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Abstract 
Redundancy and diversity have long been used as means to obtain high reliability in 
critical systems. Whilst it is easy to claim that, say, a 1-out-of-2 diverse system will 
be more reliable than each of the two channels, assessing the actual reliability of 
such systems can be difficult. Some years ago, new probability models were 
developed to address this problem in the case of diverse software systems. They 
depend upon a notion of variation of ‘difficulty’ – more precisely ‘propensity to fail’ 
– across the input space. These models show that independence of failures will occur 
only in very special circumstances, and so such independence cannot simply be 
assumed. They were later shown to apply to certain kinds of hardware systems. If we 
cannot claim independence of channel failures, the computation of system reliability 
is difficult, because complete knowledge of the difficulty function is needed. This is 
unlikely to be available for software. Instead, we are unlikely to know more than the 
marginal pfd (probability of failure on demand) of the software. In this paper we 
consider the case of a 1-out-of-2 system in which one channel contains software, and 
the other channel contains only hardware equipment. We show that a useful upper 
(i.e. conservative) bound can be obtained for the system pfd using only the 
unconditional pfd for software (together with information about the variation of 
hardware ‘difficulty’, which is likely to be known or estimatable). 
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1 Introduction 

In earlier work (Eckhardt and Lee 1985; Hughes 1987; Littlewood and Miller 1989) 
the idea of difficulty variation has been introduced as an explanation for dependence 
in failure behaviour between diverse system components to be used in a fault tolerant 
system (e.g. a 1-out-of-2 system). The idea is a simple one. The ‘difficulty’ of a 
demand can be thought of intuitively as its propensity to induce failure in the system 
that has to handle it (more formally it is the probability of that system failing on the 
demand). If this difficulty varies across demands for each of the component sub-
systems of a 1-out-of-2 system, interest centres upon the association between the two 
difficulty functions. When there is positive association here – roughly, what is very 
difficult for one version also tends to be very difficult for the other – then it is more 
likely that there will be positive association between their failures. In such a case, 
wrongly assuming independence of failures between the two versions will give an 
optimistic estimate of the reliability of the 1-out-of-2 system1. 

A conceptual achievement of these models is their establishment of, and explanation 
for, the inevitability of dependence of failure behaviour between versions. No longer 
is it possible to claim that the two diverse component systems of a 1-out-of-2 fault 
tolerant architecture will fail independently of one another, without making very 
strong claims: essentially that there is no variation of ‘difficulty’ for at least one of the 
channels. This means that the simple arithmetic of independence is not applicable for 
the computation of the system reliability as a function of the component reliabilities. 
Informally, it means that we need to know how dependent the version failures will be. 

The problem of estimating the reliability of such a 1-out-of-2 system is thus hard. It 
seems to require a complete knowledge of the two difficulty functions. Whilst it 
seems feasible to obtain reasonable approximations of difficulty functions for 
hardware systems, for software things seem much more problematic. In fact, we are 
likely to know – or be able to estimate – the marginal probability of failure on 
demand of the software, but not know how the pfd varies across demands, or demand 
classes. In this paper we consider, for simplicity, a 1-out-of-2 system in which there is 
software in one channel only. We show how to obtain a pessimistic (but attainable) 
bound for the probability of failure on demand for such a system, which requires only 
the marginal pfd of the software to be known (together with the varying hardware 
pfds across different demand classes). The basic ideas here can be generalised to more 
complex systems than the example we use in the paper. 

2 Statement of problem 

The example we shall use for illustration throughout the paper is a nuclear reactor 
protection system with two channels: the X-train and Y-train. 

