EC) [5] (see Section 3 for details of this translation).

Context information of each service is provided by context services based on the execution of
context operations at runtime. Context operations are associated with service operations and are
specified in context facets represented in XML format in the service registries. A context
operation is defined in terms of (i) the associated service operation, (ii) the name of the context
operation, (iii) the identifier of the context service that offers the context value for the operation,
(iv) a value indicating for how long the context value returned by the execution of the context
operation is valid, and (v) the semantic category of the context operation instead of its signature.
The semantic category of an operation is specified in terms of ontologies. The use of semantic
category is to support the fact that it is possible to have different signatures for context operations
in the context services.

The monitor deploys a service client for each context service that needs to be monitored. As
in the case of behavioral matching, the service client component is responsible for the invocation
of context services and the generation of runtime events intercepted by the event collector. The
event collector component is responsible to gather runtime information during the execution of
the context services and to make this information available during the verification of the different
context properties. The result of this evaluation is also a binary value indicating whether a
specific contextual constraint is satisfied (value zero) or not (value one). After the evaluation of
individual constraints, a partial contextual constraint distance is calculated for a query Q and a
service S taking into consideration weights associated with all contextual constraints in a query.
The result of the partial contextual constraint distance is passed to the matchmaker to compute the
overall distance between a service and a query. The function used to calculate the contextual
constraint partial distance is detailed in [79]. The evaluation of the contextual constraints is based
on the work described in [81].

In the pull mode of query execution, an application instructs the framework to locate
replacement services. More specifically, a service-based system issues a query in SerDiQueL to
the web-service interface. This query is passed to the service requestor subsystem with the
necessary characteristics of the service that needs to be replaced in the system, including the
context of the application environment. The service requestor sends the query to the matchmaker
to execute the query against the services as described by the matching process above. The results
of the matching process are returned to the client application.

The push mode of query execution is performed in a proactive way in parallel to the
execution of the service-based system. More specifically, the push mode of query execution can
be performed when there is the need to replace a service due to any of cases (a) to (d) described in
Section 1. The push mode of query execution is based on the subscriptions of the services
participating in a service-based system, the application environment, and the queries associated
with the participating services. The need for these subscriptions is to allow services to be
discovered when changes in the subscribed services, or the application environment, are
identified. These changes can be identified by the monitor (when there are behavioural and
contextual changes in the services) or the service listeners (when there are structural and quality
changes in the services, or a new service becomes available).

The push mode of query execution for a subscribed service and its queries requires an initial
execution of the query in pull mode in order to create an initial set of candidate services for this
service and queries. These set of candidate services will be maintained up-to-date in parallel to
the execution of the service-based system, so that if there is a need to replace a subscribed service
in the system, the replacement service will be selected from this up-to-date set. The candidate
services in the set are maintained in ascending order of their distance with a respective query.

We describe below the service discovery process for replacing a service in an application
when (a) a subscribed service becomes unavailable, (b) there are changes in the structure,
behavioural, quality, or contextual characteristics of a subscribed service, (c) there are changes in
the context of the system’s environment, and (d) a new service becomes available or an existing
service in the registry has its characteristics changed.

In order to follow the description of the above cases consider S1 one of the services
participating in service-based system RP and Q1 a query for S1. Assume that a pull mode service
discovery process has been executed for S1 and Q1. Suppose Set_S1 the set of candidate services
returned by the execution of the pull mode process (services that match the structural,
behavioural, quality and context constraints of Q1). Note that Set_S1 also includes service S1.
Consider that RP, service S1, query Q1, and the candidate services in Set_S1 are subscribed.

In cases (b), (c), and (d), it is possible that the replacement of a service in a service-based
system is not executed immediately after the identification of a replacement service. This may
happen when it is better to delay the replacement process instead of replacing a service that may
be running in the system (e.g., a new better service for a subscribed service S’ is identified, but an
operation of S’ is being invoked). The framework uses replacement policies to assist with the
decision of when to execute the replacement of a service in a service-based system for the
different cases.

The actual replacement of a service can be realized by applying different techniques.
Examples of these techniques are concerned with (i) mechanisms for dynamic replacement of
partner web services in a WS-BPEL process by binding partner links at runtime as offered in WS-
BPEL specification [49], (ii) extension of the execution environment of web service composition
to enable dynamic reconfiguration of web service composition [48][47], and (iii) proxy service
based framework to deploy adaptable web service compositions [44][45][46]. In the current
implementation of the framework we make use of a proxy mechanism to replace a service in a
service-based system, when necessary, following the replacement policies for the different cases.
The details of the replacement policies and the mechanism to replace a service in a service-based
system are beyond the scope of this paper, but have been described in [94].

Case 1: A subscribed service (S1) is unavailable

In this case, the monitor informs the service requestor that S1 is unavailable. The service
requestor takes necessary actions to replace S1 by a service S2 in Set_S1, which has the smaller
distance with Q1 from all the services in Set_S1. Service S1 is removed from Set_S1 and
unsubscribed.

Case 2: Changes in the structure, behavioural, quality, or context characteristics of a subscribed
service (S1)

In this case, the new version of service S1 needs to be evaluated against query Q1 to see if S1
continues to match Q1. In a negative case, a new service that matches Q1 needs to be identified to
replace S1 in the system. This case is divided into two sub-cases depending if the monitor or
service listener components are used, as described below.

Case 2.a: Changes in the context or behaviour of service (S1)

In this situation, the monitor informs the service requestor that S1 is no longer satisfying the
behavioural criteria or contextual constraints of Q1. The service requestor takes necessary action
to replace service S1 in the system by a service S2 in Set_S1. This set is being constantly updated
since its services have been subscribed for changes in its functional, quality, behavioural, and
context characteristics. The result of the process is passed to the web-service interface subsystem
and subsequently to the client of the service-based system. In the situation in which Set_S1 is
empty (i.e., there are no services in the registries that can fulfill the query), the web-service
interface informs the service-based system that there are no available services to replace service
S1.

Case 2.b: Changes in the structure or quality characteristics of a subscribed service (S1)

In this situation, the service listener informs the service requestor that a change has occurred in
S1 together with the type of the criteria that has been changed (i.e., structural or quality). The
service requestor passes query Q1 and information about the criteria type that has changed in S1
to the matchmaker. The matchmaker evaluates Q1 against the new version of the service
specification of S1. The new version of the service specification is accessed from the external
service registries through the service registry intermediary. The result of the matching process is
passed to the service requestor. In this case S1 does not need to be matched against behavioural or
context constraints since S1 has not been changed with respect to these aspects.

If the new specification of S1 matches Q1, and S1 has the smallest distance with Q1 when
compared to the other services in Set_S1, nothing needs to be done. However, when the new
version of S1 matches Q1 but does not have the smallest distance with Q1 when compared with
other services in Set_S1, or S1 does not match Q1, a service S2 in Set_S1 is used to replace S1 in
the application, such that S2 has the smallest distance with Q1 when compared to the other
services in Set_S1. The result of the process is passed to the web-service interface subsystem and
subsequently to the application client. Similarly to case 2.a, if Set_S1 is empty (i.e., there are no
services in the registries that can fulfill the query), the web-service interface informs the
application that there are no available services.

Case 3: Changes in the context of the application environment

The monitor informs the service requestor that a change has occurred in the context
characteristics of the application environment. In this case, the context constraint of Q1 is
modified. Assume Q1’ the new version of Q1 with the modified context constraint. Service S1, as
well as the other services in Set_S1, need to be evaluated against the new context constraints in
Q1’. The services in Set_S1 already match the other constraints of the query that have not been
modified.

The service requester subsystem sends the contextual constraints of Q1’ (translated into EC)
to the monitor in order to evaluate the context conditions of Q1’ against Set_S1. In this case, if a

new set of services Set_S3 that is a sub-set of (or equal to) Set_S1 that match the context
conditions of Q1’ is identified, this set will replace Set_S1. Moreover, if S1 is in Set_S3 and S1
has the smallest distance with Q1’ when compared to the other services in Set_S3, nothing else
needs to be done. However, if S1 is in Set_S3 but S1 does not have the smallest distance with Q1’
when compared to the other services in Set_S3 or if S1 is not in Set_S3, a service S2 from Set_S3
is used to replace S1 in the application such that S2 has the smallest distance with Q1’ when
compared to the other services in Set_S3.

In the case in which no service in Set_S1 match the context conditions of Q1’, the new
version of the query is evaluated against the services in the external registries in order to build a
new set of candidate services for Q1’. In this case, a service in this new set is used to replace S1
in the application and all the services in the set are subscribed together with query Q1’ for future
push mode service discovery iterations.

The result of the process is passed to the web-service interface subsystem and subsequently to
the application client. In the situation in which there are no services in the registries that can
fulfill Q1’, the web-service interface informs the application that there are no available services.

Case 4: A new service becomes available or a service in the registry has its characteristics
changed

Suppose that a new service S3 becomes available. In this case, the service listener informs the
service requestor that S3 is available. The service requestor sends the structural and quality
criteria of Q1 to the matchmaker in order to evaluate these criteria against the specification of S3.
The service requestor also sends the behavioural and contextual criteria of Q1 (translated into EC)
to the monitor in order to evaluate these criteria against S3.

In the case that S3 matches the constraints of Q1, S3 is added to Set_S1 and is subscribed. In
addition, the service requestor compares the results of the matching of Q1 against S3 and against
S1 in order to see if the former is better than the latter. In positive case, S3 is used to replace S1 in
the system.

2.2 Monitoring Process

MoRSeD supports the monitoring of services in order to (a) identify whether services become
unavailable, (b) identify that there are changes in the behavioural or contextual characteristics of
the services participating in service-based system or replacement candidate services, (c) identify
that there are contextual changes in the service-based system environment, and (d) verify if
behavioural and contextual properties specified in service discovery queries are satisfied by
services.

The monitor receives requests from the service requestor to verify at regular intervals the
satisfiability of specific properties of a service-based system, its constituent services, or context
services; or to verify the satisfiability of the properties with potential candidate services during
the matching process. The monitor intercepts all the runtime messages exchanged between the
service-based system and its constituent services and verifies the satisfiability of the properties
against these messages. It also invokescontext services to verify the satisfiability of the contextual
properties specified in queries. When the monitor detects violation of a property, it notifies the
service requestor about this violation, which takes the necessary actions to identify replacement
services either in pull mode or proactive push mode. The monitor also invokes potential candidate
services to verify the satisfiability of behavioural and contextual properties.

The monitor of MoRSeD has been adapted from the monitor approach discussed in [4, 6]. It
consists of three components namely (a) service client, (b) event collector, and (c) analyzer
described below.

Service Client: The service client is responsible for the invocation of a service. The monitor
deploys a service client for each service that needs to be monitored (i.e., candidate services,
context services, and potential candidate services) in order to generate runtime events that are
used to verify properties (i.e., different behavioural and contextual constraints expressed in a
query).

