IT City Research Online
UNIVEREIST%( ]OggLfNDON

City, University of London Institutional Repository

Citation: Bezzi, M., Sabetta, A. & Spanoudakis, G. (2011). An architecture for certification-

aware service discovery. Proceedings - 2011 1st International Workshop on Securing
Services on the Cloud, IWSSC 2011, 4294, pp. 14-21. doi:
10.1109/iwsscloud.2011.6049020

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1598/

Link to published version: https://doi.org/10.1109/iwsscloud.2011.6049020

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.



City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An architecture for
certification-aware service discovery

Michele Bezzi*, Antonino Sabetta* and George Spanoudakis!
*SAP Research Sophia-Antipolis
805, Av. du Docteur Maurice Donat - 06250 - Mougins, France
Email: {firstname.secondname} @sap.com
T School of Informatics, City University London
Northampton Square, London, EC1V 0HB, UK.
E-mail: g.spanoudakis@soi.city.ac.uk.

Abstract—Service-orientation is an emerging paradigm for
building complex systems based on loosely coupled components,
deployed and consumed over the network. Despite the original
intent of the paradigm, its current instantiations are limited to
a single trust domain (e.g., a single organization). Also, some
of the key promises of service-orientation - such as the dynamic
orchestration of externally provided software services, using run-
time service discovery and deployment - are still unachieved. One
of the main reasons for this is the trust gap that normally arises
when software services, offered by previously unknown providers,
are to be selected at run-time, without any human intervention.

To close this gap, the concept of machine-readable security
certificates (called asserts) has been recently introduced, which
paves the way to automated processing about security properties
of services. Similarly to current security certification schemes, the
assessment of the security properties of a service is delegated to
an independent third party (certification authority), who issues
a corresponding assert, bound to the service. In this paper, we
propose an architecture, which exploits the assert concept to
realise a certification-aware service discovery framework. The
architecture supports the discovery of single services based on
certified security properties (in additional to the usual func-
tional properties), as well as the dynamic synthesis of service
compositions, that satisfy the given security properties. The
architecture is extensible, thus allowing for a range of domain-
specific matchmaking components, to cover dimensions related to,
e.g., performance, cost and other non-functional characteristics.

I. INTRODUCTION

Service-based software systems engineering has emerged as
a paradigm for building complex software systems based on
loosely coupled components, known as software services, that
can be deployed programmatically over networks. Supported
by industry standards for the description of software service
interfaces (WSDL [8]), message based service communica-
tion mechanisms (SOAP [19]), the new paradigm has gained
ground as a way of achieving interoperability. The uptake of
this new paradigm, however, has not been extensive in the case
of software assets that cross organisational boundaries and are
under the control of autonomous parties (service providers)
and as of today is only adopted within highly controlled
environments (e.g., within the IT infrastructures of single
organisations).

One of the main reasons for this limitation is the trust
deficit that normally arises in such circumstances. In particular,
users are concerned about the security of external software

services, which are not under the control of the system
provider (integrator), and about the communications between
their service-based system and these services. Unfortunately,
this lack of centralised control is a typical characteristic of
cloud-based applications.

This security deficit becomes even more significant in cases
where a service-based system needs to consume new services
that are dynamically selected at run-time. This may happen
due to the unavailability of the services that were bound to
the system originally or to their failure to satisfy given system
requirements (e.g., performance). In such cases, beyond the
need to ensure that any new candidate service satisfies the
interface and behavioural conditions, which is a prerequisite
for using it as part of the system, it is also necessary to ensure
that the service satisfies the security requirements associated
with its deployment.

Several techniques have been developed to enable the
dynamic adaptation of service-based systems (SBS) for the
deployment of new services at run-time. These techniques
vary in sophistication, ranging from those supporting the
discovery of single services (e.g., [16], [18], [22], [29]) to
more complex counterparts aiming to creating orchestrations
of more than one services that can replace the one that
has failed [28], [7], [6]. Regardless of their overall aim and
outputs, however, existing techniques fail to provide compre-
hensive support for reasoning about security properties at run-
time and providing the assurance required due the deployment
of new services. This is due to the fact that existing techniques
either do not take security conditions at all into account
or they focus only on the security of the communication
between the service-based systems (SBS) and the externally-
provided service, without considering security properties of the
internal behaviour of the latter (e.g., whether and how it stores
confidential data, whether it communicates confidential data
to third parties, whether it allows unauthorised modifications
to data, and so on). Furthermore, current mechanisms for the
dynamic creation of service orchestrations, as replacements
of single services within a system, fail to ensure that the
resulting orchestration will preserve the security properties of
the original service.

