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È neciessaria chosa che piegando la molla ch’era dritta, che dalla parte del suo colmo ella
si rarifichi, e dalla parte del cavo ella si condensi. La qual mutatione fa a uso di piramide,

onde si dimostra che in mezo d’essa molla non si a mai mutatione.

Leonardo da Vinci about bending of beam
Codex Madrid I, Folio 84, 1493
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Abstract

Due to the work of pioneering scientists of the past centuries, the three-dimensional theory
of elasticity is now a well-established, mature science. Nevertheless, analytical solutions
for three-dimensional elastic bodies are generally available only for a few particular cases
which represent rather coarse simplifications of reality. Against this background, the recent
development of advanced techniques and progresses in theories of structures and symbolic
computation have made it possible to obtain exact and quasi-exact resolution of the strong-
form governing equations of beam, plate and shell structures.

In this thesis, attention is primarily focused on strong-form solutions of refined beam
theories. In particular, higher-order beam models are developed within the framework of the
Carrera Unified Formulation (CUF), according to which the three-dimensional displacement
field can be expressed as an arbitrary expansion of the generalized displacements.

The governing differential equations for static, free vibration and linearized buckling
analysis of beams and beam-columns made of both isotropic and anisotropic materials are
obtained by applying the principle of virtual work. Subsequently, by imposing appropriate
boundary conditions, closed-form analytical solutions are provided wherever possible in
the case of structures with uncoupled axial and in-plane displacements. The solutions are
also provided for a wider range of structures by employing collocation schemes that make
use of radial basis functions. Such method may be seriously affected by numerical errors,
thus, a robust and efficient method is also proposed in this thesis by formulating a frequency-
dependant dynamic stiffness matrix and using the Wittrick-Williams algorithm as solution
technique.

The theories developed in this thesis are validated by using some selected results from
the literature. The analyses suggest that CUF furnishes a reliable method to implement
refined theories capable of providing almost three-dimensional elasticity solution and that the
dynamic stiffness method is extremely powerful and versatile when applied in conjunction
with CUF.
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Chapter 1

Introduction

1.1 One-dimensional structural theories

Beam models have been developed and exploited extensively over the last several decades for
structural analysis of slender bodies, such as columns, arches, helicopter and turbine blades,
aircraft wings and bridges amongst others. These models reduce the three-dimensional (3D)
problem into a set of one-dimensional (1D) variables, which depend only on the beam-axis
coordinate. Clearly, 1D structural theories, or beam theories, are simpler and computationally
more efficient than 2D (plate/shell) theories or 3D (solid) elasticity solutions. This simple
feature makes beams still very appealing for static and dynamic analyses of structures.

Over the years, many beam models have been developed using different approaches. The
main contributions made to the development of the beam theories are outlined in this chapter
by referring to different categories depending on the levels of complexity involved. Each
category is then described in detail in the subsequent chapters of this thesis.

The first known description of the mechanical behavior of a beam under bending was
given by Leonardo da Vinci. In his Madrid Codex [1], Leonardo correctly described the
bending behavior of a slender beam, as shown in Fig. 1.1. He hypothesized the well-known
linear distribution of the axial strain on the cross-section.

Figure 1.1 Leonardo’s description of beam bending [1].

1



Introduction

The classical, oldest and most frequently employed beam models are those by Bernoulli
[2] and Euler [3], hereafter referred to as Euler-Bermoulli Beam Model (EBBM), de Saint
Venant [4] (DSV) and Timoshenko Beam Model [5, 6] (TBM). These theories share many
important features but they also have some important differences. A comprehensive compari-
son of EBBM and TBM can be found in [7] and in Chapter 2 of this thesis. In essence, TBM
enhances EBBM and DSV by considering the rotatory inertia and shear deformation effects.
However, TBM considers only a uniform shear distribution through the cross-section of the
beam. It is well-known that a more appropriate distribution should at least be parabolic in
order to accommodate the zero stress boundary conditions on the free edges of the beam.
Shear correction factors related to the cross-sectional geometry are commonly employed as
remedies to compensate for the zero shear condition at the boundaries. While EBBM and
DSV are reliable tools for the analysis of homogenous, compact, isotropic slender beam
structures under bending, TBM can be employed for moderately thick orthotropic or isotropic
beams.

Classical beam theories represent a computationally cheap and, to some extent, reliable
tool for many structural mechanics problems. These models are essentially based on a linear
axial, out-of-plane displacement field and a constant transverse, in-plane displacement field.
In other words, these models can predict linear axial strain distributions and rigid transverse
displacements. Although this simplified displacement field requires no more than five degrees
of freedom (DOFs), it also precludes the possibility of detecting many important effects,
such as out-of-plane warping, in-plane distortions, torsion, coupling effects, or some other
local effects. These additional phenomena usually occur due to small slenderness ratios, thin
walls, geometrical and mechanical asymmetries, and the anisotropy of the material.

Many methods have been proposed to overcome the above limitations of classical beam
theories so as to allow the application of 1D models to any geometry or boundary conditions,
without jeopardizing their computational efficiency when compared to 2D and 3D models.
Several examples of these models can be found in well known books on the theory of
elasticity, for example, the book by Novozhilov [8]. A possible and modern grouping of all
these methodologies to build higher-order beam models could be made as follows:

• The introduction of shear correction factors.

• Inclusion of warping functions.

• Saint-Venant based 3D solutions and the implementation of the Proper Generalized
Decomposition (PGD) method.

• The Variational Asymptotic Beam Sectional Analysis (VABS) based on the Variational
Asymptotic Method (VAM).
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• The Generalized Beam Theory (GBT).

• The Carrera Unified Formulation (CUF).

As previously mentioned, some of the preliminary approaches were based on the intro-
duction of shear correction factors to improve the global response of classical beam theories,
see Timoshenko [5, 6, 9], Sokolnikoff [10] and Cowper [11].

The introduction of warping functions to improve the displacement field of beams is
another well-known strategy that followed. Warping functions were first introduced in
the framework of the Saint-Venant torsion problem [10, 12, 13]. Some of the earliest
contributions to this approach were those made by Umanskij [14], Vlasov [15] and Benscoter
[16].

The Saint-Venant solution has been the theoretical basis of many advanced beam models.
For instance, 3D elasticity equations were reduced to beam-like structures by Ladevéze
and his co-workers [17]. Using this approach, a beam model can be built as the sum of
a Saint-Venant part and a residual part and then applied to thick beams and thin-walled
sections.

The PGD for structural mechanics was first introduced by Ladevéze [18]. It is a useful
tool to reduce the numerical complexity of a 3D problem. Bognet et al. [19, 20] extended
PGD to plate/shell problems, whereas Vidal et al. [21] extended PGD to beams.

The asymptotic method, on the other hand, represents a significant tool to develop
structural models. In the beam model scenario, the works by Berdichevsky et al. [22, 23]
were among the earliest contributions that exploited the VAM. Such initiatives introduced an
alternative approach to construct refined beam theories in which a characteristic parameter
(e.g. the cross-sectional thickness of a beam) is exploited to build an asymptotic series. The
terms that exhibit the same order of magnitude as the parameter are retained. Some valuable
contributions on asymptotic methods related to VABS models can be found in [24].

Side by side to the above development, the GBT was essentially derived from Schardt’s
work [25–27]. The GBT enhances classical theories by exploiting a piece-wise description
of thin-walled sections. It has been employed extensively and extended, in various forms,
by Silvetre and Camotim [28]. Many other higher-order theories, based on enhanced dis-
placement fields over the beam cross-section, have been introduced to include non-classical
effects. Some considerations on higher-order beam theories were made by Washizu [29].
Other refined beam models can be found in the review carried out by Kapania and Raciti
[30, 31], which focused on static bending, vibration, wave propagations, buckling and post-
buckling problems. Refined beam models have been also exploited extensively for aeroelastic
applications. Some of the most important contributions are those by Librescu and Song [32]
and Qin and Librescu [33].
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One of the most recent contributions to beam theories has been developed within the
framework of the CUF [34]. The main novelty of CUF models is that the order of the theory
is a free parameter, or can be an input of the analysis and it can be chosen using a convergence
study. CUF can also be considered as a tool to evaluate the accuracy of any structural model
in a unified manner. For a comprehensive review of CUF literature, the readers are referred
to [35].

1.2 Numerical methods

In the majority of the literature on 1D-CUF, the Finite Element Method (FEM) has been used
to handle arbitrary complex geometries and loading conditions. Closed form solutions of the
structural problems discussed in this thesis can be solved in an exact sense only for a limited
class of problems. For example, by assuming the beam kinematics such as the ones which
satisfy the simply supported boundary conditions and by limiting the analysis to metallic or
cross-ply laminated composite structures, exact solution can be achieved. In this way the
axial and in-plane displacement fields can be decoupled and the governing equations can be
solved analytically.

To obtain quasi type closed-form solutions with arbitrary boundary conditions for eigen-
value problems, the Dynamic Stiffness Method (DSM) can be used. DSM has been quite
extensively developed for beam elements by Banerjee [36–40], Banerjee et al. [41], and
Williams and Wittrick [42]. Plate elements based on DSM were originally formulated by
Wittrick [43] and Wittrick and Williams [44]. Recently, DSM has been applied to Mindlin
plate assemblies by Boscolo and Banerjee in [45, 46] and to a higher order shear deformation
theory for composite plates by Fazzolari et al. [47, 48]. In these papers, some background
information on the use of DSM can be found.

The DSM is appealing in elastodynamic analysis because, unlike the FEM, it provides
the exact solution of the equations of motion of a structure once the initial assumptions on the
displacements field have been made. This essentially means that, unlike the FEM and other
approximate methods, the model accuracy is not unduly compromised when a small number
of elements are used in the analysis. For instance, one single structural element can be used
in the DSM to compute any number of natural frequencies to any desired accuracy. Of
course, the accuracy of the DSM will be as good as the accuracy of the governing differential
equations of the structural element in free vibration. In fact, the exact Dynamic Stiffness
(DS) matrix stems from the solution of the governing differential equations.

It should be noted that the DSM leads to a nonlinear, transcendental eigenvalue problem
and an iterative procedure may be needed for solution (see [49]). Thus, the availability
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of further numerical methodologies to be used for the approximate solution of the strong
form governing equations can be of interest. As an example, the use of alternative methods
to FEM and DSM for the analysis of structures, such as the meshless methods based on
collocation theory with Radial Basis Functions (RBFs), is attractive due to the absence of a
mesh and the considerable ease of the collocation techniques. In recent years, RBFs method
showed excellent accuracy in the interpolation of data and functions. The RBFs method was
first used by Hardy [50, 51] for the interpolation of geographical scattered data and later
used by Kansa [52, 53] for the solution of partial differential equations. Afterward, Ferreira
successfully applied RBFs to the analysis of beams and plates [54, 55]. RBFs method is
appealing because it results either in an algebraic system or in a linear eigenvalue problem
depending on the case. However, numerical instabilities may be encountered in this method
and they are discussed later in the present work.

In this thesis and in Pagani et al. [56–59], DSM has been extended to 1D-CUF models
for both metallic and generically laminated composite structures. Also, RBFs method is
explored as an alternative method for the solution of strong form governing equations for
CUF beams (see [60]).

1.3 Thesis objectives and outline

The present work aims at providing differential governing equations in strong form (as
opposed to weak form, which represents an integral form of these equations) of 1D refined
CUF structural models and their subsequent solutions by various closed-form and numerical
methods. A wide range of problems are considered, including static analysis, free vibration
analysis, free vibration of axially loaded beams, and linearized buckling analysis of beam-
columns. The main novelties of this research are: (i) the explicit expressions of the strong
form governing equations of CUF beam theories, especially the equations of motion of axially-
loaded beam-columns; (ii) the extension of DSM and RBFs to free vibration and buckling
analysis of refined CUF beam theories; and (iii) the exact closed-form benchmark solutions
for various structural problems, including analytical layer-wise solutions of laminated beams
and plates. The general lay-out of the thesis is as follows:

• Brief bibliographic surveys on classical and refined beam modelling techniques and
related solution methods are given in this introductory chapter.

• Chapter 2 discusses in detail the kinematics of slender structures. Starting from the clas-
sical assumptions, refined beam models are formulated as the natural consequences of
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the additions of terms within the displacement field. Various state-of-the-art approaches
are also discussed, including GBT, VAM and asymptotic models.

• In Chapter 3, higher-order beam models are formulated in a unified manner by em-
ploying the CUF. Within the framework of CUF, the beam kinematics are written as
the generic expansion of the generalized displacements using arbitrary cross-sectional
functions. Depending on the choice of the kind and the order of the cross-sectional
functions, various beam theories can be formulated. In this thesis, two classes of 1D
CUF models are considered. These are namely, the Taylor Expansion (TE) class and
the Lagrange Expansion (LE) class.

• The strong form governing equations of the generic, refined beam model are developed
in Chapter 4. By using the Principle of Virtual Work (PVW) as variational statement,
various problems are addressed by either including or excluding the virtual works due
to inertial loadings, external loadings and pre-stress along with the virtual work of
the strain energy. According to CUF, the governing equations are written in terms of
the fundamental nuclei. These nuclei, given the theory order, can be automatically
expanded to obtain the equations of the desired theory.

• In Chapter 5, closed-form analytical solutions are provided by imposing simply sup-
ported boundary conditions and limiting the analysis to metallic or cross-ply laminates.
Attention is focused on the static and free vibration problems, although the procedure
can be extended to other problems.

• The material and boundary condition limitations are overcome in Chapter 6, where
a collocation method is formulated by using RBFs to approximate the displacement
functions and the corresponding derivatives.

• In Chapter 7 the governing equations are rearranged and the transcendental dynamic
stiffness matrix is formulated. By using an iterative procedure, namely the Wittrick
and Williams algorithm [49], the non-linear eigenvalue problem is solved.

• Some selective results are discussed in Chapter 8. The attention is mainly focused on
the efficiency of both TE and LE models as well as on the accuracy of the proposed
numerical methodologies when applied to the analysis of solid and thin-walled cross-
section beams. Both metallic and composite beams and plates are addressed.

• The conclusions are finally drawn in Chapters 9 and 10.

Some appendices are provided for clarity and completeness.
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• In Appendix A, the material coefficients and the constitutive relations are discussed in
detail.

• Appendix B briefly recalls the resolution technique for a generic system of second
order differential equations, which is useful in the DSM formulation.

• An innovative forward/backward Gauss elimination algorithm is devised in Appendix C.

• Finally, a list of publications arising from the research is provided in Appendix D.
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Chapter 2

Kinematics of beams

This chapter provides details of some of the most important beam models that have been
developed in the last few years and, in most cases, are still being developed. For the sake
of brevity, only the main features of each formulation are given and described in order to
highlight their advantages and disadvantages. The right-handed Cartesian coordinate system
shown in Fig. 2.1 is adopted throughout this thesis.

x

z

y

W

Figure 2.1 Adopted coordinate system.

2.1 Classical beam theories

Consider a beam structure under bending in the plane xy (see Fig. 2.2). The kinematic field
of EBBM (Euler-Bernoulli Beam Model) can be written as:

ux = ux1

uy = uy1 − x
∂ux1

∂y
(2.1)
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∂ux1

∂y
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Un-deformed
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fz=

fzx

ux1

(a) EBBM

∂ux1

∂y

fz
fzx

ux1

x

(b) TBM

Figure 2.2 Differences between Euler-Bernoulli and Timoshenko beam theories.

where ux and uy are the displacement components of a point belonging to the beam domain
along x and y, respectively. ux1 and uy1 are the displacements of the beam axis, whereas
−∂ux1

∂y is the rotation of the cross-section about the z-axis (i.e. φz) as shown in Fig. 2.2a.
According to EBBM, the deformed cross-section remains plane and orthogonal to the beam
axis. EBBM neglects the cross-sectional shear deformation. Shear stresses play a very
important role in many problems (e.g. short beams, composite structures) and their omission
can lead to incorrect results. One may like to generalize Eq. (2.1) and overcome the EBBM
assumption of the orthogonality of the cross-section. The improved displacement field leads
to the TBM (Timoshenko Beam Model),

ux = ux1

uy = uy1 + x φz
(2.2)

TBM constitutes an improvement over EBBM since the cross-section does not necessarily
remain perpendicular to the beam axis after deformation and one degree of freedom (i.e. the
unknown rotation φz) is added to the original displacement field (see Fig. 2.2b). Nevertheless,
the main problem of TBM is that the homogeneous conditions of the transverse stress
components at the top/bottom surfaces of the beam are not fulfilled. It is well-known, in fact,
that TBM is based on a uniform shear distribution through the thickness of the cross-section
of the beam and a more appropriate distribution should at least be parabolic in order to
accommodate for the stress-free boundary conditions on the free edges of the beam (see
Fig. 2.3).
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x

y

Actual distribution
of shear stresses

Shear stress
distribution according

to TBM

b/2

Figure 2.3 Homogeneous condition of transverse stress components at the unloaded edges of
the beam.

One of the earlier attempts to improve the accuracy of TBM was the adoption of shear
correction factors. Shear correction factors have been introduced over the years to enhance
classical beam theories by several authors, see for example [5, 6, 9–11]. Shear correction
factors can be defined in various ways, and they depend on the problem characteristics to
a great extent. Two examples of shear correction factor definitions are given here. Cowper
[11] considered the mean deflection of the cross-section (W ), the mean angle of rotation of
the cross-section around the neutral axis (Φ) and the total transverse shear force acting on
the cross-section (Q), using the following integrals.

W =
1
Ω

∫ ∫
ux dxdz (2.3)

Φ =
1
I

∫ ∫
xuy dxdz (2.4)

Q =
∫ ∫

σxy dxdz (2.5)

where Ω is equal to the cross-section area, and I is the second moment of area of the cross-
section. The shear correction factor, KC, is then calculated by exploiting the following
equation:

∂W
∂y

−Φ =
Q

KCAG
(2.6)

where G is the shear modulus of beam material.

Gruttmann and Wagner [61] adopted the following definition of shear correction or shape
factor, which was earlier introduced in [62, 63]:

∫ ∫
(σ2

yx +σ
2
yz)dxdz =

F2
x

KG
x A

+
F2

z

KG
z A

(2.7)

In Eq. (2.7) the shear correction factors, KG
x and KG

z , are respectively obtained by imposing
Fz and Fx to be equal to zero.
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The shear correction factor can be seen as a nonphysical, but artificial way to overcome
classical beam modelling inconsistency. As shown by Carrera et al. [64], refined beam
models based on higher-order displacement fields do not require shear correction factors.

2.2 Higher-order models

For a complete removal of the inconsistency in Timoshenko’s beam theory and an improve-
ment of the accuracy of classical beam theories, one may have to assume an arbitrary number
of terms in the displacement field [29]. However, the number and the characteristics of
these higher-order terms should be chosen properly. For example, in order to overcome the
inconsistency of TBM, one can require Eq. (2.2) to have null transverse strain components
(γxy =

∂ux
∂y +

∂uy
∂x ) at x = ±b

2 of Fig. 2.3. This leads to a third-order displacement field as
follows, which provides the basis for the well-known Vlasov-Reddy beam theory [15, 65],

ux = ux1

uy = uy1 + f1(x) φz +g1(x)
∂ux1

∂y
(2.8)

where f1(x) and g1(x) are cubic functions of the x coordinate. It should be noted that, even
though the model based on Eq. (2.8) has the same number of degrees of freedom as the TBM,
it clearly overcomes classical beam theory limitations by postulating a quadratic distribution
of transverse stresses on the cross-section of the beam.

However, the above theories are not able to include any kinematics resulting from the
application of torsional moments. The simplest way to include torsion consists of considering
a rigid rotation of the cross-section around the y-axis (i.e. φy), see Fig. 2.4. The resulting
displacement model is:

ux = z φy

uz =−x φy
(2.9)

where uz is the displacement component along the z-axis. According to Eq. (2.9), a linear
distribution of transverse displacement components is needed to detect the rigid rotation of
the cross-section about the beam axis. Beam models that include second-order shear strain
capabilities and torsional components can be obtained by summing all the contributions
discussed above. By considering the deformations also in the yz-plane, one has

ux = ux1 + z φy

uy = uy1 + f1(x) φz + f2(z) φx +g1(x)
(

∂ux1

∂y
+ z

φy

∂y

)
+g2(z)

(
∂uz1

∂y
− x

φy

∂y

)
uz = uz1 − x φy

(2.10)
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Figure 2.4 Rigid torsion of the beam cross-section.

where f1(x), g1(x), f2(z), and g2(z) are all cubic functions. For example, in the case of a
rectangular cross-section, the cubic functions from Vlasov’s theory [15] are

f1(x) = x− 4
3b2 x3, g1(x) =− 4

3b2 x3

f2(z) = z− 4
3h2 z3, g2(z) =− 4

3h2 z3

(2.11)

where b and h are the dimensions of the rectangular cross-section along the x- and z-axis,
respectively.

The aforementioned beam model, although an advancement, cannot account for many
other higher-order effects, such as the second-order in-plane deformations of the cross-
section and out-of-plane warping. Many refined beam theories have been proposed over
the last decades to overcome these limitations of classical beam modelling and they are
briefly discussed in the following sections. As a general guideline, one can state that the
richer the kinematic field, the more accurate the 1D model turns out to be [29]. However,
a richer displacement field clearly leads to a higher number of equations to be solved.
Furthermore, the choice of the additional expansion terms is obviously problem dependent.
The most accurate beam models that have been developed in the last few years are now
briefly discussed.

2.2.1 Generalized beam theory

The assumption of rigid cross-section introduced by the classical models does not allow the
correct detection of the cross-sectional warping, which is a fundamental consideration in
the characterization of thin-walled beams. The Generalized Beam Theory (GBT) represents
a family of models introduced to overcome this problem and to accurately describe the
mechanical behaviour of thin-walled members. GBT originated from the pioneering works
of Schardt [25, 26] and Schardt and Heinz [66]. First-order beam models based on GBT
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Figure 2.5 GBT approximation, global, ()g, and local, ()L, reference systems.

were proposed by Davies and Leach [67], while refined second-order models were given
simultaneously by the same authors in [68]. An extension of GBT to orthotropic materials
was proposed by Silvestre and Camotim [28] and Silvestre [69]. The GBT approach, as
shown in [28], assumes that the displacement field of a prismatic thin-walled beam (see
Fig. 2.5) is a product of two functions as shown below

u(xg,yg,zg) = u(s)ψ(yg) (2.12)

where u(s) is the mid-wall displacement vector, which depends on the curvilinear coordinate
s going around the cross-section (see Fig. 2.5), and ψ(yg) is an amplitude function defined
along the beam axis y. Figure 2.5 also shows how, according to GBT, the beam can be
assumed to be composed of a number of panels (see [28]). In its simplest form, GBT states
that, for each panel:

• The Kirchhoff’s hypotheses are satisfied (γxy = 0, γxz = 0 and εxx = 0).