More specifically, given a WSDL specification of a service, the respective service client
produces all possible sequences of operations described in the WSDL specification. In order to
produce the alternative sequences of operations, the service client considers those sequences that
contain the order of operations specified in the behavioural query. This reduces the number of
sequences of operations to be executed by the client. After producing the alternative sequence of
operations, the service client invokes the operations in the order they appear in each sequence.
The client uses the Web Service Invocation Framework (WSIF) [86] to generate random values
for the input parameters of each operation in a sequence and to invoke the operations. It should be
noted that in MoRSeD a behavioural property for a service expresses the existence of certain
operations in the service or the desired order of execution of operations in the service. Hence the
values of the input and output parameters of these operations are not relevant to the monitoring
process. The framework also assumes that if an operation in a service is not invoked in the correct
order of execution of the operations of that service, the service will generate an exception. With
this assumption, the service client stops invoking the operations in one of the sequences of
operations as soon as it receives an exception from the service, and continues to execute the next
of sequence of operations.

Event Collector. The event collector is responsible to gather (a) information during the
execution of service-based system and the services deployed by the service based system, or (b)
information exchanged between the service client and its respective service. In case (a), the event
collector intercepts the SOAP messages exchanged between the service-based system and its
constituent services. In case (b), the event collector intercepts the SOAP messages exchanged
between the service client and the respective services. The intercepted SOAP messages are then
transformed into a form that is understood by the analyzer component and recorded in an event
database in the monitor.

Analyzer. The analyzer checks the satisfiability of the properties against the runtime events.
The properties to be monitored may be related to the behaviour or quality properties that should
be provided by an individual service of the service-based system, or groups of such services.
These properties are expressed in event calculus (EC) [5] in terms of events and fluents.

An event is something that occurs at a specific instance of time, has instantaneous duration,
and may change the state of a system (e.g., invocation of an operation, response returned
following the execution of an operation or assignment of a value to a variable). In our framework
we consider the following type of events that may occur during the execution of service-based
systems:

(i) The invocation of an operation by the composition process of the service-based
system in one of its partner services or the return from this execution.

(ii) The invocation of an operation in the composition process of the service-based
system by another external service or the reply following this execution.

The occurrence of an event e of the above types at time t is expressed by the Event Calculus (EC)
predicate Happens(e,t,ℜ(t1,t2)) where ℜ(t1,t2) signifies the expected time range for t).

Fluents signify system states as conditions over the values of specific variables of the
composition process of a service-based system or its constituent services. The states represented
by fluents are initiated and terminated by events. Fluent initiation and termination are expressed
by the following predicates of EC:

• Initiates(e,f,t) – This signifies that a fluent f starts to hold after the event e at time t.
• Terminates(e,f,t) – This signifies that a fluent f ceases to hold after the event e occurs at

time t.
A fluent holds from its initiation until its termination. The existence of a fluent f at time t is

expressed by the predicate HoldsAt(f,t).
In MoRSeD, we use the following terms to represent event and fluents:
• ic:PartnerService:OperationName(_oId, _ip1,_ip2…_ipn) – This term signifies the

invocation (denoted by the prefix ic) of an operation by the composition process of a
service based system in one of its partner services, or the invocation of an operation in
the composition process of the service based system by another service. In this expression
oId is a variable whose value identifies the exact instance of invocation made to the
operation and _ip1,_ip2…_ipn are variables that indicate the values of the input
parameters of the operation at the time of its invocation.

• ir:PartnerService:OperationName(_oId, _op1,_op2…_opn) – This term signifies the
return from the execution of an operation (denoted by the prefix ir) invoked by the
composition process in a partner service, or the return following the execution of an
operation that was invoked by another service in the composition process. In this
expression oId is a variable whose value identifies the exact instance of invocation made
to the operation to which this response corresponds to and _op1,_op2…_opn are variables
that indicate the values of the output parameters of the operation at the time of its
response.

• valueOf(fluent_expression, value_expression) – This term signifies a fluent, where
fluent_expression denotes a typed variable in a service based system or its constituent
services, and the value_expression is a term that either represents an EC variable or
signifies a call to an operation that returns an object of some type. The operation called
by value_expression may be an internal operation that is provided by the monitoring
subsystem or an operation that is provided by an external web-service. An operation call
in the monitoring subsystem takes one of the following terms:

• oc:S:O(_P1,…,_Pn) that signifies the invocation of an operation O in an external
service S.

• oc:self:O(_P1,…,_Pn) that signifies the invocation of the built-in operation O of
the monitor.

In the above forms, _P1, …, _Pn are variables that indicate the values of the input
parameters of the operation O at the time of its invocation.

In addition to the EC predicates discussed above, in the property specifications we use
relational predicates to enable comparison among values of variables, return values of operation
calls, and constant values by using standard relational operators.

An example of a property for the behaviour of the GPS service specified using event calculus
is shown in Figure 2. The formula C1 in this figure expresses that following a request for the
location from a client to GPS at time t1 (see literal Happens(ic:getLocation(ID),t1,R(t1,t1))) and the
response of this request at time t2 (see literal Happens(ir:getLocation(ID,latitude,longitude),t2,R(t1,t2))
the latitude and longitude of the returned location cannot be negative.

It should be noted that in MoRSeD the EC properties to be monitored are automatically
translated from the behavioural and contextual constraint in the queries expressed in SerDiQueL
(see Section 3).

(C1) (∀ t1:Time, ∃ t2: Time1)

1 In all the EC formulas in this paper, “Time” denotes the set of time stamps that are recorded in the trace of the events

captured during the execution of a service based system.

 Happens(ic:getLocation(ID),t1,R(t1,t1)) ^
 Happens(ir:getLocation(ID,lat,long),t2,R(t1,t2)) ⇒ lat > 0 ^ long > 0

Fig. 2 Example property in EC

The monitor checks the satisfiability of a property against the runtime events recorded by the

event collector. More specifically, the satisfiability of a property is checked by verifying whether
the set of the recorded events entail the negation of a property p or, formally, if:

{ER(T)} |= nf ¬p

where ER(T) is the set of the events that have been recorded by the event collector from the start
of the monitoring process until time T, and |= nf is the logical entailment using the normal rules of
inference of first-order logic and the principle of negation as failure.

At runtime, the monitor maintains templates that represent different instantiations of the
formulas that specify the behavioural properties and assumptions for a system. The templates
maintained by the monitor store the state of different instantiations of a property f, including:

• The identifier (FID) of f.
• The bindings (VB) of the non-time variables of all the predicates in f, and
• For each predicate p in f :

o The qualifier of the time variable (Q) and signature (SG) of p.
o A time range (LB,UB) that indicates when p should occur. The boundaries of this

range are set according to the time constraint of p in f.
o The truth-value (TV) of p which can be: UN (if the truth-value of p has not been

established), True (if p is true), or False (if p is false).
o A time stamp (TS) that indicates the time in which the truth-value of p is

established (TS is set to the time variable of the predicate initially).
o The source (SC) of the evidence for the truth value of p which can be: UN (if the

truth value of p has not been established), RE (if the truth value of p is
established by a recorded event unified with it), or NF (if the truth value of p is
established by the principle of negation as failure)

The monitor picks events from the Event Database and checks if there are instances of
templates that should be updated by the events. Updates may be made if the signature, the event
variable bindings, and the time of the event comply with the predicate signature, the predicate
variable bindings, and the time range of the predicate in a template instance, respectively. If a
predicate is updated, the bindings of the predicate's variables in the template are also updated.
New instances of templates may also be generated if the event corresponds to an unconstrained
predicate of a template (i.e., a predicate whose time variable is not constrained by the time
variable of another predicate), or the variable bindings of the predicate have values that are
different from the event variable bindings values. The truth-value of a predicate in a template
instance may also be updated by applying the principle negation as failure.

L1 : Happens(ic:getLocation(op1),1,ℜ(1,1))
L2 : Happens(ir:getLocation(op1, 120, 210),4,ℜ(4,4))
L3 : Happens(ic:getTraffic(op2, 120, 210),5,ℜ(5,5))
L4 : Happens(ir:getTraffic(op2, trafficInfo),9,ℜ(9,9))
L5
L6
L7
L8 : Happens(ic:getLocation(op19),29,ℜ(29,29))
L9 : Happens(ir:getLocation(op19, -50, 210),32,ℜ(32,32))
L10

L11

Fig. 3 Event log of Route Planner process

For example, consider the property C1 shown in Figure 2 and the event log of the Route
Planner application in Figure 3. As shown in the figure, following the occurrence of the event
signified by literal L8 at T=29, the monitor will create the following template for formula C1:

ID C1
VB (oID, op19)
P Q SG TS LB UB TV SC
1 ∀ Happens(ic:getLocation(oID),t1,R(t1,t1)) 29 29 29 True RE

2 ∃ Happens(ir:getLocation(oID,lat,long),t2,
R(t1,t2))

t2 29 t2 UN UN

3 ∃ lat > 0 t2 29 t2 UN UN
4 ∃ long > 0 t2 29 t2 UN UN

Subsequently, when the event signified by literal L9 in Figure 3 is encountered, the above

template will be updated and take the following form:

ID C1
VB (oID, op19) (lat, -50) (long, 210)
P Q SG TS LB UB TV SC
1 ∀ Happens(ic:getLocation(oID),t1,R(t1,t1)) 29 29 29 True RE

2 ∃ Happens(ir:getLocation(oID,lat,long),t2,
R(t1,t2))

32 29 32 True RE

3 ∃ lat > 0 32 29 32 False RE
4 ∃ long > 0 32 29 32 True RE

When the truth values of all predicates in a formula template have been established, a check

for possible formula violations is performed according to the criteria described in [4, 6]. For
example, if the truth-value of all the predicates in the template is true the formula is satisfied, and
if the truth-value of all the unconstrained predicates in the formula is true and the truth-value of at
least one constrained predicate is false and the source of all predicates is RE or NF, the formula is
marked as inconsistent with the recorded behaviour of the system.

3 Translations from SerDiQueL to EC Properties

In MoRSeD the behavioral and contextual properties to be verified by the analyzer component are
translated from service discovery queries represented in SerDiQueL. In these queries, behavioral
properties may refer to: (i) the existence and order of certain functionalities in a service, (ii)
dependencies between functionalities of a service, and (iii) conditional iterations of sequences of
service functionalities. Contextual properties can represent contextual values that need to be
checked for the various functionalities in a service.

To translate behavioural criteria and contextual constraints specified in SerDiQueL queries
into event calculus, we use a set of translation patterns and our framework applies these patterns
to generate the required translations automatically. The translation patterns used and the process
realised by MoRSeD are described in the following.

3.1 SerDiQueL Behavioural and Contextual Sub-queries
An example of a SerDiQueL query is shown in Figure 4. This query (Q1) has been specified to
identify services that could replace the GPS service in the Route Planner application (see Section
1). Recall that the GPS service provides the location of the PDA where Route Planner operates
after receiving payment. According to Q1, a replacement service for GPS will need to satisfy the
following conditions:

(a) It should authenticate its user before allowing access to its functionality;
(b) It should not take more than 10 seconds to provide the location of a user;
(c) It should receive payment from the user before the provision of location information.