In this paper we propose the architecture of a novel service
discovery platform that aims to bridge these gaps. The key



characteristic of this platform, which is being developed in the
context of the ASSERT4SOA! project, is the use of machine-
readable, signed statements, called asserts [21], that certify the
security properties owned by a service. Similarly to current
security certification schemes, the assessment of the security
properties of a service is delegated to an independent third
party (certification authority), who issues a corresponding
assert, bound to the service. The certification of a security
property in an assert is based on either a formal proof or on
service testing that has been carried out before the certificate is
issued. These formal proofs and tests must have been carried
by the entity who has issued the certificate (e.g., a certification
authority). Differently to existing security certificates (e.g.,
Common Criteria [13]), asserts are represented in a form that
is suitable for automated reasoning and processing. Asserts
include not only the specification of the security property
that they guarantee for the service but also information about
the certification authority that has issued the certificate and
a description of the evidence that underpins it. Hence, the
certificates assumed by our approach provide comprehensive
descriptions of security properties that can be queried and
analysed at run-time by the discovery platform without a need
for human intervention. As a result, they can be successfully
employed in a service discovery platform; based on the infor-
mation encoded into asserts, it is possible to query for services
that satisfy certain security properties, filtering out those that
do not. Also, by reasoning on the content of asserts, such a
discovery system can rank the matching candidate services in
a way that enables automatic service selection at run-time.

The service discovery platform proposed in this paper is
also characterised as follows.

o Its operation is driven by queries specified by SBS
designers during the system development process. These
queries are executed at run-time to discover services
without any further need for human intervention.

« In addition to security properties, it provides support for
assessing interface, functional, quality properties during
run-time service discovery.

o It supports the discovery of single services as well as
service compositions which are synthesised at run-time
based on a given set of composition patterns which are
proven to satisfy given security properties if the individual
services composed by them have certain certified security
properties themselves.

o It advocates an extensible architecture where, in addition
to a built-in set of core matchmaking components for as-
sessing the compatibility of service interface and security
properties, the platform can be extended with domain-
specific matchmaking components for assessing service
quality, behavioural properties, non-functional properties
other than security. Special matchmaking components
may be used for analysing and reasoning about the evi-
dence (proofs, tests) carried by asserts, in cases where this
is necessary for additional assurance in specific domains
or circumstances (e.g., when a specific type of assessment

Uhttp://www.assert4soa.eu

is required).

o It supports the execution of service discovery queries
in both reactive and proactive modes, i.e., following a
request by the SBS that acts as a client to the platform to
replace a specific service (reactive mode) or continually
and in parallel with the operation of the SBS in order
to ensure that when the constituent service of the system
for which the query has been constructed becomes un-
available or fails to satisfy the needs of system, e.g., the
terms established in a Service Level Agreement (SLA),
possible replacement services for it will have been already
identified (proactive mode).

The assert-aware service discovery platform, proposed
in this paper, is being developed as an extension of the
SERDIQUEL run-time service discovery system described
in [28], [29]. Hence, the main contribution of this paper is
to integrate and extend the original SERDIQUEL architecture
to provide the features listed above.

The remainder of the paper is structured as follows. In Sec-
tion II, we present a sample motivating scenario highlighting
the shortcomings of discovery as it is commonly exposed by
today’s systems and suggesting a potential application of our
proposal. In Section III, we describe the high-level architecture
of the service discovery platform and the role of its main
components. Section IV details how these components interact
to realize the discovery and matchmaking functionality. In Sec-
tion V we provide a review of related literature and highlight
our contribution with respect to it. Finally, in Section VI,
we draw some conclusions and outline directions for future
research and developments.

II. MOTIVATING EXAMPLE

SecureMail Inc.? offers customizable e-mail services over a
cloud-based infrastructure. Customers use SecureMail services
by accessing a SBS that offers basic e-mail messaging func-
tionality; such an SBS can be customised by adding one or
more complementary add-ons, provided over the cloud, offered
and run as services by third parties, in order to have a mes-
saging service tailored the specific needs of each customer. As
an example, users may pick an antivirus add-on for detecting
malicious attachments, a spam-filter to reduce unwanted mails,
an add-on to support digital signing of messages, and a backup
function to archive old messages in a reliable, searchable, and
secure way.

SecureMail offers to users an interface whereby they can
specify what added functionality they need, as well as the se-
curity preferences referred to each of these functionalities. For
example, a customer may indicate that only antivirus products
that are certified by a particular certification agency should
be used. Additionally, both the anti-virus and the anti-spam
functions should only be delegated to third-party providers
that are certified as being capable of communicating with
SecureMail’s servers through an strongly encrypted channel.
Also, they must ensure that the privacy of the customer is

2This is an imaginary company name, invented for the purposes of this
paper.



preserved by disallowing any use of the content of his/her e-
mails. Finally, the backup of messages should be performed
in such a way that the backup is encrypted on SecureMail’s
server before being sent over the network to the storage server,
in order to ensure that the contents of the messages is kept
confidential. The price, availability and overall performance
of each individual add-on service may be different, and the
customer can specify his/her preferences also about these
aspects.

