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Abstract

Derivative longevity risk solutions, such as bespoke and indexed longevity swaps, allow
pension schemes and annuity providers to swap out longevity risk, but introduce coun-
terparty credit risk, which can be mitigated if not fully eliminated by collateralization.
We examine the impact of bilateral default risk and collateral rules on the marking to
market of longevity swaps, and show how longevity swap rates must be determined en-
dogenously from the collateral flows associated with the marking-to-market procedure.
For typical interest rate and mortality parameters, we find that the impact of collat-
eralization is modest in the presence of symmetric default risk, but more pronounced
when default risk and/or collateral rules are asymmetric. Our results suggest that
the overall cost of collateralization is comparable with, and often much smaller than,
that found in the interest-rate swaps market, which may then provide the appropriate
reference framework for the credit enhancement of both indemnity-based and indexed
longevity risk solutions.
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1 Introduction

The market for longevity-linked securities and derivatives has recently experienced a surge

in transactions in longevity swaps (Blake et al., 2013). These pure longevity hedges are

agreements between two parties to exchange fixed payments against variable payments

linked to the number of survivors in a reference population (see Dowd et al., 2006). Table 1

presents a list of recent deals that have been publicly disclosed. So far, transactions have

mainly involved pension funds and annuity providers wanting to hedge their exposure to

longevity risk1 but without having to bear any basis risk. The variable payments in such

longevity swaps are designed to match precisely the mortality experience of each individual

hedger: hence the name bespoke longevity swaps. This is essentially a form of longevity

risk insurance, similar to annuity reinsurance in reinsurance markets. Indeed, most of the

longevity swaps executed to date have been bespoke, indemnity-based swaps of the kind

familiar in reinsurance markets. This is true despite the fact that some of the swaps listed

in table 1 have been arranged by investment banks: the banks have worked with insurance

companies (in some cases insurance company subsidiaries) in order to deliver a solution

in a format familiar to the counterparty. A fundamental difference from other forms of

reinsurance, however, is that longevity swaps are typically collateralized, whereas typical

insurance/reinsurance transactions are not.2 The main reason is that longevity swaps are

often part of a wider de-risking strategy involving other collateralized instruments (interest-

rate and inflation swaps, for example), and also the fact that hedgers have been increasingly

concerned with counterparty risk3 in the wake of the Global Financial Crisis of 2008-09.

In this article, we provide a framework to quantify the trade-off between the exposure to

counterparty risk in longevity swaps and the cost of credit enhancement strategies such as

collateralization.

1By longevity risk we mean exposure to the systematic risk of mortality improvements, which cannot
be mitigated by pooling together large numbers of lives.

2One rationale for this is that reinsurers aggregate several uncorrelated risks and pool-
ing/diversification benefits compensate for the absence of collateral (e.g., Cummins and Trainar, 2009;
Lakdawalla and Zanjani, 2012; Kessler, 2013). Insurers/reinsurers are still required by their regulators to
post regulatory or solvency capital which plays a similar role to collateral but at aggregate level.

3Basel II (2006, Annex 4) defines counterparty risk as ‘the risk that the counterparty to a transaction
could default before the final settlement of the transaction’s cash flows’. The recent Solvency II proposal
makes explicit allowance for a counterparty risk module in its ‘standard formula’ approach; see CEIOPS
(2009).
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As there is no accepted framework yet for marking to market/model longevity swaps,

hedgers and hedge suppliers look to other markets to provide a reference model for coun-

terparty risk assessment and mitigation. In interest-rate swap markets, for example, the

most common form of credit enhancement is the posting of collateral. According to the

International Swap and Derivatives Association (ISDA) almost every swap at major finan-

cial institutions is ‘bilaterally’ collateralized (ISDA, 2010a), meaning that either party is

required to post collateral depending on whether the market value of the swap is positive

or negative.4 The vast majority of transactions is collateralized according to the Credit

Support Annex (CSA) to the Master Swap Agreement introduced by ISDA (1994). The

Global Financial Crisis highlighted the importance of bilateral counterparty risk and collat-

eralization for over-the-counter markets, spurring a number of responses (e.g, ISDA, 2009;

Brigo and Capponi, 2009; Assefa et al., 2010; Brigo et al., 2011, 2012). The Dodd-Frank

Wall Street Reform and Consumer Protection Act (signed into law by President Barack

Obama on July 21, 2010) is likely to have a major impact on the way financial institu-

tions will manage counterparty risk in the coming years.5 The recently established Life

and Longevity Markets Association (LLMA) 6 has counterparty risk at the center of its

agenda, and will certainly draw extensively from the experience garnered in fixed-income

and credit markets.

Collateralization strategies address the concerns aired by pension trustees regarding

the efficacy of longevity swaps, but introduce another dimension in the traditional pric-

ing framework used for insurance transactions. The ‘insurance premium’ embedded in a

longevity swap rate reflects not only the aversion/appetite of the counterparties for the risk

being transferred and the cost of regulatory capital involved in the transaction, but also

the expected costs to be incurred from posting collateral during the life of the swap. To

understand these costs, let us first take the perspective of a hedge supplier (reinsurer or

investment bank) issuing a collateralized longevity swap to a counterparty (pension fund

4‘Unlike a firm’s exposure to credit risk through a loan, where the exposure to credit risk is unilateral
and only the lending bank faces the risk of loss, counterparty credit risk creates a bilateral risk of loss:
the market value of the transaction can be positive or negative to either counterparty to the transaction.
The market value is uncertain and can vary over time with the movement of underlying market factors.’
(Basel II, 2006, Annex 4).

5See, for example, ‘Berkshire may scale back derivative sales after Dodd-Frank’, Bloomberg, August 10,
2010.

6See http://www.llma.org.
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or annuity provider). Whenever the swap is sufficiently out-of-the-money to the hedge sup-

plier, the hedge supplier is required to post collateral, which can be used by the hedger to

mitigate losses in the event of default. Although interest on collateral is typically rebated,

there is both a funding cost and an opportunity cost, as the posting of collateral depletes

the resources the hedge supplier can use to meet her capital requirements at aggregate

level as well as to write additional business. On the other hand, whenever the swap is suf-

ficiently in-the-money to the hedge supplier, the hedge supplier will receive collateral from

the counterparty, thus benefiting from capital relief in regulatory valuations and freeing

up capital that can be used to sell additional longevity protection. The benefits can be

far larger if collateral can be re-pledged for other purposes, as in the interest-rate swaps

market.7 The same considerations can be made from the viewpoint of the hedger, but the

funding needs and opportunity costs of the two parties are unlikely to offset each other

exactly. This is particularly relevant for transactions involving parties subject to different

regulatory frameworks. In the UK and several other countries, for example, longevity risk

exposures are more capital intensive for hedge suppliers, such as insurers, than for pension

funds.8

In the absence of collateral, and ignoring longevity risk aversion, swap rates9 depend

on best estimate survival probabilities for the hedged population and on the degree of

covariation between the floating leg of the swap and the defaultable term structure of

interest rates facing the hedger and the hedge supplier. This means that a proper analysis

of a longevity swap cannot disregard the sponsor’s covenant when the hedger is a pension

plan (see section 3 below). In the presence of collateralization, longevity swap rates are also

shaped by the expected collateral costs, and swap valuation formulae involve a discount

rate reflecting the cost of collateral. As a result, default-free valuation formulae are not

appropriate even in the presence of full collateralization and the corresponding absence of

default losses.10

7According to ISDA (2010a), the vast majority of collateral is rehypothecated for other purposes in
interest-rate swap markets. Currently, collateral can be re-pledged under the New York Credit Support
Annex, but not under the English Credit Support Deed (see ISDA, 2010b).

8This asymmetry is, in part, a by-product of rules allowing, for example, pension liabilities to be
quantified by using outdated mortality tables or discount rates reflecting optimistic expected returns.

9Defined as the rates in the fixed legs of the swap zeroing its market value at inception.
10See Johannes and Sundaresan (2007) for the case of symmetric default risk and full collateralization in

interest-rate swaps.
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We quantify collateral costs in two ways: i) in terms of funding costs that are incurred

or mitigated when collateral is posted or received, and ii) as the opportunity cost of selling

additional longevity protection. In both cases, we find that, for typical interest rate and

mortality parameters, the impact of collateralization on swap rates is modest when default

risk and collateral rules are symmetric. The main reason is that longevity risk and interest-

rate risk have countervailing effects that dilute the overall impact of collateralization on

swap rates:

i) On the one hand, the receiver of the fixed survival rate (the hedge supplier) posts

collateral when mortality is lower and hence longevity exposures are more capital intensive.

On the other hand, she receives collateral when mortality is higher and longevity protection

is less capital intensive. The overall effect is to push swap rates higher, to compensate the

hedge supplier for the positive dependence between collateral posting and capital costs.

ii) When the hedger or hedge supplier is out-of-the-money, collateral outflows are larger

in low interest rate environments (i.e., when liabilities are discounted at a lower rate), hence

there is a negative relationship between the amount of collateral posted and the counter-

parties’ funding/opportunity costs. This mitigates the overall impact of collateralization

on longevity swap rates.