As shown in Figure 4, Q1 is a dynamic type query of push mode, as specified by element

Parameter in the query. The structural sub-query is composed of the WSDL specification of GPS
service. For simplicity, we only show a placeholder for the WSDL in Figure 4. The behavioural
sub-query is specified as content of element <tnsb:BehaviouralQuery>, and the constraint sub-
query is specified as content of element <tnsb:CosntraintQuery>.

<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->
<tns:ServiceQuery xmlns:tns="http://gredia.eu/schema/SerDiQueL" xmlns:csql="http://gredia.eu/schema/Constraint_SQL"
 xmlns:tnsb="http://gredia.eu/schema/Behavour_SQL" xmlns:tnsc="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 queryID="UUID:550e8400-e29b-41d4-a716-446655440000" name="Query1">

 <tns:Parameter name="mode" value="PUSH" />
 <tns:Parameter name="type" value="dynamic" />
 <tns:Parameter name="threshold" value="1.0" />

 <!-- Structural sub-query -->
 <tns:StructuralQuery> <!-- WSDL of the GPS service -- ></tns:StructuralQuery>

 <!-- Behavioural sub-query -->
 <tnsb:BehaviouralQuery>
 <tnsb:Requires>
 <tnsb:MemberDescription ID="login" opName="GPSService3PortType.login" synchronous="true" />
 <tnsb:MemberDescription ID="payment" opName="GPSService3PortType.makePayment" synchronous="true" />
 <tnsb:MemberDescription ID="location" opName="GPSService3PortType.getLocation" synchronous="true" />
 <tnsb:MemberDescription ID="logout" opName="GPSService3PortType.logout" synchronous="true"/>
 </tnsb:Requires>

 <tnsb:Expression>
 <tnsb:Condition><tnsb:GuaranteedMember IDREF="login" /></tnsb:Condition>
 </tnsb:Expression>
 <tnsb:LogicalOperator operator="AND" />
 <tnsb:Expression>
 <tnsb:Condition>
 <tnsb:Sequence ID="pay">
 <tnsb:Member IDREF="payment" />
 <tnsb:Member IDREF="location" />
 <tnsb:Member IDREF="logout" />
 </tnsb:Sequence>
 </tnsb:Condition>
 <tnsb:Condition>
 <tnsb:OccursBefore immediate="false" guaranteed="false">
 <tnsb:Member1 IDREF="login" />
 <tnsb:Member2 IDREF="payment" />
 </tnsb:OccursBefore>
 </tnsb:Condition>
 </tnsb:Expression>
 </tnsb:BehaviouralQuery>

 <!-- Constraint sub-queries -->
 <csql:ConstraintQuery name="CQ1" contextual="true" type="SOFT" scope=" MONITORING">

 <csql:LogicalExpression>
 <csql:Condition relation="LESS-THAN-EQUAL-TO">
 <csql:Operand1>
 <csql:ContextOperand serviceOperationName="getLocation" serviceID="2009.005">
 <csql:ContextCategory relation="EQUAL-TO">
 <csql:Category1>
 <csql:Document location="http://eg.org/CoDAMoS_Extended.xml" type="ONTOLOGY"/>
 </csql:Category1>
 <csql:Category2>
 <csql:Constant type="STRING">RELATIVE_TIME</csql:Constant>
 </csql:Category2>
 </csql:ContextCategory>
 </csql:ContextOperand >
 </csql:Operand1>
 <csql:Operand2>
 <csql:Constant type="NUMERICAL">10</csql:Constant>
 </csql:Operand2>
 </csql:Condition>
 </csql:LogicalExpression>
 </csql:ConstraintQuery>

</tns:ServiceQuery>
Fig. 4 Example of a query in SerDiQueL

In SerDiQueL, a behavioural sub-query is described in terms of (a) a single (possibly negated)
condition or a conjunction of conditions, (b) a sequence of expressions separated by logical
operators, or (c) requires elements, as shown in the XML schema in Figure 5.

Fig. 5 XML Schema for behavioural criteria

Requires elements define one or more service operations that need to exist in service

specifications, represented as members by the elements MemberDescription and
MessageDescription. These member elements are used in various conditions and expressions of a
query. A member element has three attributes, namely (a) ID, indicating a unique identifier for the
member within a query; (b) opName, specifying the name of an operation described in the
structural sub-query, (for the case of dynamic service discovery, this attribute may also contain
the port type for this operation for the WSDL description in the structural sub-query); and (c)

synchronous, a boolean attribute indicating if the service operation needs to be executed in a
synchronous or asynchronous mode in the service. A Message description has the attribute
MsgPart in addition to the above three attributes. The attribute MsgPart refers to a specific part
of a message in the operation.

A condition is defined as GuaranteedMember, OccursBefore, OccursAfter, Sequence, or
Loop elements, as shown in Figure 6. A GuaranteedMember represents a member element (i.e.,
service operation) that needs to occur in all possible traces of execution in a service. This element
is defined by attribute IDREF that references requires, sequence, or loop elements. The
OccursBefore and OccursAfter elements represent the order of occurrence of two member
elements (Member1 and Member2). They have two boolean attributes, namely (a) immediate,
specifying if the two members occur in sequence or if there can be other member elements in
between them, and (b) guaranteed, specifying if the two members need to occur in all possible
traces of execution in a service. A Sequence element defines two or more members that must
occur in a service in the order represented in the sequence. It has an identifier attribute that can be
used by the GuaranteedMember, OccursBefore, OccursAfter, Sequence, and Loop elements. A
Loop element specifies a sequence of members that are executed several times if certain
conditions are satisfied. It has a unique identifier (attribute ID) and is defined as a statement
(element Body) that references other identified elements.

Expressions are defined as a sequence of requires elements, conjunctions of conditions, or
other nested expressions connected by logical operators AND and OR.

Fig. 6 XML Schema for behavioral criteria

As shown in the example in Figure 4, the behavioural sub-query (see element

<tnsb:BehaviouralQuery> … </tnsb:BehaviouralQuery>) includes Requires elements
expressing the requirement for the existence of the following operations in any replacement
service:

§ login(userID:string, password:string):boolean
§ makePayment(accountId:string, amount:double):boolean
§ getLocation():Location
§ logout((userID:string):boolean

In addition, as shown in Figure 4:
(a) operation login is defined as a GuaranteedMember element given that the user of the GPS

service needs to be authenticated (i.e., login operation needs to occur in all possible paths of
execution in the service);

(b) the operations makePayment, getLocation and logout need to be executed in this order and,
therefore, they are defined in a Sequence element;

(c) the operation login should be executed before the sequence of operations in (b) specified in
element OccursBefore.

In SerDiQueL a contextual sub-query is specified in terms of a single logical expression, or a

conjunction/disjunction of two or more logical expressions, combined by logical operators AND
and OR, or a negated logical expression. A logical expression is defined as a condition, or logical
combination of conditions, over elements or attributes of service specifications (for non-
contextual constraints) or over context aspects of service operations (for contextual constraints).

A condition can be negated and is defined as a relational operation (equalTo, notEqualTo,
lessThan, greaterThan, lessThanEqualTo, greaterThanEqualTo, notEqualTo) between two
operands (operand1 and operand2). These operands can be non-contextual operands, contextual
operands, constants, or arithmetic expressions.

As shown in Figure 7 a non-contextual operand (element NonContextOperand) has two
attributes, namely (a) facetName, specifying the name of the service specification and (b)
facetType, specifying the type of the service specifications to which the constraint will be
evaluated. The operand contains an XPath expression indicating elements and attributes in the
service specification referenced in facetName attribute.

Fig. 7 XML schema for relational operand in constraint sub-query

A contextual operand (element ContextOperand) specifies operations that will provide

context information at runtime. More specifically, a contextual operand describes the semantic
category of context operations instead of the signature of the operation represented by sub-
element ContextCategory. This is due to the fact that context operations may have different
signatures across different services. A contextual operand is defined by (a) attribute
serviceOperationName, specifying the name of the service operation associated with the
contextual operand, and (b) attribute serviceID, specifying the identifier of a service that provides
the operation. The value of attribute serviceID is specified when the context operand provides the
specification of a context operation of a known service. This is normally the case when the
context operation is associated with a service-based application for which the value of a context
aspect of the application needs to be dynamically identified during the evaluation of a query (e.g.,
location of a mobile device application). In this case, attribute serviceID referes to the service-
based application itself. Otherwise, the value of serviceID is specified as “any” (see Figure 7).

A ContextCategory element represents the semantic category of an operation, instead of its
actual signature. It is defined as a relation between two categories (Category1 and Category2).
These categories can be either a reference to a document or a constant. A context category is
evaluated against context facets of candidate services. This evaluation verifies if a candidate
service has a context operation with semantic category that satisfies the categories specified in a
query.

Arithmetic expressions define computations over the values of elements or attributes in
service specification or context information. They are defined as a sequence of arithmetic
operands or other nested arithmetic expressions connected by arithmetic operators. The arithmetic
operators are: addition (plus), subtraction (minus), multiplication (multiply), and division (divide)

operators. A function supports the execution of a complex computation over a series of
arguments.

In the example shown in Figure 4, the constraint sub-query CQ1 (see element
<tnsb:ConstraintQuery> … </tnsb:ConstraintQuery>) is a soft contextual constraint concerned
with the time to get response from the GPS service. This constraint specifies that any candidate
service needs to have a context operation associated with operation getLocation() classified in the
category RELATIVE_TIME in the ontology http://eg.org/CoDAMoS_Extended.xml, and the
result of executing this operation has to be less than 10 seconds for this service to be considered.

3.2 Translation Patterns for Behavioural Criteria

Behavioural conditions involving Requires Elements

In the case of an asynchronous operation, a MemberDescription, or a MessageDescription is

transformed into an atomic EC formula consisting of a Happens predicate that signifies the
occurrence of an operation O. For example, consider the following MemberDescription:

SerDiQueL Element EC Representation
<bsql:MemberDescription ID="M " opName="O"
synchronous="false"/>

Happens(ic:O(_ID,_X),t1, ℜ(t1,t1))

In this example, the predicate Happens(ic:O(_ID,_X.a),t1, ℜ(t1,t1)) signifies the occurrence of
the operation O. It should be noted that in the EC representation, the variable _ID takes as value a
unique identifier that represents the exact instance of the occurrence of O, and the variable _X
takes the value of the input variable X (if any) of O.

In the case of a synchronous operation O, a MemberDescription, or a MessageDescription is
transformed into a conjunctive EC formula consisting of a Happens predicate that signifies the
occurrence of the operation O, and a Happens predicate that signifies the response from O. For
example, consider the following MemberDescription:

SerDiQueL Element EC Representation
<bsql:MemberDescription ID="M " opName="O"
synchronous="true"/>

Happens(ic:O(_ID,_X),t1, ℜ(t1,t1)) => (∃t2)
Happens(ir:O(_ID, _Y),t2, ℜ(t1,t2))

In this example, the predicate Happens(ic:O(_ID,_X.a),t1, ℜ(t1,t1)) signifies the occurrence of
the operation O, and the predicate Happens(ir:P:O(_ID),t2, ℜ(t1,t2)) signifies the response from
O. It should be noted that in this EC representation the variable _ID takes as value a unique
identifier that represents the exact instance of the occurrence of O, the variable _X takes the value
of the input variable X (if any) of O, and the variable _Y takes the value of the output variable X
(if any) of O.