Based on all these preferences (functional, security-related,
and other extra-functional constraints) the e-mail service of-
fered by SecureMail discovers and presents to the user only
the best available add-on service for each of the additional
functions chosen by the customer, by taking into account
his/her security preferences. Also, based on these preferences,
it can act as a transparent delegate agent for the customer,
by selecting and connecting dynamically to alternate services
in case a better match if found during run-time (e.g., an
alternative anti-spam service, with higher privacy guarantees,
or one with different but equivalent guarantees, but lower price
or better performance).

III. ARCHITECTURE OVERVIEW

The service offered by imaginary company SecureMail, as
described in the previous section, relies heavily on the exis-
tence of an underlying sophisticated discovery platform. Such
platform not only is capable of understanding and processing
discovery requests involving a complex set of dimensions, but
also to be responsive to changes in the landscape of available
services by providing fresh, up-to-date results for a given
query.

This section and the following are dedicated to presenting
a high-level architectural view of a discovery system that is
capable to address scenarios such as the SecureMail one.
In particular, we describe the key functionalities that the
architecture is meant to provide and how these functionalities
are allocated to the fundamental components. The next section
concentrates on describing the mechanisms underlying the
matchmaking functionality. Throughout this and the follow-
ing section, we refer to the component diagram depicted in
Figure 1.

A. Key functions

In a nutshell, the architecture presented in this paper is

meant to provide a comprehensive framework through which
the full life-cycle of services with asserts can be managed,
spanning assert issuing and management, assert-aware discov-
ery and matchmaking, assert verification, and finally service
consumption. At a very abstract level, the components that
make up the architecture can be partitioned into a few coarse-
grained functional areas, as outlined below.
Assert issuing and management. These components (upper-
left dashed box in Fig. 1 and Registration Manager in the
bigger dashed box) include the tools and user interfaces
that allow assert issuers and managers to create asserts and
to manage their life-cycle (i.e., their issuing, update, and
revocation).

Query handling and notification management. Queries
coming from consumers are interpreted and then used as the
basis for governing the overall discovery and matchmaking
process. As part of the query handling, the system provides
different interrogation mechanisms. More precisely, besides
the basic request-response interaction, a publish-subscribe
interrogation style is supported. In the latter case, the query
handling function is also responsible for creating a response
channel corresponding to each query, whereby results are
pushed to the interested consumers.

Service discovery and matchmaking. This functionality
represents the core of the system. Its overall functioning is
ensured by a Discovery Manager, which acts as a coordinator
of several different subsystems, including the matchmaking
subsystem, the composition manager, as well as the registry
abstraction layer.

Consumer-side and boundary elements. On the consumer
side (upper-right dashed box in Fig. 1) a consumer agent and
a few additional support elements are deployed. The former
is the the component through which the consumer (typically
a SBA) can interact with the server-side elements of the
system. The support components are dedicated to tasks such
as the consumer-side verification of asserts, the management
of trust relationships with third-party service providers, and
the handling and storage of consumer preferences concerning
security properties. Boundary elements include the server-
side components that are concerned with the interaction with
the consumer (Frontend) and with back-end service registries
(Registry Abstraction Layer).

System management and auditing. The architecture pro-
vides management and configuration functionalities, as well
as security-related functions so as to guarantee that the AS-
SERT4SOA framework itself is secure (e.g., by ensuring that
only authorised users can access certain functionalities, and
that any relevant events of the framework are captured in a
secure audit trail).

B. Main components and subsystems

The macro-functionalities outlined above, are detailed in

following, describing the responsibilities of the individual
components. For the sake of conciseness, some inessential
components are left out of this description. Also, in order
not to clutter the diagram in Figure 1, some interfaces have
been represented in an abstract way as dependencies, and
some dependencies have been omitted (e.g., between most
components and the Audit System).
Frontend. This is the common entry-point providing a uni-
form API through with consumer-side and issuer-side com-
ponents can interact with the server-side elements of the dis-
covery system. The Frontend provides access control function-
alities and provides an important source of security relevant
events, that are captured in a secure Audit Trail. Additionally,
the Fronted may offer an interface through which services
can be registered in back-end service registries (although this
functionality is optional, as registration may as well occur
directly at one of the back-end service registries).