When default risk and/or collateral rules are asymmetric, the opposing effects are of

different magnitudes and, as a result, the impact of collateral costs on longevity swap rates

is larger. For example, we find that swap rates decrease substantially when the hedger

has a lower credit standing (i.e., higher funding costs) and full collateralization is used, or

when collateral rules are more favorable to the hedge supplier. Although collateralization

introduces an explicit link between the individual risk exposures and the hedge supplier’s

funding risk (hence some of the pooling/diversification benefits used to substitute for col-

lateralization in the standard insurance model may be lost), in our examples we find that

the opposite effects of longevity and interest rate risk, and the different nature of the risk

on which the swap is written (a floating rate in the case of interest-rate swaps, a smoother

survival curve in the case of longevity swaps) make the overall impact of collateraliza-

tion comparable with, and typically lower than, that observed in fixed-income markets

(e.g., Johannes and Sundaresan, 2007). An important implication is that the interest-rate

5



swaps market might provide an appropriate framework for the collateralization of bespoke

longevity solutions, even though such solutions lack of the transparency and standard-

ization benefits associated with indexed-based instruments. Investment banks have sold

index-based longevity swaps which have a structure that would be more familiar to capital

markets investors, but they have so far been less popular than bespoke solutions to date.

On the methodological side, we show how longevity swap rates must be determined

endogenously from the dynamic marking to market11 of the swap and the collateral rules

specified by the contract. To see why, note that the market value of the swap at each

valuation date depends on the evolution of the relevant state variables (mortality, interest

rates, credit spreads), as well as on the swap rate locked in at inception. On the other

hand, the swap’s market value will typically affect collateral amounts and, in a setting

where collateral is costly, will embed the market value of the costs associated with future

collateral flows. Hence, the swap rate can only be determined by explicitly taking into

account the marking-to-market process and the dynamics of collateral posting. To avoid

the computational burden of nested Monte Carlo simulations, we use an iterative procedure

based on the Least-Squares Monte Carlo (LSMC) approach12 (see Glassermann, 2004,

and references therein). We provide several numerical examples showing how different

collateralization rules shape longevity swap rates giving rise to margins in (best estimate)

survival probabilities reflecting the cost of future collateral flows. Although our focus is

on longevity risk solutions, the approach can be applied to other instruments, such as

over-the-counter solutions for inflation and credit risk.

Our work contributes to the existing literature on longevity risk pricing in at least three

ways: i) we introduce default risk in the pricing of longevity risk solutions, and properly

address its bilateral nature; ii) we explicitly allow for collateralization rules, which are the

backbone of any real-world hedging solution and materially affect the pricing of over-the-

counter transactions; iii) we introduce a ‘structural’ dimension in an otherwise reduced-form

11Here and in what follows, by ‘market value’ and ‘marking to market’ we mean that assets and liabilities
are valued according to a market-consistent valuation model or regulatory standard.

12A similar approach is used by Bacinello et al. (2009, 2010) for surrender guarantees in life policies and
by Bauer et al. (2009) for the computation of capital requirements within the Solvency II framework. The
term American Monte Carlo is often used in financial engineering to refer to this approach. We stick to the
term Least Squares Monte Carlo, as it is more common in the insurance industry (e.g., Hörig and Leitschkis,
2012).
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pricing framework, by allowing for funding/opportunity costs associated with longevity risk

exposures held by hedgers and hedge suppliers. As there is essentially no publicly available

information on swap rates, our approach13 has the advantage of using publicly available

information on credit markets and regulatory standards, without having to rely exclusively

on calibration to primary insurance market prices, approximate hedging methods or as-

sumptions on agents’ risk preferences (e.g., Dowd et al., 2006; Ludkovski and Young, 2008;

Bauer et al., 2012, 2010; Biffis et al., 2010; Chen and Cummins, 2010; Cox et al., 2010;

Deng et al., 2012; Wang et al., 2013, among others).

The article is organized as follows. In the next section, we introduce longevity swaps

and formalize their payoffs. Although the setup covers the case of both bespoke and index-

based swaps, we focus on the former to keep the paper focused. In section 2.1, we examine

the marking to market of a longevity swap during its lifetime to demonstrate the impact

of counterparty risk on the hedger’s balance sheet. Section 3 introduces bilateral default

risk in longevity swap valuation formulae, identifying the main channels through which

default risk affects the market value of swaps. Section 4 introduces credit enhancement in

the form of collateralization, and shows how longevity swap rates are affected even in the

presence of full cash collateralization (and hence absence of default losses). We compute

swap rates by using an iterative procedure based on the LSMC approach. In section 5,

several stylized examples are provided to understand how different collateralization rules

may affect longevity swap rates. Concluding remarks are offered in section 6. Further

details and technical remarks are collected in an appendix.

< Table 1 about here >

2 Longevity swaps

We consider a hedger (insurer selling annuities, pension fund), referred to as party h,

and a hedge supplier (reinsurer, investment bank), referred to as counterparty hs. Agent

h has the obligation to pay amounts XT1 , XT2 , . . ., possibly dependent on interest rates

13Similarly, Biffis and Blake (2010b, 2013) endogenize longevity risk premia by introducing asymmetric
information and capital requirements in a risk-neutral setting.
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and inflation, to each survivor at fixed dates 0 < T1 ≤ T2, . . . of an initial population of

n individuals (annuitants or pensioners) alive at time zero. We are clearly restricting our

attention to homogeneous liabilities for ease of exposition, more general situations requiring

obvious modifications. Party h’s liability at a generic payment date T > 0 is given by the

random variable (n − NT )XT , where NT counts the number of deaths experienced by

the population during the period [0, T ]. Assuming that the individuals’ death times have

common intensity14 (µt)t≥0, the expected number of survivors at time T can be written as

EP [n−NT ] = npT , with the survival probability pT given by (see the appendix)

pT := EP

[
exp

(
−

∫ T

0
µtdt

)]
. (2.1)

Here and in the following, P denotes the real-world probability measure. The intensity

could be modeled by using, for example, any of the stochastic mortality models considered

in Cairns et al. (2009). For our examples, we will rely on the simple Lee-Carter mortality

projection model (Lee and Carter, 1992).

Let us now consider a financial market and introduce the risk-free rate process (rt)t≥0

(in practice, an overnight rate). We assume that a market-consistent price of the liabilities

can be computed by using a risk-neutral measure P̃, equivalent to P, such that the death

times have the same intensity process (µt)t≥0 (with different dynamics, in general, under

the two measures; see Biffis et al., 2010). The time-0 market value of the aggregate liability

can then be written as

EP̃

[
∑

i

exp

(
−

∫ Ti

0
rtdt

)
(n−NTi

)XTi

]
= n

∑

i

EP̃

[
exp

(
−

∫ Ti

0
(rt + µt)dt

)
XTi

]
.

For the moment, we take the pricing measure as given: we will give it more structure later

on.

We consider two instruments which h can enter into with hs to hedge its exposure: a

bespoke longevity swap and an index-based longevity swap. In these swaps, in contrast

with interest rate swaps, the fixed leg will be a series of fixed rates each one pertaining

14As discussed more in detail in the appendix, for tractability we restrict our attention to the case of
doubly stochastic (or Cox, conditionally Poisson) death times; see Biffis et al. (2010).
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to an individual payment date. The reason is that mortality increases substantially at old

ages and a single fixed rate would introduce a growing mismatch between the cashflows

provided by the swap and those needed by the hedger. However, as with interest rate

swaps, we can treat a longevity swap as a portfolio of forward contracts on the underlying

floating (survival) rate.15 In this section, we ignore default risk and focus on individual

payments at maturity T > 0. Throughout the article, we always assume the perspective of

the hedger.

A bespoke longevity swap allows party h to pay a fixed rate pN ∈ (0, 1) against

the realized survival rate experienced by the population between time zero and time T .

Assuming a notional amount equal to the initial population size, n, the net payout to the

hedger at time T is16

n

(
n−NT

n
− pN

)
,

i.e., the difference between the realized number of survivors and the pre-set number of

survivors npN agreed at inception. Letting S0 denote the market value of the swap at

inception, we can write

S0 = nEP̃

[
exp

(
−

∫ T

0
rtdt

)(
n−NT

n
− pN

)]

= nEP̃

[
exp

(
−

∫ T

0
(rt + µt)dt

)]
− nB(0, T )pN ,

(2.2)

with B(0, T ) denoting the time-zero price of a zero-coupon bond with maturity T . By

setting S0 = 0, we obtain the swap rate as

pN = p̃T +B(0, T )−1CovP̃
(
exp

(
−

∫ T

0
rtdt

)
, exp

(
−

∫ T

0
µtdt

))
, (2.3)

where the risk-adjusted survival probability p̃T is defined as in (2.1) with expectations

taken under P̃. Expression (2.3) shows that if the intensity of mortality is uncorrelated

with bond market returns (a reasonable first-order approximation), the longevity swap

15With a slight abuse of terminology, we use the term ‘swap rate’ for individual forward rates as well as for
swap curves (a series of swap rates). We note that swap curves are often summarized by the improvement
factor applied to the survival probabilities of a reference mortality table/model; see examples in section 5.