Behavioural conditions involving OccursBefore elements

A behavioural condition in SerDiQueL that involves an OccursBefore element specifies the order
of occurrence of two member elements (Member1 and Member2), where a member could be a
MemberDescription, or a MessageDescription, or another behavioural condition.

A behavioural condition that involves an OccursBefore element with a “false” value for the
attribute immediate, can be transformed into EC according to the following pattern:

SerDiQueL Element EC Representation

<bsql:OccursBefore immediate=”false” guaranteed=”true”>
 <bsql:Member1 IDREF=”M1”/>
 <bsql:Member2 IDREF=”M2”/>
</bsql:OccursBefore>

EC(M1,[]) ∧ EC(M2,[]) ∧
maxt(M1) < mint(M2)

In the above pattern2
• EC(M, [t1,…,tn]) denotes the EC (sub)formulas that a member element is transformed to;
• mint(M) represents the time of the earliest predicate in the EC representation of member M,

and maxt(M) represents the time of the latest predicate in the EC representation of member M.

A behavioural condition that involves OccursBefore with “true” value of the attribute
immediate, can be transformed to EC according to the following pattern:

SerDiQueL Element EC Representation
<bsql:OccursBefore immediate=”true” guaranteed=”true”>
 <bsql:Member1 IDREF=”M1”/>
 <bsql:Member2 IDREF=”M2”/>
</bsql:OccursBefore>

EC(M1,[]) ∧ EC(M2,[]) ∧ maxt(M1) < mint(M2) =>
¬ Happens(ANY(), t2, R(maxt(M1), maxt(M2)))

In the above pattern the predicate ¬ Happens(ANY(), t2, R(maxt(M1), maxt(M2))) signifies that no
operation should occur between the time of the latest predicate in the EC representation of
member M1 and the time of the latest predicate in the EC representation of member M2.

Behavioural conditions involving OccursAfter

A behavioural condition that involves OccursAfter with “false” value of the attribute
immediate, can be transformed into EC according to the following pattern:

SerDiQueL Element EC Representation
<bsql:OccursAfter immediate=”false” guaranteed=”true”>
 <bsql:Member1 IDREF=”M1”/>
 <bsql:Member2 IDREF=”M2”/>
</bsql:OccursAfter>

EC(M2,[]) ∧ EC(M1,[]) ∧
maxt(M2) < mint(M1)

A behavioural condition that involves OccursAfter with “true” value of the attribute
immediate, can be transformed into EC according to the following pattern:

SerDiQueL Element EC Representation
<bsql:OccursAfter immediate=”true” guaranteed=”true”>
 <bsql:Member1 IDREF=”M1”/>
 <bsql:Member2 IDREF=”M2”/>
</bsql:OccursAfter>

EC(M2,[]) ∧ EC(M1,[]) ∧ maxt(M2) < mint(M1) =>
¬ ∃t Happens(ANY(), t, R(maxt(M2), maxt(M1)))

In the above pattern the expression ¬ ∃t Happens(ANY(), t, R(maxt(M2), maxt(M1))) signifies that
no operation should occur between the time of the latest predicate in the EC representation of
member M2 and the time of the latest predicate in the EC representation of member M1.

Behavioural conditions involving Sequence elements

2 EC(M,[]),mint(M) and maxt(M) have the same semantic throughout this paper.

A behavioural condition that involves a sequence can be transformed into EC according to
the following pattern:

SerDiQueL Element EC Representation
<bsql:Sequence ID=”S1”>
 <bsql:Member IDREF=”M1”/>
 <bsql:Member IDREF=”M2”/>
 … …… …..
 <bsql:Member IDREF=”Mn”/>
</bsql:Sequence>

EC(M1,[]) ∧ EC(M2,[]) ∧ … ∧ EC(Mn,[])
maxt(M1) < mint(M2) ∧ …∧ maxt(Mn-1) <
mint(Mn)

Behavioural conditions involving Loop elements

A behavioural condition in SerDiQueL that involves a Loop element specifies a sequence of
members that are executed several times if certain conditions are satisfied, where conditions are
specified in terms of MessageDescriptions. A behavioural condition that involves Loop element
can be transformed into EC according to the following pattern:

SerDiQueL Element EC Representation
<bsql:Loop ID="L1">
 <bsql:Conditions>
 <bsql:Condition relation="Rel">
 <bsql:Operand1>
 <bsql:Variable IDREF="M1"/>
 </bsql:Operand1>
 <bsql:Operand2>
 <bsql:Variable IDREF="M2"/>
 </bsql:Operand2>
 </bsql:Condition>
 </bsql:Conditions>
 <bsql:Body IDREF="M3"/>
</bsql:Loop>

EC(M1,[]) ∧ EC(M2,[]) ∧ Rel(VM1, VM2) =>
EC(M3,[])

In the above EC presentation, VM refers to the variable of a MessageDescription M, identified by
the XPATH expression in M and Rel(VM1, VM2) signifies a relational predicate over the variables
VM1 and VM2.

Example of behavioural condition translated into EC

Table 1 shows an example of SerDiQueL behavioural condition translated into EC applying the
patterns discussed above. This example shows the EC representation of the behavioural condition
in the SerDiQueL query in Figure 4, which specifies that the operation login should be executed
before the sequence of operations makePayment, getLocation and acknowledge.

Table 1. Example of SerDiQueL behavioural condition translated into EC

SerDiQueL

 <tnsb:BehaviourQuery>
 <tnsb:Requires>
 <tnsb:MemberDescription ID="login" opName="GPSService3PortType.login"
 synchronous="true" />
 <tnsb:MemberDescription ID="payment" opName="GPSService3PortType.makePayment"
 synchronous="true" />
 <tnsb:MemberDescription ID="location" opName="GPSService3PortType.getLocation"
 synchronous="true" />
 <tnsb:MemberDescription ID="acknowledge" opName="GPSService3PortType.acknowledge"
 synchronous="true"/>
 </tnsb:Requires>

 <tnsb:Expression>

 <tnsb:Condition><tnsb:GuaranteedMember IDREF="login" /></tnsb:Condition>
 </tnsb:Expression>
 <tnsb:LogicalOperator operator="AND" />
 <tnsb:Expression>
 <tnsb:Condition>
 <tnsb:Sequence ID="pay">
 <tnsb:Member IDREF="payment" />
 <tnsb:Member IDREF="location" />
 <tnsb:Member IDREF="acknowledge" />
 </tnsb:Sequence>
 </tnsb:Condition>
 <tnsb:Condition>
 <tnsb:OccursBefore immediate="false" guaranteed="false">
 <tnsb:Member1 IDREF="login" />
 <tnsb:Member2 IDREF="pay" />
 </tnsb:OccursBefore>
 </tnsb:Condition>
 </tnsb:Expression>
 </tnsb:BehaviourQuery>

EC

 (∀t2, t3, t4:Time, ∃ t1: Time)
 Happens(ic:makePayment(ID, accounted, amount),t2,R(t2,t2)) ^
 Happens(ic:getLocation(ID),t3,R(t2,t3)) ^
 Happens(ic:acknowledge(ID, val),t4,R(t3,t4)) ⇒
 Happens(ic:login(ID, userID, password),t1,R(t1,t1)) ^ t1 < t2

3.3 Translation Patterns for Contextual Constraints
A contextual constraint can be transformed into EC using the following pattern.

SerDiQueL Element EC Representation
<csql:ConstraintQuery name="CQ" contextual="true" type="SOFT">
 <csql:LogicalExpression>
 <csql:Condition relation="REL">
 <csql:Operand1>
 <csql:ContextOperand serviceOperationName=”sOp” serviceID=”sId”>
 <csql:ContextCategory relation=”EQUAL-TO”>
 <csql:Category1>
 <csql:Document location=”loc” type=”ONTOLOGY”/>
 </csql:Category1>
 <csql:Category2>
 <csql:Constant type="STRING">CATEGORY</csql:Constant>
 </csql:Category2>
 </csql:ContextCategory>
 </csql: ContextOperand >
 </csql:Operand1>
 <csql:Operand2>
 <csql:Constant type="STRING">VAL</csql:Constant>
 </csql:Operand2>
 </csql:Condition>
 </csql:LogicalExpression>
</csql:ConstraintQuery>

Happens(ic:cOp(_ID), t1, R(t1, t1)) ^
Happens(ir:cOp(_ID, _Vc), t2,
R(t1,t2)) ⇒ Rel(_Vc, VAL)

In the above pattern

• cOp signifies the context operation identified by the semantic category specified in the
ontology expressed in the ContextCategory element in the context constraint. The first
Happens predicate signifies the occurrence of the context operation, while the second
Happens predicate signifies the response from the context operation

• Vc signifies the return value from the context operation
• Rel(Vc, VAL) signifies a relational predicate involving the return value of the context

operation.

Example of Contextual Constraints translated into EC

Table 2 shows an example of SerDiQueL contextual constraints translated into applying the
pattern discussed above. This example shows the EC representation of the contextual constraint in
the SerDiQueL query in Figure 4, which specifies that response time of the getLocation operation
returned by its context operation should be less than 10 seconds. In the EC representation the
operation getReponseTime is the context operation that retunrs the response time of operation
getLocation.

Table 2: Example of SerDiQueL contextual condition translated into EC

SerDiQueL

<csql:ConstraintQuery name="CQ1" contextual="true" type="SOFT" scope=" MONITORING">
 <csql:LogicalExpression>
 <csql:Condition relation="LESS-THAN">
 <csql:Operand1>
 <csql:ContextOperand serviceOperationName="getLocation" serviceID="2009.005">
 <csql:ContextCategory relation="EQUAL-TO">
 <csql:Category1>
 <csql:Document location="http://eg.org/CoDAMoS_Extended.xml" type="ONTOLOGY"/>
 </csql:Category1>
 <csql:Category2>
 <csql:Constant type="STRING">RELATIVE_TIME</csql:Constant>
 </csql:Category2>
 </csql:ContextCategory>
 </csql:ContextOperand >
 </csql:Operand1>
 <csql:Operand2>
 <csql:Constant type="NUMERICAL">10</csql:Constant>
 </csql:Operand2>
 </csql:Condition>
 </csql:LogicalExpression>
</csql:ConstraintQuery>

EC Happens(ic:getResponseTime(ID), t1, R(t1, t1)) ^ Happens(ir:getResponseTime(ID, rv),
t2, R(t1,t2)) ⇒ rv < 10

4 Implementation Aspects and Evaluation

A prototype tool of the framework has been implemented in Java. The tool is available as a web
service and can be invoked by any client that can produce service requests in the format required
by the framework. The subscription of the services is supported by WS-Eventing [9] and by an
event receiver. The external service registry uses eXist [3] database. Communication with the
registry is through the use of Remote Method Invocation (RMI).