• The only membrane (m) strain considered is the longitudinal one, i.e. εm
yy ̸= 0. On the

other hand, all the flexural ( f ) strains are taken into account, i.e. ε
f

yy ̸= 0, ε
f

zz ̸= 0 and
γ

f
yz ̸= 0.

The mid-wall deflection curve can be considered as a piece-wise segment defined by using a
number of nodes (see Fig.2.5). If the generalized displacements u(s) are assumed to have a
linear behaviour, the GBT kinematics becomes

u(xg,yg,zg) = ukFk(s)ψ(yg) (2.13)

where Fk(s) is a linear function that is equal to 1 in the k-th node and 0 in the other nodes,
and uk is the displacement vector in the k-th node. Moreover, GBT introduces a number of
geometrical relations that allow the transverse displacements, ux and uz, to be expressed in
terms of the longitudinal displacement, uy.
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The GBT has been widely used in the analysis of thin-walled structures over the past
twenty years. This type of model has been used to solve several structural problems and a
few examples are reviewed next. The GBT was applied to dynamic problems in the works by
Bebiano [70, 71], in which the global and local modes were investigated. Also, the elastic
stability of thin-walled structures has been investigated extensively using the GBT. Schardt
[72, 27] used the GBT model to perform the buckling analysis of thin-walled structures. The
same approach was used by Goncalves and Camotim [73] to investigate the local and the
global buckling of isotropic structures. Other investigators who used the GBT models in
buckling analysis are Dinis et al. [74], Silvestre [75] and Basaglia et al. [76] amongst others.
An experimental verification of the GBT for the buckling analysis was provided by Leach
and Davies [77]. The capabilities of GBT in the analysis of thin-walled structures and its
low computational costs make GBT particularly useful for non-linear analyses. Goncalves
and Camotim [78] introduced a non-linear formulation based on GBT to investigate the
post-buckling behaviour of thin-walled structures, in which plasticity and inelastic effects
were included. Other non-linear beam models based on GBT were presented by Basaglia et
al. [79] and Abambres et al. [80, 81].

2.2.2 Warping functions

The so-called warping function was originally introduced with the Saint-Venant torsion
problem, which has been formulated in many textbooks and papers over the years [10, 12, 13]
as a standard procedure in the theory of elasticity. According to the Saint-Venant free warping
problem, the warping function is the solution of Laplace’s equation subjected to Neumann
boundary conditions [82].

The most well-known theories that account for higher-order phenomena through the
use of the warping function are those by Vlasov [15] and Benscoter [16]. In these theories,
non-uniform warping in thin-walled profiles is taken into account by including, in the
displacement field, the following longitudinal warping displacement, uwrp

y :

uwrp
y (x,y,z) = Γ(x,z)µ(y) (2.14)

where y is the longitudinal axis of the beam, x and z are the coordinates of the cross-section,
µ is the warping parameter, and Γ is the Saint-Venant warping function, which depends on
the geometry of the cross-section. In the case of a shear-bending problem on the xy-plane,
the warping function is a cubic function of the x-coordinate [83] and µ does not necessarily
depend on the cross-sectional strain γxy . On the other hand, in the case of torsion, the
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warping parameter µ is the derivative of the rotation angle [15] or it can be an independent
function [16].

The application of the Vlasov beam model to thin-walled beams with a closed cross-
section leads to unsatisfactory results, since the mid-plane shear strains in the walls cannot
be neglected. One of the earliest investigators to formulate the warping function for closed
profiles was Umanskij [14]. From then on, many researchers have developed advanced
beam theories based on the use of the Saint-Venant warping function. Some recent important
contributions are summarized as follows. El Fatmi [84–86] developed a non-uniform warping
theory that accounts for three independent warping parameters and related warping functions.
Prokic [87–89] formulated a new warping function that is able to account for both closed and
open cross-sections. Sapountzakis and his co-workers developed a boundary element method
that includes the warping DOF (Degree of Freedom) for non-uniform torsional dynamic
[90, 91] and static [92–94] analyses. Wackerfub and Gruttmann [95] developed a Finite
Element (Finite Element) based on the Hu-Washizu variational formulation and focussing on
the construction of ‘locally-defined’ warping functions. In [82, 96], the unknown warping
function has been approximated using an isoparametric concept. Prandtl’s membrane analogy
and the Saint Venant torsion theory have been used in [97], on the basis of the Vlasov theory,
to obtain an approximate Saint Venant warping function for a prismatic thin-walled beam.
In [98], the warping functions have been determined iteratively using equilibrium equations
along the beam. Yoon and Lee [99] formulated the entire warping displacement field as
a combination of the three basic warping functions (one free warping function and two
interface warping functions).

2.2.3 3D Solutions based on the Saint-Venant model and the proper
generalized decomposition

Ladevéze and Simmonds [17, 13] and Ladevéze et al. [100] built models for 3D solutions
of beam problems by adding enrichment terms to the Saint Venant solution. In such a
framework, the displacement field can be written as

u(x,y,z) = uSV (x,y,z)+uNSV (x,y,z) (2.15)

where uSV and uNSV are the Saint-Venant and residual parts of the displacement field, re-
spectively. The uNSV term, also known as the decaying term, takes into account various
non-classical effects, e.g. the end-effects. Such solutions are exact since they do not add any
further assumptions to the 3D elasticity equations. However, these solutions are problem
dependent.
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Another important contribution to the solution of the 3D elasticity problem is the Proper
Generalized Decomposition (PGD), which was introduced by Ladevéze [18]. Given a 3D
problem, PGD decomposes it as the summation of N 1D and/or 2D functions ( noting that y
is the axial coordinate of the beam) as follows

u(x,y,z)≈
N

∑
i=1

Ux
i (x) ·U

y
i (y) ·U

z
i (z) (2.16)

or,

u(x,y,z)≈
N

∑
i=1

Uxz
i (x,z) ·U

y
i (y) (2.17)

where U are the 2D or 1D unknown functions. This decomposition allows one to solve the
3D problem with 2D or 1D complexity. Bognet et al. [19, 20] applied PGD to plate/shell
problems, while Vidal et al. [21] extended PGD to beams.

2.3 Asymptotic methods

So far, refined beam theories derived from axiomatic methods have been discussed. Ax-
iomatic theories are developed on the basis of a number of hypotheses that cannot be always
mathematically proved [101]. Moreover, another important drawback of axiomatic methods
is the lack of information about the accuracy of the approximated theory with respect to the
exact 3D solution. In other words, it is not usually possible to evaluate a-priori the accuracy
of an axiomatic theory. The difficulty due to this lack of information has to be overcome by
engineers who have to evaluate the validity of a theory on the basis of their knowledge and
experience.

The asymptotic method is generally seen as a step towards the development of approxi-
mate theories with known accuracy with respect to the 3D exact solution (see [102]), which,
in the case of beams, is a good method that can approximate the 3D energy though 1D terms
with known accuracy.

The Variational Asymptotic Method (VAM) is an interesting proposition that was origi-
nally introduced by Berdichevsky [22] in modelling beams. VAM exploits small parameters
of a beam structure, such as the thickness of the cross-section, h. The unknown functions
(e.g. warping) are then expanded in terms of h as

f = f0 + f1 h+O(h2) (2.18)
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The strain energy is then obtained according to this expansion and only the terms of a certain
order with respect to h are retained. The unknown functions, which are asymptotically correct
up to a chosen order of h, are then obtained by minimizing the strain energy. The solution
to this variational problem can then be found in closed-form for certain cross-sectional
geometries and materials only. In order to overcome the limitations of VAM and to be able
to deal with anisotropic and non-homogenous materials, as well as arbitrary cross-sections,
the Variational Asymptotic Beam Sectional Analysis (VABS) has been developed [24, 103–
106]. Essentially, VABS exploits the FE approach over the beam cross-section to solve the
variational problem.

In general, the development of asymptotic theories is more difficult than the development
of axiomatic ones. The main advantage of these theories is that they contain all of the terms
whose effectiveness is of the same order of magnitude. Moreover, these theories are exact as
h, or any other small parameter that is exploited to build the expansion, tends to zero.
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Chapter 3

Carrera Unified Formulation

Whether axiomatic or asymptotic, the accuracy of a structural theory depends very much
on the problem to be analysed. One may merge or amalgamate together the beam theories
discussed in the previous chapter in order to address a particular problem. For example, a
beam model able of addressing shear, twisting and warping can be formulated by combining
Eqs. (2.10) and (2.14). Unfortunately, the resulting model may not be suitable for a different
problem, e.g., it may not be able to detect in-plane deformations on the beam cross-section.

In this chapter, the Carrera Unified Formulation (CUF) is introduced. In essence, CUF,
by employing a index notation, allows the unification of all the theories of structures in one
single formula. Subsequently, in the next part of the thesis, CUF will be used in conjunction
with variational principles to derive the governing equations for any-order beam model in a
concise and general manner.

3.1 Preliminaries

The rectangular Cartesian coordinate system adopted in this thesis has already been shown in
Fig. 2.1, together with a schematic beam structure. The cross-section of the beam, which
lies on the xz-plane, is denoted by Ω, whereas the limits of y are 0 ≤ y ≤ L. Consider the
transposed displacement vector, which can be expressed as

u(x,y,z; t) =
{

ux uy uz

}T
(3.1)

The time variable (t) is implied, but omitted in the remaining part of this chapter for clarity
purposes. The components of stress, σσσ , and strain, εεε , are expressed in transposed forms as

19



Carrera Unified Formulation

follows:
σσσ =

{
σyy σxx σzz σxz σyz σxy

}T

εεε =
{

εyy εxx εzz εxz εyz εxy

}T
(3.2)

In the case of small deformations and angles of rotation, the strain-displacement relations are

εεε = Du (3.3)

where D is the following linear differential operator matrix

D =



0 ∂

∂y 0
∂

∂x 0 0

0 0 ∂

∂ z
∂

∂ z 0 ∂

∂x
0 ∂

∂ z
∂

∂y
∂

∂y
∂

∂x 0


(3.4)

Constitutive laws are now exploited to obtain stress components to give

σσσ = C̃εεε (3.5)

In the case of monoclinic material (i.e., material with one single plane of symmetry, which is
the xy-plane in the present analysis) the matrix C̃ is

C̃ =



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0
0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66


(3.6)

Note that the the above matrix describes the constitutive relations of a fibre reinforced lamina
with respect to a generic coordinate system (x,y,z) rotated by an angle θ with respect to the
material coordinate system (1,2,3), see Fig. 3.1. In fact, a fibre reinforced lamina exhibits
an orthotropic behaviour with respect to the material coordinate system (1,2,3). Orthotropic
materials present three mutually perpendicular planes of elastic symmetry and, thus, they
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3.2 Unified formulation of beams

x

z 1

2

3

y

Figure 3.1 Coordinate system and fiber orientation angle.

are fully characterized by nine elastic coefficients. Therefore, the 13 elastic coefficients
C̃i j, which are elements of matrix C̃ in Eq. (3.6), can be expressed as functions of the nine
coefficients with respect to the orthotropic axes (1,2,3) and the fibre rotation angle θ . The
explicit expressions for the coefficients C̃i j are given in Appendix A. It should be stressed that
models with constant and linear distributions of the in-plane displacement components, ux

and uz, may require modified material coefficients to overcome the Poisson locking problem,
see [107]. The explicit expressions of the reduced material coefficients are not reported
here, but the readers are referred to the text by Carrera et al. [108], where the details are
given together with a more comprehensive analysis of the effect of Poisson locking and its
correction.

3.2 Unified formulation of beams

According to Carrera Unified Formulation (CUF), the generic displacement field of a beam
model can be expressed in a compact manner as an expansion in terms of arbitrary functions,
Fτ ,

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ...,M (3.7)

where Fτ are the functions of the coordinates x and z on the cross-section; uτ is the vector of
the generalized displacements; M stands for the number of terms used in the expansion; and
the repeated subscript, τ , indicates summation. The choice of Fτ determines the class of the
1D CUF model.
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Carrera Unified Formulation

3.2.1 Taylor expansion (TE)

Taylor Expansion (TE) 1D CUF models consists of McLaurin series that use the 2D polyno-
mials xi z j as the Fτ basis. Table 3.1 shows M and Fτ as functions of the expansion order, N,
which represents the maximum order of the polynomials used in the expansion.

N M Fτ

0 1 F1 = 1
1 3 F2 = x, F3 = z
2 6 F4 = x2, F5 = xz, F6 = z2

3 10 F7 = x3, F8 = x2z, F9 = xz2, F10 = z3

...
...

...
N (N+1)(N+2)

2 F(N2+N+2)/2 = xN , F(N2+N+4)/2 = xN−1z, . . . , FN(N+3)/2 = xzN−1, F(N+1)(N+2)/2 = zN

Table 3.1 McLaurin’s polynomials.

According to CUF, classical (see Eqs. (2.1) and (2.2)) and higher-order models (e.g.,
Eqs. (2.10)) consist of particular cases of TE theories. It should be noted that Eqs. (2.1), (2.2),
and (2.9) are degenerated cases of the linear (N = 1) TE model, which can be expressed as

ux = ux1 + x ux2 + z ux3

uy = uy1 + x uy2 + z uy3

uz = uz1 + x uz2 + z uz3

(3.8)

where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 , etc.) are the unknown
generalized displacements of the beam axis as functions of the y-coordinate. Higher-order
terms can be taken into account according to Eq. (3.7). For instance, the displacement fields
of Eqs. (2.8) and (2.10) can be considered as particular cases of the third-order (N = 3) TE
model,

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(3.9)

A more comprehensive treatment of the TE CUF models can be found in [108], where
details about the derivation of classical models from the linear (N = 1) TE model and various
numerical simulations to capture the degenerate cases are also given.
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Figure 3.2 Cross-section L-elements in natural geometry.

3.2.2 Lagrange expansion (LE)

In this work, another CUF class of models has played an important role and it is referred to as
the Lagrange Expansion (LE) class. The LE models exploit Lagrange polynomials to build
1D higher-order models; i.e., Lagrange polynomials are used as Fτ cross-sectional functions.
In the current research, three types of cross-sectional polynomial sets have been adopted.
These are shown in Fig. 3.2 which are namely, four-point polynomials (L4), nine-point
polynomials (L9), and sixteen-point polynomials (L16). The isoparametric formulation is
exploited to deal with arbitrarily shaped geometries.

Some aspects of the Lagrange polynomials as interpolation functions can be found in
[109]. However, for the sake of completeness, an illustrative example of the interpolation
function is given below for the case of an L4 beam model.

Fτ =
1
4
(1+ r rτ)(1+ s sτ) τ = 1,2,3,4 (3.10)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the four corner
points whose numbering and location in the natural coordinate frame are shown in Fig. 3.2a.
In the case of an L9 kinematics, see Fig. 3.2b, the interpolation functions are given by:

Fτ =
1
4(r

2 + r rτ)(s2 + s sτ) τ = 1,3,5,7

Fτ =
1
2s2

τ(s
2 − s sτ)(1− r2)+ 1

2r2
τ(r

2 − r rτ)(1− s2) τ = 2,4,6,8

Fτ = (1− r2)(1− s2) τ = 9

(3.11)
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z

x

Figure 3.3 Two assembled L9 elements in actual geometry.

Finally, the L16 polynomials with reference to Fig. 3.2c are as follows:

FτIJ = LI(r)LJ(s) I,J = 1, · · · ,4 (3.12)

where
L1(r) =

1
16

(r−1)(1−9r2) L2(r) =
9

16
(3r−1)(r2 −1)

L3(r) =
9
16

(3r+1)(1− r2) L4(r) =
1

16
(r+1)(9r2 −1)

(3.13)

The complete displacement field of a beam model discretized with one single L9 polynomial
is given below for illustrative purposes:

ux = F1ux1 +F2ux2 +F3ux3 +F4ux4 +F5ux5 +F6ux6 +F7ux7 +F8ux8 +F9ux9

uy = F1uy1 +F2uy2 +F3uy3 +F4uy4 +F5uy5 +F6uy6 +F7uy7 +F8uy8 +F9uy9

uz = F1uz1 +F2uz2 +F3uz3 +F4uz4 +F5uz5 +F6uz6 +F7uz7 +F8uz8 +F9uz9

(3.14)

where ux1 , ...,uz9 are the displacement variables of the problem, and they represent the
translational displacement components in correspondence of the roots of the L9 polynomial.
For further refinements, the cross-section can be discretized by using several L-elements as
in Fig. 3.3, where two assembled L9 elements are shown in actual geometry. Further details
about LE models can be found in the original work of Carrera and Petrolo [110] and in [111].
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Chapter 4

Governing differential equations

In this chapter, by taking a recourse to the calculus of variations, the governing differential
equations of refined beam models are derived. Attention is particularly focussed on static,
free vibration and buckling analyses. Using CUF, the governing differential equations are
written in a general, but unified and compact manner. Except for free vibration analysis of
axially loaded beams, the same equations can be found in [108], where the same problems
are addressed by making use of a slightly different notation.

4.1 Principle of virtual work

Consider a system of particles in equilibrium under applied forces and some prescribed
geometrical constraints. The principle of virtual work states that the sum of all the virtual
work, δL, done by the internal and external forces existing in the system in any arbitrary
infinitesimal virtual displacements satisfying the prescribed geometrical constraints is zero:

δL = 0 (4.1)

An alternative form of the principle of virtual work states that, if δL vanishes for any arbitrary
infinitesimal virtual displacements satisfying the prescribed geometrical constrains, then
the system of particles is in equilibrium. Thus, it is clear that the principle of virtual work
is equivalent to the equations of equilibrium of the system. However, as demonstrated
in the classical text of Washizu [29], the former has a much wider field of application in
the formulation of mechanics problems than the latter. One of the main advantages of the
variational calculus (analytical mechanics) as introduced by Euler, Lagrange and Hamilton
as opposed to the “vectorial” mechanics of Newton is that in the former, the entire set of
governing equations can be developed from one unified principle which considers the system
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Governing differential equations

as a whole and provides all these equations. This principle takes the form of minimizing
a certain quantity: the potential energy, for example in static problems. It is significant to
note that, since a minimum principle is independent of any special reference system, the
equations of analytical mechanics hold for any set of coordinates. This allows one to adjust
the coordinates employed to the specific nature of each problem [112].

Calculus of variations and analytical1 mechanics are fascinating topics, but important
though they are, details pertaining to the subject are out of the scope of the present work. For
further readings, interested readers are referred to [112, 29]. In this thesis, the principle of
virtual work is applied mainly to derive the equations of motion of arbitrary higher-order
beam models. In general, by considering inertial effects, external loads, and the contribution
of an axial pre-stress in the beam structure, Eq. (4.1) can be written as

δL = δLint +δLine −δLext −δLσ0
yy
= 0 (4.2)

where Lint stands for the strain energy; Line is the contribution of the inertial loads; Lext is
the work done by the external loadings; Lσ0

yy
is the work done by the axial pre-stress σ0

yy on
the corresponding non-linear strain εnl

yy; and δ stands for the usual virtual variation operator.
In the following sections each of the contributions in the make up of Eq. (4.2) above are
considered separately and written in terms of CUF.

4.1.1 Virtual variation of the strain energy

As detailed in [108], the virtual variation of the strain energy is

δLint =
∫

V
δεεε

T
σσσ dV (4.3)

Equation (4.3) is rewritten using Eqs. (3.3), (3.5) and (3.7). After integrations by parts (see
[101]), it becomes

δLint =
∫

L
δuT

τ Kτsus dy+
[
δuT

τ ΠΠΠ
τsus

]y=L

y=0
(4.4)

where Kτs is the differential linear stiffness matrix and ΠΠΠ
τs is the matrix of the natural

boundary conditions in the form of 3×3 fundamental nuclei. The components of Kτs are
given below in the case of monoclinic material and they are referred to as Kτs

(rc), where r is

1According to Lanczos [112], the word “analytical” is used here with reference to the mathematical term
analysis, referring to the application of the principles of infinitesimal calculus to mechanical problems.
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4.1 Principle of virtual work

the row number (r = 1,2,3) and c denotes the column number (c = 1,2,3):

Kτs
(11) = E22

τ,xs,x +E44
τ,zs,z +

(
E26

τ,xs −E26
τs,x

) ∂

∂y
−E66

τs
∂ 2

∂y2

Kτs
(12) = E26

τ,xs,x +E45
τ,zs,z +

(
E23

τ,xs −E66
τs,x

) ∂

∂y
−E36

τs
∂ 2

∂y2

Kτs
(13) = E12

τ,xs,z +E44
τ,zs,x +

(
E45

τ,zs −E16
τs,z

) ∂

∂y

Kτs
(21) = E26

τ,xs,x +E45
τ,zs,z +

(
E66

τ,xs −E23
τs,x

) ∂

∂y
−E36

τs
∂ 2

∂y2

Kτs
(22) = E66

τ,xs,x +E55
τ,zs,z +

(
E36

τ,xs −E36
τs,x

) ∂

∂y
−E33

τs
∂ 2

∂y2

Kτs
(23) = E16

τ,xs,z +E45
τ,zs,x +

(
E55

τ,zs −E13
τs,z

) ∂

∂y

Kτs
(31) = E44

τ,xs,z +E12
τ,zs,x +

(
E16

τ,zs −E45
τs,z

) ∂

∂y

Kτs
(32) = E45

τ,xs,z +E16
τ,zs,x +

(
E13

τ,zs −E55
τs,z

) ∂

∂y

Kτs
(33) = E44

τ,xs,x +E11
τ,zs,z +

(
E45

τ,xs −E45
τs,x

) ∂

∂y
−E55

τs
∂ 2

∂y2

(4.5)

The generic term Eαβ

τ,θ s,ζ above is a cross-sectional moment parameter given by

Eαβ

τ,θ s,ζ =
∫

Ω

C̃αβ Fτ,θ Fs,ζ dΩ (4.6)

where the cross-sectional functions Fτ have been defined in Chapter 3. The suffix after the
comma in Eq. (4.5) denotes the partial derivatives. As far as the boundary conditions are
concerned, the components of ΠΠΠ

τs are
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Πτs
(11) = E26

τs,x +E66
τs

∂

∂y
, Πτs

(12) = E66
τs,x +E36

τs
∂

∂y
, Πτs

(13) = E16
τs,z

Πτs
(21) = E23

τs,x +E36
τs

∂

∂y
, Πτs

(22) = E36
τs,x +E33

τs
∂

∂y
, Πτs

(23) = E13
τs,z

Πτs
(31) = E45

τs,z, Πτs
(32) = E55

τs,z, Πτs
(33) = E45

τs,x +E55
τs

∂

∂y

(4.7)

It will be shown later that the term ΠΠΠ
τsus represents the generalized reaction forces at the

end of the beam. It is worth to underline that the main property of the fundamental nuclei,
Kτs and ΠΠΠ

τs in this section, is that their formal mathematical expression does not depend
either on the order of the beam theory or on the geometry of the problem. This aspect will
also be discussed more in detail later in the thesis.