Assert Issuer

Client Modules::

! 1 1 :
: : : !
i i i Assalt 8| Checkassert [ 1 Preference i
1 1 1 | |
| Assert Assert i i Management:: i‘ \ S 1
| Manageme_nt:: Management:: i i Assert Verifier ! ! 1
| Asse? |55|U""Q Assert Issuer i i ! 5 Cliont Mol !
! e e - — Client : !
| 00 Dashboard ! ! checkAssert -Iggnm:)ml;res _________________ - == Components:: | |
1 1 1 - H
Jrust Manager
i 4)< IssueAssjeLl J\manageAss}an i Agent Trust Manager :
[ R bt —— 1 I
| 1
LlssusAsset 7 Bt N T I\ e !
Tl iscovery
Mame, S e — =0 =0 o<
gmt, MmanageSystem i
Monitoring, gy |ManageSystem | ManageAssert | discovery
Auditing:: =]
System - Server-frontend::Frontend
Administration Lt
Console e -
Pl Lregiste;Lupdate s ,L query
/J’, -”’ '-”’ )'r \\
Mgmt, Monitoring, e /"' ‘_x” .~ 4 Components:::
Auditing::Audit System P /' | query Trust Manager
2
registerc|>'dé Crﬁb’date QueryQﬂ:rrl:hng:: S H:::i‘leir: I ]
S 9 :Assert Ontology
SUIESC"P“‘)" QueryEngine Verifier Manage ment::
anager =
. : Ontology
Registration AT find ,’/( Manager
Management:: S .
Registration e % find . ;"?\
Manager Sl ausen |
.. | K qusen
/L Composition:: T !
manage Composition e N g -----3 — I
BN Manager Tl Discovery:: match match Matchmaking::
S T Discovery 3 S Matchmaking
N Manager Subsystem ==
X setStrate
O Registry Abstraction:: o setStrategy a
manage Registry Abstraction e T retrieve
Layer retrieve
I | I
manage register  query
Fig. 1. Architecture Overview

Query Engine. This component is connected to the Frontend
on one side and with the Discovery Manager on the other. It
is in charge for parsing the query coming from the consumer
and passing it on to the Discovery Manager. Queries contain
both a specification of the functionality that candidate services
must offer as well as a set of conditions on their non-
functional properties. The primary concern addressed by this
component is to decouple the query language used by the
service consumer from the language that is used internally by
the ASSERT4S0A framework, and especially by the Discovery
Manager.

Query Subscription Manager. The queries coming from the
client may specify a subscription query; in this case, the query
is continuously evaluated and the client is notified when new
matching services are found. The Query Engine interacts with
the Query Subscription Manager in order to create and manage
query-specific response channels, whereby a consumer can
subscribe to a query and can receive continuous updates as
new matches are found that satisfy that query.

Discovery Manager. Based on the information coming from

client-supplied complex queries, as processed by the Query
Engine, the Discovery Manager coordinates several different
subsystems. Firstly, it uses the Registry Abstraction Layer to
retrieve an initial set of candidate services, based on their
functional description. Secondly, it instantiates a matchmaking
strategy. Such a strategy is basically a description of how vari-
ous types of matchmaking modules should be coordinated and
how their results should be aggregated in order to determine
the final list of candidate services, ranked according to their
degree of fit, to be returned to the consumer. The strategy
and the initial list of services obtained from the Registry
Abstraction Layer represent the other input to the Matchmaking
Subsystem. Finally, the Discovery Manager activates the Com-
position Manager and coordinates its operation as explained at
the end of the next section.

Matchmaking Subsystem. This subsystem is controlled by
the Discovery Manager which activates it by passing as input
(a) an initial set of (functionally matching) candidates, and
(b) a matchmaking strategy (produced based on the contents
of the query). As a result of the matchmaking process, the



«delegates =G
| delegter o

match

Matchmaking Subsystem

match

match ‘

«delegates Pluggable Matchmaker [0..
2 CconfigureStrategy iR =1

O
setStrategy

(from Pluggable Matchmakers)

Fig. 2. Matchmaking subsystem

candidate services are filtered (discarding those that do not
match the non-functional requirements) and ranked according
to their degree of fit. Internally, the Matchmaking Subsystem
is organized as a hierarchical, dynamically configurable archi-
tecture. It is hierarchical since a Master Matchmaker controls
a set of Slave Matchmakers and aggregates in a single fit
measure the results coming from each slave; it is dynamically
configurable since the organisation of the slaves is determined
and realised at run-time, based on the matchmaking strategy,
which in turn is determined based on the query.

This design allows each slave to be realised as very tar-
geted, domain-specific evaluator of a particular property or
dimension, whereas the master matchmaker is only concerned
with the coordination of slaves. In this way, additional (or
alternative) slave matchmakers can be plugged into the system,
thus supporting the evaluation of an extensible range of prop-
erties. While the focus of ASSERT4SOA is on security-related
properties, the architecture accommodates a sophisticated co-
ordination of different pluggable matchmaking components,
in such a way that the decision as to which candidate is
to be chosen can be taken on a more comprehensive basis
(e.g., capturing constraints related to performance, availability,
cost, and so on). Slave matchmakers may be provided by
external third-party services, allowing for an additional level
of dynamism and diversity, possibly enhancing availability and
fault-tolerance (although raising, at the same time, additional
security and trust concerns).

Assert Issuing Tool. This component allows assert issuers
to express the results of their assessment as an assert. The
tool provides a graphical user interface that guides the user
(typically a certification authority) in the process, and produces
as output an assert that conforms to the Assert XML-schema
and that is digitally signed by the issuer.