To evaluate MoRSeD, we have performed a set of experiments to measure and analyse the
performance of both pull and push modes of query execution with queries incorporating
structural, behavioral, non-contextual, and contextual conditions. In the evaluation we compared
the performance of query executions for two cases, namely:

Case(1) - evaluation of the runtime service discovery framework without using the monitor
component. In this case we assume that the behavioural and contextual specifications of
the services are available in the service registry. We assume the behavioural
specifications expressed in BPEL and the contextual specifications expressed in XML
format

Case(2) - evaluation of the MoRSeD framework using the monitor component to support
evaluation of behavioural criteria in service discovery queries against candidate services.

4.1 Experimental Setup

In the experiments, we used a registry with 150 services with 750 operations in total. In case (1),
the registry had a total of 600 facets with structural, behavioural, quality, and context facets,
while in case (2) the registry had a total of 450 facets with structural, quality, and context facets.
The services used in the experiments were concerned with the GPS service domain of the “Route
Planner” scenario (see Section 1). The evaluation of the framework’s performance was
incremental considering registries with 50, 100 and 150 services each time. The incremental
evaluation was adopted in order to analyse how the increase in the number of services affects the
query execution time. The time taken to execute each query for different registry sizes was
calculated as the average across five executions of the query using a Pentium machine of 2.33
GHz with 3.23 GB RAM.

Table 3: Types of queries used in the experiments

Q1 Structural

Q2 Structural and behavioural

Q3 Structural, behavioural and soft non-contextual constraint

Q4 Structural, behavioural, soft non-contextual constraint and contextual constraint

In the experiments, we measured the time taken for executing four different queries drawn

from the “Route Planner” scenario. The queries included different types of criteria, as
summarized in Table 3. For each different type of criteria we used the same weight value of 1.
More specifically, we used variants of the query described in Figure 4 without the hard constraint.
The reason for not using hard constraints in the experiments was because such constraints could
filter out services before the ranking stage during query execution and, therefore, artificially reduce
the query execution time.

The query used in the experiment had one extra soft non-contextual and one extra contextual
constraint from the query in Figure 4. These constraints are shown in Figure 8.

As shown in Figure 8, the constraint sub-query (C1) is a soft non-contextual constraint
representing the fact that the service to be identified to replace the GPS service needs to be
available 24 hours a day. This constraint has a weight of 0.5 and is represented by the conditions
that verify if the opening time hours specified in the facet QoS has a minimum value of 00:00 and
a maximum value of 24:00. This is specified by a conjunction of two LogicalExpression elements
with their respective XPath expression contents and constant sub-elements.

The second constraint sub-query (C2) is a soft contextual constraint concerned with the time
to process the payment to use GPS service. This constraint specifies that any candidate service
needs to have a context operation associated with operation makePayment classified in the
category GREDIA_RELATIVE_TIME in ontology http://eg.org/CoDAMoS_Extended.xml, and
the result of executing this operation has to be equal to SECONDS-5 for this service to be
considered.

<?xml version="1.0" encoding="utf-8"?>
<!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies.com) -->
<tns:ServiceQuery xmlns:tns="http://gredia.eu/schema/SerDiQueL" xmlns:csql="http://gredia.eu/schema/Constraint_SQL"
 xmlns:tnsb="http://gredia.eu/schema/Behavour_SQL" xmlns:tnsc="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 queryID="UUID:550e8400-e29b-41d4-a716-446655440000" name="Query1">

 <tns:Parameter name="mode" value="PUSH" />
 <tns:Parameter name="type" value="dynamic" />
 <tns:Parameter name="threshold" value="1.0" />

 <!-- Structural sub-query -->
 <tns:StructuralQuery> <!-- WSDL of the GPS service -- ></tns:StructuralQuery>

 <!-- Behavioural sub-query -->
 <tnsb:BehaviourQuery> ….. ….. …. </tnsb:BehaviourQuery>

 <!-- Constraints sub-queries -->
 <tnsa:ConstraintQuery name="C1" type="SOFT" contextual="false" weight="0.5">
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:NonContextOperand facetName="QoS" facetType="QoS">
 //QoSCharacteristic[Name="Availability"]/Metrics/Metric[Name="OpenTime"][Unit="Hours"]/MinValue
 </tnsa:NonContextOperand>
 </tnsa:Operand1>
 <tnsa:Operand2>
 <tnsa:Constant type="STRING">00:00</tnsa:Constant>
 </tnsa:Operand2>
 </tnsa:Condition>
 <tnsa:LogicalOperator>AND</tnsa:LogicalOperator>
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:NonContextOperand facetName="QoS" facetType="QoS">
 //QoSCharacteristic[Name="Availability"]/Metrics/Metric[Name="OpenTime"][Unit="Hours"]/MaxValue
 </tnsa:NonContextOperand>
 </tnsa:Operand1>
 <tnsa:Operand2>
 <tnsa:Constant type="STRING">24:00</tnsa:Constant>
 </tnsa:Operand2>
 </tnsa:Condition>
 </tnsa:LogicalExpression>
 </tnsa:LogicalExpression>
 </tnsa:ConstraintQuery>

 <tnsa:ConstraintQuery name="C2" contextual="true" type="SOFT" weight="0.5">
 <tnsa:LogicalExpression>
 <tnsa:Condition relation="LESS-THAN-EQUAL-TO">
 <tnsa:Operand1>
 <tnsa:ContextOperand serviceID="7021.0051" serviceOperationName="makePayment">
 <tnsa:ContextCategory relation="EQUAL-TO">
 <tnsa:Category1>
 <tnsa:Document location="http://eg.org/CoDAMoS_Extended.xml" type="ONTOLOGY" />
 </tnsa:Category1>
 <tnsa:Category2>
 <tnsa:Constant type="STRING">GREDIA_RELATIVE_TIME</tnsa:Constant>
 </tnsa:Category2>
 </tnsa:ContextCategory>
 </tnsa:ContextOperand>
 </tnsa:Operand1>
 <tnsa:Operand2>
 <tnsa:Constant type="STRING">SECONDS-5</tnsa:Constant>
 </tnsa:Operand2>
 </tnsa:Condition>
 </tnsa:LogicalExpression>
 </tnsa:ConstraintQuery>

</tns:ServiceQuery>

 Fig. 8. Example of the constraint query used in the evaluation specified in SerDiQueL

4.2 Performance Results

Table 4 presents the execution times in milliseconds of queries Q1 to Q4 in the pull mode of
query execution and the average time required for retrieving services from the registry, for the
different sizes of service registries for both case (1) and case (2). Table 5 presents a breakdown of
the total query execution time into the time that was needed to: (a) retrieve services from the
registry, (b) execute structural matching, (c) execute behavioural matching, (d) execute soft non-
contextual matching, and (e) execute contextual matching in both cases in the experiments.

It should also be noted that in the results presented in Tables 4 and 5, all the n services that
were included in the registries of different sizes n, were evaluated against all the criteria that were
included in each query. This means that in no case the evaluation of any of the criteria in a query
was performed against a number of services that was smaller than the given registry size n.

Table 4. Experiment results for each query in pull mode of execution (msec)

Number of Services 50 100 150

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Registry Retrieval 17867 17941 34747 34532 51577 51257

Q1 1653 1695 3295 3281 4924 4869

Q2 15208 52346 29520 103855 44106 155937

Q3 15384 52512 29836 104161 44571 156384

Q4 24822 61922 45979 120164 67997 180825

As shown in Tables 4 and 5, the time taken to retrieve services from the registry was
significantly larger than the time taken to execute the different types of matchings. This is
because the eXist database [3] that was used to implement the registry offers a low data retrieval
performance. Although the implementation of the service registry is not the focus of our work,
the use of a proactive push mode of query execution presented in this paper, alleviated this
problem given that replacement services are selected in parallel to the execution of an application
from an up-to-date set of candidate services, as discussed below and shown in Table 6. Moreover,
except in the case of changes in the context of an application environment, the set of candidate
services has a reduced number of services when compared to an entire service registry.

Table 5. Experiment results for different matching criteria in pull mode of execution (msec)

Number of Services 50 100 150

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Registry Retrieval 17867 17941 34747 34532 51577 51257

Structural 1653 1695 3295 3281 4924 4869

Behavioural 13555 50651 26225 100574 39182 151068

Non-Contextual 177 166 316 306 465 447

Contextual 9437 9410 16143 16003 23426 24442

Total 42689 79863 80727 154696 119573 232082

As shown in Tables 4 and 5, the matching time for all the different queries increased linearly
with the addition of more services in the registry. Furthermore, the execution time for different
types of matching criteria also increased linearly with the number of services in the registry in all
cases.

The experiment also showed that the times taken to perform behavioural matching in both
cases were substantially higher than the times taken for each of the other matchings. This is
because in case (1), in the behavioural matching, a path representing the behavioural part of a
query needs to be evaluated for all the paths in the state machine that represents a service, and
this process had to consider all the possible combinations of mappings between query and service
operations. In case (2), the time to perform behavioural matching was larger than the time
required to perform the same matching in case (1). This is because in case (2) the monitor
generates runtime tests for each candidate service in the registry and verifies the behavioural
properties against the generated events. To generate these tests, however, the monitor must
computes all the possible sequences of operations that are specified in the WSDL of the candidate
service and invoke the operations in the exact order of their appearance in each sequence.
Furthermore, the monitor has to capture the SOAP messages exchanged between the service and
its client in each test and transform these messages into EC events which are checked against the
EC monitoring formulas that represent the behavioural conditions of the query. The increase of
the time to perform behavioural matching was observed in queries Q2, Q3, and Q4 since these
queries have behavioural constraints. It should be appreciated, however, that this increase in the
query execution time is justified by the need to support behavioral matching even when there are
no behavioural specifications for services in registries, something that is often the case as
indicated by existing public service registries (e.g., SEEKDA).

Furthermore, as shown in Table 5, the time that was taken to evaluate non-contextual
constraints was smaller than the time taken for each of the other matching criteria. Another
observation that should be noted in connection to this time is that it was also significantly lower
than the time taken for evaluating contextual constraints. This was because in non-contextual
constraint matching, the non-contextual condition in a query is evaluated against facets in the
registry by comparing elements retrieved by evaluating XPath expressions. In the case of contextual
matching, however, the computation is more expensive as it requires the invocation of context
operations at runtime in order to obtain the context values for evaluating the context conditions in
queries. The results for the contextual matching are similar for both case (1) and case (2). This is
due to the fact that in both cases, operations in context services are invoked to provide contextual
information that needs to be evaluated against the contextual requests.

Table 6 presents the results of executing query Q4 in push mode for cases (1) and (2). The table
shows the time needed to: (a) prepare the set of candidate services for a subscribed query at the
initial stage in the process and (b) identify a service for replacing a service S in the service-based
application due to (i) unavailability of S, (ii) availability of a new service, or (iii) changes in the
service bound to the application. We have executed the query five different times for each of
situations (i), (ii) and (iii), for each registry size (i.e. 50, 100 and 150 services). In each run, we have
simulated the events concerned with the relevant cases. Table 6 presents the average time across all
the runs.