4.1.2 Virtual variation of the work done by axial pre-stress

The virtual variation of the work due to the axial pre-stress is given by

δLσ0
yy
=
∫

L

(∫
Ω

σ
0
yyδε

nl
yy dΩ

)
dy (4.8)

Here, the geometric non-linearities are introduced in the axial strain in the following Green-
Lagrange manner:

ε
nl
yy =

1
2
(u2

x,y +u2
y,y +u2

z,y) (4.9)

After substituting Eqs. (3.7) and (4.9) into Eq. (4.8) and performing integration by parts, one
obtains

δLσ0
yy
=−σ

0
yy

∫
L

δuT
τ Kτs

σ0
yy

us dy+σ
0
yy

[
δuT

τ ΠΠΠ
τs
σ0

yy
us

]y=L

y=0
(4.10)

where Kτs
σ0

yy
as given below is the fundamental nucleus of the differential geometric stiffness

matrix.

Kτs
σ0

yy
=


Eτs

∂ 2

∂y2 0 0

0 Eτs
∂ 2

∂y2 0

0 0 Eτs
∂ 2

∂y2

 (4.11)

where
Eτs =

∫
Ω

FτFs dΩ (4.12)
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4.1 Principle of virtual work

Figure 4.1 Components of a surface loading; lateral surfaces and normal vectors of the beam.

The components of ΠΠΠ
τs
σ0

yy
are

ΠΠΠ
τs
σ0

yy
=

 Eτs
∂

∂y 0 0

0 Eτs
∂

∂y 0

0 0 Eτs
∂

∂y

 (4.13)

4.1.3 Virtual variation of external work

The virtual work done by the external loadings is assumed to be due to a surface loading and
a line loading, see Carrera et al. [108]. The components of a surface loading acting above a
k-th sub-domain of the cross-section are:

pk =
{

pk±
xx pk±

xy pk±
xz pk±

zx pk±
zy pk±

zz

}T
(4.14)

The components of the surface load are shown in Fig. 4.1. The lateral surfaces
{

Sk±
φ

: φ = x,z
}

of the beam are defined on the basis of the normal unit vector
{

nk±
φ

: φ = x,z
}

. A normal
unit vector with the same orientation as x or z axis identifies a positive lateral surface. The
external virtual work due to the pressure loading pk is given by

δLext =
(

δLk
p±xx

+δLk
p±xy

+δLk
p±xz

+δLk
p±zx

+δLk
p±zy

+δLk
p±zz

)
k

(4.15)
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The explicit forms of the terms in Eq. (4.15) are as follows:(
δLk

p±xx
, δLk

p±zx

)
=
∫
L

δuxτ

(
pk±

xx Ekz±
τ , pk±

zx Ekx±
τ

)
dy

(
δLk

p±zz
, δLk

p±xz

)
=
∫
L

δuzτ

(
pk±

zz Ekx±
τ , pk±

xz Ekz±
τ

)
dy

(
δLk

p±zy
, δLk

p±xy

)
=
∫
L

δuyτ

(
pk±

zy Ekx±
τ , pk±

xy Ekz±
τ

)
dy

(4.16)

where: (
Ekx+

τ ,Ekx−
τ

)
=

xk
2∫

xk
1

(
Fτ

(
zk

2,x
)
,Fτ

(
zk

1,x
))

dx

(
Ekz+

τ ,Ekz−
τ

)
=

zk
2∫

zk
1

(
Fτ

(
z,xk

2
)
,Fτ

(
z,xk

1
))

dz

(4.17)

[
xk

1,x
k
2
]

and
[
zk

1,z
k
2
]

define the boundaries on the cross-section of the k-th sub-domain where
the loading is applied. The components of a line loading lk (see Fig. 4.2) are:

lk =
{

lk±
xx lk±

xy lk±
xz lk±

zx lk±
zy lk±

zz

}T
(4.18)

The external virtual work due to a generic line load is therefore

δLext =
(

δLk
l±xx
+δLk

l±zz
+δLk

l±zy
+δLk

l±xy
+δLk

l±zx
+δLk

l±xz

)
k

(4.19)

whose terms are:(
δLk

l±zz
, δLk

l±xz

)
=
∫
L

δuzτ

(
lk±
zz Fτ

(
zk

l±zz
,xk

l±zz

)
, lk±

xz Fτ

(
zk

l±xz
,xk

l±xz

))
dy

(
δLk

l±xx
, δLk

l±zx

)
=
∫
L

δuxτ

(
lk±
xx Fτ

(
zk

l±xx
,xk

l±xx

)
, lk±

zx Fτ

(
zk

l±zx
,xk

l±zx

))
dy

(
δLk

l±zy
, δLk

l±xy

)
=
∫
L

δuyτ

(
lk±
zy Fτ

(
zk

l±zy
,xk

l±zy

)
, lk±

xy Fτ

(
zk

l±xy
,xk

l±xy

))
dy

(4.20)
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4.1 Principle of virtual work

In Eq. (4.20), zk
l±i j

and xk
l±i j

are the coordinates of the line loading application point above a

k-th sub-domain of the cross-section.

Figure 4.2 Components of a line loading.

4.1.4 Virtual variation of inertial work

The virtual variation of the inertial work is given by

δLine =
∫

L
δuτ

∫
Ω

ρFτFs dΩ üs dy =
∫

L
δuτMτsüs dy (4.21)

where Mτs is the fundamental nucleus of the mass matrix and double over dots stand as
second derivative with respect to time (t). The components of matrix Mτs are

Mτs =

 Eρ

τs 0 0
0 Eρ

τs 0
0 0 Eρ

τs

 (4.22)

where ρ is the material density and

Eρ

τs =
∫

Ω

ρFτFs dΩ (4.23)
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4.2 Strong-form equations of unified beam theory

The governing differential equations are obtained by substituting the explicit expressions of
the virtual variations of the internal, external and inertial works as well as the work of the
pre-stresses into the principle of virtual displacements. Different problems are considered
and they are obtained as particular cases of Eq. (4.2).

4.2.1 Static analysis

In the case of static analysis, the principle of virtual work holds

δLint = δLext (4.24)

The governing equations can be therefore written in the following compact form by using
Eqs. (4.4), (4.15), and (4.19):

δuτ : Kτsus = pτ
k (4.25)

where us(y) =
{

uxs uys uzs
}T is the vector of the unknown generalised displacements and pτ

k

is the fundamental nucleus of the loading vector containing both surface pressures and line
loading terms. The explicit expression for pτ

k is not given here, but it can be easily obtained
from Section (4.1.3).

Letting Pτ(y) =
{

Pxτ Pyτ Pzτ

}T
be the vector of the generalized forces applied at

the end of the beam (see Fig. 4.3) , the natural boundary conditions can be written as[
Ps
]y=L

y=0 = 0 (4.26)

Pxt

Pyt

Pzt

x

y
z

Pxt

Pyt

Pzt

Figure 4.3 Generalized forces applied at the ends of the beam.
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4.2 Strong-form equations of unified beam theory

According to Eq. (4.4), Eq. (4.26) yields

δuτ :
[
ΠΠΠ

τsus
]y=L

y=0 = 0 (4.27)

The equations above can be written in explicit differential form by using Eqs. (4.5),
(4.16), (4.20), and (4.7). The governing equations are:

δuxτ : −E66
τs uxs,yy +

(
E26

τ,xs −E26
τs,x

)
uxs,y +

(
E22

τ,xs,x +E44
τ,zs,z

)
uxs

−E36
τs uys,yy +

(
E23

τ,xs −E66
τs,x

)
uys,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uys

+
(
E45

τ,zs −E16
τs,z

)
uzs,y +

(
E44

τ,zs,x +E12
τ,xs,z

)
uzs =

[
pk±

xx Ekz±
τ

+pk±
zx Ekx±

τ + lk±
xx Fτ

(
zk

l±xx
,xk

l±xx

)
+ lk±

zx Fτ

(
zk

l±zx
,xk

l±zx

)]
k

δuyτ : −E36
τs uxs,yy +

(
E66

τ,xs −E23
τs,x

)
uxs,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uxs

−E33
τs uys,yy +

(
E36

τ,xs −E36
τs,x

)
uys,y +

(
E66

τ,xs,x +E55
τ,zs,z

)
uys

+
(
E55

τ,zs −E13
τs,z

)
uzs,y +

(
E16

τ,xs,z +E45
τ,zs,x

)
uzs =

[
pk±

zy Ekx±
τ

+pk±
xy Ekz±

τ + lk±
zy Fτ

(
zk

l±zy
,xk

l±zy

)
+ lk±

xy Fτ

(
zk

l±xy
,xk

l±xy

)]
k

δuzτ :
(
E16

τ,zs −E45
τs,z

)
uxs,y +

(
E44

τ,xs,z +E12
τ,zs,x

)
uxs

+
(
E13

τ,zs −E55
τs,z

)
uys,y +

(
E45

τ,xs,z +E16
τ,zs,x

)
uys −E55

τs uzs,yy

+
(
E45

τ,xs −E45
τs,x

)
uzs,y +

(
E44

τ,xs,x +E11
τ,zs,z

)
uzs =

[
pk±

zz Ekx±
τ

+pk±
xz Ekz±

τ + lk±
zz Fτ

(
zk

l±zz
,xk

l±zz

)
+ lk±

xz Fτ

(
zk

l±xz
,xk

l±xz

)]
k

(4.28)
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Governing differential equations

Similarly, the natural boundary conditions are:

δuxτ :
[
E66

τs uxs,y +E26
τs,xuxs +E36

τs uys,y +E66
τs,xuys +E16

τs,zuzs
]y=L

y=0 = 0

δuyτ :
[
E36

τs uxs,y +E23
τs,xuxs +E33

τs uys,y +E36
τs,xuys +E13

τs,zuzs
]y=L

y=0 = 0

δuzτ :
[
E45

τs,zuxs +E55
τs,zuys +E55

τs uzs,y +E45
τs,xuzs

]y=L
y=0 = 0

(4.29)

Equations (4.28) and (4.29) represent the governing differential equations and boundary
conditions of the generic beam model subjected to static surface pressure and line loads.
(Any other loading condition can be treated similarly.) These equations are written in terms
of fundamental nuclei. This means that although Eqs. (4.28) and (4.29) are two systems
of three coupled Ordinary Differential Equations (ODEs) with constant coefficients in the
three unknowns uxs, uys and uzs, they can be automatically expanded for any order beam
model. In other words, for a fixed approximation order (i.e., given the functions Fτ and the
number of terms of the expansion M), the nuclei have to be expanded using the indexes τ

and s in order to obtain the governing equations and the boundary conditions that concern
the desired model. For example, the governing equations of the generic beam model having
6 terms in the displacement field (M = 6) can be automatically derived from the equation
above resulting in the following relationship:

K11 K12 . . . K16

K21 K22 . . . K26

...
... . . . ...

K61 K62 . . . K66





u1

u2

...

u6


=



p1
k

p2
k

...

p6
k


(4.30)

where Kτs has already been defined in Eqs. (4.5) and (4.25). Equation (4.30) is a system of
18 ODEs in the 18 unknowns ux1, uy1,uz1, ..., ux6, uy6,uz6. If Fτ polynomials as in Table 3.1
are used, Eq. (4.30) will represent the governing equations of the second-order (N = 2) TE
beam model under the action of static loadings.
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4.2 Strong-form equations of unified beam theory

4.2.2 Free vibration analysis

In the case of modal analysis, the principle of virtual displacement holds

δLint =−δLine (4.31)

The governing differential equations of the undamped free vibration problem can therefore
be written in the following compact form by using Eqs. (4.4) and (4.21):

δuτ : Kτsus =−Mτsüs (4.32)

The natural boundary conditions are the same as in Eqs. (4.27) and (4.29).

The explicit form of the governing equations is obtained by substituting Eqs. (4.5) and
(4.22) into Eq. (4.32) to give

δuxτ : −E66
τs uxs,yy +

(
E26

τ,xs −E26
τs,x

)
uxs,y +

(
E22

τ,xs,x +E44
τ,zs,z

)
uxs

−E36
τs uys,yy +

(
E23

τ,xs −E66
τs,x

)
uys,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uys

+
(
E45

τ,zs −E16
τs,z

)
uzs,y +

(
E44

τ,zs,x +E12
τ,xs,z

)
uzs =−Eρ

τsüxs

δuyτ : −E36
τs uxs,yy +

(
E66

τ,xs −E23
τs,x

)
uxs,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uxs

−E33
τs uys,yy +

(
E36

τ,xs −E36
τs,x

)
uys,y +

(
E66

τ,xs,x +E55
τ,zs,z

)
uys

+
(
E55

τ,zs −E13
τs,z

)
uzs,y +

(
E16

τ,xs,z +E45
τ,zs,x

)
uzs =−Eρ

τsüys

δuzτ :
(
E16

τ,zs −E45
τs,z

)
uxs,y +

(
E44

τ,xs,z +E12
τ,zs,x

)
uxs

+
(
E13

τ,zs −E55
τs,z

)
uys,y +

(
E45

τ,xs,z +E16
τ,zs,x

)
uys −E55

τs uzs,yy

+
(
E45

τ,xs −E45
τs,x

)
uzs,y +

(
E44

τ,xs,x +E11
τ,zs,z

)
uzs =−Eρ

τsüzs

(4.33)
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Governing differential equations

Analogous to the static analysis case, for a fixed theory order N, Eqs. (4.33) and (4.29)
have to be expanded using the indices τ and s in order to obtain the equations of motion and
the natural boundary conditions of the desired model.

4.2.3 Buckling analysis

Buckling analysis of beam-columns has been widely investigated in the past and also in recent
years because the subject matter plays an important role in the design of structures. Several
methodologies have therefore been developed and there are excellent texts on the subject, see
for example Timoshenko [113]. In most of the classical works on beam-column buckling, it
has been assumed that when the equilibrium of the column is disturbed, it becomes unstable
due to bending in the plane of smaller second moment of area. However, there are cases
of practical interest where the column may buckle due to twisting, a combination of both
twisting and bending, or due to higher-order kinematic effects.

Here we derive the governing equations of the buckled beam-column in terms of CUF
and arbitrary kinematics. These equations are derived by retaining the terms related to the
internal strain energy and pre-stress, so that the principle of virtual work gives

δLint −δLσ0
yy
= 0 (4.34)

The governing equations can be written in the following compact form by using Eqs. (4.4)
and (4.10):

δuτ :
(

Kτs +σ0
yyKτs

σ0
yy

)
us = 0 (4.35)

Note that because of the choice of the sign convention, σ0
yy is a compressive axial pre-stress,

considered positive in Eq. (4.35).

According to Eqs. (4.26) and (4.10), the natural boundary conditions can be written as:

δuτ :
[
ΠΠΠ

τs −σ0
yyΠΠΠ

τs
σ0

yy
us
]y=L

y=0 = 0 (4.36)

Thus, the explicit form of the linearized governing equations for buckling problem is written
in terms of fundamental nucleus as follows:
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4.2 Strong-form equations of unified beam theory

δuxτ : (σ0
yyEτs −E66

τs )uxs,yy +
(
E26

τ,xs −E26
τs,x

)
uxs,y +

(
E22

τ,xs,x +E44
τ,zs,z

)
uxs

−E36
τs uys,yy +

(
E23

τ,xs −E66
τs,x

)
uys,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uys

+
(
E45

τ,zs −E16
τs,z

)
uzs,y +

(
E44

τ,zs,x +E12
τ,xs,z

)
uzs = 0

δuyτ : −E36
τs uxs,yy +

(
E66

τ,xs −E23
τs,x

)
uxs,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uxs

+(σ0
yyEτs −E33

τs )uys,yy +
(
E36

τ,xs −E36
τs,x

)
uys,y +

(
E66

τ,xs,x +E55
τ,zs,z

)
uys

+
(
E55

τ,zs −E13
τs,z

)
uzs,y +

(
E16

τ,xs,z +E45
τ,zs,x

)
uzs = 0

δuzτ :
(
E16

τ,zs −E45
τs,z

)
uxs,y +

(
E44

τ,xs,z +E12
τ,zs,x

)
uxs

+
(
E13

τ,zs −E55
τs,z

)
uys,y +

(
E45

τ,xs,z +E16
τ,zs,x

)
uys

+(σ0
yyEτs −E55

τs )uzs,yy +
(
E45

τ,xs −E45
τs,x

)
uzs,y +

(
E44

τ,xs,x +E11
τ,zs,z

)
uzs = 0

(4.37)

The related natural boundary conditions are

δuxτ :
[
(E66

τs −σ0
yyEτs)uxs,y +E26

τs,xuxs +E36
τs uys,y +E66

τs,xuys +E16
τs,zuzs

]y=L
y=0 = 0

δuyτ :
[
E36

τs uxs,y +E23
τs,xuxs +(E33

τs −σ0
yyEτs)uys,y +E36

τs,xuys +E13
τs,zuzs

]y=L
y=0 = 0

δuzτ :
[
E45

τs,zuxs +E55
τs,zuys +(E55

τs −σ0
yyEτs)uzs,y +E45

τs,xuzs
]y=L

y=0 = 0

(4.38)

4.2.4 Free vibration of axially loaded beams

Another problem of interest in this thesis concerns the determination of natural frequencies
of beam-columns. In this case, the inertial term and the work of the axial pre-stress are used
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Governing differential equations

in conjunction with the strain energy in the principle of virtual displacements:

δLint −δLσ0
yy
=−δLine (4.39)

The compact form of the governing equations can be easily obtained by using Eqs. (4.4),
(4.21) and (4.10), to arrive at

δuτ :
(

Kτs +σ0
yyKτs

σ0
yy

)
us =−Mτsüs (4.40)

For this type of analysis, the natural boundary conditions are the same as in the case of
buckling analysis (see Eqs. (4.36) and (4.38)).

The explicit form of the governing equations are given below for the sake of completeness,
and they are obtained by substituting Eqs. (4.5), (4.11) and (4.22) into Eq. (4.40):

δuxτ : (σ0
yyEτs −E66

τs )uxs,yy +
(
E26

τ,xs −E26
τs,x

)
uxs,y +

(
E22

τ,xs,x +E44
τ,zs,z

)
uxs

−E36
τs uys,yy +

(
E23

τ,xs −E66
τs,x

)
uys,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uys

+
(
E45

τ,zs −E16
τs,z

)
uzs,y +

(
E44

τ,zs,x +E12
τ,xs,z

)
uzs =−Eρ

τsüxs

δuyτ : −E36
τs uxs,yy +

(
E66

τ,xs −E23
τs,x

)
uxs,y +

(
E26

τ,xs,x +E45
τ,zs,z

)
uxs

+(σ0
yyEτs −E33

τs )uys,yy +
(
E36

τ,xs −E36
τs,x

)
uys,y +

(
E66

τ,xs,x +E55
τ,zs,z

)
uys

+
(
E55

τ,zs −E13
τs,z

)
uzs,y +

(
E16

τ,xs,z +E45
τ,zs,x

)
uzs =−Eρ

τsüys

δuzτ :
(
E16

τ,zs −E45
τs,z

)
uxs,y +

(
E44

τ,xs,z +E12
τ,zs,x

)
uxs +

(
E13

τ,zs −E55
τs,z

)
uys,y

+
(
E45

τ,xs,z +E16
τ,zs,x

)
uys +(σ0

yyEτs −E55
τs )uzs,yy +

(
E45

τ,xs −E45
τs,x

)
uzs,y

+
(
E44

τ,xs,x +E11
τ,zs,z

)
uzs =−Eρ

τsüzs

(4.41)
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4.2 Strong-form equations of unified beam theory

In the next chapters, analytical and numerical procedures for the solutions of the afore-
mentioned differential equations are addressed. The methodologies to be used will be in CUF
notation, in order to preserve generality. In this way, approximate and numerical solutions
for strong form governing equations of arbitrary higher-order beam theories will be obtained.
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Chapter 5

Closed-form analytical solution

It is well recognized that the governing differential equations of 3D elasticity problems can
be solved only for a narrow range of problems. If 1D approximation is adopted, closed-form
solutions are available for a wider (but still limited) class of structures. In this chapter,
Navier-type solutions that allow transformation of the differential equations discussed in
the previous chapter into algebraic equations are analytically developed. An approach to
closed-form solutions is particularly adopted for the first time in this thesis to solve static
and free vibration problems using LE-based CUF theories. For Navier-type solutions of TE
models, interested readers are referred to [108].

5.1 Displacement field and loading

The solution of the differential governing equations presented in Chapter 4 is sought in the
form:

uxτ(y) =Uxτ sin(αy)

uyτ(y) =Uyτ cos(αy)

uzτ(y) =Uzτ sin(αy)

(5.1)

Also, assume the external loadings to vary along the beam axis y in the following manner:
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Closed-form analytical solution

pk =



pk±
xx sin(αy)

pk±
xy cos(αy)

pk±
xz sin(αy)

pk±
zx sin(αy)

pk±
zy cos(αy)

pk±
zz sin(αy)


, lk =



lk±
xx sin(αy)

lk±
xy cos(αy)

lk±
xz sin(αy)

lk±
zx sin(αy)

lk±
zy cos(αy)

lk±
zz sin(αy)


(5.2)

where pk and lk represent pressure and line loadings, respectively. The assumption on
external loading does not represent a loss of generality, since a generic loading can be
approximated via Fourier series expansion (see [114, 115]). The term α in Eqs. (5.1) and
(5.2) is given by

α =
mπ

L
(5.3)

where m represents the half-wave number along the beam axis. Uxτ , Uyτ , Uzτ are the
maximum displacement amplitudes function of the motion and pk±

xx , pk±
xy , ..., pk±

zz , lk±
xx , lk±

xy ,
..., lk±

zz are the maximum amplitudes of the surface and line loadings.