Assert Verifier. The Assert Verification Module is responsible
for checking that an assert is valid. This component is used
both server-side, before the results of matchmaking are pushed
to the consumer, and client-side, where the consumer may
want to check on his/her own the asserts, before consuming
a service. The verification involves several steps. Firstly, the
signature on the assert is checked to ensure the assert is au-
thentic. Secondly, the well-formedness of the assert is verified.
Finally, the credentials of the assert issuer are checked, based
on the preferences of the client (assert consumer).

It is worth noting that, in principle, any entity with a digital
identity can play the role of assert issuer, since an assert is
nothing but a signed statement on the properties of the subject
service. The problem of establishing the trustworthiness of
such a statement, which is fundamental to use asserts in
practice, may be addressed in different ways: for example,

the verification module could verify that the issuer is in
the list of trusted authorities, or that the issuer does have
an accreditation received from a suitable accreditation body.
Although it may seem extreme to allow anybody to play the
role of an assert issuer (i.e., of a certifier), this is very much
like the approach currently accepted for identity certificates.
As of today, anybody can sign identity certificates, where
he/she claims that a certain public key corresponds to a given
“identifier”. And in fact, the decision as to who is trusted
for assigning such certificates is left to the consumers, who
typically express their decision through their web-browser’s
configuration options. This approach, however, may not be
adequate for service-based applications. Such applications
integrate software services of third parties in order to provide
value-adding services to their own users/customers. Hence, the
providers of SBAs have responsibility to undertake certificates
checks, in automated ways whilst their systems are in oper-
ation and in a manner that reduces the risks for the users of
their systems and, therefore, themselves.

Registration Manager. This component is responsible for
publishing certified services on the registries available through
the registry abstraction module and for managing their life-
cycle (e.g., to update or revoke them). The registration module
communicates both with the monitoring and with the auditing
module (to log both functionally- and security-relevant events)
and the authorization module.

Registry Abstraction Layer. The input request as coming
from the Query Engine is split by the Discovery Manager into
two parts that are treated separately: 1) the characterization
of security properties required by the client, and 2) the de-
scription of the interface, functionality and other non-security-
sensitive QoS conditions that are expressed as part of service
discovery queries. Based on the latter, the Discovery Manager
queries in turn the Registry Abstraction Layer to retrieve a set of
candidate services that satisfy the required interface, functional
and non-security characteristics required of services. While
service description may be stored in several (possibly hetero-
geneous) back-end registries, the Registry Abstraction Layer
provides uniform access to such back-end registries, regardless
of the differences in their interfaces and protocols.

IV. DISCOVERY AND MATCHMAKING

In the previous section we introduced, among the others, the
architectural elements related to the discovery and matchmak-
ing functionality. In this section, we concentrate on describing
how these components interact. The principle of discovery and
matchmaking is illustrated as a sequence diagram in Figure 3.
For the sake of conciseness, we omit the Frontend from this
model, and we start the description from the point where the
Query Handler has already been activated by receiving a query,
forwarded by the Frontend.

A query, expressed using SERDIQUEL, contains a precise
specification on the characteristics that must be possessed
by candidate services in order to match the needs of the
consumer. This characterisation covers functional as well as
non-functional (in particular, security) attributes.



sd Service Discovery J
Query Discovery::Discovery Registry Matchmaking::Matchmaking| [Composition::Composition Query Handling::Query
Handling::QueryEngine Manager Abstraction::Registry| Subsystem Manager Subscription Manager
: : Abstractilon Layer : : :
1 1 1 1 1 1
! ! ! create_topic() ! ! !
[ I I I [H}
L do_discovery(f, p) H i i i ]
retrieve( f) o i i i i
i ™ i i i
i R — : : i
i do_match?naking( c[l.p) - ! i i
| . ol | |
opt g.o for compaosite candidates/ i get_composite( £, p ) i _ i i
[m[]is empty] ' ' ™ !
loop for each f_i needed in the composition/ i i !
[fore:sch f i needed in the compos‘ti@] E do_discovery(f i, p_i) E i
| - retrieve(f i) | i i
: _ » : :
! e -7 ol .. | |
| do_matchmaking( c_i, p_i ) i |
I T Ll I
1 1 1
a DR Y - a
! ] oo mill____. e = !
1 1 1 1
! et oo boooooooooos R I RCGECEEEEEEREEE !
! do_matchmaking( cc, p ) o o !
1 | = 1 1
1 . 1 1
! et e ] ! !
| | L | |
i i publish{ m[]. t} i L
i i i i ™!
1 T 1 1 1 1
I 1 I I I I
1 1 1 1 1 1
Fig. 3. Discovery subsystem
As a first step, the Query Engine activates the Query attached to this layer in accordance with the trust relationship