As shown in Table 6, the times to identify a service due to situations (i), (ii), and (iii) are very
small when compared to the time to identify a service in pull mode of query execution. The initial
time required for building the set of candidate services for a subscribed service and query in the
push mode of query execution, however, is comparable to the time needed for executing a query in
pull mode in both cases (1) and (2). It should be appreciated, however, that in the case of push
mode, the initial phase for building the set of candidate services is performed only once for a
subscribed service and query, and in parallel to the execution of the application, and the real time
needed for identifying a service due to situations (i), (ii) and (ii) are the ones shown in the last three
rows of Table 6.

Furthermore, one should consider the longer term cost of the two modes of query execution.
More specifically, assuming that the service associated with query Q4 becomes unavailable several
times, in the pull mode of query execution the total cost of service discovery required to identify
replacement services using Q4, will be in average 42689 milliseconds for each time (for case (1))
and 79863 milliseconds (for case (2)), with a service registry of 50 services; 80727 milliseconds for
each time (for case (1)) and 154696 milliseconds (for case (2)), with a service registry of 100
services; and 119573 milliseconds for each time (for case (1)) and 232082 milliseconds (for case
(2)), with a service registry of 150 services. In contrast, in the push mode of query execution, the
respective total average times will be 27 milliseconds (for case (1)) and 25 milliseconds (for case
(2)), for each time. Similar discrepancies exist for the cases in which a new service becomes
available (average times of 798 and 1467 milliseconds for cases (1) and (2), respectively, for each
time), or there is a change in a service (average times of 828 and 1479 milliseconds for cases (1)
and (2), respectively, for each time). Moreover, in the push modes of query execution, the above
activities will be executed in parallel to the execution of the application.

The results in Table 6 show that the time to identify a service due to unavailability (situation (i))
of a service is smaller than the time to identify a service due to changes in a service (situation (iii))
or the time to evaluate a new service that becomes available (situation (ii)), in both cases (1) and
(2). This is due to the fact that situations (ii) and (iii) require the execution of the matching process
between the service and the query in order to calculate their respective distance, while in situation
(i) a replacement service is taken from the set of candidate services. Moreover, the average times to
identify a replacement service due to unavailability of a participating service are very similar for
both cases (1) and (2). However, the times for the situations concerned with the availability of a new
service (ii) and change in a service (iii) in case (2) are substantially larger than the times for these
situations in case (1). This is because, in both cases, in situation (i) a replacement service is taken
from the set of candidate services, while in situations (ii) and (iii) it is necessary to match a service
against the query and, in case (2), the behavioural matching is executed by the use of the monitor
component that causes increase of the time.

Table 6: Times to execute query Q4 in push mode of execution (in milliseconds)

 50 100 150

Prepare
Candidate
Services

Registry Retrieval Case 1 17999 37185 52684

Case 2 18249 34951 51571

Structural Case 1 1109 3734 5547

Case 2 2187 3859 5406

Behavioural Case 1 13906 26967 39107

Case 2 52200 102318 152857

Non-Contextual Case 1 187 343 484

Case 2 203 344 500

Contextual Case 1 9327 16405 23952

Case 2 9608 16216 24138

Total Case 1 42576 84712 121899

Case 2 82526 157767 234551

Identification

 Average
Unavailability (i) Case 1 27

Case 2 25

of
Replacement
Service

New service (ii) Case 1 798

Case 2 1467

Service change (iii) Case 1 828

Case 2 1479

We should note that Table 6 presents no results related to changes in the context of the

application environment. In this case, a new query must be created and evaluated against all the
services in the registry. Therefore, the time to identify a service to replace an existing service due to
change in the context of an application environment is equivalent to the time to execute a query in
pull mode.

Overall, the results of our experiments have demonstrated that our framework has good
performance and that the use of a proactive (push mode) of service discovery provides a
considerable gain in the time required for identifying replacement services at runtime. In addition,
the decrease in the performance caused by the use of the monitor component is justifiable when it is
not possible to guarantee the existence of behavioural service specifications in service registries. It
should be noted, however, that the purpose of using the monitor component is not to show that this
component is better, but to show that the monitor could be an alternative for performing service
discovery in the absence of behavioral and contextual characteristics of the services in the
registry, as explained in Section 1.

5 Related Work

In this section we review several approaches that are related to the work described in this paper.
More specifically, we review works in the topics of (i) runtime service discovery and (iii) runtime
monitoring of service based systems.

The use of semantic matchmaking approaches based on logic reasoning has been advocated
in [10][18][19][21][22][23][34][36][37][38][39][40]. These approaches do not consider dynamic
service discovery in pull and push modes of query execution. Distributed architecture has been
exploited in [34][36][37][38][39][40] to avoid bottleneck or single point failure during service
discovery process. Most of these approaches assume service descriptions expressed in OWL-S
[41] or RDF [42] and queries expressed using similar semantic information that is used to
describe services. A software agent based service discovery and execution architecture is
presented in [33]. In this architecture software agents monitor the actions of their human
counterparts to develop a user profile containing text values and context information. The user
profile is used to search open repositories of web services based on syntactic matching.

Other approaches for service discovery consider graph transformation rules [18][20], or
behavioural matching [15][17][24][28]. The work in [20] is limited since it cannot account for
changes in the order or names of the parameters, a limitation that is not present in our approach.
The approach in [17] proposes the use of (abstract) behavioural models of services to increase the
precision of the discovery process. Similarly, in [28], the authors use service behaviour signatures
to improve service discovery. The works in [16] and [29], describe functional and quality cross
cutting concerns of components and services as aspects and discovery is based on a formal
analysis and validation of these descriptions. In [28] a query language based on first-order logic
that focuses on properties of behaviour signatures is used to support the discovery process. The
work in [24] advocates the use of behavioural specifications represented as BPEL for service
discovery for resolving ambiguities between requests and services and use a tree alignment
algorithm to identify matching between request and services. However, the above approaches

have not been used to support service discovery in a proactive way during the execution of
service-based systems, as out approach does.

The work in [30] proposes QoS-based selection of services. In [21], the authors present a
goal-based model for service discovery that considers re-use of pre-defined goals, discovery of
relevant abstract services described in terms of capabilities, and contracting of concrete services
to fulfil requesting goals. Our work differs from these works since it includes other criteria for
service selection in a pro-active way.

Several approaches have also been proposed to support context awareness in service
discovery [12][14][31][33][35][43]. In [14], context information is represented by key-value pairs
attached to the edges of a graph representing service classifications. Unlike our framework, this
approach does not integrate context information with behavioural and quality matching and,
context information is stored explicitly in a service repository that must be updated following
context changes. A similar approach is described in [35], where context and QoS queries are
bundled together. In [12][43] queries, services, and context information are expressed in
ontologies. Context information in [12] can also be used as an implicit input to a service that is
not explicitly provided by the user (e.g. user location). In [33], context is treated as the
description of the environment in which a user performs his/her daily routines. This context
information is extracted by continually monitoring users’ action and used to predict what services
and/or information to present to the user in the future. The work in [31] locates components based
on context-aware browsing. In this approach, the interaction of software developers with the
development environment is monitored and candidate components that match the development
context based on signature matching are identified and presented to developers for browsing.
Unlike our approach, the above context-aware approaches support simple conditions regarding
context information in service discovery, do not fully integrate context with behavioural criteria
in service discovery, and have limited applicability since they depend on the use of specific
ontologies for the expression of context conditions.

Some query languages have been proposed to support web services discovery
[11][25][26][27][32]. In [11] the authors propose BP-QL a visual query language for business
processes expressed in BPEL. The behavioural part of the query language used in SeDiQueL also
supports querying BPEL specifications. However, our work differs from BPQL since it supports
the specification of structural, quality, and contextual conditions in the query, and the behavioural
conditions can be matched against the execution of the services. The query language proposed in
[27] is used to support composition of services based on user’s goals. NaLIX [32], which is a
language that was developed to allow querying XML databases based on natural language, has
also been adapted to cater for service discovery. In [25], the authors propose USQL (Unified
Service Query language), an XML-based language to represent syntactic, semantic, and quality of
service search criteria. The query language used in our framework is more complete, since it
accounts for the representation of behavioural aspects of the application being developed and
services to be discovered, as well as context characteristics of services and application
environments. An extension of USQL that incorporates behavioural based on UML sequence
diagrams has been proposed in [26]. The behavioural sub-query of SerDiQueL is not only
restricted to the representation of sequence of operations, but it allows for the representation of
other types of behavioural aspects.

Overall, most of the proposed approaches support service discovery for specific types of
service criteria in a reactive way and only in pull mode of query execution. Unlike them, our
framework supports proactive dynamic service discovery based on a comprehensive set of service
and application properties including structural, functional, quality, and contextual properties. It
also provides pull and push service discovery mechanisms, optimising service replacement during
the execution of an application. Furthermore, our approach provides an expressive query
language allowing the specification of a wide spectrum of constraints for the required services

and does not require the existence of behavioural and contextual service specifications, as in our
previous work [78][79][80].

Run-time monitoring has been the focus of research in the context of different areas including
requirements engineering [50][51][52], program verification [53][54][55][56], service centric
systems [57][60][47], and context aware systems [62][64][65].

Work in the area of monitoring service-centric systems has focused on the development of
standards and languages for specifying monitorable properties and methods for monitoring these
properties [57][4][60]. Runtime monitoring has also focused on monitoring service level
agreements (SLAs) [58][59]. In [47] a framework is presented to allow non-intrusive adaptation
of partner services within BPEL process without any down time of the overall system. In this
approach a BPEL process is monitored according to certain QoS criteria and existing partner
services may be replaced (in case a partner fails to satisfy QoS criteria) based on various
replacement strategies. The replacement service can be syntactically or semantically equivalent to
the interface used in BPEL. Formal verification techniques are used to verify the runtime
behavioural correctness of service centric systems in [88][89][90][91]. In [88][89], safety and
liveness properties of service centric systems are expressed using a subset of UML sequence
diagram. These diagrams are transformed into automata applying some formal translation
patterns. During the execution of service centric system the messages exchanged between the
participating services are captured and used to update the states of the automata to verify the
correctness of the execution. In [90][91] a formal model of a web service is constructed using a
variant of finite state machine and test cases are generated from this formal model. Generated
inputs are fed to the web service to verify that the implementation of the web service conforms to
the formal model. The approaches described in [87][92] apply aspect oriented programming for
runtime monitoring of service centric systems. In [87], monitorable properties of conversational
web services (i.e. stateful services) are expressed in algebraic specifications. A mapping between
the operations of a conversational web service and the operations in the corresponding algebraic
specification is defined. An evaluator holding the runtime representation of the algebraic
specification is dynamically attached to a service execution engine and at runtime it observes the
execution of the web service and evaluates whether the corresponding algebraic specification is
preserved. Streaming XML evaluation technique is used in [93] for runtime verification of web
service choreographies. Choreography constraints are expressed in Linear Temporal Logic (LTL)
and then the constraints are translated into XQuery expressions applying some transformation
patterns. These XQuery expressions are verified against the runtime XML messages exchanged
among the web service using standard XML streaming engine.