16For ease of exposition, here and in the following sections, we consider contemporaneous settlement
only. Other settlement conventions (e.g. in arrears) have negligible effects, but make valuation formulae
more involved when bilateral and asymmetric default risk is introduced.
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curve just involves the survival probabilities {p̃Ti
} relative to the different maturities {Ti}.

Several studies have recently addressed the issue of how to quantify risk-adjusted survival

probabilities, for example, by calibration to annuity prices and books of life policies traded

in secondary markets, or by use of approximate hedging methods (see references in Sec-

tion 1). As there is essentially no publicly available information on swap rates, for our

numerical examples we will suppose a baseline case in which p̃Ti
= pTi

for each maturity Ti

and focus on how counterparty default risk and collateral requirements might generate a

positive or negative spread on best estimate survival rates. This is consistent with market

practice where counterparties would agree on a real-world mortality model (and estimation

methodology) to mark-to-model the swap at future dates. Although in what follows, we

mainly concentrate on longevity risk, in practice, the floating payment of a longevity swap

might involve an interbank rate component (e.g., LIBOR) or survival indexation rules dif-

ferent from the ones considered above. To keep the setup general, we will at times consider

instruments making a generic variable payment, P , and write the corresponding swap rate

p as

p = EP̃ [P ] +B(0, T )−1CovP̃
(
exp

(
−

∫ T

0
rtdt

)
, P

)
. (2.4)

The setup can easily accommodate index-based longevity swaps, standardized in-

struments allowing the hedger to pay a fixed rate pI ∈ (0, 1) against the realized value

of a survival index (It)t≥0 at time T . The latter might reflect the mortality experience

of a reference population closely matching17 that of the liability portfolio. Examples are

represented by the LifeMetrics indices developed by J.P. Morgan, the Pensions Institute

and Towers Watson,18 or the Xpect indices developed by Deutsche Börse.19 The relative

advantages and disadvantages of index-based versus bespoke swaps are discussed, for ex-

ample, in Biffis and Blake (2010a). Assuming that the index admits the representation

It = exp(−
∫ t

0 µ
I
sds), with (µIt )t≥0 the intensity of mortality of a reference population, the

swap rate pI is given again by expression (2.3), but with the process µ replaced by µI , and

with p̃T replaced by the corresponding risk-adjusted survival probability p̃IT .

17The risk of mismatch is called basis risk. See, for example, Coughlan et al. (2011), Stevens et al.
(2011), Salhi and Loisel (2012), Gatzert and Wesker (2012), and Cairns (2013) for some results related to
this risk dimension.

18See http://www.lifemetrics.com. The indices were transferred to LLMA in 2011.
19See http://www.xpect-index.com.
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2.1 The marking-to-market (MTM) process

Longevity swaps are not currently exchange traded and there is no commonly accepted

framework for counterparties to mark to market/model their positions.20 The presence of

counterparty default risk and collateralization rules, however, makes the MTM procedure a

very important feature of these transactions for at least two reasons. First, at each payment

date, the difference between the variable and pre-set payment generates a cash inflow or

outflow to the hedger, depending on the evolution of mortality. In the absence of basis risk

(which is the case for bespoke solutions), these differences show a pure ‘cashflow hedge’ of

the longevity exposure in operation. However, as market conditions change (e.g., mortality

patterns, counterparty default risk), the impact of the swap on the hedger’s balance sheet

can evolve dramatically. For example, even if the swap payments are expected to provide a

good hedge against longevity risk, the hedger’s position will weaken considerably if the

expected present value of the net payments shrinks due to deterioration in the hedge

supplier’s credit quality. Second, for solvency requirements, it is important to value a

longevity swap under extreme market/mortality scenarios (‘stress testing’). This means,

for example, that even if a longevity swap qualifies as a liability on a market-consistent

basis, it might still provide considerable capital relief when valued on a regulatory basis

due to its recognized effectiveness as a hedge.

To illustrate some of these points, let us consider the hypothetical situation of an insurer

h with a liability represented by a group of ten thousand 65-year-old annuitants drawn from

the population of England & Wales in 1980. We assume that party h entered a 25-year

pure longevity swap in 1980 and we follow the evolution of the contract until maturity.

The population is assumed to evolve according to the death rates reported in the Human

Mortality Database (HMD) for England & Wales.21 We assume that interest-rate risk is

hedged away through interest rate swaps, locking in a rate of 5% throughout the life of the

swap. The role of collateral is examined later on; here, we show how the hedging instrument

operates from the point of view of the hedger. For this bespoke solution, the market value

of each floating-for-fixed payment occurring at a generic date T can be computed by using

20At the time of writing, LLMA was working on this issue.
21See http://www.mortality.org.
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the valuation formula

St =nE
P̃

t

[
exp

(
−

∫ T

t

rsds

)(
n−Nt

n
exp

(
−

∫ T

t

µsds

))]
− nB(t, T )pN , (2.5)

for each time t in [0, T ] at which no default has yet occurred, with B(t, T ) denoting the

market value of a zero-coupon bond with time to maturity T − t, and EP̃
t [·] the conditional

expectation under a pricing measure P̃, given the information available at time t. As a

simple benchmark case, we assume that market participants receive information from the

HMD and use the Lee-Carter model to value longevity-linked cashflows. In other words,

at each MTM date (including inception), longevity swap rates are based on Lee-Carter

forecasts computed using the latest HMD information available.22 Figure 1 illustrates the

evolution of swap survival rates for an England & Wales cohort tracked from age 65 in 1980

to age 90 in 2005. It is clear that the systematic underestimation of mortality improvements

by the Lee-Carter model in this particular example will mean that the hedger’s position

will become increasingly in-the-money as the swap matures. This is shown in figure 2. In

practice, the contract may allow the counterparty to cancel the swap or re-set the fixed leg

for a nonnegative fee, but we ignore these features in this example. Figure 2 also reports

the sequence of net cashflows generated by the swap. As interest rate risk is hedged

away − and again ignoring default risk for the moment − cash inflows/outflows arising in

the backtesting exercise only reflect the difference between the realized survival rates and

the swap rates locked in at inception. On the other hand, the swap’s market value reflects

changes in market swap rates, which by assumption follow the updated Lee-Carter forecasts

plotted in figure 1 and differ from the realized survival rates. As is evident from figure 2,

the credit exposure of a longevity swap is close to zero at inception and at maturity, but

may be sizable in between, depending on the trade-off between changes in market/mortality

conditions and the residual swap payments (amortization effect). The credit exposure is

quantified by the replacement cost, i.e., the cost that the nondefaulting counterparty would

have to incur at the default time to replace the instrument at market prices then available.

As a simple example which predicts the next section, let us introduce credit risk (but no

22See Dowd et al. (2010a,b); Cairns et al. (2011) for a comprehensive analysis of alternative mortality
models; see also Girosi and King (2008) and Pitacco et al. (2009).
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default) and assume that in 1988 the credit spread of the hedge supplier widens across all

maturities by 50 and 100 basis points. The impact of these two scenarios on the hedger’s

balance sheet is dramatic, as shown in figures 2-3, demonstrating how MTM profits and

losses can jeopardize a successful cashflow hedge.

< Figure 1 about here >

< Figure 2 about here >

< Figure 3 about here >

3 Counterparty default risk

The backtesting exercise of the previous section has demonstrated the importance of the

hedge supplier’s credit risk and the marking to market procedure in assessing the value of

a longevity swap to the hedger. A correct approach, however, should allow for the fact

that counterparty risk is bilateral. This is the case even when the hedger is a pension plan.

Private sector defined benefit pension plans in countries such as the UK are founded on

trust law and rely on a promise by (rather than a guarantee from) the sponsoring employer

to pay the benefits to plan members. This promise is known as the ‘sponsor covenant’. The

strength of the sponsor covenant depends on both the financial strength of the employer

and the employer’s commitment to the scheme.23 As a reasonable but imperfect proxy for

the effect of the sponsor covenant, we use the sponsor’s default intensity (party h’s default

intensity). For large corporate pension plans, the intensity can be derived/extrapolated

from spreads observed in corporate bond and CDS markets. For smaller plans, an analysis

of the funding level and strategy of the scheme is required.24

23In the UK, for example, The Actuarial Profession (2005, par. 3.2) defined the sponsor covenant as: “the
combination of (a) the ability and (b) the willingness of the sponsor to pay (or the ability of the trustees
to require the sponsor to pay) sufficient advance contributions to ensure that the scheme’s benefits can be
paid as they fall due.” See also The Pensions Regulator (2009).