Subscription Manager, which is responsible for creating a
response channel and a corresponding buffer through which
the results of the query are made available to the client. This
mechanism allows for a pub-sub interaction pattern. In this
way, a client can register for a query and stay funed on the
corresponding response channel, so that it can receive fresh
results as soon as they are produced. Especially, a response
channel of this sort can be seen as a constantly updated pool
of replacement services that match a given query. Also, the
Query Engine takes care of parsing the query in such a way
that it is readily consumable by the Discovery Manager and
the other components that must handle it. In particular, the
information conveyed in the query is decomposed so that the
characteristics related to functional aspects are separated from
those related to non-functional aspects. Also, based on the
contents of the query, each piece of information is augmented
with a specification of the confidentiality level with which it
has to be processed. This allows to determine whether or not
each part of the query can or cannot be forwarded to elements
of the architecture that are provided externally by third parties.

The next step is the activation of the Discovery Manager,
which, as we explain in the following, is the central co-
ordinating element for the realization of the discovery and
matchmaking functionality.

The Discovery Manager forwards the information describing
the functional requirements to the Registry Abstraction Layer.
This information will be effectively handed to the registries

that exists between the client that originated the query and
each of the registries. As a result of this interaction, a set of
candidates matching the functional specification expressed in
the query is returned to the Discovery Manager.

This set of candidates, together with a matchmaking strat-
egy, is then passed to the Matchmaking Subsystem, which
operates on it as described in the previous section. The result
of this step can be seen as a filtering of the candidates that
discards those that do not meet the security assurance required
by the client and that sort those that do match, according
to their degree of fit. The resulting (filtered and ranked)
set is then returned to the Discovery Manager. Finally, the
Discovery Manager pushes these results to the corresponding
response channel. A new discovery and matchmaking can
be activated autonomously by the ASSERT4SOA system on
a periodic basis, according to the request coming from the
client and expressed in the query. Any new results are sent
to the response channel; analogously, those services that did
match the query previously but that no longer do, are removed
from the channel. This may happen, for example, if the assert
associated to a given service has changed, or if a service has
become unavailable in the meantime.

Composition. An important feature of the ASSERT4SOA
framework is its ability to synthesise, on-the-fly, service com-
positions that match a given query. This capability is activated,
in particular, to cope with the case where no single service
can be found that matches the query (because either the



functional or the security characteristics of the candidates do
not match with the query). In this case, the outer optional
fragment in the sequence diagram of Figure 3 is executed.
The Composition Manager explores the space of possible
compositions by applying patterns taken from a library of
pre-defined composition patterns. Each pattern specifies the
preconditions that each of the constituent service must fulfil
as well as the security properties that are guaranteed to
hold for the composite service, based on the assumption
that the preconditions hold. Of course a large number of
possibilities for composition is discarded, but dealing with
arbitrary dynamic compositions, and especially, determining
the properties possessed by such arbitrary compositions, would
be a prohibitively hard problem to address. When a suitable
composition is identified, it is still formulated in terms of
abstract service placeholders. Each of these placeholders need
to be filled in with a concrete service, whose functional and
security characteristics correspond to the requirements of the
composition. This means that for each service placeholder, a
new discovery request is originated and sent to the Discovery
Manager. Each such request is processed as described above,
entailing a retrieval step from the Registry Abstraction Layer
and then a matchmaking step. Of course, recursive activations
of the composition mechanism are possible, although the
allowed levels of nesting of such requests must be kept
to a minimum, as it may have a considerable impact on
the utilization of computing resource and on response time
(parameters determining how composition patterns should be
applied are specified as part of the discovery queries). When
a matching composition is found, it can be returned either
as an abstract composition specification, or as an runnable
composition. In the former case a description of the service
composition, along with the endpoints of suitable constituent
services, is returned to the consumer, who is then responsible
for running the composed service on his/her side. In the
latter case, the discovery framework itself uses its built-in
service orchestrator to realise the composition and to return an
endpoint to the consumer. In this case, the composite service
is consumed as any other (single) service, but it does not have
a real assert, only a dynamically synthesised surrogate (which
we call a virtual assert), derived using the composition rules.

V. RELATED WORK

A key capability in service-based applications is the ability
to discover services that fulfil given functional and quality
properties in automated ways at run-time. This capability is
necessary in order to be able to replace existing services of
a service-based application that might become unavailable or
fail to fulfil the properties required from them due to a variety
of reasons (e.g., context changes, variations in the deployment
conditions of a service etc.).

Run-time service discovery has been the focus of several
strands of work, including approaches supporting the dis-
covery based on service interface, behavioural, and quality
properties as well as combinations of them [12], [18], [25],
[22]. Existing approaches support run-time service discovery
based on the use of information retrieval techniques (e.g.,

[1], [2], [16]), complex graph matching algorithms (e.g., [15],
[12], [28], [29]), or reasoning based on semantic descriptions
of services [3], [15], [16], [17]. Considerable effort has also
been concentrated on support for context awareness in service
discovery, i.e., the ability to trigger the discovery process and
modify the criteria used in it in response to changes in the
deployment context of a service-based application and/or the
services deployed by it [5], [9], [11], [14], [20], [25].