Equation (5.1) represents the displacement field of a simply supported beam and it
satisfies the boundary conditions in Eq. (4.29). Thus, according to Eq. (5.1), one has

uxτ(0) = uxτ(L) = 0

uyτ,y(0) = uyτ,y(L) = 0

uzτ(0) = uzτ(L) = 0

(5.4)

5.2 Governing differential equations in explicit algebraic
form

5.2.1 Static analysis

By using the hypotheses introduced in the previous section, the ODEs describing the me-
chanical behaviour of the generic beam theory can be transformed into coupled algebraic
equations. Equations (5.1) and (5.2) are substituted into Eq. (4.28) to give
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5.2 Governing differential equations in explicit algebraic form

δUxτ : α2E66
τs Uxs sin(αy)+α

(
E26

τ,xs −E26
τs,x

)
Uxs cos(αy)+

(
E22

τ,xs,x +E44
τ,zs,z

)
Uxs sin(αy)

+α2E36
τs Uys cos(αy)−α

(
E23

τ,xs −E66
τs,x

)
Uys sin(αy)+

(
E26

τ,xs,x +E45
τ,zs,z

)
Uys cos(αy)

+α
(
E45

τ,zs −E16
τs,z

)
Uzs cos(αy)+

(
E44

τ,zs,x +E12
τ,xs,z

)
Uzs sin(αy) =

[
pk±

xx Ekz±
τ

+pk±
zx Ekx±

τ + lk±
xx Fτ

(
zk

l±xx
,xk

l±xx

)
+ lk±

zx Fτ

(
zk

l±zx
,xk

l±zx

)]
k
sin(αy)

δUyτ : α2E36
τs Uxs sin(αy)+α

(
E66

τ,xs −E23
τs,x

)
Uxs cos(αy)+

(
E26

τ,xs,x +E45
τ,zs,z

)
Uxs sin(αy)

+α2E33
τs Uys cos(αy)−α

(
E36

τ,xs −E36
τs,x

)
Uys sin(αy)+

(
E66

τ,xs,x +E55
τ,zs,z

)
Uys cos(αy)

+α
(
E55

τ,zs −E13
τs,z

)
Uzs cos(αy)+

(
E16

τ,xs,z +E45
τ,zs,x

)
Uzs sin(αy) =

[
pk±

zy Ekx±
τ

+pk±
xy Ekz±

τ + lk±
zy Fτ

(
zk

l±zy
,xk

l±zy

)
+ lk±

xy Fτ

(
zk

l±xy
,xk

l±xy

)]
k
cos(αy)

δUzτ : α
(
E16

τ,zs −E45
τs,z

)
Uxs cos(αy)+

(
E44

τ,xs,z +E12
τ,zs,x

)
Uxs sin(αy)

−α
(
E13

τ,zs −E55
τs,z

)
Uys sin(αy)+

(
E45

τ,xs,z +E16
τ,zs,x

)
Uys cos(αy)+α2E55

τs Uzs sin(αy)

+α
(
E45

τ,xs −E45
τs,x

)
Uzs cos(αy)+

(
E44

τ,xs,x +E11
τ,zs,z

)
Uzs sin(αy) =

[
pk±

zz Ekx±
τ

+pk±
xz Ekz±

τ + lk±
zz Fτ

(
zk

l±zz
,xk

l±zz

)
+ lk±

xz Fτ

(
zk

l±xz
,xk

l±xz

)]
k
sin(αy)

(5.5)
If isotropic or symmetric and balanced cross-ply laminated beams are considered, the

axial motions will be decoupled from the transversal ones. For these cases, the material
coefficients C̃16, C̃26, C̃36 and C̃45 are null, so that the governing equations can be decoupled
and simplified in the following algebraic form:

43



Closed-form analytical solution

δUxτ :
(
α2E66

τs +E22
τ,xs,x +E44

τ,zs,z

)
Uxs −α

(
E23

τ,xs −E66
τs,x

)
Uys

+
(
E44

τ,zs,x +E12
τ,xs,z

)
Uzs =

[
pk±

xx Ekz±
τ + pk±

zx Ekx±
τ

+lk±
xx Fτ

(
zk

l±xx
,xk

l±xx

)
+ lk±

zx Fτ

(
zk

l±zx
,xk

l±zx

)]
k

δUyτ : α
(
E66

τ,xs −E23
τs,x

)
Uxs +

(
α2E33

τs +E66
τ,xs,x +E55

τ,zs,z

)
Uys

+α
(
E55

τ,zs −E13
τs,z

)
Uzs =

[
pk±

zy Ekx±
τ + pk±

xy Ekz±
τ

+lk±
zy Fτ

(
zk

l±zy
,xk

l±zy

)
+ lk±

xy Fτ

(
zk

l±xy
,xk

l±xy

)]
k

δUzτ :
(
E44

τ,xs,z +E12
τ,zs,x

)
Uxs −α

(
E13

τ,zs −E55
τs,z

)
Uys +

(
α2E55

τs

+ E44
τ,xs,x +E11

τ,zs,z

)
Uzs =

[
pk±

zz Ekx±
τ + pk±

xz Ekz±
τ

+lk±
zz Fτ

(
zk

l±zz
,xk

l±zz

)
+ lk±

xz Fτ

(
zk

l±xz
,xk

l±xz

)]
k

(5.6)

Equation (5.6) is the algebraic system of equations of the generic simply supported beam
subjected to pressure and line loads. The above equations are written in terms of a fundamen-
tal nucleus, which can be automatically expanded according to the summation indexes τ , s
and the cross-sectional functions Fτ .

5.2.2 Free vibration analysis

In the case of free vibration problems, the amplitudes of the time-dependant displacements
are supposed to vary harmonically.

uxτ(y; t) =Uxτ eiωt sin(αy)

uyτ(y; t) =Uyτ eiωt cos(αy)

uzτ(y; t) =Uzτ eiωt sin(αy)

(5.7)
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5.3 Limitations of the method

where ω is an arbitrary circular or angular frequency, and i is the usual imaginary unit
√
−1.

By substituting Eq. (5.7) into the equations of motion Eq. (4.33) and considering symmetric
and balanced cross-ply laminated (or isotropic) beams, one has

δUxτ :
(
α2E66

τs +E22
τ,xs,x +E44

τ,zs,z −ω2Eρ

τs
)
Uxs

−α
(
E23

τ,xs −E66
τs,x

)
Uys +

(
E44

τ,zs,x +E12
τ,xs,z

)
Uzs = 0

δUyτ : α
(
E66

τ,xs −E23
τs,x

)
Uxs +

(
α2E33

τs +E66
τ,xs,x +E55

τ,zs,z

− ω2Eρ

τs
)
Uys +α

(
E55

τ,zs −E13
τs,z

)
Uzs = 0

δUzτ :
(
E44

τ,xs,z +E12
τ,zs,x

)
Uxs −α

(
E13

τ,zs −E55
τs,z

)
Uys +

(
α2E55

τs

+ E44
τ,xs,x +E11

τ,zs,z−ω2Eρ

τs)Uzs = 0

(5.8)

Equation (5.8) represents a classical linear eigenvalue problem. Given the order of the beam
theory and its class, Eq. (5.8) can be automatically expanded as was the case in Eq. (4.30) to
finally arrive at a linear eigenvalue problem that can be solved by classical methods.

Any other problems discussed in Chapter 4, such as buckling and vibration of beam-
columns, can also be solved analogously by following the same procedure outlined above.

5.3 Limitations of the method

One of the main limitation of the theory presented in this chapter is that it can be applied only
to simply supported beams. Moreover, the transcendental governing equations (see Eq. (5.5))
can be simplified into an algebraic system of equations (Eqs. (5.6) and (5.8)) only if the
axial motions are decoupled from the transversal ones. This is only possible if the material
coupling is absent, i.e. if the structure is homogeneous or the laminae of the composite
beam are isotropic or the resulting laminate is symmetric and balanced cross-ply. Another
limitation is that only prismatic beams whose material characteristics are homogeneous
along the axis can be addressed by using a Navier-type solution. In the following chapters,
numerical methods that will overcome all of the above limitations are addressed to deal with
general cases with no restriction on boundary conditions and/or cross-sections.
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Chapter 6

Radial Basis Functions

Analytical solutions of higher-order CUF beam theories are available only for a limited class
of problems. In this chapter, approximate solutions of the strong form governing equations by
using Radial Basis Functions (RBFs) are developed. With this method, boundary conditions
and stacking sequences for composites can be chosen with no limitations by accepting
numerical uncertainties. Here attention is focused on free vibration problems although
RBFs have several other applications and the method can be applied to other problems in an
analogous manner.

6.1 Collocation of the unknowns

The governing differential equations for free vibration analysis (Eqs. (4.32) and (4.27)) are
recalled here for the sake of clarity and completeness.

δuτ : Kτsus =−Mτsüs (6.1)

δuτ :
[
ΠΠΠ

τsus
]y=L

y=0 = 0 (6.2)

In the case of harmonic motion, the solution of Eqs. (6.1) is sought in the form

uτ(y; t) = Uτ(y)eiωt (6.3)

Note that Uτ(y) in Eq. (6.3) should not be confused with Uτ in Eqs. (5.1) and (5.7). The
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former is a function of the beam axis y whereas the latter is a vector of scalar parameters. By
substituting Eq. (6.3) into Eqs. (6.1) and (6.2), one obtains

δUτ : (Kτs −ω2Mτs)Us = 0 (6.4)

δUτ :
[
ΠΠΠ

τsUs
]y=L

y=0 = 0 (6.5)

Equation (6.4) represents a system of second-order differential equations with constant
coefficients and Eq. (6.5) gives the associated boundary conditions.

RBFs approximations are essentially collocation schemes that can exploit accurate repre-
sentations of the boundary. They are easy to implement and can be spectrally accurate. In
solid mechanics, they are generally used to approximate the unknown derivatives and this is
the basic step of the methodology described hereafter. Within the framework of the RBFs
method, the amplitude of the harmonically varying generalized displacement vector, Us(y),
is approximated with a linear combination of the radial basis functions φi.

Us(y) = qs iφi (∥y− yi∥2) (6.6)

where qs i is the vector of the unknown parameters at the coordinate yi of the finite set of n
distinct points (centres) and ∥y− yi∥2 is the Euclidian distance ri, which in the case of 1D
problems corresponds to |y− yi|. In Eq. (6.6), index i indicates summation over i = 1, ...,n.
Derivatives of Us(y) over y can be treated similarly.

Us,y(y) = qs iφi,y (|y− yi|)

Us,yy(y) = qs iφi,yy (|y− yi|)

(6.7)

In this work, uniform and Chebyshev grid distributions of points yi are respectively used.
The latter distribution, in particular, is known to be the best choice in terms of stability (see
for example [116–118]). A Chebyshev grid is defined by

yi =
L
2

[
1− cos

(
i−1
n−1

π

)]
, i = 1, ...,n (6.8)
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6.2 Formulation of the eigenvalue problem with radial basis functions

Several RBFs have been formulated over the years and they are given coverage in a large
volume of literature. In the present work, locally supported Wendland’s C6 functions [119]
are chosen as φi, so that

φi(ri,c) = max
(
(1− cri)

8, 0
)
+
(
32c3r3

i +25c2r2
i +8cri +1

)
(6.9)

where c is a positive shape parameter.

The shape parameter c is known to play a very important role in collocation with RBFs for
approximating functions and solving partial differential equations, see for example [120, 121].
The accuracy of the solution can vary significantly depending on the choice of the shape
parameter. In the literature, several solutions for the evaluation of an optimal value of c have
been proposed depending upon the number of nodes, the distance between the nodes and
the type of the RBFs. For instance, in [122] a shape parameter inversely proportional to the
square root of the number of grid points was proposed in the case of multiquadrics RBFs.
However, finding a good value of the parameter c is not always an easy task. As specified
in [123], smaller values of c generally lead to higher accuracy. On the other hand, unstable
numerical solutions may occur as the value of c is decreased (see [124]).

In this thesis, a constant value of c is used for the sake of simplicity and no optimization
procedures are employed. An optimization technique, such as the one recently introduced by
Fantuzzi et al. [125], will be the subject of future work.

6.2 Formulation of the eigenvalue problem with radial ba-
sis functions

Let the domain of the problem be denoted by Γ and let ∂Γ be its boundary. Then, consider
nI nodes in Γ and nB nodes on ∂Γ, with n = nI + nB. In the particular case of 1D beam
theories as in this work, nB = 2 (i.e. the two ends of the beam). By substituting Eqs. (6.6) and
(6.7) into Eq. (6.4), the differential equations of motion are reduced to a classical eigenvalue
problem. For a node y j ∈ Γ, it reads:

(Kτsi j −ω
2Mτsi j)qs i = 0 (6.10)

where Kτsi j and Mτsi j are the 3×3 fundamental nuclei which contains the coefficients of the
algebraic equations of motion. In the case of composite material, the components of matrix
Kτsi j are
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Radial Basis Functions

Kτsi j
(11) =

(
E22

τ,xs,x +E44
τ,zs,z

)
φi j +

(
E26

τ,xs −E26
τs,x

)
φi j,y −E66

τs φi j,yy

Kτsi j
(12) =

(
E26

τ,xs,x +E45
τ,zs,z

)
φi j +

(
E23

τ,xs −E66
τs,x

)
φi j,y −E36

τs φi j,yy

Kτsi j
(13) =

(
E12

τ,xs,z +E44
τ,zs,x

)
φi j +

(
E45

τ,zs −E16
τs,z

)
φi j,y

Kτsi j
(21) =

(
E26

τ,xs,x +E45
τ,zs,z

)
φi j +

(
E66

τ,xs −E23
τs,x

)
φi j,y −E36

τs φi j,yy

Kτsi j
(22) =

(
E66

τ,xs,x +E55
τ,zs,z

)
φi j +

(
E36

τ,xs −E36
τs,x

)
φi j,y −E33

τs φi j,yy

Kτsi j
(23) =

(
E16

τ,xs,z +E45
τ,zs,x

)
φi j +

(
E55

τ,zs −E13
τs,z

)
φi j,y

Kτsi j
(31) =

(
E44

τ,xs,z +E12
τ,zs,x

)
φi j +

(
E16

τ,zs −E45
τs,z

)
φi j,y

Kτsi j
(32) =

(
E45

τ,xs,z +E16
τ,zs,x

)
φi j +

(
E13

τ,zs −E55
τs,z

)
φi j,y

Kτsi j
(33) =

(
E44

τ,xs,x +E11
τ,zs,z

)
φi j +

(
E45

τ,xs −E45
τs,x

)
φi j,y −E55

τs φi j,yy

(6.11)

The components of matrix Mτsi j are

Mτsi j
(11) = Mτsi j

(22) = Mτsi j
(33) = Eρ

τsφi j

Mτsi j
(12) = Mτsi j

(13) = Mτsi j
(21) = Mτsi j

(23) = Mτsi j
(31) = Mτsi j

(32) = 0

(6.12)

In Eqs. (6.11) and (6.12), φi j stands for φi(|y j −yi|). For a given beam theory - i.e., given the
expansion functions Fτ and the number of terms in the theory kinematics M -, the eigenvalue
problem describing the motion of the beam in free vibration is obtained by expanding Kτsi j

and Mτsi j for τ = 1,2, ...,M, s = 1,2, ...,M, i = 1, ...,n, and j = 1, ...,nI . Finally the problem
essentially becomes

(KI −ω
2MI)q = 0 (6.13)
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6.2 Formulation of the eigenvalue problem with radial basis functions

where the superscript I denotes the fact that Eq. (6.13) applies in Γ. In a similar way, the
natural boundary conditions can be written in algebraic form by substituting Eqs. (6.6) and
(6.7) into Eq. (6.5). For a node y j ∈ ∂Γ, it is represented by[

ΠΠΠ
τsi j qs i

]y=L
y=0 = 0 (6.14)

where the components of the algebraic fundamental nucleus ΠΠΠ
τsi j are as follows:

Π
τsi j
(11) = E26

τs,xφi j +E66
τs φi j,y , Π

τsi j
(12) = E66

τs,xφi j +E66
τs,xφi j,y , Π

τsi j
(13) = E16

τs,zφi j

Π
τsi j
(21) = E23

τs,xφi j +E36
τs φi j,y , Π

τsi j
(22) = E36

τs,xφi j +E33
τs φi j,y , Π

τsi j
(23) = E13

τs,zφi j

Π
τsi j
(31) = E45

τs,zφi j, Π
τsi j
(32) = E55

τs,zφi j, Π
τsi j
(33) = E45

τs,xφi j +E55
τs φi j,y

(6.15)
Similarly as above, the fundamental nucleus ΠΠΠ

τsi j can be automatically expanded for
τ = 1,2, ...,M, s = 1,2, ...,M, i = 1, ...,n, and j = nI +1, ...,n. In the case of homogeneous
natural boundary condition one has

ΠΠΠ
B q = 0 (6.16)

where superscript B denotes the fact that Eq. (6.16) applies to ∂Γ. The matrix ΠΠΠ
B is not

derived in this thesis in the case of essential boundary conditions for the sake of brevity, but
it is fairly straightforward. Now, essential boundary conditions can be applied by imposing
a certain value to the amplitude of the harmonically varying generalized displacement
Us(y) = Us(y).

Once matrices KI , MI , and ΠΠΠ
B are obtained, the final eigenvalue problem can be formu-

lated and solved as ([
KI

ΠΠΠ
B

]
−ω

2
k

[
MI

0

])
qk = 0 (6.17)

where qk is the k-th eigenvector. It is well known that some RBFs produce ill-conditioned
matrices and this problem is further exacerbated as the number of grid points increases.
Some authors reduce the conditioning number by using preconditioners, see [126]. Results
discussed later show that by increasing the order of the beam theory (e.g., N in the case of
TE models), the problem can become severely ill-conditioned. However, scaling the matrices
KI and MI as well as the matrix of natural (not essential) boundary conditions ΠΠΠ

B by the
maximum coefficient of the stiffness matrix itself, was sufficient to obtain a well-conditioned
problem for each case considered in this thesis. In order to improve the accuracy of the
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solution further, the generalized displacements on the boundary centres could be condensed
with respect to those related to the internal nodes, as explained in [127].
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Chapter 7

Dynamic Stiffness Method

In the previous chapters, the solutions of the strong form equations of higher-order beam
models have been sought both in exact as well as numerical forms. In the case of former, the
differential equations have been transformed into algebraic problems specially by imposing
simply supported boundary conditions. The numerical solutions which are approximated,
on the other hand, are based on the use of RBFs with no limitations regarding boundary
conditions and effects of material couplings. Nonetheless, RBFs method may present some
numerical difficulty as it will be shown later in the computed results.

Owing to the rapid developments in computer technology in recent years, tremendous
progress has been made in computational methods as applied in engineering. RBFs and,
in general, collocation schemes are not necessarily the most effective tools to tackle the
problems discussed in this thesis. Among the methods based on weak form solutions (which
are, however, out of the scope of this work), the Finite Element Method (FEM) has been
probably the most popular. Although FEM is versatile and applicable to arbitrary geometries,
boundary conditions and material variations, it can be sometimes very expensive from a
computational standpoint. There are other limitations of FEM as well. For example, the
conventional FEM (and the majority of numerical methods, including RBFs) may not capture
all necessary high frequency wave modes of interest, which can play an important role in the
correct characterization of the entire vibration pattern of a structure. One of the reasons for
this is that FEM uses assumed (frequency-independent) shape functions.

An alternative approach to improve the solution accuracy is to use frequency dependent
shape functions, i.e. dynamic shape functions [128]. As the dynamic shape functions can
capture all necessary high frequency wave modes, much accurate solutions can eventually be
achieved. This elegant approach has led to the development of the Dynamic Stiffness Method
(DSM), whose application to strong-form governing differential equations in conjunction
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with CUF is the main subject of this chapter and, in part, represents the important novelty of
this entire work.

DSM makes use of dynamic shape functions that are derived from the exact wave
solutions of the governing differential equations to formulate the Dynamic Stiffness (DS)
matrix. To obtain the exact wave solutions in the frequency domain, the governing equations
are transformed into the frequency domain by assuming harmonic solutions of a single
frequency. Thus, the dynamic stiffness matrix is frequency dependent, consisting of a
mixture of inertia and stiffness properties of the structure. As the dynamic stiffness matrix is
constructed by using the exact solutions of the governing equations, it is clear that it deals
with continuous mass and stiffness distributions in a structure exactly. As a consequence,
DSM guarantees exact solutions of the governing equations in the frequency domain and
this is the reason why it is referred as an exact method in the literature. In fact, only one
single element is sufficient for a regular part of a structure to acquire exact solutions of the
given governing equations with no limitations of geometry, boundary conditions or material
couplings. It should be recognized that DSM results in a non-linear eigenvalue problem,
which requires the adoption of an iterative algorithm for which the known best method is the
application of the Wittrick-Williams algorithm [49]. The algorithm has certainly enhanced the
applicability of DSM. It allows one to automatically calculate undamped natural frequencies
(or critical loads in the case of buckling problems) within any desired accuracy.

In the following sections, the elegance of the DSM when applied to CUF beam theories
is discussed. Attention is primarily focused on free vibration and buckling analyses.

7.1 L-matrix form of the governing differential equations

The procedure to obtain the Dynamic Stiffness (DS) matrix for a structural problem can be
summarised as follows: (i) Seek a closed form analytical solution of the governing differential
equations of the structural element; (ii) Apply a number of general boundary conditions equal
to twice the number of integration constants in algebraic form, which are usually the nodal
displacements and forces; (iii) Eliminate the integration constants by relating the amplitudes
of the generalized nodal forces to the corresponding generalized displacements generating
the DS matrix.

The above steps are briefly described below when developing the DS matrix for typical
problems. First, the governing equations for free vibration of beams and beam-columns
as well as for linearized buckling problems are transformed into a suitable form to obtain
the exact wave solutions in the frequency domain before formulating the DS matrix. The
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7.1 L-matrix form of the governing differential equations

Wittrick-Williams algorithm [49] is finally introduced as the most effective solution technique
to solve the transcendental eigenvalue problems.

7.1.1 Free vibration analysis

In the case of harmonic motion (Eq. (6.3)), the ordinary differential equations of the beam in
free vibration (i.e., Eq. (6.4)) are written in the following compact form:

δUτ : Lτs Ũs = 0 (7.1)

where
Ũs =

{
Uxs Uxs,y Uxs,yy Uys Uys,y Uys,yy Uzs Uzs,y Uzs,yy

}T
(7.2)

and Lτs is the 3× 9 fundamental nucleus of the matrix containing the coefficients of the
ordinary differential equations. The components of matrix Lτs are provided below in the
case of monoclinic materials (e.g., fibre reinforced beam) and they are referred to as Lτs

(rc),
where r is the row number (r = 1,2,3) and c is the column number ( j = 1,2, ...,9). For the
notation employed, the reader is referred to Chapter 4.

Lτs
(11) =−ω2Eρ

τs +E22
τ,xs,x +E44

τ,zs,z, Lτs
(12) = E26

τ,xs −E26
τs,x , Lτs

(13) =−E66
τs

Lτs
(14) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(15) = E23
τs,x −E66

τs,x , Lτs
(16) =−E36

τs

Lτs
(17) = E12

τ,xs,z +E44
τ,zs,x , Lτs

(18) = E45
τ,zs −E16

τs,z, Lτs
(19) = 0

Lτs
(21) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(22) = E66
τ,xs −E23

τs,x , Lτs
(23) =−E36

τs

Lτs
(24) =−ω2Eρ

τs +E66
τ,xs,x +E55

τ,zs,z, Lτs
(25) = E36

τ,xs −E36
τs,x , Lτs

(26) =−E33
τs

Lτs
(27) = E16

τ,xs,z +E45
τ,zs,x , Lτs

(28) = E55
τ,zs −E13

τs,z, Lτs
(29) = 0

Lτs
(31) = E44

τ,xs,z +E12
τ,zs,x , Lτs

(32) = E16
τ,zs,x −E45

τs,z, Lτs
(33) = 0

Lτs
(34) = E45

τ,xs,z +E16
τ,zs,x , Lτs

(35) = E13
τ,zs −E55

τs,z, Lτs
(36) = 0

Lτs
(37) =−ω2Eρ

τs +E44
τ,xs,x +E11

τ,zs,z, Lτs
(38) = E45

τ,xs −E45
τs,x , Lτs

(39) =−E55
τs

(7.3)
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For a given expansion order beam theory, the equations of motion in the frequency domain
can be obtained in the form of Eq. (7.4), as given below, by expanding out Lτs for indexes τ

and s to give L and Ũ to include all the terms in the expansion. Thus

LŨ = 0 (7.4)

In the case of TE models, for example, the expansion of the fundamental nuclei Lτs is
conducted for for τ = 1,2, ...,(N+1)(N+2)/2 and s = 1,2, ...,(N+1)(N+2)/2. Figure 7.1
illustrates the expansion of Lτs in the case of linear and quadratic TE models.