24Along the same lines, Inkmann and Blake (2010) show how the discount rate for the valuation of
pension liabilities should reflect funding risk.
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Assume that both party h and hs may default at random times τh, τhs, admitting

default intensities25 (λh

t )t≥0, (λ
hs

t )t≥0. Defining by τ := min(τh, τhs) the default time of

the swap transaction, we further assume that, on the event {τ ≤ T}, the nondefaulting

counterparty, say party i, receives a fraction ψj ∈ [0, 1] (i 6= j, with i, j ∈ {h,hs}) of

the market value of the swap before default, Sτ−, if she is in-the-money, otherwise she

has to pay the full pre-default market value Sτ− to the defaulting counterparty. Following

Duffie and Huang (1996), we can then write the market value of a swap with notional

amount n as

S0 =nE
P̃

[
exp

(
−

∫ T

0
(rt + 1{St<0}(1− ψh)λh

t + 1{St≥0}(1− ψhs)λhs

t )dt

)(
P − pd

)]
,

(3.1)

where P denotes the variable payment, pd the fixed rate, and the indicator function 1A takes

the value of unity if the event A is true, zero otherwise. To understand the above formula,

note that, in our setting, the risk-neutral valuation of a defaultable claim involves the use

of a default-risk-adjusted short rate rt + λh

t + λhs

t and dividend payment λh

t (ψ
h1St−<0 +

1St−≥0)+λhs

t (ψhs1St−≥0+1St−<0) determined by the recovery rules described above. As a

result, the valuation formula (3.1) entails discounting at a spread above the risk-free rate

given by

Λt :=λ
h

t + λhs

t − λh

t (ψ
h1St<0 + 1St≥0)− λhs

t (ψhs1St≥0 + 1St<0)

=1{St<0}(1− ψh)λh

t + 1{St≥0}(1− ψhs)λhs

t ,

showing a switching-type dependence on the characteristics of the counterparty that is out-

of-the-money at each given time prior to default. The swap rate admits the representation

pd = EP̃[P ] +
CovP̃

(
exp

(
−
∫ T

0 (rt + Λt)dt
)
, P
)

EP̃

[
exp

(
−
∫ T

0 (rt + Λt)dt
)] , (3.2)

and hence depends in a complex way not only on the interaction between the variable

25For tractability and symmetry with the mortality model of section 2, we work with doubly stochastic
default times (see the appendix). The main drawback is that the occurrence of default does not affect the
conditional default probability of the surviving counterparty, thus limiting the extent to which close-out
risk can be properly modelled.
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payments and risk factors such as interest rates, default intensities and recovery rates, but

also on the path of the swap’s market value itself. When P does not include a demographic

component, as in the case of interest-rate swaps, the covariance term is typically negative.

To see this, consider the case of the standard swap valuation formula obtained by assuming

that both counterparties have the same default intensity (λt := λh

t = λhs

t ) and there is

no recovery conditional on default (ψh and ψhs are simply zero). If the credit risk of the

counterparties is equal to the average credit quality of the LIBOR panel, the discount rate

in (3.2) is simply given by r + λ, where λ is just the LIBOR-Treasury (TED) spread. For

a swap paying the LIBOR rate, we would then have a negative covariance term and hence

pd ≤ EP̃[P ]. When P only includes a demographic component (as in expression (2.3) for

example), which is uncorrelated with the other variables, we would still have a non-null

covariance term, due to the regime-switching nature of the discount rate in formula (3.2),

and the fact that switching is triggered by the value of the swap, which also depends on

the floating rate of interest. More generally, one might expect the covariance term to be

negative, as longevity-linked payments are likely to be positively correlated with the credit

quality of hedge suppliers26 and companies with significant pension liabilities. The case of

floating payments linked to both mortality and interest rates would then suggest a swap

rate satisfying pd ≤ EP̃[P ]. In the next section, we will show that this is not necessarily

the case. To understand why, consider the case of full recovery as an example (set ψh and

ψhs equal to one): expression (3.2) reduces to a default-free risk-neutral valuation formula,

irrespective of both the default intensities of the counterparties and the costs involved by

the credit enhancement tools needed to ensure that full recovery is indeed achieved upon

default. This suggests that it is essential to consider explicitly counterparty risk mitigation

tools in the pricing functional.

Counterparty risk can be mitigated in a number of ways, for example by introducing

termination rights (e.g., credit puts and break clauses) or using credit derivatives (e.g.,

credit default swaps and credit spread options). We will focus on collateralization, a

form of direct credit support requiring each party to post cash or securities when it is

out-of-the-money. For simplicity, we consider the case of cash, which is by far the most

26This is a reasonable assumption for monoline insurers such as pension buyout firms, but might be less
so for well-diversified reinsurers.
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common type of collateral (e.g., ISDA, 2010b) and allows us to disregard close-out risk,

the risk that the value of collateral may change at default. In the interest-rate swaps mar-

ket, Johannes and Sundaresan (2007) find evidence of costly collateral by comparing swap

market data with swap values based on portfolios of futures and forward contracts, and by

estimating a dynamic term structure model by using Treasury and swap data. We cannot

carry out a similar exercise for longevity swaps, because there are no publicly available

data on these transactions. On the other hand, we can quantify the funding/opportunity

costs associated with the collateral flows originating from the MTM procedure, as will be

shown in section 5.

4 Collateralization

Collateral agreements reflect the amount of acceptable credit exposure that each party

agrees to take on. We consider simple collateral rules capturing the main features of the

problem. Formally, let us introduce the pre-default collateral process27 (Ct)t≥0, which

indicates how much cash, Ct, to post at each time t prior to default in response to changes

in market conditions, including, in particular, the MTM value of the swap (we provide

explicit examples below). Again, we develop our analysis from the point of view of the

hedger, so that Ct > 0 (Ct < 0) means that party h is holding (posting) collateral. Using

the notation a+ := max(a, 0) and a− := max(−a, 0), we assume the recovery rules to take

the following form:

• On the event {τh ≤ min(τhs, T )} (hedger’s default), party hs recovers any collateral

received by the hedger an instant prior to default, C−
τh−, and pays the full MTM value

of the swap to party h if Sτh− ≥ 0. The net flow to party h is then S+
τh− − C−

τh−.

• On the event {τhs ≤ min(τh, T )} (hedge supplier’s default), party h pays the full

MTM value of the swap to party hs if Sτhs− < 0, and recovers any collateral received

by hs an instant prior to default, C+
τhs−. The net flow to party h can then be written

as −S−
τhs− + C+

τhs−.

27In other words, the actual collateral process supporting the transaction is (1{τ>t}Ct)t≥0; hence, we are
not concerned with the value taken by Ct after default.
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• Whenever the nondefaulting counterparty, say h, is out-of-the-money, payment of

the full MTM value of the swap is accomplished by party h recovering the extra

amount (S+
τ− − C+

τ−)
+ in the case of overcollateralization, or by party h paying

the extra amount (S−
τ− − C−

τ−)
+ in case of undercollateralization. In case of full

collateralization, party h simply loses any collateral posted with hs.

To obtain neater results, it is convenient to express the collateral before default of either

party as a fraction of the MTM value of the swap,

Ct =
(
chs

t 1{St−≥0} + cht 1{St−<0}

)
St−, (4.1)

where ch, chs are two nonnegative left-continuous processes giving the fraction of the MTM

value of the swap that is posted as collateral by party h or hs, respectively.28 Finally, we

introduce a nonnegative continuous process (δt)t≥0 representing the yield on collateral, in

the sense that holding/posting collateral of amount Ct yields/costs instantaneously the net

amount δtCt (after rebate). We can introduce some asymmetry, by setting δt = δht 1{St−<0}+

δhs

t 1{St−≥0}, so that δht be interpreted as party h’s net cost of posting collateral when she is

out-of-the-money, and δhs

t as the net yield on the collateral posted by party hs when party

h is in-the-money. In general, one may regard the collateral costs embedded in swap market

values as those of the marginal market participant. However, when considering individual

longevity swap transactions with bespoke CSAs, it may be convenient to allow the pricing

formula to take into account the cost of collateral of the counterparty: in this case δh and

δhs may be regarded as the cost of posting collateral for party h and hs whenever they are

out-of-the-money.

Denoting by pc the swap rate available in case of collateralization, we can write the

MTM value of the swap as in (3.1), but with the spread Λ now replaced by (see the

appendix for a proof)

Γt = λh

t (1− cht )1{St<0} + λhs

t (1− chs

t )1{St≥0} −
(
δht c

h

t 1{St<0} + δhs

t c
hs

t 1{St≥0}

)
. (4.2)

28Note that representation (4.1) comes at a cost: we cannot encompass the case when collateral is
posted by a counterparty at inception (a form of overcollateralization), which may be the case for some
transactions.
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In the above expression, we recognize the typical features of valuation formulae for credit-

risky securities (e.g., Bielecki and Rutkowski, 2002): the first two terms account for the

fractional recovery of the swap MTM value in case of default of the counterparty, the third

one for the costs incurred when posting collateral before default. An important difference,

however, is that in (4.2) recovery rates depend on collateral rules, and collateral costs enter

explicitly in the discount rate. We now examine simple special cases to understand better

the role of collateral in shaping swap rates.