Existing approaches to service discovery can also be distin-
guished into those supporting the discovery of single services
(e.g., [16], [18], [22], [29]) and those supporting the discovery
of compositions of services [28], [6], [7]. The latter approaches
are aimed to cover cases where no single service satisfying a
given request can be located. Despite the existence of several
approaches to run-time service discovery, only few of them
take into account security properties [7], [6], [4], [23] and most
of them concentrate on the discovery of services in ad-hoc
networks [10], [26], [27], [24]. Most of these approaches focus
on securing the discovery process itself [23], [10], [26], [27],
[24] particularly in connection with the discovery of network
services in pervasive environments (e.g., secure publication
of service descriptions, secure requests for service discovery)
rather than being concerned with discovery of services based
on required security properties of these services. Other ap-
proaches focus on the security properties of the services to be
discovered but tend to support only specific kinds properties
(e.g., properties related to the secure interaction with a service,
service support for particular authentication and authorization
mechanisms [7], [6], [4]). Hence existing approaches fail to
provide comprehensive support for more complex security
properties (e.g., confidentiality and privacy preserving storage
of information, internal transactional integrity). Furthermore,
there is limited support for ensuring security in service com-
positions. Some of the work that focuses on composition
(e.g., [7], [6]) is limited, as it does not support the propagation
of the need to satisfy security properties within the constituent
services in a composition.

VI. CONCLUSIONS

In this paper we presented an architecture for an advanced
service discovery system that is capable of processing queries
including constraints on the security assurance level provided
by services. This is made possible by expressing the security
properties of services in a format, defined in the context of
the ASSERT4SOA project, that enables automated processing
of security certificates.

The ambitious vision of the ASSERT4SOA project aims at
overcoming the shortcomings of security certification as it
is meant today, by introducing automated reasoning about
certified security properties, in particular w.r.t. service dis-
covery and matchmaking. The realisation of such vision will
necessarily rely on the development of a reference prototype
implementation of the architecture described in this paper,
which we plan to undertake in the coming months.

The contribution presented in this work presents our initial
results in this direction. It identifies and documents our high-
level architectural design choices, listing the key function-



alities that the ASSERT4SOA framework will provide, and
presenting the architecture in terms of a set of high-level
components as well as the key interactions among them.

At this time, several problems remain open, and they require
to be addressed before ASSERT4SOA can be turned into a
viable technology.

An important fundamental problem to address is the binding
problem. When dealing with the certification of services (as
opposed to software products that are shipped in binary or
source format to the consumers), the binding between an assert
and the certified service is not trivial. In general, without
further assumptions, it is not possible for the consumer to
be sure that the service assessed by the assert issuer (i.e.,
the actual service realisation that the assert refers to) and the
one offered at a given point in time by a service provider are
actually the same piece of software. Exploring which are the
minimal additional assumptions to make in order to ensure
such a binding will be the topic of our future research.

Another challenging issue to address was somewhat hinted
at the end of Section IV. The system we have designed is
meant to be capable of synthesising composite services, based
on composition patterns that are known to preserve (or assure)
certain security properties. As we mentioned earlier in the
paper, the guarantees provided by such a composite service
cannot be supported by a proper assert (signed off-line by an
assert issuer). At the same time, probably it is not realistic
to assume that the entity running the ASSERT4SOA system
be ready to take the responsibility of endorsing a dynamically
synthesised virtual assert, because of the legal implications
and liabilities that this would entail. More in general, our
research agenda includes a more detailed analysis of possible
realistic scenarios and an in-depth reflection about the use-
cases where composition is involved, also with regard to
the trade-offs between accuracy of results (achieved, e.g., by
allowing multiple levels of recursion in the composition) and
performance.

ACKNOWLEDGEMENTS AND DISCLAIMER

This work was partly supported by the EU-funded project As-
SERT4SOA (grant no. 257361). Any opinions, findings, and conclu-
sions or recommendations expressed in this article are those of the
authors and do not necessarily reflect the views of their institutions
or of the funding agency.

REFERENCES

[1] Seekda. http://webservices.seekda.com/.

[2] Service finder. http://demo.service-finder.eu/search.

[3] R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven Web
Service Composition in METEOR-S. IEEE International Conference
onServices Computing 2004 SCC 2004 Proceedings 2004, pages 23-30,
2004.

[4] M. Bartoletti, P. Degano, and G. Ferrari. Enforcing secure service
composition. In Computer Security Foundations, 2005. CSFW-18 2005.
18th IEEE Workshop, pages 211 — 223, june 2005.