L
ts

t

s

L
ts

L
ts

s

t

3 x 9  Fundamental Nucleus

N = 1

N = 2

Figure 7.1 Expansion of the matrix Lτs for a given expansion order and TE.

Similarly, the boundary conditions in Eq. (6.5) can be written in a matrix form as

δUτ : Ps = Bτs Ûs (7.5)

where Ps is the amplitude of the harmonically varying load and

Ûs =
{

Uxs Uxs,y Uys Uys,y Uzs Uzs,y

}T
(7.6)
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7.1 L-matrix form of the governing differential equations

Bτs is the 3×6 fundamental nucleus which contains the coefficients of the natural boundary
conditions

Bτs =

 E26
τs,x E66

τs E66
τs,x E36

τs E16
τs,z 0

E23
τs,x E36

τs E36
τs,x E33

τs E13
τs,z 0

E45
τs,z 0 E55

τs,z 0 E45
τs,x E55

τs

 (7.7)

Given the number of the terms in the beam kinematics, M, and the cross-sectional functions,
Fτ , the natural boundary conditions can be obtained in the form of Eq. (7.8) by expanding
Bτs in the same way as Lτs to finally give

P = BÛ (7.8)

7.1.2 Free vibration analysis of axially loaded beams

In the case of beam-columns with the assumption of harmonic motion (Eq. (6.3)), the
governing equations (Eqs. (4.39) to (4.41)) can be written in a compact form similar to those
of Eq. (7.1). In this case, the components of matrix Lτs are

Lτs
(11) =−ω2Eρ

τs +E22
τ,xs,x +E44

τ,zs,z, Lτs
(12) = E26

τ,xs −E26
τs,x , Lτs

(13) = σ0
yyEτs −E66

τs

Lτs
(14) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(15) = E23
τs,x −E66

τs,x , Lτs
(16) =−E36

τs

Lτs
(17) = E12

τ,xs,z +E44
τ,zs,x , Lτs

(18) = E45
τ,zs −E16

τs,z, Lτs
(19) = 0

Lτs
(21) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(22) = E66
τ,xs −E23

τs,x , Lτs
(23) =−E36

τs

Lτs
(24) =−ω2Eρ

τs +E66
τ,xs,x +E55

τ,zs,z, Lτs
(25) = E36

τ,xs −E36
τs,x , Lτs

(26) = σ0
yyEτs −E33

τs

Lτs
(27) = E16

τ,xs,z +E45
τ,zs,x , Lτs

(28) = E55
τ,zs −E13

τs,z, Lτs
(29) = 0

Lτs
(31) = E44

τ,xs,z +E12
τ,zs,x , Lτs

(32) = E16
τ,zs,x −E45

τs,z, Lτs
(33) = 0

Lτs
(34) = E45

τ,xs,z +E16
τ,zs,x , Lτs

(35) = E13
τ,zs −E55

τs,z, Lτs
(36) = 0

Lτs
(37) =−ω2Eρ

τs +E44
τ,xs,x +E11

τ,zs,z, Lτs
(38) = E45

τ,xs −E45
τs,x , Lτs

(39) = σ0
yyEτs −E55

τs

(7.9)
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For a given expansion order, the equations of motion in the frequency domain can be
obtained in the form of Eq. (7.4), as given below, by expanding Lτs for indexes τ and s to
give

LŨ = 0 (7.10)

In a similar manner, the boundary conditions of Eq. (4.38) can be written in a matrix
form as

δUτ : Ps = Bτs Ûs (7.11)

where

Bτs =


E26

τs,x (E66
τs −σ0

yyEτs) E66
τs,x E36

τs E16
τs,z 0

E23
τs,x E36

τs E36
τs,x (E33

τs −σ0
yyEτs) E13

τs,z 0

E45
τs,z 0 E55

τs,z 0 E45
τs,x (E55

τs −σ0
yyEτs)

 (7.12)

For a given expansion order, the natural boundary conditions can be obtained in the form of
Eq. (7.13) by expanding Bτs in order to have

P = BÛ (7.13)

In the particular case of composite laminates, the matrices L and B are evaluated for each
layer; global matrices are then obtained by summing the contribution of each lamina.

7.1.3 Buckling analysis

In the case of buckling analysis, the inertial terms do not appear in the governing equations.
Thus, the assumption of harmonic motion is not necessary. In this case, the governing
equations in Eq. (4.35) can be written in the following compact form:

δuτ : Lτs ũs = 0 (7.14)

where
ũs =

{
uxs uxs,y uxs,yy uys uys,y uys,yy uzs uzs,y uzs,yy

}T
(7.15)
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7.1 L-matrix form of the governing differential equations

The components of matrix Lτs are

Lτs
(11) = E22

τ,xs,x +E44
τ,zs,z, Lτs

(12) = E26
τ,xs −E26

τs,x , Lτs
(13) = σ0

yyEτs −E66
τs

Lτs
(14) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(15) = E23
τs,x −E66

τs,x , Lτs
(16) =−E36

τs

Lτs
(17) = E12

τ,xs,z +E44
τ,zs,x , Lτs

(18) = E45
τ,zs −E16

τs,z, Lτs
(19) = 0

Lτs
(21) = E26

τ,xs,x +E45
τ,zs,z, Lτs

(22) = E66
τ,xs −E23

τs,x , Lτs
(23) =−E36

τs

Lτs
(24) = E66

τ,xs,x +E55
τ,zs,z, Lτs

(25) = E36
τ,xs −E36

τs,x , Lτs
(26) = σ0

yyEτs −E33
τs

Lτs
(27) = E16

τ,xs,z +E45
τ,zs,x , Lτs

(28) = E55
τ,zs −E13

τs,z, Lτs
(29) = 0

Lτs
(31) = E44

τ,xs,z +E12
τ,zs,x , Lτs

(32) = E16
τ,zs,x −E45

τs,z, Lτs
(33) = 0

Lτs
(34) = E45

τ,xs,z +E16
τ,zs,x , Lτs

(35) = E13
τ,zs −E55

τs,z, Lτs
(36) = 0

Lτs
(37) = E44

τ,xs,x +E11
τ,zs,z, Lτs

(38) = E45
τ,xs −E45

τs,x , Lτs
(39) = σ0

yyEτs −E55
τs

(7.16)

Again, given the order of expansion and the class of the selected beam theory, Lτs is
expanded to give the final system of matrix equation as

Lũ = 0 (7.17)

In a similar manner, the natural boundary conditions in Eq. (4.36) can be handled to give

δuτ : Ps = Bτs ûs (7.18)

where Bτs is the same as in Eq. (7.12) and

ûs =
{

uxs uxs,y uys uys,y uzs uzs,y

}T
(7.19)

The expanded natural boundary conditions are

P = Bû (7.20)
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7.2 Solution of the differential equations

Because of CUF and since the derivatives are taken as variables, it is clear that each of
Eqs. (7.4), (7.10) and (7.17) is a system of ODEs of second order in y with constant coeffi-
cients. The procedure to solve a system of ordinary differential equations of second order
with constant coefficients is shown in Appendix B once the matrices S̃ (Eq. (B.3)) and S
(Eq. (B.7)) are formulated. As explained in Appendix B, a change of variables to reduce the
second order system to a first order system is first needed. In the case of free vibrations of
beams and beam-columns, the following change of variables is needed:

Z =
{

Z1 Z2 . . . Zn

}T
= Û ={

Ux1 Ux1,y Uy1 Uy1,y Uz1 Uz1,y . . . UxM UxM,y UyM UyM,y UzM UzM,y

}T (7.21)

where Û is the expansion of Ûs for a given theory order, M is the number of expansion terms
for the given beam theory, and n = 6×M is the dimension of the unknown vector as well as
the number of differential equations. On the other hand, in the case of buckling problems,
one has similarly

Z =
{

Z1 Z2 . . . Zn

}T
= û ={

ux1 ux1,y uy1 uy1,y uz1 uz1,y . . . uxM uxM,y uyM uyM,y uzM uzM,y

}T (7.22)

where û is the expansion of ûs. For the sake of simplicity, no distinctions are made between
Û and û in the following.

The main problem now is to find an algorithm to transform the expanded L matrix of
Eqs. (7.4), (7.10) and (7.17) into the matrix S of the following differential problem:

Z,y(y) = SZ(y) (7.23)

In fact, by looking at Eq. (B.2), see Appendix B, it could be seen that there are only second
derivatives on the left hand side (LHS) of the differential equations whereas by looking, for
example, at Eq (4.33), it is clear that for each equation more than one second derivative
appears. In order to obtain the matrix S̃ from the L matrix, decoupling between the second
derivatives can be done line by line so that only one second derivative remains on each line.
Moreover, for each line, the coefficient of the second order derivative which is left, has to be
set as −1 by means of a factorization. By performing the above procedure on the L matrix
and by removing the columns which contain the coefficient −1 of the second order derivative,
the matrix of the coefficients of the differential equations is formulated in the form of the
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7.2 Solution of the differential equations

matrix S̃ as it appears in Appendix B. The procedure to transform the matrix L into the matrix
S̃ consists of performing a number of Gauss eliminations. This procedure is discussed in
Appendix C. Subsequently, the matrix S of Eq. (7.23) can be obtained from S̃ by adding rows
with 0’s and 1’s in order to account for the change of variables (see Appendix B, Eqs. (B.3)
and (B.7)). Once the matrix S̃ (Eq. (B.3)) is obtained, and subsequently transformed into S
(Eq. (B.7)), by following the procedure in Appendix B, the solution can be written in matrix
form as follows: 

Z1

Z2
...

Zn

=


δ11 δ21 . . . δn1

δ12 δ22 . . . δn2
...

... . . . ...
δ1n δ2n . . . δnn




C1eλ1y

C2eλ2y

...
Cneλny

 (7.24)

where λi is the i-th eigenvalue of the S matrix, δi j is the j-th element of the i-th eigenvector
of the S matrix and Ci are the integration constants which need to be determined by using the
boundary conditions. The above equation can be written in a matrix form as follows:

Z = δCeλy (7.25)

Vector Z contains not only the displacements but also their first derivatives. If only the
displacements are needed, according to Eqs. (7.21) and (7.22), only the lines 1,3,5, . . . ,n−1
should be taken into account, giving a solution in the following form:

Ux1(y) =C1δ11eλ1y +C2δ21eλ2y + . . .+Cnδn1eλny

Uy1(y) =C1δ13eλ1y +C2δ23eλ2y + . . .+Cnδn3eλny

Uz1(y) =C1δ15eλ1y +C2δ25eλ2y + . . .+Cnδn5eλny

...

UzM(y) =C1δ1(n−1)e
λ1y +C2δ2(n−1)e

λ2y + . . .+Cnδn(n−1)e
λny

(7.26)

Once the displacements are known, the boundary conditions are obtained by substituting the
solution of Eq. (7.25) into the boundary conditions (Eq. (7.8)). In fact, it should be noted that
Û is equal to Z (Eq. (7.21)) which eventually leads to

P = BδCeλy = ΛΛΛCeλy (7.27)

where ΛΛΛ = Bδ . The boundary conditions can be written in explicit form as follows:
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Px1(y) =C1Λ11eλ1y +C2Λ12eλ2y + . . .+CnΛ1neλny

Py1(y) =C1Λ21eλ1y +C2Λ22eλ2y + . . .+CnΛ2neλny

Pz1(y) =C1Λ31eλ1y +C2Λ32eλ2y + . . .+CnΛ3neλny

...

PzM(y) =C1Λn1eλ1y +C2Λn2eλ2y + . . .+CnΛnneλny

(7.28)

Although resorting to the L matrix seems extremely convoluted and complicated, it is in
fact the simplest and most effective way to solve the problem. The matrix Lτs is simply a
different way to write the differential equations but the greatest advantage is that it allows for
automatic formulation of the differential equations of any order beam theories in a systematic
way. In sharp contrast to the structural problems illustrated in the literature and those methods
outlined in the previous chapters, where the system becomes algebraic, here by using L the
differential equations can be written automatically, thus allowing the solution for any-order
theory possible with relative ease.

7.3 Dynamic stiffness matrix

Once the closed form analytical solution of the differential equations of motion of the
structural element in free vibration has been sought, a number of general boundary conditions
- which are usually the nodal displacements and forces - equal to twice the number of
integration constants in algebraic form needs to be applied (see Fig. 7.2).

x

z

y

U1xt

U1yt

U1zt

U2xt

U2yt

U2zt

P1xt

P1yt

P1zt

P2xt

P2yt

P2zt

Figure 7.2 Boundary conditions of the beam element and sign conventions.

62



7.3 Dynamic stiffness matrix

Starting from the displacements, the boundary conditions can be written as

At y = 0 :

Ux1(0) =−U1x1

Uy1(0) =−U1y1

Uz1(0) =−U1z1

...

UzM(0) =−U1zM

(7.29)

At y = L :

Ux1(L) =U2x1

Uy1(L) =U2y1

Uz1(L) =U2z1

...

UzM(L) =U2zM

(7.30)

By evaluating Eq. (7.26) at y = 0 and y = L and applying the boundary conditions of
Eqs. (7.29) and (7.30), the following matrix relation for the nodal generalized displacements
is obtained:

U1x1

U1y1

U1z1
...

U1zM

U2x1

U2y1

U2z1
...

U2zM



=



−δ11 −δ21 . . . −δn1

−δ13 −δ23 . . . −δn3

−δ15 −δ25 . . . −δn5
...

...
. . .

...

−δ1(n−1) −δ2(n−1) . . . −δn(n−1)

δ11eλ1L δ21eλ2L . . . δn1eλnL

δ13eλ1L δ23eλ2L . . . δn3eλnL

δ15eλ1L δ25eλ2L . . . δn5eλnL

...
...

. . .
...

δ1(n−1)eλ1L δ2(n−1)eλ2L . . . δn(n−1)eλnL





C1

C2

C3
...

C n
2

C n
2+1

C n
2+2

C n
2+3
...

Cn



(7.31)

The above equation can be written in a more compact form as

U = AC (7.32)
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Similarly, boundary conditions for generalized nodal forces are as follows:

At y = 0 :

Px1(0) =−P1x1

Py1(0) =−P1y1

Pz1(0) =−P1z1

...

PzM(0) =−P1zM

(7.33)

At y = L :

Px1(L) = P2x1

Py1(L) = P2y1

Pz1(L) = P2z1

...

PzM(L) = P2zM

(7.34)

By evaluating Eq. (7.28) in y = 0 and y = L and applying the boundary conditions of
Eqs. (7.33) and (7.34), the following matrix relation for the nodal forces is obtained:

P1x1

P1y1

P1z1
...

P1zM

P2x1

P2y1

P2z1
...

P2zM



=



−Λ11 −Λ12 . . . −Λ1n

−Λ21 −Λ22 . . . −Λ2n

−Λ31 −Λ32 . . . −Λ3n
...

...
. . .

...
−Λn1 −Λn2 . . . −Λnn

Λ11eλ1L Λ12eλ2L . . . Λ1neλnL

Λ21eλ1L Λ22eλ2L . . . Λ2neλnL

Λ31eλ1L Λ32eλ2L . . . Λ3neλnL

...
...

. . .
...

Λn1eλ1L Λn2eλ2L . . . ΛnneλnL





C1

C2

C3
...

C n
2

C n
2+1

C n
2+2

C n
2+3
...

Cn



(7.35)

The above equation can be written in a more compact form as

P = RC (7.36)

The integration constants in vector C from Eqs. (7.32) and (7.36) can now be eliminated
by relating the harmonically varying amplitudes of the generalized nodal forces to the
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x

z

y

1

2

Figure 7.3 Assembly of dynamic stiffness matrices.

corresponding amplitudes of the generalized displacements to give the DS matrix of one
beam element as follows:

P =KKK U (7.37)

where
KKK = RA−1 (7.38)

is the required DS matrix.

The DS matrix given by Eq. (7.38) is the basic building block to compute the exact
natural frequencies or critical buckling loads of a higher-order beam. The global DS matrix
can be obtained by assembling elemental matrices as in the classical way similar to FEM, see
Fig. 7.3. As far as the boundary conditions are concerned, they can be applied by using the
well-known penalty method (often used in FEM) or by simply removing rows and columns
of the dynamic stiffness matrix corresponding to the degrees of freedom which are zeroes. In
this thesis, the penalty method is used to suppress the unnecessary degrees of freedom [56].

7.4 The Wittrick-Williams algorithm

The analytical, closed form-solution and the collocation method discussed in the previous
chapters lead to algebraic or linear eigenvalue problems. By contrast, the DSM leads to a
transcendental (non-linear) eigenvalue problem for which the Wittrick-Williams algorithm
[49] is generally used. In the case of free vibration analysis, the basic working principle of
the algorithm is briefly summarised as follows:

(i) A trial frequency ω∗ is chosen to compute the DS matrix KKK ∗ of the final structure;
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(ii) KKK ∗ is reduced to its upper triangular form by the usual form of Gauss elimination
to obtain KKK ∗△ and the number of negative terms on the leading diagonal of KKK ∗△ is
counted: this is known as the sign count s(KKK ∗) of the algorithm;

(iii) The number, j, of natural frequencies (ω) of the structure which lie below the trial
frequency (ω∗) is given by:

j = j0 + s(KKK ∗) (7.39)

where j0 is the number of natural frequencies of all individual elements with clamped-
clamped boundary conditions on their opposite sides which still lie below the trial
frequency ω∗.

The procedure in the case of buckling analysis is analogous. The main difference is that, in
this case, the DS matrix depends on the axial load, whose critical trial value is −σ0

yy = λ ∗.
Note that, in the procedure above, j0 is required because the DSM allows for an infinite
number of natural frequencies to be accounted for when all the nodes of the structure are fully
clamped so that one or more individual elements of the structure can still vibrate or buckle
on their own between the nodes. Thus j0 corresponds to U = 0 modes of Eq. (7.37) when
P = 0. Assuming that j0 is known (it can be calculated by exact formula or by subdividing
members), and s(KKK ∗) can be obtained by counting the number of negative terms in KKK ∗△ ,
a suitable procedure can be devised, for example the bi-section method, to bracket any
natural frequency between an upper and lower bound of the trial frequency ω∗ to any desired
accuracy.

7.5 Eigenvalues and eigenmodes calculation

Once the natural frequency or the critical buckling load has been computed and the related
global DS matrix is evaluated, the corresponding nodal generalized displacements giving the
mode shapes can be obtained by using a random force vector P in Eq. (7.37) or by solving
the associated homogeneous system. Then, by utilizing the nodal generalized displacements
U, the integration constants C of the element can be computed with the help of Eq. (7.32).
In this way, by using Eq. (7.26), the unknown generalized displacements are computed as
a function of y. Finally, by using Eqs. (6.3) and (3.7), the complete displacement field can
be generated as a function of x,y,z and the time t (if an animated plot is needed). Clearly,
the plot of the required mode can be visualised on a fictitious 3D mesh. By following this
procedure, it is possible to compute the exact free vibratory mode shapes or buckling modes
by using just one single element, which is impossible in weak-form solutions such as in FEM
or in other numerical methods.
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Chapter 8

Numerical Results

Based on the theories presented in previous chapters, this chapter presents some practical
applications with illustrative examples of metallic and composite beam and plate structures.
Solid and thin-walled cross-section beams made of isotropic and composite materials are
considered. Two principal aims are given preference when obtaining the results: (i) The
validation of the refined CUF structural models; and (ii) The investigation about the different
exact and numerical approaches for the solutions of the strong-form governing equations. A
wide range of problems are addressed, including static analysis, free vibrations of unstressed
and pre-stressed structures, and linearized buckling.

8.1 Static analysis

Closed-form analytical solutions for static analysis of composite beams by LE models are
addressed in this section. With regard to closed-form solutions of TE CUF theories as
applied to metallic structures, the readers are referred to the works by Giunta et al. [129] and
Catapano et al. [130] as supplements.

8.1.1 Composite beams subjected to sinusoidal pressure load

In order to test the validity and accuracy of the present method, a well-known test case is now
presented. It is a beam problem and the beam considered has simply supported boundary
conditions and has a square cross-section. Three different cross-ply laminations schemes
are used to define the cross-section. These are [0◦], [0◦/90◦], and [0◦/90◦/0◦]. Each layer
has the same thickness. The coordinate system, the geometry and the loading are shown in
Fig. 8.1 for the illustrative case of the two-layer [0◦/90◦] beam. The material is carbon/epoxy
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x

z y

Figure 8.1 Simply supported composite beam of two-layer square cross-section subjected to
sinusoidal pressure load.

composite and the material properties are such that the following relations are satisfied:

EL

ET
= 25,

GT T

ET
= 0.2,

GLT

ET
= 0.5, νLT = νT T = 0.25 (8.1)

where the subscripts “L” and “T” stand for the direction parallel to the fibers and the
transverse direction, respectively. In the analysis addressed in this section, the composite
beam undergoes a transverse sinusoidal loading q(x) = q0 sin πy

L on the top surface (see
Fig. 8.1).

Pagano [131] was amongst the first few who discussed similar problems when he devel-
oped the Exact Solution for the Cylindrical Bending of Plates (ESCBP) in 1969, providing
exact solutions for the problem under consideration. Subsequently, Lu and Liu [132], Vinayak
et al. [133], Manjunatha and Kant [134, 135] used Higher order Shear Deformation Theo-
ries (HSDT) to solve the same problem. By contrast, Maiti and Sinha [136] studied those
cross-ply beams with the First-order Shear Deformation Theory (FSDT). A Layer-wise
Trigonometric Shear Deformation Theory (LTSDT) was discussed in [137, 138], whereas
Tahani [139] employed the Beam Layer-Wise Theory (BLWT) in his investigation. Interest-
ingly, Catapano et al. [140] addressed the same problem with different CUF-TE analytical
solutions.

The results obtained from the theories developed in this thesis for axial and transverse
displacements as well as axial and transverse stresses are presented using the following
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8.1 Static analysis

Table 8.1 Maximum non-dimensional transverse displacement, ūz(0,L/2,−h/2), of the
simply-supported composite beam under sinusoidal surface loading.