4.1 Full collateralization

Consider the collateral rule obtained by setting ch and chs equal to one, meaning that

the full MTM value of the swap is received/posted as collateral depending on whether the

marking-to-market procedure results in a positive/negative value for St. As we consider

cash collateral, default is immaterial. In contrast with section 3, however, the expression

for the swap MTM value does not reduce to the usual default-free, risk-neutral valuation

formula in general, unless collateral costs are zero. In the case of symmetric collateral costs,

for example, we obtain:

pc = EP̃[P ] +
CovP̃

(
exp

(∫ T

0 (δt − rt)dt
)
, P
)

EP̃

[
exp

(∫ T

0 (δt − rt)dt
)] . (4.3)

If the cost of collateral is positively dependent on P , we expect the swap rate to be higher

than pd in expression (3.2) (see Johannes and Sundaresan, 2007), reflecting the fact that

(costly) collateralization results in the payer of the floating rate being compensated with a

higher fixed rate. In the interest-rate swap market this happens for example if either the

short rate or the TED spread are positively correlated with δ. The intuition is that the

floating rate payer will have to both post collateral and incur higher funding costs when

the floating rate increases. In longevity space, one may expect the cost of collateral to

be positively dependent on mortality improvements and negatively dependent on interest

rates, as longevity-linked liabilities are more capital intensive in low mortality and low

interest rate environments (due to lower discounting of future cashflows). The combined

impact of these two effects is ambiguous, and is discussed in the examples of section 5.
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4.2 Common collateral rules

According to ISDA (2010b), it is typical for collateral agreements to specify collateral trig-

gers based on the market value of the swap or other relevant variables (credit ratings,

credit spreads, etc.) crossing pre-specified threshold levels. In longevity swaps, the CSA

may define collateral rules that depend on the underlying mortality experience, involve path

dependence (with respect to mortality experience/expectations for instance), and monitor

different variables at different frequency. For example, the CSA may allow for daily collat-

eral adjustments for financial conditions, quarterly adjustments for death experience, and

annual adjustments for changes in future mortality improvements. The following examples

illustrate some of these aspects:

a) Set chs

t = 1{St−≥s(t)} and cht = 1{St−≤s(t)} (for continuous functions s, s defined on

[0, T ] and satisfying s ≤ s), meaning that the hedge supplier (hedger) is required

to post full collateral if the swap’s MTM value is above (below) the appropriate

time-dependent threshold. More general collateral rules can be obtained by setting

chs

t = γhs

t 1{St−≥s(t)} and cht = γh

t 1{St−≤s(t)}, for suitable processes γh, γhs depending

on prevailing market conditions or expectations about future mortality.

b) In longevity swaps, however, it is more common to define collateral thresholds in

terms of mortality forecasts based on a model agreed at contract inception, and

monitor the deaths in the hedger’s population instead of the market value of the

swap. This is due to both the re-estimation risk affecting any given mortality model

and the presence of substantial model risk, which most likely would prevent the

counterparties from agreeing on a common model at future dates. We can set, for

example, chs

t = 1{Nt−≤α(t)} and cht = 1{Nt−≥β(t)}, for continuous functions α and β

satisfying 0 ≤ α ≤ β ≤ n, meaning that the hedge supplier (hedger) is required to

post full collateral if realized deaths are below (above) the relevant threshold.

c) For an index-based swap, it may be more convenient to work with the mortality inten-

sity µI of the reference population (see section 2) and set chs

t = 1{
∫ t

0 µI
sds≤a(t)} and cht =

1{
∫ t

0 µI
sds≥b(t)} for (say) continuous functions a, b satisfying 0 ≤ a ≤ b. This means

that collateral posting is triggered at each time t if the realized value of the longevity
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index, exp(−
∫ t

0 µ
I
sds), falls outside the open interval (exp(−b(t)), exp(−a(t))).

d) As was emphasized in section 2.1, the severity of counterparty risk depends on the

credit quality of the counterparties. This is why collateralization agreements may

set collateral thresholds that explicitly depend on credit ratings or CDS spreads. A

simple example of this practice can be obtained as a special case of (a) by setting

chs

t = 1{Nt−≤α(t)}∪{λhs

t ≥λ}, c
h

t = 1{Nt−≥β(t)}∪{λh

t≥λ}, meaning that, at each time t, the

hedger (hedge supplier) receives collateral when either realized deaths fall below the

level α(t) (respectively β(t)) or the hedge supplier’s (respectively hedger’s) default

intensity overshoots a given threshold λ ≥ 0. Note that both ch and chs can be

non zero at the same time (for example on the event {Nt− ≤ α(t)} ∩ {λh

t ≥ λ}),

but expression (4.1) ensures that only the party out-of-the-money will have to post

collateral.

4.3 Computing the swap rate

The recursive nature of swap valuation formulae in the case of bilateral and asymmetric

counterparty risk (in a doubly stochastic setting) was already noted by Duffie and Huang

(1996). By modeling the recovery rates and the difference in counterparties’ credit spreads

in reduced form, however, they could use a simple iterative procedure to determine the swap

rate.29 Here, we explicitly allow for the impact of collateral and the MTM procedure in the

pricing functional: working in a high-dimensional Markov setting, we use a Least-Squares

Monte Carlo approach. Exploiting the properties of the doubly stochastic setup, we do not

model death/default times explicitly, but just rely on the mortality/default intensities (see

algorithm 2 in Bacinello et al., 2010, for example). The procedure involves the following

steps (we focus on the individual forward rates for convenience):

Step 1. For an arbitrary maturity Ti and fixed rate pci := pcTi
∈ (0, 1), generate M

simulated paths of the state variable process, X, under P̃ along the time grid Ti := {0 <

t1, t2, . . . , tni
= Ti}. Denote by S

i,m
tj

the (ex-dividend) MTM value of the swap, and by

29Johannes and Sundaresan (2007) sidestep recursivity issues by considering full collateralization and
symmetric default risk and collateral costs.
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f
i,m
tj

the net payments30 from the swap (excluding collateral flows) at time tj , on path m,

and for given forward rate pci .

Step 2. Compute recursively the approximate31 value S
i,m
tj

of the swap at time tj (for

j = ni − 1, . . . , 0 with t0 = 0) as S
i,m
tj

= β∗i,j · e(X
m
tj
), where e(x) := (e1(x), . . . , eH(x))T

and {e1, . . . , eH} is a finite set of functions taken from a suitable basis of L2(Ω), and β∗i,j

is given by

β∗i,j = arg min
β∈RH

M∑

m=1

{(
S
i,m
tj+1

+ f
i,m
tj+1

)
exp

(
−

∫ tj+1

tj

rmu du

)
− βe

(
Xm

tj

)}2

,

where Si,m
tj

=
∑ni

h=j+1 exp
(
−
∫ th
tj

(
rmu + Γm

u (S
i,m
tj
, . . . , S

i,m
th−1

)
)

du
)
f
i,m
th

is the discounted

cumulative value of the cash-flows originating from the swap allowing for collateral costs,

where the spread Γm depends on the approximations {S
i,m
tj+u

}ni−1
u=0 determined in the previ-

ous iterations, which are used to check at each time th−1 whether the collateral thresholds

are triggered and determine the corresponding amount/cost of collateral over the time

interval [th−1, th). The value of the swap at time t0 is then given by 1
M

∑M
m=1 S

i,m
t0

.

Step 3. Iterate32 the above procedure over different values for pci until a candidate rate

pc∗i is found, such that the initial price, Si,m
t0

, is close enough to zero.

Of course, the procedure relies on knowledge of the dynamics of the state variable

process under the pricing measure. To this end, in the next section, we outline a cali-

bration approach based on the joint use of fixed-income data and funding costs / capital

requirements for longevity-linked liabilities.

5 Examples

We use a continuous-time model for the risk-free yield curve, the LIBOR and mortality

rates, as well as for the cost of collateral. The credit risk of party hs is assumed to be equal

30In the case of a Ti-forward contract, we have f i,m
tj

= 0 for 0 ≤ j < ni, and f i,m
tj

= n
(

n−1(n−Nm
Ti
)− pci

)

for j = ni; compare with expression (2.2).
31The approximation does not take into account default risk and collateral costs over [tj , tj+1), but is

used to determine which party is in-the-money and out-of-the-money (and hence default risk and collateral
costs) in the following step of the recursion.

32In the numerical examples of section 5, we use a combination of bisection, secant, and inverse quadratic
interpolation methods to compute pc∗i (see Forsythe et al., 1976).
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to the average credit quality of the LIBOR panel, so that the TED spread would be party

hs’s default intensity if there were zero recovery upon default (see section 3). We then set

λh = λhs +∆ and consider two cases: party h is either of the same credit quality as party

hs (∆ = 0) or is more credit-risky (∆ > 0).