[5]1 F. Bormann, S. Flake, J. Tacken, and C. Zoth. Towards Context-Aware
Service Discovery: A Case Study for a new Advice of Charge Service.
14th IST Mobile and Wireless Communications Summit, 2005.

[6] B. Carminati, E. Ferrari, R. Bishop, and P. Hung. Security Conscious
Web Service Composition with Semantic Web Support. In [EEE
23rd International Conference on Data Engineering Workshop, number
60473091, pages 695-704. Ieee, 2007.

[7]

[8]

[9]

[10]

(11]
[12]
[13]
[14]
[15]

[16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

B. Carminati, E. Ferrari, and P. K Hung. Security Conscious Web Service
Composition. In 2006 IEEE International Conference on Web Services
ICWS06, volume 0, pages 489-496. Ieee, 2006.

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawaran. Web services
description language (wsdl)version 2.0 part 1: Core language. http://
www.w3.org/TR/wsdl20, 2006.

S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-aware service
selection based on dynamic and static service attributes. WiMob2005
IEEE International Conference on Wireless And Mobile Computing
Networking And Communications 2005, 9:13-20, 2005.

S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H.
Katz. An Architecture for a Secure Service Discovery Service. In
Proceedings of the 5th Annual ACMIEEE International Conference on
Mobile Computing and Networking MobiCom99, pages 24-35, 1999.
C. Doulkeridis, N. Loutas, and M. Vazirgiannis. A System Architecture
for Context-Aware Service Discovery. Electronic Notes in Theoretical
Computer Science, 146(1):101-116, 2006.

D. Grigori, J. C. Corrales, and M. Bouzeghoub. Behavioral matchmaking
for service retrieval. In ICWS, pages 145-152. IEEE Computer Society,
2006.

ITSEC. Common criteria for information technology security evaluation.
A. Karmouch and M. Khedr. Enhancing Service Discovery with Context
Information. ITS 2002, 2002.

U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel. Automatic
Location of Services. pages 38—49. Springer, 2005.

M. Klusch, B. Fries, and K. Sycara. Automated semantic web service
discovery with OWLS-MX. Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems AAMAS 06,
page 915, 2006.

L. Li and I. Horrocks. A software framework for matchmaking based
on semantic web technology. In Proceedings of the 12th international
conference on World Wide Web, WWW ’03, pages 331-339, New York,
NY, USA, 2003. ACM.

R. Mikhaiel and E. Stroulia. Examining usage protocols for service
discovery. In A. Dan and W. Lamersdorf, editors, /CSOC, volume 4294
of Lecture Notes in Computer Science, pages 496-502. Springer, 2006.
H. F. Nielsen, N. Mendelsohn, J. J. Moreau, M. Gudgin, and M. Hadley.
SOAP version 1.2 part 1: Messaging framework, June 2003.

P. Pawar and A. Tokmakoff. Ontology-based context-aware service
discovery for pervasive environments, 2006.

J.-C. Pazzaglia, V. Lotz, V. C. Cerda, E. Damiani, C. Ardagna, S. Grgens,
A. Maa, C. Pandolfo, G. Spanoudakis, F. Guida, and R. Menicocci.
Advanced security service certificate for soa : Certified services go
digital ! Securing Electronic Business Processes, Information Security
Solutions Europe, 2010.

Z. Shen and J. Su. Web service discovery based on behavior signa-
tures. In Services Computing, 2005 IEEE International Conference on,
volume 1, pages 279 — 286 vol.1, july 2005.

S. Trabelsi, J.-C. Pazzaglia, and Y. Roudier. Secure Web Service
Discovery: Overcoming Challenges of Ubiquitous Computing. In
Proceedings of the European Conference on Web Services, pages 35-43.
IEEE Computer Society, 2006.

J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, and A. Joshi. A Secure
Infrastructure for Service Discovery and Access in Pervasive Computing.
Centaurus, 8(2):113-125, 2003.

Y. Ye and G. Fischer. Context-aware browsing of large component
repositories. In Proceedings of the 16th IEEE international conference
on Automated software engineering, ASE 01, pages 99—, Washington,
DC, USA, 2001. IEEE Computer Society.

F. Zhu, M. Mutka, and L. Ni. Splendor: A secure, private, and
location-aware service discovery protocol supporting mobile services.
In Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications, PERCOM ’03, pages 235—, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

F. Zhu, M. W. Mutka, and L. M. Ni. A Private, Secure, and User-
Centric Information Exposure Model for Service Discovery Protocols.
IEEE Transactions on Mobile Computing, 5:418-429, 2006.

A. Zisman, K. Mahbub, and G. Spanoudakis. A service discovery
framework based on linear composition. Services Computing, IEEE
International Conference on, 0:536-543, 2007.

A. Zisman, G. Spanoudakis, and J. Dooley. A Framework for Dynamic
Service Discovery. 2008 23rd IEEE-ACM International Conference on
Automated Software Engineering, (September):158-167, 2008.