[0◦] [0◦/90◦] [0◦/90◦/0◦]

Model S = 10 S = 40 S = 4 S = 10 S = 100 S = 10 S = 40
Reference solutions

ESCBP [131] 0.710 0.510 4.320 2.920 2.620 0.920 0.510
HSDT [132] – – 4.777 3.000 – – –
HSDT [134] – – 4.283 2.899 – – –
FSDT [136] – – 4.790 – – – –
HSDT [133] – – 4.790 – – – –
LTSDT [137] – – 4.743 2.974 – – –
LTSDT [138] – – 4.744 2.974 – – –
BLWT [139] – – – – – 0.900 0.520
EBBM [140] – – 2.627 2.626 2.625 – –
TE (N=5) [140] – – 4.671 2.626 2.627 – –

Present LE models
1×2 L4 0.697 0.505 4.430 2.904 2.615 – –
1×6 L4 0.728 0.508 4.593 2.939 2.626 0.928 0.538
2×6 L4 0.728 0.508 4.594 2.939 2.626 0.928 0.538
1×2 L9 0.730 0.508 4.512 2.925 2.627 – –
1×6 L9 0.733 0.508 4.703 2.960 2.628 0.933 0.538
2×6 L9 0.733 0.508 4.702 2.960 2.628 0.933 0.538
1×2 L16 0.733 0.508 4.705 2.960 2.628 – –
1×3 L16 0.733 0.508 – – – 0.934 0.538
1×6 L16 0.733 0.508 4.706 2.960 2.628 0.934 0.538
2×6 L16 0.733 0.508 4.706 2.960 2.628 0.934 0.538

non-dimensional parameters

ūi =
ET

q0h
ui with i = x,y; ūz = 100

ET h3

q0L4 uz

σ̄i j =
σi j

q0
with i = x,y,z; S =

L
h

; z̄ =
z
h

(8.2)

Tables 8.1 and 8.2 show some selected values of the transverse and axial displacement
components using various theories, including LE models developed in this thesis solved. The
present LE models make use of a Navier-type solution. The through-thickness distributions
of the same quantities are also given in graphical form in Figs. 8.2 and 8.3. Various LE
models have been considered and they have been referred to as ξ ×ζ Lψ , where ξ and ζ

are the number of Lagrange polynomials along x and z directions, respectively, and ψ is
the polynomial order. Clearly excellent agreement is found with L9 and L16 models in
terms of displacements. For the short beam with S = 4, the results from the current analysis
show some errors, but they are less than 3% when compared with the exact solution by
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Figure 8.2 Distribution of normalized axial displacement ūy along z̄ and at (x,y) = (0,0);
simply-supported composite beam under sinusoidal surface loading.

 -0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

2.75 2.8 2.85 2.9 2.95 3 3.05 

z 

uz 

2×6L16 

1×6L16 

1×6L9 

1×6L4 

(a) ⌈0◦/90◦/0◦⌉, S = 4

 -0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.924 0.926 0.928 0.93 0.932 0.934 0.936 

z 

uz 

2×6L16 

1×6L16 

1×6L9 

1×6L4 

(b) ⌈0◦/90◦/0◦⌉, S = 10

 -0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.53735 0.53755 0.53775 0.53795 0.53815 

z 

uz 

2×6L9 

1×6L9 

2×6L4 

1×6L4 

(c) ⌈0◦/90◦/0◦⌉, S = 40

Figure 8.3 Distribution of normalized transverse displacement ūz along z̄ and at (x,y) =
(0,L/2); simply-supported composite beam under sinusoidal surface loading.
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8.1 Static analysis

Table 8.2 Non-dimensional axial displacement, ūy(0,0,−h/2), of the simply-supported
composite beam under sinusoidal surface loading.

[0◦/90◦] [0◦/90◦/0◦]

Model S = 4 S = 10 S = 100 S = 4 S = 10
Reference solutions

ESCBP [131] -4.500 -61.667 -60143.00 -0.920 -9.300
HSDT [135] -4.861 – – –
HSDT [132] -4.714 -61.667 – – –
LTSDT [137] -5.057 -63.379 – – –
LTSDT [138] -5.035 -63.305 – – –
EBBM [140] -3.858 -60.273 -60273.000 – –
TE (N=5) [140] -4.575 -62.296 -60253.000 – –

Present LE models
1×2 L4 -4.218 -61.118 -59961.972 – –
1×6 L4 -4.433 -61.841 -60220.324 -0.902 -9.253
2×6 L4 -4.434 -61.847 -60225.598 -0.906 -9.253
1×2 L9 -4.340 -62.518 -60249.211 – –
1×6 L9 -4.562 -62.288 -60269.474 -0.947 -9.349
2×6 L9 -4.562 -62.289 -60270.461 -0.946 -9.349
1×2 L16 -4.565 -62.295 -60267.719 – –
1×3 L16 – – – -0.948 -9.350
1×6 L16 -4.566 -62.299 -60271.585 -0.948 -9.350
2×6 L16 -4.566 -62.301 -60272.647 -0.948 -9.350

Pagano [131]. In the case of slender bodies, i.e. S = 10, all the CUF LE models match
perfectly to simulate the kinematics of the beam under consideration accurately.

The proposed analytical LE models are further validated by investigating the stress
distributions within the beam. Tables 8.3 to 8.5 show some sample values of the axial
σ̄yy, transverse normal σ̄zz, and transverse shear σ̄yz stress components, respectively. The
distributions of the same quantities through the thickness of the beam are shown in Figs. 8.4
to 8.6 for various length-to-height ratios and stacking sequences. Classical models,
such as EBBM [140], provide inaccurate results for short beams, as expected. On the other
hand, Lagrange-based LE models are more accurate than TE models and yet with reduced
computational costs. In fact, it is easy to verify that the number of DOFs for the 2×6 L16
model is just 399. The layer-wise capabilities of the LE models are clearly evident from
these results. The present models are able to satisfy correctly the conditions related to the
zig-zag distribution of the axial stresses and to the interlaminar continuity of the transverse
stresses if L9 and L16 discretizations are employed. It should be underlined that, although
the displacements and stresses due to a sinusoidal pressure load have been analysed in this
section, any other type of loading condition can be treated using the theory proposed by
considering a Fourier series representation of the load.
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8.1 Static analysis

Table 8.4 Non-dimensional transverse normal stress, σ̄zz, at (x,y,z) = (0,L/2,h/2); simply-
supported composite beam under sinusoidal surface loading.

[0◦] [0◦/90◦] [0◦/90◦/0◦]

Model S = 4 S = 10 S = 4 S = 10 S = 4 S = 10
ESCBP [131] 1.000 1.000 1.000 1.000 1.000 –
HSDT [134] – – 1.000 1.000 – –
HSDT [133] – – 1.000 – – –
LTSDT [137] – – 0.980 0.990 – –
LTSDT [138] – – 1.000 1.000 – –
EBBM [140] – – 1.000 1.000 – –
TE (N=7) [140] – – 0.999 1.164 – –
1×2 L4 0.784 1.062 1.226 2.709 – –
1×6 L4 1.000 1.110 1.131 1.629 1.176 1.152
2×6 L4 0.996 1.101 1.132 1.629 1.116 1.140
1×2 L9 1.073 1.089 1.006 1.002 – –
1×6 L9 1.022 1.018 1.005 1.001 1.026 1.022
2×6 L9 1.023 1.020 1.009 1.002 1.027 1.021
1×2 L16 1.025 1.022 1.002 1.006 – –
1×3 L16 1.012 1.008 – – 1.015 0.996
1×6 L16 1.007 1.008 1.001 1.002 1.001 1.001
2×6 L16 1.002 1.002 1.001 1.000 1.002 1.002

Table 8.5 Non-dimensional transverse shear stress, σ̄yz, at (x,y,z) = (0,0,−h/4); simply-
supported composite beam under sinusoidal surface loading.

[0◦] [0◦/90◦] [0◦/90◦/0◦]

Model S = 4 S = 10 S = 4 S = 10 S = 100 S = 4 S = 10
ESCBP [131] 1.410 – 2.700 7.220 73.360 1.500 4.100
HSDT [132] – – 2.793 7.300 – – –
HSDT [134] – – 1.927 4.913 – – –
FSDT [136] – – 2.847 – – – –
HSDT [133] – – 2.750 – – – –
LTSDT [137] – – 2.989 7.695 – – –
LTSDT [138] – – 2.990 7.695 – – –
BLWT [139] – – 2.750 – – 1.550 –
TE (N=13) [140] – – 2.707 7.235 73.376 – –
1×2 L4 1.254 3.181 2.008 5.179 52.127 – –
1×6 L4 1.421 3.565 2.663 7.033 71.165 1.529 3.721
2×6 L4 1.416 3.558 2.654 7.012 70.960 1.527 3.714
1×2 L9 1.248 3.177 2.422 5.190 52.190 – –
1×6 L9 1.411 3.545 2.626 6.992 70.902 1.522 3.702
2×6 L9 1.411 3.545 2.628 6.996 70.935 1.523 3.703
1×2 L16 1.437 3.595 2.731 7.240 73.352 – –
1×3 L16 1.431 3.589 – – – 1.563 3.747
1×6 L16 1.429 3.589 2.698 7.211 73.184 1.569 3.763
2×6 L16 1.429 3.589 2.700 7.214 73.209 1.569 3.763
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Figure 8.4 Distribution of normalized axial stress, σ̄yy, along z̄ and at (x,y) = (0,L/2);
simply-supported composite beam under sinusoidal surface loading.
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Figure 8.5 Distribution of normalized axial stress, σ̄zz, along z̄ and at (x,y) = (0,L/2);
simply-supported composite beam under sinusoidal surface loading.
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Figure 8.6 Distribution of normalized axial stress, σ̄yz, along z̄ and at (x,y) = (0,0); simply-
supported composite beam under sinusoidal surface loading.
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a

Figure 8.7 Solid rectangular cross-section.

8.2 Free vibration analysis

Closed-form solutions of CUF 1D models are available only for simply supported beam
structures and cross-ply laminates. These are no doubt restrictive, but the limitations can
be overcome if numerical solutions of strong-form governing equations are employed, such
as the use of DSM or RBFs. In this section, particular emphasis is placed on these two
methodologies (i.e., DSM and RBFs) and comparisons of results with those from the literature
and, wherever possible, with those from closed-form CUF solutions are made. From the
analyses, the power and strength of the DSM with particular reference to the Wittrick-
Williams algorithm, which allows the solutions of transcendental (nonlinear) eigenvalue
problems within any desired accuracy, will be demonstrated.

8.2.1 Metallic, rectangular cross-section beams

A metallic beam with a solid rectangular cross-section such as the one shown in Fig. 8.7 is
considered first. For illustrative purposes, it is assumed that the beam has a square cross-
section (a = b), with b = 0.2 m and length L such that L/b = 10. The material data are:
Young modulus, E = 75 GPa, Poisson ratio, ν = 0.33, material density, ρ = 2700 kg/m3.

Table 8.6 shows the first four bending natural frequencies in non-dimensional form

(ω∗ = ωL2

b

√
ρ

E ) for a simply-supported (SS) square beam using both the present DSM and
finite element (FEM) solutions based on TE models. Approximate higher-order TE FEM
results were retrieved from [56]. These approximate solutions were obtained by using various
FE mesh sizes and shape function polynomial approximations (i.e., p = 1,2,3). Classical
beam theories (TBM), linear (N = 1), quadratic (N = 2), cubic (N = 3) and fourth-order
(N = 4) TE models are considered in the table. It is clearly shown that, as far as FEM
solutions of CUF higher-order models are concerned, the number of beam elements that are
necessary to obtain accurate results (provided by the DSM) increases as natural frequencies
as well as beam theory order increase.
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8.2 Free vibration analysis

Table 8.6 First to fourth non-dimensional bending frequencies ω∗ = ωL2

b

√
ρ

E for the SS
square beam; L/b = 10.

No. Elem. p EBBM TBM N = 1 N = 2 N = 3 N = 4
Bending mode I

FEM [56]
10 1 2.873 2.842 2.842 2.847 2.843 2.843
20 1 2.846 2.816 2.816 2.818 2.813 2.813
40 1 2.840 2.809 2.809 2.810 2.806 2.806
10 2 2.838 2.807 2.807 2.808 2.803 2.803
20 2 2.838 2.807 2.807 2.808 2.803 2.803

Present DSM solution
2.838 2.807 2.807 2.808 2.803 2.803

Bending mode II
FEM [56]

10 1 11.775 11.292 11.292 11.378 11.304 11.304
20 1 11.350 10.904 10.904 10.931 10.864 10.863
40 1 11.247 10.810 10.810 10.823 10.758 10.757
10 2 11.216 10.782 10.782 10.791 10.726 10.725
20 2 11.213 10.779 10.779 10.788 10.723 10.722
40 2 11.213 10.779 10.779 10.787 10.723 10.722
10 3 11.213 10.779 10.779 10.787 10.723 10.722

Present DSM solution
11.213 10.779 10.779 10.787 10.723 10.722

Bending mode III
FEM [56]

10 1 27.587 25.209 25.209 25.611 25.266 25.260
20 1 25.409 23.409 23.409 23.526 23.245 23.241
40 1 24.905 22.988 22.988 23.042 22.775 22.771
10 2 24.777 22.881 22.881 22.916 22.653 22.649
20 2 24.743 22.852 22.852 22.886 22.623 22.619
40 2 24.740 22.850 22.850 22.884 22.621 22.617
10 3 24.740 22.850 22.850 22.884 22.621 22.617
20 3 24.740 22.849 22.849 22.884 22.621 22.617
40 3 24.740 22.849 22.849 22.884 22.621 22.617

Present DSM solution
24.742 22.849 22.849 22.884 22.621 22.617

Bending mode IV
FEM [56]

10 1 51.823 44.543 44.543 45.676 44.680 44.647
20 1 44.865 39.400 39.400 39.707 38.995 38.975
40 1 43.339 38.236 38.237 38.371 37.713 37.697
10 2 43.038 38.006 38.005 38.097 37.448 37.432
20 2 42.860 37.868 37.868 37.950 37.309 37.292
40 2 42.848 37.859 37.859 37.940 37.300 37.283
10 3 42.849 37.860 37.860 37.941 37.301 37.284

Present DSM solution
42.853 37.858 37.858 37.939 37.298 37.282
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Table 8.7 Comparison between TE and LE CUF models; non-dimensional natural frequencies

ω∗ = ωL2

b

√
ρ

E for the SS square beam (L/b = 10).

Model Bending I Bending II Bending III Bending IV
1L9 LE 2.808 10.784 22.869 37.902
1L16 LE 2.803 10.722 22.618 37.291
N = 4 TE 2.803 10.722 22.617 37.282

(a) (b) (c)

Figure 8.8 First (a), second (b) and third (c) bending modes for a SS square beam (L/b = 10);
DSM N = 4 TE model.

A comparison between TE and LE models is shown in Table 8.7. In this table, the DSM
TE solution is, in fact, compared to exact Navier-type solutions of two different LE models.
In the 1L9 LE model, the beam cross-section is discretized with one single L9 element.
Similarly, the 1L16 LE makes use of a single L16 element on the cross-section.

Figure 8.8 shows the first three bending modes of the beam with SS boundary conditions
obtained from the DSM analysis when using a N = 4 TE model. It should be emphasized
that DSM results are mesh independent and the mesh used in Fig. 8.8 is merely a plotting
grid for convenience.

One of the most important features of the DSM is that it provides exact solutions for
any kind of boundary conditions. Moreover, TE higher-order theories are able to take into
account several non-classical effects such as warping, in-plane deformations, shear effects
and bending-torsion couplings as demonstrated in [108]. In Table 8.8, the first two bending
modes and the first two torsional modes for a clamped-free (CF) short (L/b = 10) square
beam are shown. In this table, RBFs solutions of classical and higher-order TE models are
compared to exact solutions by DSM. RBFs results are obtained by considering 37 collocation
points and a shape parameter c = 2.4

L (see Chapter 6). Results obtained by 3D FEM models
using MSC Nastran [141] are also shown in Table 8.8. The generic three-dimensional FEM
solution is herein referred to as “Solid”. In the results shown in Table 8.8, Solid is built by
using 8-node CHEXA Nastran elements. Figure 8.9 shows some representative modal shapes
by DSM for the fifth-order TE model of the CF beam. Some comments are relevant:
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8.2 Free vibration analysis

Table 8.8 Non-dimensional natural periods ω∗ = ωL2

b

√
ρ

E for the CF square beam; L/b = 10.

Model Bending I Bending II Torsional I Torsional II
MSC Nastran model

Solid 1.016 6.088 8.852 26.516
Classical and refined TE, DSM solutions

N = 5 1.013 6.069 8.868 26.603
N = 4 1.013 6.070 8.871 26.619
N = 3 1.014 6.075 9.631 28.893
N = 2 1.015 6.107 9.631 28.893
TBM 1.008 6.069 -∗ -

Classical and refined TE, RBFs solutions
N = 5 1.011 6.075 8.872 26.605
N = 4 1.012 6.078 8.875 26.623
N = 3 1.013 6.081 9.634 28.895
N = 2 1.014 6.115 9.634 28.895
TBM 1.007 6.076 - -
*: not provided by the model

(a) (b)

(c) (d)

Figure 8.9 First bending (a), second bending (b), first torsional (c) and second torsional (d)
modes for a CF square cross-section beam (L/b = 10); DSM N = 5 TE model.
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x

z

d
t

Figure 8.10 Cross-section of the thin-walled cylinder.

• According to 3D MSC Nastran solution and exact LE models, the present lower-order
TE models are able to characterize the bending behaviour of solid cross-section beams.

• DSM provides exact solutions unlike FEM and RBFs methods which give inexact, but
reliable results when applied to CUF refined beam models of compact cross-section
beams.

• A fourth-order (N = 4) TE model is necessary to correctly detect torsional frequencies.

8.2.2 Thin-walled cylinder

A thin-walled cylinder is considered to highlight further the higher-order capabilities of the
present formulation. Particular attention is focused on the comparison between RBFs and
DSM solutions of higher-order TE models. The cross-section geometry is shown in Fig. 8.10.
The cylinder has an outer diameter d = 2 m, thickness t = 0.02 m, and length L = 20 m. The
structure is made of the same metallic material as in the previous example.

Table 8.9 shows the natural frequencies of the thin-walled cylinder for different boundary
conditions (BCs). In particular, free-free (FF), clamped-free (CF), clamped-clamped (CC),
as well as simply-supported (SS) ends are considered. Both classical TBM and higher-order
CUF beam model results are shown in Table 8.9, where the natural frequencies of the RBFs-
based method are compared with those from the exact DSM higher-order TE beam models
and MSC Nastran 2D FE (Shell) solutions obtained by using CQUAD4 elements. In the case
of RBFs, a number of centres equal to 31 and a shape parameter c = 2.4

L were used. It is
shown that classical and lower-order beam models are able to capture bending and torsional
modes, whereas 1D higher-order theories are mandatory in order to detect local shell-like
modes in accordance with 2D solutions.

Figure 8.11 shows the percentage error between the present RBFs method and exact
reference solution from DSM. In this figure the first bending, torsional, and shell-like modes
for different expansion orders N and boundary conditions are considered. It is shown that,

80



8.2 Free vibration analysis

Table 8.9 Natural frequencies (Hz) of the thin-walled cylinder for different boundary condi-
tions; Comparison of RBFs and DSM solutions.

BCs Model I Bending II Bending I Shell-like II Shell-like I Torsional II Torsional
SS Shell 13.978 51.366 14.913 22.917 80.415 160.810

N = 5, DSM 14.022 51.503 18.405 25.460 80.786 161.573
N = 5, RBFs 14.294 51.567 18.608 25.574 80.639 162.551
N = 3, DSM 14.022 51.520 34.935 61.300 80.787 161.572
N = 3, RBFs 14.295 51.583 35.049 61.353 80.847 161.712
TBM, DSM 14.182 53.542 -∗ - - -
TBM, RBFs 14.459 53.604 - - - -

CC Shell 28.498 68.960 17.396 30.225 80.415 160.810
N = 5, DSM 28.576 69.110 20.484 32.222 80.786 161.573
N = 5, RBFs 28.354 69.096 20.463 31.974 80.838 161.596
N = 3, DSM 28.605 69.199 38.690 70.333 80.787 161.572
N = 3, RBFs 28.259 68.921 38.889 70.056 80.838 161.596
TBM, DSM 30.302 76.443 - - - -
TBM, RBFs 30.435 76.489 - - - -

CF Shell 5.059 29.001 14.235 17.435 40.209 120.620
N = 5, DSM 5.076 29.088 17.805 20.580 40.394 121.181
N = 4, DSM 5.077 29.090 23.069 25.239 40.393 121.181
N = 4, RBFs 5.047 29.002 23.003 24.979 40.431 121.203
N = 3, DSM 5.079 29.104 26.882 49.252 40.393 121.181
N = 3, RBFs 5.059 28.953 26.934 49.356 40.431 121.203
TBM, DSM 5.108 30.237 - - - -
TBM, RBFs 5.060 30.312 - - - -

FF Shell 30.829 76.806 14.129 14.171 80.415 160.810
N = 5, DSM 30.932 77.041 17.709 17.777 80.788 161.576
N = 4, DSM 30.932 77.043 22.987 23.053 80.789 161.577
N = 4, RBFs 30.945 77.052 22.864 23.048 80.787 161.592
N = 3, DSM 30.935 77.090 22.987 34.700 80.789 161.576
N = 3, RBFs 31.121 77.099 23.043 34.678 80.787 161.592
TBM, DSM 31.338 80.275 - - - -
TBM, RBFs 31.341 80.286 - - - -

*: not provided by the model
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(c) Shell-like mode I

Figure 8.11 Percentage error between the RBFs and exact DSM solutions for various expan-
sion orders and boundary conditions; Thin-walled cylinder.

for fixed values of the parameters c and number of centres n, bending and torsional modes
exhibit a good convergence for all the boundary conditions and theory order considered. On
the other hand, shell-like modes become instable if higher than fourth-order (N = 4) models
and CF or FF boundary conditions are examined. This is the reason why in Table 8.9 only up
to N = 4 models were considered for those boundary conditions in the case of RBFs.

Figure 8.12 shows the important modes of the cylinder for CC boundary condition by the
fifth-order (N = 5) TE DSM model. The following comments arise:

• Only the flexural modes are provided by the classical beam theories.

• Torsional modes are correctly detected by the linear TE (N = 1) model in the case of
axisymmetric structures.

• 1D higher-order model are necessary to detect shell-like modes as evident from the 2D
FEM solutions provided by MSC Nastran. Classical beam theories would not predict
these results.
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8.2 Free vibration analysis

(a) (b)

(c) (d)

(e) (f)

Figure 8.12 First flexural (a), second flexural (b), first shell-like (c), second shell-like (d),
first torsional (e) and second torsional (f) modes for a CC thin-walled cylinder; DSM N = 5
TE model.

• Instabilities may occur in the case of RBFs when thin-walled structures are considered.