We describe the evolution of uncertainty by a six-dimensional state variable vector

X with the Gaussian dynamics reported in appendix B. The first four components are:

the short rate, r = X(1), assumed to revert to the long-run central tendency factor X(2),

representing the slope of the risk-free yield curve; the TED spread X(3), so that the LIBOR

rate is given by X(1) + X(3); and the net yield on collateral in the interest-rate swap

market, X(4). The latter factor is used to draw a comparison with the cost of collateral in

the longevity swap market. The remaining two components describe the opportunity cost

of longevity swap dealers, X(5), and the log-intensity of mortality of a given population,

log µ = X(6). Under the assumption of independence between (X(1), X(2), X(3), X(4)) and

X(6), we can estimate separately the dynamics of the two groups of factors. For the

first vector, we rely on the estimates of Johannes and Sundaresan (2007), who use weekly

Treasury and swap data from 1990 to 2002 to obtain the parameter values reported in

table 2. For the intensity exp(X
(6)
t ), we use a continuous-time version of the Lee-Carter

mortality projection model for a cohort of 65-year olds; see appendix B for details.

As a first example, we focus on funding costs and simply take δhs = X(3) and δh =

X(3) +∆, meaning that the hedger’s net cost of collateral coincides with its funding costs

net of the short rate (assuming it is rebated), whereas the hedger’s net yield on the col-

lateral amounts posted by party hs coincides with the TED spread. Assuming that the

pricing formula uses information on the collateral costs of the counterparty, an alternative

interpretation is that each party’s net collateral costs coincide with their borrowing costs

net of the risk-free rate. In the case of asymmetric default risk, we consider values of 100

and 200 basis points for ∆.

We compute the longevity swap rates for a 25-year swap written on a population of

10,000 US males aged 65 at the beginning of 2008. In figure 4, we plot the underlying for-

ward rates obtained for different collateralization rules against the percentiles of survival

rate improvements based on Lee-Carter forecasts. We see that margins are positive and
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increasing with payment maturity in the case of symmetric default risk, for both uncol-

lateralized and fully collateralized transactions. As soon as we introduce asymmetry in

default risk (∆ > 0), however, margins widen in the case of no collateralization, reflecting

the fact that the hedger needs to pay an additional premium on account of its higher credit

risk. In the case of full collateralization, counterparty risk is neutralized, but the hedger

is compensated for her higher funding costs and the positive dependence between funding

costs and collateral amounts discussed before: equilibrium swap rates are pushed lower and

produce a negative margin on best estimate swap rates.

< Table 2 about here >

In figure 5, we examine the swap margins induced by one-way collateralization in the

case of asymmetric default risk. When only the hedge supplier has to post full collateral,

forward rates are higher than best estimate survival probabilities, meaning that the hedger

has to compensate the hedge supplier for bearing both the cost of risk mitigation and

the hedger’s higher default risk. The opposite is true when it is the hedger who has to

post full collateral when out-of-the money. In this case, swap margins are clearly negative,

and decreasing in payment maturity. These effects are amplified when the asymmetry in

counterparties’ credit quality is greater, as can be seen from the spreads reported in table 3

for some key maturities and collateralization rules.

Plotting the swap rate margins against best estimate mortality improvements allows

one to interpret the swap rates as outputs of a pricing functional based on adjustments to

a reference mortality model (which is common practice in longevity space; see Biffis et al.,

2010). On the other hand, longevity swap spreads are easier to compare with those emerging

in other transactions. In table 4, we make a comparison with the interest-rate swap spreads

implied by our parameterization of the state vector (X(1), X(2), X(3), X(4)). In particular,

we report the difference between interest-rate futures prices (obtained by considering full

collateralization and setting the cost of collateral equal to the risk-free rate) and interest-

rate forward rates for collateralized transactions with collateral costs equal to the funding

costs of the counterparties. Spreads are negative, in line with the intuition that interest

rate risk leads to a discount for the payer of the fixed rate, as discussed in the introduction,
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and are of a magnitude consistent with the findings of Johannes and Sundaresan (2007).

The results show that longevity swap spreads are comparable with, and often much smaller

(in absolute value) than, those found in the interest-rate swap market. For example, in the

case of bilateral full collateralization, longevity forward rates for 15- to 25-year maturities

embed a spread substantially smaller than that of interest-rate forwards of corresponding

maturity. In the case of one-way collateralization on the hedger’s side, in interest-rate

forward rates we find a discount (negative spread) that turns into a premium (positive

spread) of comparable size in the corresponding longevity swap, due to the additional and

opposite effect of longevity risk on swap rates. Our findings are robust to the choice of

maturity, collateralization rules, and counterparty credit quality, and are mainly driven

by two effects: i) the different nature of the risk underlying the swap, a survival curve in

the case of longevity swaps, and a floating rate in the case of interest-rate swaps; ii) the

fact that interest rate risk and longevity risk impact longevity swap margins in opposite

directions, thus diluting the overall effect of collateralization on longevity swap rates.

< Table 3 about here >

< Table 4 about here >

< Figure 3 about here >

< Figure 4 about here >

In a second example, we focus on the opportunity cost of selling additional longevity

protection. As we do not have any publicly available transaction data from the longevity

swap market to calibrate X(5), we simulate the capital charges arising from holding a

representative longevity-linked liability in response to changes in the evolution of the factors

(X(1), . . . , X(4)) and X(6). We therefore ‘synthesize’ the realizations of X(5) by using

information on regulatory requirements to quantify the capital charges accruing to the
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counterparties during the life of the swap. In particular, we use the following bottom-up

procedure:

Step 1: We simulate several paths of the factors X(1), . . . , X(4) and X(6) along a time

grid T̂ := {t1, t2, . . . , tk} (with tk = T̂ > t1 > 0) and under the pricing measure P̃. Again,

for our example, we assume the P̃-dynamics of X(6) to be the same as under the physical

measure.

Step 2: The paths simulated in the previous step are used to compute, at each date

t ∈ T̂ , the regulatory capital needed by an insurer to hold the liability n − Nt+T , where

T < T̂ is a representative maturity proxying the average duration of longevity-linked

liabilities in the longevity swap market. We use T = 15 and T̂ = 40 (years) for our

example. To compute the capital requirements, we use the Solvency II framework, which is

based on the 99.5% value-at-risk of the net assets over a one-year horizon. For simplicity,

we assume holders of longevity exposures to be invested in cash. The distribution of the

one-year-ahead market-consistent value of the liability usually requires nested simulation,

unless a simplified approach is adopted. In our setting, market-consistent discount factors

can be computed analytically based on the one-year-ahead simulated realizations, as the

pair (X(1), X(2)) is an affine process. We use the LSMC approach (see section 4.3) to

determine the expected number of survivors.33

Step 3: We use the simulated capital charges obtained in the previous step to compute

the gains/costs incurred to reduce/increase capital at each time step along each simulated

path. We assume that capital charges are funded at the counterparties’ funding cost, plus

a spread of 6%34 to reflect the opportunity cost of diverting to an individual liability funds

that could be used to support insurance business at the aggregate level. The simulated

realizations of the opportunity cost of capital (see figure 7 for an example) are used to

estimate the dynamics of X(5) reported in the appendix. The parameter estimates are

included in table 2.

In the case of symmetric collateralization, we find results comparable with those ob-

tained by using the counterparties’ funding costs for the process δ. However, figure 6 shows

33See Stevens et al. (2010) for other approximation methods in the context of Lee-Carter forecasts.
34This is a reasonable, conservative value for the return on capital of longevity swaps dealers: anecdotal

evidence suggests that it can be twice as large.
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that margins increase (decrease) considerably when one-way collateralization on the hedge

supplier’s (hedger’s) side is considered. This is because the party required to post collateral

explicitly takes into account tail events in computing collateral costs, whereas in figure 5

funding costs where computed on the basis of the market value of the longevity swap.

Finally, we study the sensitivity of longevity forward spreads to the volatility of the

net collateral cost X(5). To close off the interest-rate risk channel, we fix the factors

X(1), X(2) equal to their long-run means. Table 5 reports the results obtained for different

values of the volatility parameter σ5 in the case of symmetric default risk and bilateral full

collateralization. We see that spreads increase dramatically for large values of the volatility

parameter, but are comparable with those found in the previous examples for reasonable

volatility levels (i.e., below 5%).

< Table 4 about here >

< Figure 5 about here >

< Figure 6 about here >

6 Conclusion

In this study, we have provided a framework for understanding and quantifying the cost

of bilateral default risk and collateral strategies on longevity risk solutions. The results

address the concerns aired by potential hedgers regarding how to measure the trade-off

between the hedge effectiveness of longevity-linked instruments and the counterparty risk

they entail. We have described a methodology for pricing longevity swaps that explicitly

takes into account the dynamics of the marking-to-market process, the collateral flows

it generates, and the costs associated with the posting of collateral. We have shown how

collateral strategies can mitigate if not eliminate counterparty risk, but inevitably introduce

an extra cost that must be borne by the hedge supplier or by the hedger, depending on how

their credit quality and collateral costs compare with each other. Our most significant and
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useful finding is that the overall cost of the collateralization strategies in the longevity swap

market is comparable with, and often smaller than, that found in the much more liquid

interest-rate swap market. Hence, there is no reason to suppose that counterparty risk

will provide an insurmountable barrier to the further development of the longevity swap

market. Our analysis accordingly provides a robust framework for comparing the costs

of credit enhancement in bespoke longevity swaps with the benefits offered by competing

solutions such as securitization and indexed swaps.
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A Details on the setup

We take as given a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), and model the death times

in a population of n individuals (annuitants or pensioners) as stopping times τ1, . . . , τn.