In context-based monitoring, a set of rules defining the properties that should be monitored to
detect changes of the context are specified [61][62][63]. Some formal [62][63] or semi formal
[61] languages are used to specify the properties to be monitored. The monitoring techniques in
this field facilitate a wide range of stakeholders for different purposes: they are exploited to help
the application developers to design the system that will adapt the user interface based on context
changes [64][65][66][67][68][69]; they may help the service provider to better understand the
user’s required quality of service and improve the delivered QoS [70][71]. Context information
can be measured at different level of abstractions, for example low-level context information can
be directly captured from the environment using sensors, input devices, and high level context
information can be inferred from low level context information and other information sources e.g.
browsing user profile [65][71][72][73]. System run-time events (i.e. context information) are

matched against the specified properties to detect a change in the context. Run-time events or
context information are obtained either from sensors [74], by polling system parameters (e.g.
battery level in mobile phone or available bandwidth) [75][76] or user input [74]. Given the
distributed nature of context-aware applications, context-based monitoring is mostly implemented
as distributed architecture with middleware support [74][75][76][77]. In this setting, a component
in the middleware acts as a coordinator that collects context information from distributed sources
and forwards the context information to the specific application/monitor that performs the
reasoning using context information.

Most of the monitoring approaches discussed above perform monitoring by weaving code
that implements the required checks inside the code of the system that is being monitored or the
service centric system execution environment. However in our monitoring approach monitoring is
carried out by a computational entity that is external to the system that is being monitored, is
carried out in parallel with the operation of this system and does not intervene with this operation
in any form. Moreover most of the discussed monitoring approaches use some form of linear
temporal logic (LTL) or state machines to specify the monitorable properties. Hence, the
monitoring conditions that they can support are only relative (e.g. an operation must be executed
prior to another an operation) and cannot involve absolute time conditions (e.g., an operation
invocation must produce a response within N milliseconds) and/or time boundaries (e.g., an
operation cannot be performed before 8am or after 10.00pm). But the specification of temporal
constraints with specific time boundaries are essential in specifying and verifying temporal
aspects of the execution of computer programs [95], and therefore service based systems. In the
monitoring approach of MoRSeD, we specify monitorable properties in Event Calculus which has
an explicit time structure allowing the specification of complex quantitative temporal conditions,
such as conditions about the exact time that can elapse between events and conditions regarding
the time range within which events are expected to occur.

6 Conclusions and Future Work

In this paper we present a monitor-based runtime service discovery framework that supports the
identification of services based on different characteristics of the service including structural,
behavioural and contextual characteristics. We establish the necessity of considering different
characteristics of the service to provide better precision when identifying services to replace
existing services during runtime. In the proposed framework, service discovery queries are
specified in an XML-based query language, called SerDiQueL and it allows to express
combination of various characteristics of the service based systems such as structural,
behavioural, quality and contextual conditions. The framework allows the discovery of services
that have multi faceted descriptions including service interface, behaviour, quality and context
descriptions. The query execution is based on the computation of distances between query and
services specifications. Our service discovery framework requires at least the existence of
structural description in the service registry and ensures the verification of behavioural and
contextual characteristics of services even when there are no available behavioural specifications
and up to date contextual values of different aspects of the services in the registry. The proposed
runtime service discovery framework supports identification of services based on service
discovery queries in both classic pull mode and proactive push mode of query execution. In
classic pull mode of query execution, as found in most of the approaches in the literature, a
service discovery is triggered only after the need for a new service arises. In such cases, pull
mode service discovery needs to wait until the occurrence of a problem in an existing service that

would lead to the execution of a query and identification of a better replacement service. The
whole process may take considerable time to complete and affect the performance of the service
based system. In addition to the classic pull mode query our proposed framework supports
proactive push mode service discovery where query execution is performed in parallel to the
execution of the service based system based using pre-subscribed queries. These queries are
associated with specific service binding points in the service based system and aim to maintain
up-to-date sets of candidate replacement services for these binding points.
 In absence of behavioural specification of a service in the service registry, the verification
of behavioural characteristics of the service is performed by the monitor component of our
framework. The monitor deploys a service client for each service that needs to be monitored and
the service client invokes the services and generates runtime events. The monitor verifies the
satisfiability of the behavioural characteristics of services represented in the service discover
query against the runtime events. However, the current implementation of the framework can not
guarantee the check for the satisfiability of behavioural properties with respect to all possible
workflow patterns that may appear in a service based system. Currently we are extending the
framework to ensure the satisfiability check of the behavioural characteristics of the services with
respect to all possible workflow patterns.

Acknowledgements

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme [FP7/2007-2013] under Grant Agreement 215483 (S-Cube).

References

1. SECSE Project. http://secse.eng.it.
2. WSDL. http://www.w3.org/TR/wsdl
3. eXist. http://exist.sourceforge.net
4. K. Mahbub, G. Spanoudakis. "A framework for Requirements Monitoring of Service Based

Systems", 2nd International Conference on Service Oriented Computing (ICSOC 2004), pp 84 –
93, November 2004.

5. M. Shanahan. “The event calculus explained”, In M. J. Wooldridge and M. Veloso, editors,
Articial Intelligence Today, Vol. 1600 of LNCS, pages 409--430. Springer, 1999

6. K. Mahbub, G. Spanoudakis. "Run-time Monitoring of Requirements for Systems Composed of
Web- Services: Initial Implementation and Evaluation Experience", IEEE International
Conference on Web Services (ICWS'05), pp. 257-265, 2005.

7. "Web Services Business Process Execution Language Version 2.0", OASIS Standard, 11 April
2007

8. Axis2, http://ws.apache.org/axis2/
9. WS-Eventing. http://www/w3/org/Submission/WS-Eventing
10. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven Web Service Composition in

METEOR-S, Int. Conf. on Services Comp. 2004.
11. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes. 32nd International

Conference on Very Large Data Bases, VLDB, Korea, September (2006).
12. F. Bormann, et al, Towards Context-Aware Service Discovery: A Case Study for a new Advice of

Charge Service”, 14th IST Mobile and Wireless Communications Summit, June 2005.
13. L. Choonhwa and S. Helal. Context Attributes: An Approach to Enable Context-awareness for

Service Discovery, 2003 Symp. on App. & the Internet.

14. S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-Aware Service Selection Based on Dynamic
and Static Service Attributes.IEEE Int. Conf. on Wireless and Mobile Computing, Networking and
Comm., 2005.

15. D. Grirori, J.C. Corrales, and M.Bouzeghoub. Behavioral Matching for Service Retrieval,
International Conference on Web Services, ICWS 2006, USA, September 2006.

16. J. Grundy and G. Ding. Automatic Validation of Deployed J2EE Components Using Aspects.
IEEE 16th International Conference on Automated Software Engineering, USA, November 2001.

17. R.J. Hall and A. Zisman. Behavioral Models as Service Descriptions, Int. Conf. on Service
Oriented Computing, USA, 2004

18. J.H. Hausmann, R. Heckel and M. Lohman. Model-based Discovery of Web Services, Int. Conf.
on Web Services, 2004.

19. W. Hoschek. The Web Service Discovery Architecture, IEEE/ACM Supercomputing Conf., USA,
2002.

20. U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic Location of Services,
European Semantic Web Conference, 2005.

21. M. Klein and A. Bernstein. Toward High-Precision Service Retrieval. IEEE Internet Computing,
30-36, January 2004.

22. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery with OWLS-
MX, Int. Conf. on Autonomous Agents and Multiagent Systems, 2006.

23. L. Li and I. Horrock. A Software Framework for Matchmaking based on Semantic Web
Technology, WWW Conf. Work. on Eservices and the Semantic Web, 2003.

24. R. Mikhaiel and E. Stroulia. “Interface- and Usage-aware Service Discovery”, 4th International
Conference on Service Oriented Computing (ICSOC), December 2006.

25. M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos. Discovering Web Services in JXTA
Peer-to-Peer Services in a Unified Manner. 4th International Conference on Service Oriented
Computing (ICSOC), December (2006).

26. M. Pantazoglou, A. Tsalgatidou, and G. Spanoudakis, G.: Behavior- aware, Unified Service
Discovery. In Proceedings of the Service-Oriented Computing: a look at the inside Workshop,
SOC@Inside'07, Austria, September, 2007.

27. M. Papazoglou, M. Aiello, M. Pistore, J. Yang. XSRL: A Request Language for web services,
http://citeseer.ist.psu.edu/575968.html

28. Z. Shen and J. Su. Web Service Discovery based on Behavior Signatures. Int. Conf. on Service
Computing , SCC, July 2005.

29. S. Singh, J. Grundy, J. Hosking, J. Sun. An Architecture for Developing Aspect-Oriented Web
Services, 3rd European Conf. in Web Services, 2005.

30. X. Wang, T. Vitvar,, T. Kerrigan, and I. Toma . “A QoS-Aware Selection Model for Semantic
Web Services”, 4th International Conference on Service Oriented Computing, ICSOC, USA, 2006

31. Y. Ye and G. Fischer. Context-Aware Browsing of Large Component Repositories. IEEE 16th
International Conference on Automated Software Engineering, ASE, USA, November 2001.

32. L.Y. Yunyao, H. Yanh, and H. Jagadish,. NaLIX: an Interactive Natural Language Interface for
Querying XML, SIGMOD 2005,Baltimore, June (2005).

33. M.B. Blake, D.R. Kahan, and M.F. Nowlan, “Context-Aware Agents for User-Oriented Web
Services Discovery and Execution” Special Issue on Context-Based Web Services, Distributed
and Parallel Databases, Vol. 21, No. 1, pp 39-58, February 2007

34. Lynch, D., Keeney, J., Lewis, D., O'Sullivan, D, "A Proactive approach to Semantically Oriented
Service Discovery", Proceedings of the Second Workshop on Innovations in Web Infrastructure
(IWI 2006), Co-located with the 15th International World-Wide Web Conference, Edinburgh,
Scotland. May 2006.