8.2.3 Four- and two-layer composite beams

The capabilities of the proposed methodology when applied to free vibration analysis of
laminated composite structures is further verified. The beam has a solid square cross-section
and a length-to-side ratio, L/h, equal to 15 with h = 25.4 mm. The material adopted is a
AS4/3501-6 graphite/epoxy composite in accordance with [142].

Table 8.10 shows the first nine non-dimensional natural frequencies (ω∗ = ωL2

b

√
ρ

E1
)

for a [+45◦/−45◦/+45◦/−45◦] antisymmetric angle-ply lamination scheme in the case
of clamped-clamped (CC) boundary conditions. The results by classical and refined beam
theories from the present CUF method by both DSM and RBFs are compared with those
from the literature. In the case of RBFs solutions, a uniform grid of 40 centres and a shape
parameter c = 4×10−3 were used. It is clear that torsional and coupled axial/shear modes
are captured by the presents models if a sufficiently higher-order kinematics is adopted.

To show the capability of the present models to deal with arbitrary laminations, Fig. 8.13
shows the effect of increasing the angle of orientation θ on the fundamental natural fre-
quencies of two lamination schemes [θ/−θ ] and [0/θ ]. The present fourth-order (N = 4)
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Table 8.10 Non-dimensional natural frequencies, ω∗ = ωL2

b

√
ρ

E11
, of a CC [+45/−45/+

45/−45] antisymmetric angle-ply beam.

DSM RBFs References
TBM N = 2 N = 4 N = 6 TBM N = 2 N = 4 N = 6 Ref. [143] Ref. [144]

Mode 1a 1.993 2.112 1.987 1.962 1.993 2.123 1.995 1.976 1.845 1.981
Mode 2b 2.067 2.144 2.084 2.045 2.067 2.153 2.103 2.071 -∗ -
Mode 3a 5.261 5.577 5.188 5.134 5.261 5.579 5.206 5.164 4.987 5.217
Mode 4b 5.641 5.852 5.687 5.579 5.641 5.878 5.738 5.647 - -
Mode 5c -∗ 10.627 9.241 9.131 - 10.633 9.265 9.169 - -
Mode 6a 9.793 10.342 9.553 9.474 9.793 10.344 9.579 9.516 9.539 9.691
Mode 7b 10.898 11.319 10.990 10.782 10.898 11.369 11.089 10.920 - -
Mode 8a 15.278 16.088 14.756 14.663 15.278 16.088 14.785 14.719 13.474 10.535
Mode 9d 15.174 15.472 15.307 15.092 15.174 15.496 15.370 15.177 15.292 15.098
a: Flexural on plane yz; b: Flexural on plane xy; c: Torsional mode; d : Axial/shear (plane xz) mode
∗: Mode not provided by the theory

CUF-DSM model is compared with the solution available from [144], where a 1D FE model
based on a higher-order shear deformation theory was used. The same analysis is of course
not possible by using a Navier-type solution.

Finally, Fig. 8.14 shows the effect of material anisotropy on the fundamental frequencies
of composite beams. Also for this analysis case, the results by the present N = 4 TE-DSM
model are validated with those from the literature. It should be underlined that, in Fig. 8.14,
the value of E1 is varied, whereas the other elastic parameters are kept constant. It is clear
that the angle-ply configuration tends to lower the frequencies more rapidly than the cross-ply
beam.

8.2.4 Cross-ply laminated composite plates

The capability of the present beam models to deal with plate-like geometries is demonstrated
in this section. Analyses of simply-supported (SS-F-SS-F-SS) square cross-ply laminates are,
therefore, discussed in detail. The lamination scheme, i.e. the lay-up or stacking sequence,
is taken as [90◦/0◦/90◦/0◦/90◦]s. Each lamina has the same thickness and it is made of an
orthotropic material that satisfies the following relations:

E1

E2
= 40,

G12

E2
=

G13

E2
= 0.6,

G23

E2
= 0.5, ν12 = ν13 = ν23 = 0.25 (8.3)

In Table 8.11, the natural frequencies for plates with different side-to-thickness ratio (a/h)
are given in non-dimensional form of the frequency parameter

ω
∗ = ω

a
h

√
ρ

E2
(8.4)
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Figure 8.13 Effect of ply orientation angle on first flexural natural frequencies of two-layer
CF beams; DSM N = 4 TE model versus [144].
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Figure 8.14 Effect of material anisotropy on the first flexural natural frequencies of angle-ply
and cross-ply CF beams; DSM N = 4 TE model versus [144].
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Table 8.11 Non-dimensional natural frequencies, ω∗ = ω
a
h

√
ρ

E2
, for the cross-ply SS-F-SS-F

plate.

a/h Model Mode 1 Mode 2 Mode 3 Mode 4
5 HSDT [47] 7.263 7.909 18.113 18.113

FSDT [47] 7.489 8.073 18.916 19.330
N = 6 7.312 7.919 18.134 18.642
N = 5 7.312 7.935 18.134 18.665
N = 4 7.314 7.937 18.143 18.686
N = 3 7.315 8.531 18.162 20.762
N = 2 7.905 8.544 20.355 20.778
TBM 7.902 − 20.351 −

10 HSDT [47] 9.939 10.248 29.017 29.054
FSDT [47] 9.516 10.352 28.638 29.956
N = 6 9.544 10.376 28.829 29.250
N = 5 9.545 10.394 29.142 29.250
N = 4 9.547 10.395 29.527 29.256
N = 3 9.547 10.733 34.673 29.261
N = 2 9.861 10.755 − 31.621
TBM 9.855 − − 31.607

The results from both TBM and higher-order beam models are given and compared with the
results reported by Fazzolari et al. [47], in which both First-order Shear Deformation Theory
(FSDT) and Higher-order Shear Deformation Theory (HSDT) were used in conjunction with
the DSM to carry out the free vibration analysis of the composite plate assemblies. The
results by EBBM are not shown in Table 8.11 for obvious reason because imprecise and
inadequate results were inevitably produced by this theory. All the results presented in this
section were obtained by using the DSM.

Figures 8.15 and 8.16 show the first four mode shapes of the cross-ply laminae by the
present sixth-order (N = 6) CUF-DSM model for both a/h = 5 and a/h = 10, respectively.
The proposed analysis shows the enhanced capabilities of the present beam formulation that
is able to deal with 2D-like analysis of laminated structures.

8.2.5 Symmetric 32-layer composite plate

This illustrative example consists in a 32-layer rectangular thin plate. The plate has a total
thickness t = 6.17 mm, width a equal to 296.5 mm and length b = 599 mm. The lamination
scheme is [(0◦/45◦/−45◦/90◦)4]s and each lamina has the same thickness and is made by
an orthotropic material with the following data: E1 = 157430 MPa, E2 = E3 = 9430 MPa,
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8.2 Free vibration analysis

(a) Mode 1, ω∗ = 7.312 (b) Mode 2, ω∗ = 7.919

(c) Mode 3, ω∗ = 18.134 (d) Mode 4, ω∗ = 18.642

Figure 8.15 First four modes of the SS-F-SS-F cross-ply plate with a/h = 5, N = 6.

(a) Mode 1, ω∗ = 9.544 (b) Mode 2, ω∗ = 10.376

(c) Mode 3, ω∗ = 28.829 (d) Mode 4, ω∗ = 29.250

Figure 8.16 First four modes of the SS-F-SS-F cross-ply plate with a/h = 10, N = 6.
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Table 8.12 Natural frequencies (Hz) of the FFFF symmetric 32-layer composite thin plate.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Reference solutions

Plate FE model 112.3 138.8 302.2 313.4 479.3
Experimental 110.8 138.6 299.6 309.9 475.3

Present 1D CUF - DSM solutions
N = 6 112.4 139.7 303.6 314.3 480.4
N = 5 112.5 140.1 303.8 314.4 484.5
N = 4 112.5 140.5 305.6 315.3 484.8
N = 3 112.6 141.3 307.7 316.9 560.4
N = 2 113.4 141.6 311.2 326.9 564.8
N = 1 99.8 1484.3 2968.6 274.7 −
TBM 99.9 − − 274.7 −
EBBM 99.9 − − 275.3 −

ν12 = ν13 = ν13 = 0.4, G12 = G13 = G23 = 4520 MPa, ρ = 1644.18 Kgm−3. Free edge
boundary conditions are considered (FFFF).

The first five natural frequencies by the present DSM methodology are given in Table 8.12,
where classical and refined 1D DSM-CUF TE models are compared to the reference solutions
as shown. In particular, both the plate FEM solution from MSC Nastran meshed with 30×56
CQUAD4 elements and the results from experimental tests are shown in Table 8.12 for
comparison purposes. The experimental setup is shown in Fig. 8.17.

The modal behaviour of the proposed plate is characterized by coupled bending/torsional
modes on yz-plane (Modes 1 and 4), torsional modes (Modes 2 and 3), and a coupled
bending/torsional mode on xy-plane (Mode 5). The first five mode shapes from the sixth-
order (N = 6) TE model are shown in Fig. 8.18.

It should be noted that classical as well as linear TE (N = 1) beam models underestimate
the natural frequencies of the 32-layer plate. In fact, these models do not predict torsional
and coupling effects, therefore the natural frequencies by lower-order models that are shown
in Table 8.12 are related to pure bending and do not capture coupled modes at all. The results
actually show that at least a fourth-order (N = 4) TE beam model is necessary to detect
coupled bending-torsional modes correctly in accordance to the reference solutions.
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8.2 Free vibration analysis

Figure 8.17 Experimental setup for the measurement of the natural frequencies, symmetric
32-layer plate.

(a) Mode 1, 112.4 Hz (b) Mode 2, 139.7 Hz (c) Mode 3, 303.6 Hz

(d) Mode 4, 314.3 Hz (e) Mode 5, 480.4 Hz

Figure 8.18 First five modes of the FFFF symmetric 32-layer thin plate, N = 6.
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Figure 8.19 Semi-circular cross-section.

8.3 Free vibration of beam-columns

This section investigates the effect of an axial force on the free vibration characteristics of
beams using refined models. Because of the clear superiority of the DSM, this solution
method is preferred and used hereafter. The attention is focused on a thin-walled cross-
section beam that is affected by high bending-torsional coupling and that is well documented
in the literature. In this way, the enhanced capabilities of the present CUF formulation and
its connectivity with the DSM will be clear from an easy comparison with readily available
solutions in the literature.

8.3.1 Semi-circular cross-section beam

A thin-walled beam with the semi-circular cross-section shown in Fig. 8.19 is analyzed.
The geometrical dimensions are taken from the literature [145–150] so that a direct and
straightforward comparison of the results is possible. The radius, r, is assumed to be equal
to 2.45×10−2 m, the thickness, t, is equal to 4×10−3 m, the length, L, of the beam is set
to 0.82 m. The beam is made of aluminum with the Young modulus, E, equal to 68.9 GPa,
the Poisson ratio, ν , equal to 0.3, and the density, ρ , equal to 2700 Kgm−3. The effect of
boundary conditions and axial pre-stress (σ0

yy) on the vibrations is evaluated in the analysis.
Table 8.13 shows the first eight natural frequencies (σ0

yy = 0) for various boundary
conditions and theories, including the present lower- to higher-order TE models. DSM is
effectively used to carry out the analyses.

Tables 8.14 and 8.15 quote the vibration frequencies of the same structure undergoing
compressive and tensile loadings, respectively. The superiority of the present DSM-CUF
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8.3 Free vibration of beam-columns
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Numerical Results

(a) (b)

(c) (d)

(e) (f)

Figure 8.20 Uncoupled (a, b, c) and coupled (d, e, f) modal shapes for the unloaded (P = 0)
SS semi-circular beam; DSM-TE N = 6 model.

models is clearly evident from the comparison with other theories.
Figure 8.20 shows both the uncoupled and coupled modal shapes for the SS semi-circular

beam. Some comments arise from the analysis.

• Classical and lower-order CUF models can only detect the first uncoupled modes.
Refined models are necessary to describe the higher modes and the coupling behaviour
of the structure.

• As a consequence of compressive axial load, obviously, the natural frequencies of the
coupled beam decrease. By contrast, by applying a tensile load, the natural frequencies
increase as expected. The effects of coupling as well the axial load are correctly taken
into account by the present approach which is in accord with the solutions from the
literature.
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8.4 Buckling analysis

Table 8.16 First three non-dimensional buckling loads (P∗
cr =

PcrL2

π2EI ) of the metallic beam,
L/h = 20.

Mode Euler Matsunaga [152] TBM N=1 N=2 N=3
FEM [153] DSM FEM [153] DSM FEM [153] DSM FEM [153] DSM

1 1.000 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.992 0.992
2 4.000 3.873 3.875 3.886 3.884 3.886 3.885 3.887 3.873 3.874
3 9.000 8.387 8.422 8.444 8.437 8.444 8.444 8.451 8.387 8.391

8.4 Buckling analysis

As an interesting, but demanding set of problems, linearized buckling analyses are carried
out. Solid and thin-walled cross-section columns made of isotropic and composite materials
are addressed. Here, again, DSM is used in this context to solve the strong-form equations of
CUF beam theories.

8.4.1 Metallic rectangular cross-section column

A simply-supported metallic column is analysed as illustrative example. The same structure
was addressed by Matsunaga [152] and Ibrahim et al. [153]. The results given by these
authors are quoted later for comparison purposes. The beam-column has a solid rectangular
cross-section as shown in Fig. 8.7 and the material is aluminium alloy with elastic modulus
E = 71.7 GPa and Poisson’s ratio ν = 0.3.

Table 8.16 shows the first three critical buckling loads for a length-to-height ratio, L/h,
equal to 20. Although only the first critical buckling load is of practical significance, the
other two critical buckling loads are given for benchmarking comparison purposes. Critical
loads are given in non-dimensional form as follows:

P∗
cr =

PcrL2

π2EI
(8.5)

where I is the moment of inertia, I = bh3

12 . The second column of Table 8.16 shows the n-th
non-dimensional critical buckling load from the Euler buckling formula give by

P∗
crEuler

= n2 (8.6)

In column 3 the results by Matsunaga [152] are given, whereas columns 4 to 7 report the
results by classical and refined models based on DSM TE CUF models of the present thesis.
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Figure 8.21 First non-dimensional critical buckling load (P∗
cr =

PcrL2

π2EI ) versus length-to-height
ratio, L/h, for the rectangular metallic beam.

Table 8.17 First non-dimensional buckling load (P∗
cr =

PcrL2

π2EI ) of the metallic beam for different
length-to-height ratios L/h.

L/h Euler Matsunaga [152] Present CUF-DSM
N=2 N=3 N=4 N=5

2 1.000 0.5723 0.5999 0.5741 0.5733 0.5730
4 1.000 0.8342 0.8497 0.8350 0.8349 0.8348
5 1.000 0.8860 0.8973 0.8866 0.8866 0.8865
10 1.000 0.9683 0.9718 0.9685 0.9685 0.9685
20 1.000 0.9919 0.9930 0.9919 0.9919 0.9919

The exact solutions by the present DSM are compared to those from FEM, which were used
in [153].

Figure 8.21 shows the variation of the first non-dimensional critical buckling load versus
the length-to-height ratio, L/h, for different higher-order beam models by applying the
present approach and the results are compared with those reported in [152] and also with
those obtained from classical Euler theory. For benchmarking reasons, the results are given
in tabular form in Table 8.17.

The following comments arise from the analysis:

• Refined theories are mandatory when dealing with buckling analysis of short beam-
columns.

• The Euler buckling formula overestimates the critical loads of the beam-columns, even
though when a high slenderness ratio is considered. This is dangerous from a design
point of view.
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Figure 8.22 Cross-section of the C-shaped beam.

Table 8.18 Flexural-torsional buckling loads [N] for the axially compressed C-section beam.

Mode Present CUF-DSM ABAQUS [154] Kim et al. [154] Vo and Lee [155]
N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

1 14.227 14.227 14.178 14.178 14.111 14.111 13.875 14.001 13.789 12.977
2 127.805 127.242 125.076 122.885 120.428 119.034 117.375 113.100 111.840 113.440
3 212.883 212.086 209.810 206.955 203.568 201.510 199.125 190.080 191.160 190.567
4 350.977 348.070 332.065 315.729 298.065 289.034 280.125 256.670 255.100 263.999
5 679.430 666.727 606.728 551.271 498.744 475.502 454.875 408.530 406.280 −

• Higher-order CUF theories are effective in refining the solution and the results are in
good agreement with those available in the literature.

• The critical buckling load becomes lower as the expansion order for TE CUF models
increases. This is significant because other theories give unconservative estimates of
critical buckling loads, which can be dangerous.

• The exact solutions provided with the DSM are slightly higher then those by FEM.
This is unusual and may be due to numerical problems inherent in FEM.

8.4.2 Thin-walled symmetric and non-symmetric cross-sections

A cantilever beam-column with unequal channel section shown in Fig. 8.22 is now considered.
The main dimensions of the cross-section are a1 = 4 cm, a2 = 2 cm, h = 10 cm and t = 0.5
cm. The beam has a length L = 2 m and is made of homogeneous isotropic material with
elastic modulus E = 3× 104 N/cm2 (0.3 GPa) and shear modulus G = 1.15× 104 N/cm2

(0.115 GPa).
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Figure 8.23 Second flexural-torsional buckling mode of the C-shaped section beam by the
seventh-order (N = 7) CUF model.

a

a

x

z

t

Figure 8.24 Cross-section of the box beam.

Table 8.18 shows the first three critical buckling loads by higher-order beam models
by the present CUF-DSM methodology. The results are compared with those given by Vo
and Lee [155], who developed an analytical model based on the shear deformable beam
theory, and also with those presented by Kim et al. [154], where a general formulation for
spatial free vibration and stability analysis of non-symmetric thin-walled DS space frame
members considering the effects of shear deformations was presented. A FEM solution from
ABAQUS is also provided in Ref. [154]. Figure 8.23 shows the second buckling mode by the
seventh-order (N = 7) CUF-DSM model. The figure clearly shows that the present method
can predict the flexural-torsional buckling load accurately. The analysis highlights that

• Relatively higher-order kinematics are needed to detect flexural-torsional buckling
modes of axially loaded thin-walled structures accurately.

• The results by the proposed CUF-DSM models are in good agreement with the results
found in the literature.

A hollow square cross-section beam is considered next. The cross-section, which is
shown in Fig. 8.24, has each side equal to a = 0.1 m and the uniform thickness t = a/20.
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8.4 Buckling analysis

Table 8.19 Critical buckling loads [MPa] for various length-to-side ratio, L/a, of the SS
square box beam.

L/a 3D FEM [156] N = 4 N = 3 N = 2 TBM EBBM
Ref. [156] DSM Ref. [156] DSM Ref. [156] DSM Ref. [156] DSM Ref. [156] DSM

100 10.651 10.664 10.664 10.664 10.664 10.668 10.668 10.668 10.668 10.672 10.672
50 42.497 42.551 42.551 42.551 42.551 42.605 42.604 42.604 42.604 42.669 42.669
20 261.040 261.340 261.341 261.340 261.343 263.360 263.359 263.320 263.320 265.850 265.850
15 457.010 457.310 457.305 457.320 457.318 463.510 463.509 463.400 463.400 471.260 471.260

The whole structure is made of the same aluminium alloy as in the case of the rectangular
solid cross-section beam-column. The critical buckling loads for various length-to-side ratios,
L/a, are shown in Table 8.19, where the results by the present CUF-DSM methodology
are compared with those from Giunta et al. [156], who adopted Navier-type solutions for
simply-supported (SS) TE CUF beams and 3D FE models by ANSYS. It is clear that
DSM can provide analytical solutions for CUF models, which exhibit 3D capabilities as
the expansion order N is increased. Table 8.20 shows the first four buckling modes for the
slender configuration, L/a = 100. The i-th mode is characterized by having i half-waves in
the axial direction of the beam. In is intended that in the proposed analyses, the first critical
buckling load is of practical importance. Higher critical buckling loads are given in this thesis
so that the results can be used as an aid to validate FEM and other methods. It is clear from
the analysis that, in the case of the slender beams, classical theories yield acceptable results
for this problem unless higher buckling modes are required. In the case of short beams (e.g.
L/a = 15), refined beam models are indeed necessary to obtain a 3D-like solution.

8.4.3 Cross-ply laminated beams

In this section a number of cross-ply laminated beam-columns are addressed and their stability
characteristics are investigated. First, simply supported (SS) composite beam-columns with
symmetric cross-ply [0◦/90◦/0◦] and anti-symmetric cross-ply [0◦/90◦] stacking sequences
are considered. Each lamina has the same thickness and two different sets of material
properties are considered as follows:

Material set I: E1/E2 = 10, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25

Material set II: E1/E2 = 10, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25
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Table 8.20 First four buckling loads [MPa] of the SS square box beam for L/a = 100.

Model Mode 1 Mode 2 Mode 3 Mode 4
Giunta et al. [156]

3D FEM 10.651 42.443 95.008 167.780
N = 4 10.664 42.551 95.339 168.500
N = 3 10.664 42.551 95.339 168.500
N = 2 10.668 42.604 95.607 169.340
TBM 10.668 42.603 95.602 169.330
EBBM 10.672 42.669 95.934 170.370

Present CUF-DSM
N = 4 10.664 42.551 95.339 168.507
N = 3 10.664 42.551 95.339 168.507
N = 2 10.668 42.604 95.607 169.340
TBM 10.668 42.603 95.603 169.327
EBBM 10.672 42.669 95.935 170.373

The critical buckling loads from the present higher-order TE CUF-DSM refined beam theories
are shown in Table 8.21 and they are given in the following non-dimensional form:

P∗
cr =

PcrL2

E2bh3 (8.7)

In Table 8.21 the proposed solutions are compared with those available in the literature, see
Vo and Thai [159] and Aydogdu [158]. The former [159] used FEM in conjunction with both
a first-order beam theory (FSDT) and a higher-order beam theory (HSDT) accounting for
the parabolic variation of shear strains through the thickness. The latter [158] is based on
a three-degree-of-freedom shear deformable beam theory and the Ritz method was used to
carry out stability analyses. The following comments are noteworthy:

• The present formulation can deal with the linearized stability analysis of composite
laminated beam-columns.

• The solutions from both first- and higher-order beam models from the literature can be
improved by the present CUF-DSM theories, especially when short beams and softer
materials (e.g. Material set II) are considered.

The last illustrative example is a rectangular beam with symmetric cross-ply [(0◦/90◦)2]s

arrangements. The laminate is made of eight identical graphite/epoxy plies. The material
has the following characteristics: E1 = 1.344× 105 MPa, E2 = E3 = 1.034× 104 MPa,
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8.4 Buckling analysis

Table 8.21 Effect of length-to-height ratio, L/h , on the non-dimensional critical buckling
loads (P∗

cr =
PcrL2

E2bh3 ) of symmetric and anti-symmetric cross-ply SS laminated beams.