This means that at each time t the information carried by Ft allows us to state whether

each individual has died or not. The hedger’s liability is given by the random variable

∑n
i=1 1{τ i>T}, which can be equivalently written as n−

∑n
i=1 1{τ i≤T} = n−NT . We assume

that death times coincide with the first jumps of n conditionally Poisson processes with

common random intensity of mortality (µt)t≥0 under both P and an equivalent martingale

measure P̃ (see Biffis et al., 2010, for details). The expected number of survivors over

[0, T ] under the two measures can then be expressed as EP
[∑n

i=1 1{τ i>T}

]
= npT and

EP̃
[∑n

i=1 1{τ i>T}

]
= np̃T , with pT and p̃T given by the expectation (2.1) computed under
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the relevant probability measure.

Consider any stopping time τ i satisfying the above assumptions, an integrable random

variable Y ∈ FT and a bounded process (Xt)t∈[0,T ] such that each Xt is measurable with

respect to Ft−, the information available up to, but not including, time t. Then a security

paying Y at time T in case τ i > T and Xτ i at time τ i in case τ i ≤ T has time-zero price

EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + µt)dt

)
Xsµsds+ exp

(
−

∫ T

0
(rt + µt)dt

)
Y

]
.

Consider now two stopping times τ i, τ j , with intensities µi, µj , jointly satisfying the above

assumptions (i.e., they are the first jump times of the components of a bivariate condition-

ally Poisson process). A security paying Y at time T in case neither stopping time has

occurred (i.e., min(τ i, τ j) > T ) and Xt in case the first occurrence is at time t ∈ (0, T ]

(i.e., t = min(τ i, τ j)) has time-zero price given by the same formula, with µt replaced by

µit+µ
j
t . This follows from the fact that the stopping time min(τ i, τ j) is the first jump time

of a conditionally Poisson process with intensity (µit+µ
j
t )t≥0 (e.g., Bielecki and Rutkowski,

2002). The expressions presented in sections 2-4 all follow from these simple results.

Proof of expression (4.2). Let (δht )t≥0 denote the hedger’s net cost of posting collateral

and (δhs

t )t≥0 the net yield on the collateral amounts received from party hs, meaning that

holding collateral of amount Ct provides the hedger with an instantaneous yield equal to

δhs

t C
+
t − δht C

−
t . We assume that collateral is bounded and Ct is measurable with respect

to Ft− for all t ∈ [0, T ]. Parties h and hs are assumed to have death (default) times

satisfying the properties reviewed above, in particular having intensities λh, λhs. Recalling

the recovery rules described in section 4, we can then write:

S0 =E
P̃

[
exp

(
−

∫ T

0
(rt + λh

t + λhs

t )dt

)(
P − pd

)]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λh

t + λhs

t )dt

)(
λh

s (S
+
s − C−

s ) + λhs

s (C+
s − S−

s )
)
ds

]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λh

t + λhs

t )dt

)
(δhs

s C
+
s − δhsC

−
s )ds

]
.

Using representation (4.1), the amount recovered by the nondefaulting counterparty at
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time τ = min(τh, τhs) ≤ T is

1{τ=τh}Sτ−(c
h

τ 1{Sτ−<0} + 1{Sτ−≥0}) + 1{τ=τhs}Sτ−(c
hs

τ 1{Sτ−≥0} + 1{Sτ−<0}),

where we see that ch, chs replace the recovery rates ψh, ψhs introduced in section 3. We

can then write

S0 =E
P̃

[
exp

(
−

∫ T

0
(rt + λh

t + λhs

t )dt

)(
P − pd

)]

+ EP̃

[∫ T

0
exp

(
−

∫ s

0
(rt + λh

t + λhs

t )dt

)(
λh

s + (λhs

s + δhs

s )chs

s )S+
s − (λhs

s + (λh

s + δhs )c
h

s )S
−
s

)
ds

]

=EP̃

[
exp

(
−

∫ T

0
(rt + Γt)dt

)(
P − pd

)]
,

which is nothing other than the usual risk-neutral valuation formula for a security with

terminal payoff ST = P − pd paying continuously a dividend equal to a fraction

(λh

s + (λhs

s + δhs

s )chs

s )1{St−≥0} + (λhs

s + (λh

s + δhs )c
h

s )1{St−<0}

of the security’s market value an instant before each t ∈ [0, T ]. Subtracting the dividend

rate from λh + λhs and rearranging terms we obtain expression (4.2) for Γ.
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B Details on the numerical examples

The numerical examples are based on a six-dimensional state variable processX = (X(1), . . . , X(6))T

having P̃-dynamics

dX
(1)
t =

(
k1(X

(2)
t −X

(1)
t )− η1

)
dt+ σ1dW

(1)
t

dX
(2)
t =

(
k2(θ2 −X

(2)
t )− η2

)
dt+ σ2dW

(2)
t

dX
(3)
t =

(
κ3(θ3 −X

(3)
t ) + κ3,1(X

(1)
t − θ2) + κ3,4(X

(4)
t − θ4)− η3

)
dt+ σ3dW

(3)
t

dX
(4)
t =

(
κ4(θ4 −X

(4)
t ) + κ4,1(X

(1)
t − θ2) + κ4,2(X

(2)
t − θ2)− η4

)
dt+ σ4dW

(4)
t

dX
(5)
t =

(
κ5(θ5 −X

(5)
t ) + κ5,1(X

(1)
t − θ2) + κ5,2(X

(2)
t − θ2) + κ5,3(X

(3)
t − θ3)

+ κ5,4(X
(4)
t − θ4) + κ5,6(X

(6)
t − E0[X

(6)
t ])− η5

)
dt+ σ5dW

(5)
t

dX
(6)
t =

(
Ax(t) +Bx(t)(X

(6)
t − ax(t))

)
dt+ σ6(t, x)dW

(6)
t ,

where W = (W (1), . . . ,W (6))T is a standard P̃-Brownian motion, the constants ηi represent

market prices of risk, x is the age of a reference cohort of individuals at time 0, and

Ax(·), Bx(·), σ6(·, x) are functions characterizing the dynamics of X
(6)
t = X

(6)
t,x (see below

for explicit definitions). The P-dynamics are obtained by removing the market prices of risk

from the drifts of the relevant factors and replacing the innovations with the corresponding

P-Brownian innovations. We assume that X(6) has the same dynamics under the physical

and the pricing probability measures, consistent with our baseline case of a swap rate equal

to pT for each T in the absence of collateral. The Brownian innovations are uncorrelated,

with the exception of the pair (W (1),W (2)), whose instantaneous correlation is denoted by

ρ1,2.

For the first four factors, we use data from Johannes and Sundaresan (2007) who rely on

a two-stage maximum likelihood procedure based on weekly data sampled on Wednesdays,

from 1990 to 2002, and set the long-run mean of X(3) equal to the average of the 3-month

TED spread over the sampling period. For the log-intensity X(6), we use the mortality

model described below, and assume that the Brownian component W (6) is uncorrelated

with the other ones. The intensity of mortality is modeled using a continuous-time version

of the Lee-Carter model (see Biffis and Denuit, 2006; Biffis et al., 2010). We first use the
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annual central death rates {my,s} for US males from the Human Mortality Database to

estimate the model my,s = exp(α(y) + β(y)Ks) for dates s = 1961, 1962, . . . , 2007 and

ages y = 20, 21, . . . , 89 with Singular Value Decomposition (see Lee and Carter, 1992).

The resulting estimates for K are then fitted with the process Ks+1 = δKKs + σKε, with

ε ∼ N(0, 1). For fixed age x = 65, the estimates for {α̂(x + h), β̂(x + h)}h=0,1,... are

interpolated with differentiable functions ax(t), bx(t). The functions Ax, Bx, σ6 are finally

obtained by setting Ax(t) = a′x(t) + bx(t)δK , Bx(t) = b′x(t)bx(t)
−1 and σ6(t, x) = bx(t)σK .

As we consider a single cohort aged x at the reference date 0, here and throughout the paper

we simply write X
(6)
t := X

(6)
t,x . The extension to multiple (say l) cohorts, would require the

analysis of the vector of log-intensities (X
(6)
t,x1

, . . . , X
(6)
t,xl

). Although the drift and volatility

parameters would be different for each X
(6)
t,xi

, the Lee-Carter specification assumes that all

cohorts are affected by the same Brownian component W (6). Other models may instead

require the introduction of additional sources of uncertainty.