35. I. Braun and A. Strunk, G. Stoyanova and B. Buder, "ConQo - A Context- And QoS-Aware
Service Discovery", IADIS; Proceedings of WWW/Internet; 2008

36. K. Arabshian and H. Schulzrinne, Distributed Context-aware Agent Architecture for Global
Service Discovery, The Second International Workshop on Semantic Web Technology For
Ubiquitous and Mobile Applications (SWUMA'06), Trentino, Italy, August 2006

37. K. Arabshian and H. Schulzrinne, An Ontology-based Hierarchical Peer-to-Peer Global Service
Discovery System, Journal of Ubiquitous Computing and Intelligence Volume 1, Number 2, pp
133-144, December 2007

38. K. Arabshian, C. Dickmann, H. Schulzrinne, Service Composition in an Ontology-based Global
Service Discovery System, Columbia University Technical Report CUCS-033-07, New York, NY,
September 2007

39. K. Arabshian and H. Schulzrinne, Combining Ontology Queries with Key Word Search in Service
Discovery, ACM/IFIP/USENIX 8th International Middleware Conference, Newport Beach
California, November 2007

40. R. Romeikat, B. Bauer, "Towards Semantically-Enhanced Distributed Service Discovery",
Proceedings of the Second International Conference on Internet and Web Applications (ICIW
2007), Le Morne, Mauritius, May 2007

41. OWL-S 1.0 Release. http://www.daml.org/services/owls/1.0/.
42. World Wide Web Consortium, W3C (2004): Resource Description Framework, W3C

Recommendation 10 February 2004, http://www.w3.org/RDF/
43. F. Klan, "Context-aware service discovery, selection and usage", 18th GI-Workshop on the

Foundations of Databases, June 2006
44. D. Ardagna and B. Pernici, "Adaptive Service Composition in Flexible Processes",IEEE

Transactions on Software Engineering, Volume 33 , Issue 6 (June 2007)
45. L. Baresi, E. Di Nitto, C. Ghezzi, S. Guinea “A framework for the deployment of adaptable web

service compositions”, Service Oriented Computing and Applications 1(1): 75-91 (2007)
46. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M. Shan, "Adaptive and Dynamic Service

Composition in eFlow", Software rechnology laboratory, HPL-2000-39, March 2000
47. O. Moser, F. Rosenberg, S. Dustdar: “Non-intrusive monitoring and service adaptation for WS-

BPEL”. WWW 2008: 815-824
48. O. Moser, F. Rosenberg, S. Dustdar: “VieDAME - flexible and robust BPEL processes through

monitoring and adaptation”. ICSE Companion 2008: 917-918
49. M. B. Juric, B. Mathew, and P. Sarang. "Business Process Execution Language for Web Services:

An Architect and Developer's Guide to Orchestrating Web Services", Packt Publishing, second
edition, 2006.

50. M. Feather, S. Fickas. "Requirements Monitoring in Dynamic Environments". Proc. of Int. Conf.
on Requirements Engineering, 1995

51. M. Feather, et al. "Reconciling System Requirements and Runtime Behaviour". Proc. of 9th Int.
Work. on Software Specification & Design, 1998.

52. W. Robinson. "Monitoring Software Requirements using Instrumented Code". In Proc. of the
Hawaii Int. Conf. on Systems Sciences, 2002.

53. Chen, F. and Rosu, G, (2003). “Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation”. In Electronic Notes in Theoretical Computer
Science 89 No. 2, Published by Elsevier Science B.V.

54. Havelund, K. and Roşu, G. (2004). “An Overview of the Runtime Verification Tool Java
PathExplorer”, Form. Methods Syst. Des. 24, pp.189-215.

55. Dingwall-Smith A., Finkelstein A. "From Requirements to Monitors by Way of Aspects". Proc. of
1st Int. Conf. on Aspect-Oriented Software Development, 2002

56. Capra L., et al. "Reflective middleware solutions for context-aware applications", LNCS 2192,
2001

57. Baresi, L. and Guinea, S. (2005). “Dynamo: Dynamic Monitoring of WS-BPEL Processes”,
ICSOC 05, 3rd International Conference On Service Oriented Computing, Amsterdam, The
Netherlands

58. Ghezzi C., Guinea S. (2007), "Runtime Monitoring in Service Oriented Architectures", In Test and
Analysis of Web Services, (eds) Baresi L. & di Nitto E., Springer, 237-264, 2007.

59. Mahbub K., and Spanoudakis G., (2007) "Monitoring WS-Agreements: An Event Calculus Based
Approach" Springer monograph on Test and Analysis of Web Services, , (eds) L.Baresi, E.
diNitto, Springer Verlang, 2007

60. Qin Li, (2007) “A Dynamic Verification Platform for BPEL Environments” MSc. Thesis,
Department of Electrical & Computer Engineering, University of Alberta May 29, 2007

61. V. Talwar, C. Shankar, S. Rafaeli, D. Milojicic, S. Iyer, K. Farkas, and Y. Chen. Adaptive
monitoring: Automated change management for monitoring systems. In Proceedings of the 13th
Workshop of the HP OpenView University Association (HP-OVUA 2006), pages 21–24, 2006.

62. M. Salifu, Y. Yu, and B.Nuseibeh. Analysing monitoring and switching requirements using
constraint satisfiability. In Technical Report- ISSN 1744-1986; Department of Computing; Faculty
of Maths, Computing and Technology, UK, 2008.

63. M. Salifu, Y. Yu, and B. Nuseibeh. Specifying monitoring and switching problems in context. In
15th IEEE International Requirements Engineering Conference, 2007.

64. M-A. Hariri, D. Tabary, S. Lepreux, and C. Kolski. Context aware business adaptation toward
user interface adaptation. In Communications of SIWN, pages 46–52. Springer Verlag, 2008.

65. K. Goslar, S. Buchholz, Alexander Schill, and H. Vogler. A multidimensional approach to context
awareness. In International Institute of Informatics and Systemics; Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI2003), 2003.

66. L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware reflective middleware system
for mobile applications. In In IEEE Transactions of Software Engineering Journal (TSE).
November 2003, 2003.

67. A. Seffah, P. Forbrig, and H. Javahery. Multi-devices ”multiple” user interfaces: development
models and research opportunities. In Journal of Systems and Software 73, pages 287–300, 2004.

68. J. Eisenstein, J. V, and A. Puerta. Adapting to mobile contexts with user-interface modeling. In
Proc. of 3 rd IEEE Workshop on Mobile Computing Systems and Applications WMCSA, 2000.

69. J. E. Bardram. The java context awareness framework (jcaf) - a service infrastructure and
programming framework for context-aware applications. In In Hans Gellersen, Roy Want, and
Albrecht Schmidt, editors, Proceedings of the 3rd International Conference on Pervasive
Computing, Lecture Notes in Computer Science, Munich, Germany. Springer Verlag, 2005.

70. K.E. Wac. Towards qos-awareness of context-aware mobile applications and services. In In:
Proceedings of the On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE (OTM2005), 31 Oct - 4 Nov 2005, Agia Napa, Cyprus. pp. 751-760. Lecture Notes in
Computer Science 3760, pages 751–760. Springer Verlag, 2005.

71. M. Baldauf and S. Dustdar anf F. Rosenberg. A survey on context-aware systems. In International
Journal of Ad Hoc and Ubiquitous Computing, pages 263–277, 2007.

72. J.-Z. Sun and J. Sauvola. Towards a conceptual model for context-aware adaptive services. In
Proceedings of the Fourth International Conference on Parallel and Distributed Computing,
Applications and Technologies, pages 27–29, 2003.

73. C. Anagnostopoulos, A. Tsounis, and S. Hadjiefthymiades. Context awareness in mobile
computing environments: A survey. In Mobile eConference, 2004.

74. Newberger A. and Dey A. Designer support for context monitoring and control. In Intel Research,
2003.

75. C. Bettini, D. Maggiorini, and D. Riboni. Distributed context monitoring for continuous mobile
services. In John Krogstie, Karlheinz Kautz, David Allen (Eds.): Mobile Information Systems II:
IFIP Working Conference on Mobile Information Systems (MOBIS), pages 123–137. Springer,
2005.

76. C. Bettini, D. Maggiorini, and D. Riboni. Distributed context monitoring for the adaptation of
continuous services. In World Wide Web Journal (WWWJ), Special issue on Multichannel
Adaptive Information Systems on the World Wide Web. Springer, 2007.

77. P. Bratskas, N. Paspallis, and G. A. Papadopoulos. An evaluation of the state of the art in
contextaware architectures. In Sixteenth International Conference on Information Systems
Development (ISD 2007). Springer Verlag, 2007.

78. A. Zisman, G. Spanoudakis, and J. Dooley. “Proactive Runtime Service Discovery”, IEEE 2008
International Service Computing Conference (SCC ’08), Hawaii, July 2008.

79. A. Zisman, G. Spanoudakis, and J. Dooley. “A Framework for Dynamic Service Discovery”,
IEEE Int. Conference on Automated Software Engineering, ASE, Italy, September, 2008.

80. A. Zisman, G. Spanoudakis, J. Dooley. A Query Language for Service Discovery, 4th
International Conference on Software and Data Technologies - ICSOFT 2009, Bulgaria, July
2009.

81. G. Spanoudakis, K. Mahbub, and A. Zisman, "A Platform for Context Aware Runtime Web
Service Discovery", IEEE International Conference on Web Services (ICWS), July 9-13, 2007,
Salt Lake City, Utah, USA

82. Cordella L.P., et al., An Improved Algorithm for Matching Large Graphs, 3rd IAPR-TC15 Work.
on Graph-based Representations, 2001

83. Morato J., Marzal M. A., Llorens J., and Moreiro J., 2004. “WordNet Application”, Proceedings
of GWC 2004. The Second Global Wordnet Conf. 2004, Brno, Czech Republic.

84. A. Kozlenkov, G. Spanoudakis, A. Zisman, V. Fasoulas, F. Sanchez. Architecture-driven Service
Discovery for Service Centric Systems, Electronic Government: Concepts, Methodologies, Tools,

and Applications, Chapter 2.24 (version of Journal below), (ed) Ari-Veikko Anttiroiko,
Information Science Reference, 978-1-59904-947-2, pp 811-842, 2008.

85. A.Kozlenkov, G.Spanoudakis, A.Zisman, V. Fasoulas, F.Sanchez. Architecture-driven Service
Discovery for Service Centric Systems, International Journal of Web Services Research, special
issue on Service Engineering, 4(2), April-June 2007.

86. M. J. Duftler, N. K. Mukhi, Aleksander Slominski,and Sanjiva Weerawarana. "Web Services
Invocation Framework (WSIF)". In Proceedings of the OOPSLA Workshop on Object–Oriented
Web Services, October 2001.

87. D. Bianculli and C. Ghezzi. Monitoring Conversational Web Services. In IWSOSWE’ 07, 2007.
88. Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O'Farrell, "Runtime monitoring of web service

conversations", Proceedings of the 2007 conference of the center for advanced studies on
Collaborative research, Richmond Hill, Ontario, Canada , 2007

89. J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O'Farrell, E. Litani, J. Waterhouse, "Runtime
Monitoring of Web Service Conversations," IEEE Transactions on Services Computing, 29 Jun.
2009. IEEE computer Society Digital Library. IEEE Computer Society,

90. D. Dranidis, D. Kourtesis, E. Ramollari, Formal Verification of Web Service Behavioural
Conformance through Testing, in Proc. of the 3rd South-East European Workshop on Formal
Methods, November 2007

91. D. Dranidis, E. Ramollari, D. Kourtesis, Run-time Verification of Behavioural Conformance for
Conversational Web Services, European Conference on Web Services, Eindhoven, November
2009.

92. S. Halle and R. Villemaire, "Runtime Monitoring of Message-Based Workflows with Data", 2008
12th International IEEE Enterprise Distributed Object Computing Conference.

93. S. Hallé, R. Villemaire, "Runtime monitoring of web service choreographies using streaming
XML", Proceedings of the 2009 ACM symposium on Applied Computing, Honolulu, Hawaii.

94. K. Mahbub and A. Zisman, "Replacement Policies for Service-Based Systems", 2nd International
Workshop on Service Monitoring, Adaptation and Beyond (MONA+), Collocated with
ICSOC/ServiceWave, Stockholm, Swedeen, November 23-24, 2009.

95. Lamport, L., What Good is Temporal Logic". Information Processing 83:657-668, 1983.