L/h Present CUF-DSM Vo and Thai [157] Aydogdu [158]
N = 2 N = 3 N = 4 N = 5 FSDT HSDT

Material set I - [0◦/90◦/0◦]
5 4.992 4.668 4.667 4.666 4.752 4.709 4.726
10 6.937 6.751 6.750 6.749 6.805 6.778 −
20 7.677 7.618 7.618 7.617 7.630 7.620 7.666
50 7.917 7.904 7.904 7.903 7.897 7.896 −

Material set I - [0◦/90◦]
5 1.856 1.831 1.820 1.816 1.883 1.910 1.919
10 2.140 2.130 2.126 2.125 2.148 2.156 −
20 2.226 2.223 2.222 2.222 2.226 2.228 2.241
50 2.252 2.252 2.252 2.252 2.249 2.249 −

Material set II - [0◦/90◦/0◦]
5 4.319 3.666 3.666 3.560 4.069 3.717 3.728
10 6.600 6.126 6.126 6.033 6.420 6.176 −
20 7.570 7.403 7.402 7.366 7.503 7.416 7.459
50 7.896 7.868 7.868 7.862 7.875 7.860 −

Material set II - [0◦/90◦]
5 1.745 1.711 1.710 1.705 1.605 1.758 1.765
10 2.100 2.086 2.086 2.084 1.876 2.104 −
20 2.215 2.211 2.211 2.210 1.958 2.214 2.226
50 2.252 2.252 2.252 2.252 1.983 2.247 −
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Table 8.22 Critical buckling loads [N] of the 8-layer cross-ply rectangular beam for different
boundary conditions.

BCs Present CUF-DSM Chattopadhyay and Radu [160]
EBBM N = 2 N = 3 N = 4 N = 5 CLPT FSDT HSDT

CF 16696 15752 15615 15607 15606 16344 15772 15364
CC 261957 163934 151256 151137 151132 261623 165644 152179

G12 = G13 = 4.999× 103 MPa, G23 = 1.999× 103 MPa, ν12 = ν13 = ν23 = 0.33. The
beam-column has a length L = 127 mm, width b = 12.7 mm, and thickness h = 10.16 mm.
Table 8.22 shows the critical buckling loads of this beam-column for both clamped-free (CF)
and clamped-clamped (CC) boundary conditions. Classical EBBM and up to the fifth-order
(N = 5) CUF-DSM beam models are used for the results given in Table 8.22, which are
compared to those provided by Chattopadhyay and Radu [160], who used the Classical
Lamination Plate Theory (CLPT), the First-order Shear Deformation Theory (FSDT), and a
Higher-order Shear Deformation Theory (HSDT) to carry out reasonably detailed instability
analyses of composite plates [161]. The results from the present theory clearly demonstrate
the capability of the CUF-DSM theory on beam-column modelling, which is able to reproduce
and in many ways refine the solutions from 2D plate models.
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Chapter 9

Summary of Principal Contributions

9.1 Work summary

Application of mathematical theory of elasticity and advanced kinematics in the development
of refined beam theories have been thoroughly explored in this thesis. The main novelty of
the work lies in developing the governing differential equations and seeking their solutions
in concise, compact and unified forms. This has been possible by employing the Carrera
Unified Formulation (CUF), which allows for a systematic approximation of the 3D problems
to 1D ones with desired accuracy.

Chapter 1 gives a brief overview of the existing beam theories. Attention in the chapter is
focused on both classical (e.g., Euler-Bernoulli and Timoshenko models) and refined theories,
including those coming from the shear correction, the Variational Asymptotic Method (VAM),
the Generalized Beam Theories (GBT), and the Proper Generalized Decomposition (PGD)
method. An outline of some numerical methods adopted for the resolution of strong-form
governing equations has also been given in Chapter 1. In particular, the conditions that a
structure should satisfy in order to obtain closed-form analytical solutions have been reviewed
and critically examined. The Dynamic Stiffness Method (DSM) and collocations schemes
(such as Radial Basis Functions, RBFs, method) have also been introduced in this chapter
as practical, but effective numerical methods for exact as well as approximate solutions for
beam problems.

Beam theories and related displacement field have been discussed in detail in Chapter 2.
Classical beam models have been given extensive coverage, including a commentary on
the limitations they are affected by (e.g., the violation of the homogeneous condition of
transverse stress components at the unloaded edges of the beam). The use of the shear
correction factors has been described as an approximate, but ad-hoc attempt to take into
account the actual distribution of the shear stress field. Advanced models have been described
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subsequently. The main idea behind Chapter 2 has been the fact that due recognition should
be given to complex physics and kinematics which demand richer displacement fields. This
aspect has been elaborately discussed by considering many of the well-know refined beam
theories.

In Chapter 3 the constitutive equations and the displacement-strain relations have been
introduced and exemplificated. Next, beam theories have been formulated using CUF, which
has been extensively applied in the domain of solid-mechanics for plate/shell and beam
problems. This is accomplished by expressing the 3D displacement field as an Nth-order
truncated expansion series of the generalized unknowns (i.e. displacements and displacement
derivatives) to obtain variable kinematic beam models. The resulting beam models have
been referred to as TE (Taylor Expansion) because Taylor-series polynomials are the basic
origin of the displacement field. Classical beam models and many other higher-order models
(e.g., the Vlasov-Reddy third-order model) are captured as degenerate cases of the TE. Pure
displacement variables have also been used in the same chapter to create beam models and
they have been referred to as LE (Lagrange Expansion) models. LE refined models are
developed within the framework of CUF by interpolating the cross-sectional unknowns with
bi-linear, quadratic or cubic Lagrange polynomials or a combination of them.

The governing differential equations have been derived using a variational approach in
Chapter 4 particularly by employing the principle of virtual work. The variations of virtual
works of the strain energy, the external loadings, the inertial loads and the axial pre-stresses
are written in terms of fundamental nuclei. The main characteristic of the fundamental nuclei
is that their formal expression does not depend on the order of the beam model. Therefore,
by suitably expanding the nuclei depending on the beam theory and order, the governing
differential equations of the generic beam model can be automatically formulated. The
investigation is focused on static analysis, free vibration of beam and beam-columns, and
buckling analysis.

Chapters 5 to 7 have been devoted to analytical and numerical solutions of the strong-
form governing differential equations of generic refined beam theories. Chapter 5, in
particular, discusses closed-form analytical solutions, which are generally available for the
case of simply-supported beams of metallic constructions or cross-ply laminated structures.
Chapter 6 shows how to avoid the limitations of conventional theories by employing a
collocation method based on RBFs. Collocation methods, generally, suffer from numerical
instabilities, and therefore, in Chapter 7, a numerically exact method based on DSM has
been introduced. This chapter represents one of the most innovative aspects of the thesis,
since it allows, for the first time in the literature, the resolution of arbitrarily chosen refined
beam assemblies in an exact manner. In fact, by exploiting CUF, the transcendental dynamic
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stiffness matrix is written in the form of a fundamental nucleus, whose expression does
not change regardless of the mathematical structure of the 1D model. This remarkable
achievement has been possible due to the application of the Wittrick-Williams algorithm,
which allows for the iterative resolution of non-linear eigenvalue problems in an exact
manner.

Selective, but important numerical results have been illustrated in Chapter 8. Attention
here is focused on closed-form static analyses of laminated structures; free vibration of
metallic, thin-walled and composite beams; vibrations of metallic and composite beam-
columns; and buckling analyses of slender structures. Wherever possible, the results have
been compared with those available in the literature and also by using commercial codes and
experiments. Some interesting conclusions and remarks based on the numerical investigations
are briefly summarized in the following chapter.

9.2 Main contributions

The main novelties and important contributions resulting from the present research can be
briefly summarized as in the following:

• By using the principle of virtual work and the recursive notation of CUF, the differential
form of the equations of motion of axially loaded beams have be written in terms of a
fundamental nucleus.

• For the first time, the strong form governing equations for buckling and free vibration
analysis of beams and beam-columns have been solved by using RBFs method and
DSM. The resulting formulation has been implemented in a Matlab code able to deal
with general geometries and boundary conditions.

• The main achievement has been surely the extension of DSM to refined CUF models,
which has resulted in an innovative and powerful tool able to reproduce exactly the
mechanical behaviour of beam and plate structures. As an example, exact free vibration
characteristics of free-edge composite plates have been analysed and benchmark
results have been given for future investigations and assessments. In fact, closed-
form solutions of free and unconstrained plate structures were not available with
conventional methods.

• Closed-form analytical results from the stress analysis of composite structures with
layer-wise accuracy have been obtained by imposing a Navier-type solution to LE-CUF
models.
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Chapter 10

Conclusions and scope for future work

10.1 Conclusions

The following major, but general conclusions can be drawn from the investigation carried out
in this thesis:

• LE models provide accurate solutions for the static analysis of metallic and composite
structures. In fact, LE beam theory is able to describe correctly the interlaminar
continuity of the shear stresses as well as the zig-zag behaviour of the axial stresses.

• Other theories from the literature, including TE, cannot ensure the same degree of
accuracy as LE models, if accurate stress analysis is required.

• The layer-wise capabilities of LE can be significantly enhanced by refining the beam
theory at local level.

• Both TE and LE CUF models are effective in modal and buckling analyses of metallic
and composite beam structures.

• TE models are particularly effective for the free vibration analysis of thin-walled
structures.

• Analytical closed-form solutions are preferred if possible, but in the case of generic
boundary conditions and stacking sequences, DSM is strongly suggested as the best
candidate because it can provide exact solutions with low computational efforts. RBFs
and, in general, collocation methods may be sometimes computationally more conve-
nient, but they can be affected by numerical inconsistencies if ad-hoc strategies and
mathematical filters are not employed. As a general guideline, the use of RBFs in the
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framework of CUF is rather discouraged, because numerical problems can be more
acute when the order of the theory is increased. By contrast, DSM is an extremely
robust method. For this reason, it has been employed for most of the analyses carried
out in this thesis.

• If compared with available numerical methods based on weak-form formulation (such
as FEM), the proposed DSM-CUF method presents several advantage both in terms
of accuracy and efficiency. In fact, one single DS element is sufficient, in principle,
for acquiring the vibration characteristics of structures in the entire frequency band of
interest, making sure that the value of j0 is known.

• As in FEM, exact DSM elements can be assembled and used to analyse complex
structures. This characteristic has not been fully investigated in the present work and
will be the subject of future research although.

• Pre-stress loads play very important roles in free vibration analyses of beam-columns.
The models presented describe accurately the effects of pre-stresses, particularly due
to axial loads. Those effects are much more pronounced when the order of the theory
is increased, especially in the case for which mechanical couplings are present.

• The beam models developed in this thesis have demonstrated excellent accuracy and
computational efficiencies in all cases, including the investigation of buckling. Of
particular interest is the application related to composite beams and thin-walled box
structures, which provides added confidence for future research in advanced aerospace
structures.

10.2 Scope for future work

This thesis has answered several questions, but it has opened up potential possibilities and
has given new prospectives in elastodynamic fields of study that may be the subjects of future
research. DSM employs the exact wave solutions of the governing differential equations
to formulate structural element properties that deal with the continuous mass and stiffness
distributions exactly. Assemblies of DS elements can, thus, depict the correct free vibration
behaviour of complex structures within any frequency range of interest. When coupled with
CUF, the methodology proposed in this thesis can be extremely effective when extended to
dynamic response analysis of metallic and composite structures because accurate solutions
can only be obtained by capturing all necessary high frequency wave modes. For the same
reason and due to the efficacy of CUF refined beam models in dealing with thin-walled
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structures, attention can also be focussed on acoustics applications with particular emphasis to
aerospace constructions. Eventually, the effects of damping in the aforementioned problems
need to be investigated. This task can be accomplished by DSM, because the DS matrix
can be formulated by incorporating the stiffness, mass and damping characteristics of the
structural element, but the Wittrick-Williams algorithm will require further enhancements.
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Appendix A

Material coefficients

In the case of orthotropic materials (i.e., materials with three mutually perpendicular planes
of elastic symmetry) the material constitutive law matrix has 9 independent coefficients. With
respect to the material coordinate system the Hooke’s law (Eq. 3.5) can be written as

σ33

σ22

σ11

σ21

σ31

σ23


=



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε33

ε22

ε11

ε21

ε31

ε23


(A.1)

Coefficients Ci j are defined in the usual notation as follows:

C11 =
E1 (1−ν23ν32)

∆
; C12 =

E1 (ν21 +ν23ν31)

∆
; C13 =

E1 (ν31 +ν21ν32)

∆
;

C22 =
E2 (1−ν13ν31)

∆
; C23 =

E2 (ν32 +ν12ν31)

∆
; C33 =

E3 (1−ν12ν21)

∆
;

C44 = G21; C55 = G31; C66 = G23;

(A.2)

where:
∆ = 1 − ν12 ν21 − ν13 ν31 − ν23 ν32 − ν12 ν23 ν31 − ν13 ν21 ν32 (A.3)

The terms {Ei : i = 1, 2, 3} are the Young moduli,
{

νi j : i, j = 1, 2, 3
}

are the Poisson ratios
and

{
Gi j : i = 2, 3; j = 1,3

}
are the shear moduli in the material coordinate system. The

Poisson ratios are defined as:

νi j = −
ε j j

εii
i, j = 1, 2, 3 i ̸= j (A.4)
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Material coefficients

In Eq. (A.1) the material constitutive relationship has been referred to the material co-
ordinate system (1, 2, 3), which has been graphically illustrated in Fig. 3.1. This system
is supposed to be aligned with the fibres in a unidirectionally reinforced lamina that lies
in the 2− 3 plane. In general, the material coordinate system is different from the phys-
ical coordinate system (x, y, z). Thus, one may want to write the constitutive law with
respect to (x, y, z) by employing coordinate transformation equations. The stress vector
σσσ =

{
σyy σxx σzz σxz σyz σxy

}T in physical coordinates can be obtained in terms of the stress
vector σσσm = {σ33 σ22 σ11 σ21 σ31 σ23}T in material coordinates as follows:

σσσ = Tσσσm (A.5)

where T is the following 6×6 transformation matrix:

T =



cos2 θ sin2
θ 0 0 0 2sinθ cosθ

sin2
θ cos2 θ 0 0 0 −2sinθ cosθ

0 0 1 0 0 0
0 0 0 cosθ −sinθ 0
0 0 0 sinθ cosθ 0

−sinθ cosθ sinθ cosθ 0 0 0 cos2 θ − sin2
θ


(A.6)

The physical strain vector can be related to the strain vector in the material coordinate in a
similar way,

εεεm = TT
εεε (A.7)

By substituting Eqs. (A.1) and (A.7) into Eq. (A.5), a transformed constitutive relationship
C̃ is obtained as follows:

C̃ = TCm TT (A.8)

The transformed constitutive law described by the matrix C̃ contains the elastic coefficients
referred to the physical coordinate system. The stress-strain relations referred to the physical
coordinate system (cf. Eqs. (3.5) and (3.6)) can then be written as follows:

σyy

σxx

σzz

σxz

σyz

σxy


=



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0
0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66





εyy

εxx

εzz

εxz

εyz

εxy


(A.9)
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Carrying out the matrix multiplications in Eq. (A.8) for the orthotropic case, the elastic
coefficients of the transformed matrix C̃ are expressed as a function of the coefficients of the
material stiffness matrix C and the ply angle θ . The elements of the C̃ matrix are given as
follows:

C̃33 = C33 cos4
θ + 2(C23 +2C66) sin2

θ cos2
θ + C22 sin4

θ

C̃23 = C23
(
sin4

θ + cos4 θ
)
+ (C33 +C22 −4C66) sin2

θ cos2 θ

C̃13 = C13 cos2 θ + C12 sin2
θ

C̃36 = (−C33 +C23 +2C66) sinθ cos3 θ + (C22 −C23 −2C66) sin3
θ cosθ

C̃22 = C22 cos4 θ + 2(C23 +2C66) sin2
θ cos2 θ + C33 sin4

θ

C̃12 = C12 cos2 θ + C13 sin2
θ

C̃26 = (−C33 +C23 +2C66) sin3
θ cosθ + (C22 −C23 −2C66) sinθ cos3 θ

C̃11 = C11

C̃16 = (C12 −C13) sinθ cosθ

C̃44 = C44 cos2 θ + C55 sin2
θ

C̃45 = (C44 −C55) sinθ cosθ

C̃55 = C55 cos2 θ + C44 sin2
θ

C̃66 = (C33 +C22 −2C23 −2C66) sin2
θ cos2 θ + C66

(
sin4

θ + cos4 θ
)

(A.10)
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Appendix B

Solution of a system of second order
differential equations

A system of differential equations of the second order in x can be written as

d2y(x)
dx2 = y,xx (x) = f (y(x),y,x (x)) (B.1)

where y(x) = [y1,y2, ...,yn]
T are the n unknown functions. Thus y,x(x) can be written in

matrix form as
y,x(x) = S̃

{
y1 y1,x y2 y2,x . . . yn yn,x

}T (B.2)

where S̃ is the matrix of coefficient whose dimension is n×2n and which can be written as:

S̃ =


S11 S12 S13 S14 . . . S1(2n−1) S1(2n)

S21 S22 S23 S24 . . . S2(2n−1) S2(2n)
...

...
...

... . . . ...
...

Sn1 Sn2 Sn3 Sn4 . . . Sn(2n−1) Sn(2n)

 (B.3)

With a simple change of variables, the system of second order differential equations can be
transformed into a system of first order differential equations. The change of variables is

Z1(x) = y1(x) , Z2(x) = y1,x(x)

Z3(x) = y2(x) , Z4(x) = y2,x(x)
...

Z(2n−1)(x) = yn(x) , Z(2n)(x) = yn,x(x)

(B.4)
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Solution of a system of second order differential equations

In this way, a number of first order differential equations, such as Z1,x = Z2, Z3,x = Z4 and
Zn−1,x = Zn, will be added to the system of Eq. (B.1) - and consequently to Eq. (B.2) -
which becomes a first order differential system. If the differential system is linear and the
coefficients are constant, the set of equations can be re-written in matrix form as

Z,x(x) = SZ(x) (B.5)

where the unknown functions are now:

Z = {Z1 Z2 Z3 Z4 . . . Z2n−1 Z2n}T =
{

y1 y1,x y2 y2,x . . . yn yn,x
}T (B.6)

and the new matrix of coefficients S, whose dimension now is 2n×2n can be written as:

S =



0 1 0 0 . . . 0 0
S11 S12 S13 S14 . . . S1(2n−1) S1(2n)

0 0 0 1 . . . 0 0
S21 S22 S23 S24 . . . S2(2n−1) S2(2n)

...
...

...
... . . . ...

...
0 0 0 0 . . . 0 1

Sn1 Sn2 Sn3 Sn4 . . . Sn(2n−1) Sn(2n)


(B.7)

The solution of first order differential equations of Eq. (B.5) can be written as

Zi =
2n

∑
j=1

C jδ jieλ jx (B.8)

where C j are the constants of integration, λ j is the j-th eigenvalue of the matrix S and δ ji is
i-th value in the j-th eigenvector of the matrix S. For the sake of simplicity, the solution for
Z1, i.e. y1 (see Eq. (B.4)) is given in explicit form

y1(x) =C1δ11eλ1x +C2δ21eλ2x + . . .+C2nδ(2n)1eλ2nx (B.9)

if the eigenvectors are written as a matrix δ in the following form:

δ =


δ11 δ21 . . . δ(2n)1

δ12 δ22 . . . δ(2n)2
...

... . . . ...
δ1(2n) δ2(2n) . . . δ(2n)(2n)

 (B.10)
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where, for δ ji, j is the eigenvector number and i is the position in the eigenvector, and the
eigenvalues with the constants are written in the following form:

Ceλx =
{

C1eλ1x C2eλ2x . . . C2neλ2nx
}T

(B.11)

then the solution of Eq. (B.8) can be written in a more compact matrix form as

Z = δCeλx (B.12)

117





Appendix C

Forward and backward Gauss
elimination

In this appendix, the procedure to transform the matrix L (Eq. (7.3)) into S̃ (Eq. (B.3)) is
described in details. In matrix L, the coefficients of the second derivatives are located in the
columns which are multiple of 3. In order to decouple the equations, the first row should
have -1 in the third column and zero below it, the second row should have -1 in the sixth
column and zeros above and below that and so on. This matrix has been referred to as L̂.
Let us examine a 3 by 9 L matrix which is fully populated. The algorithm can easily be
extended to a matrix of N by N ×3 dimension. The matrix L̂ and subsequently the matrix S̃
(see Eq. (B.3)) can be obtained by following four steps.

L =

 l11 l12 l13 l14 l15 l16 l17 l18 l19

l21 l22 l23 l24 l25 l26 l27 l28 l29

l31 l32 l33 l34 l35 l36 l37 l38 l39

 (C.1)

(i) Forward Gauss elimination. Gauss elimination is carried out on entries below l13, l26.
This is achieved by the following algorithm for the third column

l2i = l2i −
l23

l13
l1i for i = 1, . . . ,9

l3i = l3i −
l33

l13
l1i for i = 1, . . . ,9

(C.2)
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Forward and backward Gauss elimination

and for the sixth column1

l3i = l3i −
l36

l26
l2i for i = 1, . . . ,9 (C.3)

note that the name of the new element has not been changed for sake of simplicity.
The results would be a new L matrix in the following form

L =

 l11 l12 l13 l14 l15 l16 l17 l18 l19

l21 l22 0 l24 l25 l26 l27 l28 l29

l31 l32 0 l34 l35 0 l37 l38 l39

 (C.4)

(ii) Backward Gauss Elimination. As before but starting from the third row, ninth column
and eliminating everything that is above that element in order to obtain the following
new L matrix

L =

 l11 l12 l13 l14 l15 0 l17 l18 0
l21 l22 0 l24 l25 l26 l27 l28 0
l31 l32 0 l34 l35 0 l37 l38 l39

 (C.5)

(iii) Factorisation. It is required to have -1 on the coefficient corresponding to the second
derivative so to imply that if that coefficient were to be moved on the other side of the
differential equation, its value would be 1. In order to do that the first row is divided
by −l13, the second by −l26and the third by −l39. in this way, the matrix L̂ can be
obtained and it has the following form

L̂ =

 l11 l12 −1 l14 l15 0 l17 l18 0
l21 l22 0 l24 l25 −1 l27 l28 0
l31 l32 0 l34 l35 0 l37 l38 −1

 (C.6)

(iii) Eliminate the columns. By eliminating the columns corresponding to the position 3
and it multiples, is equivalent to moving the term containing the second derivatives to
the other side of the equations and giving the matrix of coefficients associated with the
second order differential equation. This matrix has been called S̃ (see Eq. (B.3)) and

1this algorithm can be generalised for any matrix dimension in a couple of lines
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following the notation in Eq. (C.6) it can be written as

S̃ =

 l11 l12 l14 l15 l17 l18

l21 l22 l24 l25 l27 l28

l31 l32 l34 l35 l37 l38

 (C.7)
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