To estimate the dynamics of X(5), the component of collateral costs related to longevity

risk, we implement the procedure discussed in section 5, setting the duration T of the rep-

resentative liability equal to 15. We simulate forward all of the other state variables, and at

each time step we compute the opportunity cost of capital arising from the capital charges

accruing to the hedge supplier based on the simulated mortality and market conditions.

The expectation appearing in the drift of X(5) ensures that the longevity capital charges

react to departures of realized mortality from the term structure of survival rates estimated

at inception. We assume that funding occurs at the LIBOR rate plus a fixed spread of 6%,

a conservative value for the cost of internal capital. To obtain the net cost of collateral,

we take into account the rebate of the risk-free rate. We estimate the parameters for the

dynamics of X(5) based on the simulated realizations of X(5) (an example is depicted in

figure 7). The parameter estimates are obtained by regressing the simulated dynamics of

X(5) on the simulated vector of state variables (X(1), X(2), X(3), X(4), X(6)). We simulate

10, 000 paths over 40 years on a semi-annual grid. For each simulation, we set the param-

eter θ5 equal to the average of X(5) along the simulated path. The regression estimates

obtained for each simulated path are averaged across all simulations to obtain the final

values reported in table 2.
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C Tables and figures

Date Hedger Size Term (yrs) Type Interm./supplier

Jan 2008 Lucida N.A. 10 indexed JP Morgan
ILS funds

Jul 2008 Canada Life GBP 500m 40 bespoke JP Morgan
ILS funds

Feb 2009 Abbey Life GBP 1.5bn run-off bespoke Deutsche Bank
ILS funds / Partner Re

Mar 2009 Aviva GBP 475m 10 bespoke Royal Bank
of Scotland

Jun 2009 Babcock GBP 750m 50 bespoke Credit Suisse
International Pacific Life Re

Jul 2009 RSA GBP 1.9bn run-off bespoke Goldman Sachs
(Rothesay Life)

Dec 2009 Berkshire Council GBP 750m run-off bespoke Swiss Re
Feb 2010 BMW UK GBP 3bn run-off bespoke Deutsche Bank

Paternoster
Dec 2010 Swiss Re USD 50m 8 indexed ILS funds

(Kortis bond)
Feb 2011 Pall (UK) GBP 70m 10 indexed JP Morgan

Pension Fund
Aug 2011 ITV GBP 1.7bn N.A. bespoke Credit Suisse
Nov 2011 Rolls Royce GBP 3bn N.A. bespoke Deutsche Bank
Dec 2011 British Airways GBP 1.3bn N.A. bespoke Goldman Sachs

bespoke (Rothesay Life)
Jan 2012 Pilkington GBP 1bn N.A. bespoke Legal & General
Apr 2012 Berkshire Council GBP 100m run-off bespoke Swiss Re

Table 1: Publicly announced longevity swap transactions 2008-2012.
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κ1 0.969 η1 -0.053 σ1 0.008 UK
κ2 0.832 η3 -0.014 σ2 0.155 δK -0.888
κ3 1.669 η4 0.007 σ3 0.009 σK 1.156
κ4 0.045 η5 0.055 σ4 0.010 US
κ5 0.990 κ5,1 0.147 σ5 0.690 δK -0.761
κ3,1 -0.163 κ5,2 1.340 θ2 0.046 σK 1.078
κ4,1 0.114 κ5,3 2.509 θ3 0.003
κ3,4 0.804 κ5,4 -0.133 θ4 0.007
κ4,2 -0.038 κ5,6 -0.002 θ5 0.115 ρ1,2 -0.036

Table 2: Parameter values for the dynamics of X given in Appendix B. As in Johannes and Sundaresan
(2007), we set the parameter η2 equal to zero. The estimates for X(5) are based on the assumption
that capital increases are funded by counterparties at 6% plus the LIBOR rate.

Maturity ch = 0 ch = 0 ch = 1 ch = 1
λh = λhs +∆ payment chs = 0 chs = 1 chs = 0 chs = 1
δh = δhs +∆ (yrs) (bps) (bps) (bps) (bps)

15 0.03 11.34 -11.76 0.05
∆ = 0 20 1.11 19.93 -17.94 0.86

25 1.50 21.25 -18.35 1.24

15 5.45 16.79 -17.29 -5.84
∆ = 100 bps 20 10.16 28.95 -27.08 -8.23

25 10.96 30.75 -27.76 -9.19

15 11.30 22.29 -22.90 -11.25
∆ = 200 bps 20 19.26 38.06 -36.16 -17.42

25 19.46 40.27 -37.02 -18.38

Table 3: Forward rate spreads pcTi
− pTi

(in basis points) for different collateralization rules, maturities
and spread ∆ ∈ {0, 0.01, 0.02}. The LSMC procedure uses 5000 paths over a quarterly grid with
polynomial basis functions of order 3, and is repeated for 100 seeds.

IRS (δhs = X(4)) Longevity (δhs = X(3))
λh = λhs +∆ Maturity ch = 0 ch = 1 ch = 1 ch = 0 ch = 1 ch = 1
δh = δhs +∆ payment chs = 1 chs = 0 chs = 1 chs = 1 chs = 0 chs = 1

(yrs) (bps) (bps) (bps) (bps) (bps) (bps)

15 -7.96 -44.97 -52.86 11.34 -11.76 0.05
∆ = 0 20 -12.68 -42.64 -56.22 19.93 -17.94 0.86

25 -17.94 -40.98 -58.92 21.25 -18.35 1.24

15 -8.00 -67.87 -75.23 16.79 -17.29 -5.84
∆ = 100 bps 20 -12.65 -63.84 -77.42 28.95 -27.08 -8.23

25 -17.65 -60.63 -77.64 30.75 -27.76 -9.19

Table 4: Comparison of interest-rate swaps (IRSs) with longevity swaps. The IRS spreads represent the
difference betweeen the futures prices (the opportunity cost of collateral coincides with the risk-
free rate for both parties) and the forward rate for a collateralized transaction (for different
collateralization rules, maturities, and credit risk).
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σ5 p25 pc spread (bps)

0.0005 0.201425 0.201469 2.15
0.0100 0.201425 0.201822 19.68
0.0150 0.201425 0.202009 28.96
0.0200 0.201425 0.202196 38.26
0.1000 0.201425 0.205237 189.24
0.1500 0.201425 0.207184 285.90

Table 5: Sensitivity with respect to parameter σ5: we compute 25-year forward rates and spreads (in
basis points) under full collateralization by setting X(1), X(2) equal to their long run means. The
baseline estimated parameter values for the dynamics of X(5) are θ5 = 0.000254, κ5 = 1.005073,
σ5 = 0.000542, η5 = 0.000269, κ53 = 0.003648, κ54 = 0.000018, κ56 = 0.000261.
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Figure 1: Survival curves computed at the beginning of year t = 1980, 1985, 1990, 1995 for England & Wales
males aged 65 + t − 1980 in year t. Forecasts are based on the Lee-Carter mortality projection
model using the latest Human Mortality Database data available at the beginning of each year
t.
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Figure 2: Mark-to-market value of the longevity swap in the baseline case and with the credit spread of
counterparty hs widening by 50 and 100 basis points over 1988-2005. In the absence of default,
the net payments from the swap are insensitive to credit spread changes.
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Figure 3: Change in longevity swap MTM relative to the baseline case and to the net payments from
the swap, when the credit spread of counterparty hs widens by 50 and 100 basis points over
1988-2005.
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Figure 4: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with δh =
λh, δhs = δh + ∆, and λh = λhs + ∆, with ∆ = 0 (dashed lines) or ∆ = 0.01 (solid lines):
no collateral (squares), full collateralization (circles). The underlying is a cohort of 10,000 US
males aged 65 at the beginning of 2008. Forward rates are plotted against the percentiles of
improvements in survival rates based on Lee-Carter forecasts.
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Figure 5: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with δh =
λh, δhs = δh + 0.01, and λh = λhs + 0.01: no collateral (squares), full collateralization (circles),
full collateral posted only by party h (stars) or party hs (diamonds). The underlying is a cohort
of 10,000 US males aged 65 at the beginning of 2008. Forward rates are plotted against the
percentiles of improvements in survival rates based on Lee-Carter forecasts.
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Figure 6: Swap margins pcTi
/pTi

− 1 computed for different maturities {Ti} and collateral rules, with λh =

λhs and δh = δhs = X(5), where the parameter estimates for the dynamics of X(5) are given
in table 2. Collateral rules: no collateral (squares), full collateralization (circles), full collateral
posted only by party h (stars) or hs (diamonds). Forward rates are plotted against the percentiles
of improvements in survival rates based on Lee-Carter forecasts (65-year old US males in 2008).
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Figure 7: A simulated path of the capital charges accruing to the longevity swap dealer holding a repre-
sentative longevity-linked liability n−Nt+T under the Solvency II regulatory framework.
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