                                                
1 It is possible to do better than independence if there is negative correlation between the 

difficulty functions.  
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Consider first the simple situation in which each channel is built of hardware alone, as 
in Fig 1. We shall assume that demands are of several different types. A demand of 
one type will typically have a different probability of failure from a demand of 
another type. In the case study that prompted this work, a demand type could be 
characterised by the equipment that was needed to function correctly for the demand 
to be successfully met. Some demand types, for example, required more such 
equipment than others, and thus might be considered in our informal terminology 
more ‘difficult’ – i.e. the chance of failure would be greater. Within a demand class, 
although demands are of the same type they will differ from one another in some 
respects: for example, the reactor state will be different, represented by the readings 
of sensors for temperature, pressure, etc. Nevertheless, all demands within a demand 
class have the same pfd. In the event that all demands of this type require exactly the 
same equipment to function without failure, this assumption may be reasonable.  

 

X-train h/w

Y-train h/w

 

Figure 1 

With these assumptions, we can see that the (marginal) probability of failure on 
demand of the 1-out-of-2 system, i.e. for a randomly chosen demand, is the 
probability of both X-train hardware and Y-train hardware failure:  

€ 

pfdXhYh
= phi

X

i
∑ phi

Y f i          (1) 

where phi
X  is the probability of X-train hardware failure on demand type i, phi

Y  is the 
probability of Y-train hardware failure on demand type i, and f i  is probability that a 
randomly chosen demand is of type i.  

Clearly, the pfd is different from the result that would be obtained under an incorrect 
assumption of independence of failure between the two channels, which is 
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The true result will exceed the incorrect result (based on the false independence 
assumption) so long as there is positive covariance between the X- and Y-train 
demand type pfds, phi

X  and phi
Y . This is similar to the result of Eckhardt and Lee 

(Eckhardt and Lee 1985) for software diversity. The positive covariance means that 
there is a tendency for large demand type pfds in the X-train to be associated with 
large demand type pfds in the Y-train: informally, if we see the X-train fail, we note 
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that the demand type was probably one with a large pfd, and that the Y-train pfd is 
also thus probably large, and therefore its probability of failure is greater than it 
would be unconditionally.  

Note the assumption of conditional independence in (1), i.e. for a given demand type, 
failure of X-train hardware is independent of failure of Y-train hardware. This is 
reasonable if it can be assumed that there is constancy of pfd within a demand type 
for either train. Alternatively, if the pfd for a demand class in such expressions is an 
upper bound on the true pfd (varying over demands within the demand class), then we 
shall have a conservative bound from this expression. 

The important point here is that for each demand type in the sum here, every demand 
within that class requires exactly the same minimal set of functioning hardware to 
satisfy the demand.2  

We now consider the situation which is the subject of this paper, in which one 
channel has software: see Fig 2. 

 

X-train h/w

Y-train h/w

X-train s/w

 

Figure 2 

 

The probability of failure on demand is now: 

€ 

pfdXh+sYh
= phi

X + psi
X − phi,si

X( )
i
∑ phi

Y f i        (2) 

where psi
X  is the probability of failure of the X-train software on a demand of type i, 

and 

€ 

phi,si
X  is the probability of simultaneous hardware and software failure on a 

demand of type i.  

The practical difficulty we face now is that neither psi
X  nor 

€ 

phi,si
X  are likely to be 

known or estimatable. We can proceed conservatively by ignoring the probability of 
joint hardware/software failures, since 
                                                

2 There is a slight problem here if the demand types for channel X and those for channel Y do 
not exactly coincide. A demand type in the sum (1) can be defined as a set of demands that have the 
same X-train probability of failure for all the demands in the set, and the same Y-train probability of 
failure for all demands in the set. This will generally involve more demand types for the system than 
there are for each channel alone.  
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pfdXh+sYh
≤ phi

X + psi
X( )

i
∑ phi

Y f i          

€ 

= pfdXhYh
+ psi

X phi
Y f i

i
∑          (3) 

The second term here can be thought of as the maximum error (underestimation) there 
could be in the probability of system pfd if we ignored the effect of software failures. 
Whilst it is unlikely that the effect of software failures on system pfd will be ignored 
completely in this way, it is more likely that variation of the software pfd across 
demands will be ignored, since this variation will be unknown.  

If we were to assume that there is no variation in software pfd, we have in an obvious 
notation: 

psi
X ≡ pfdXs  

which, when substituted into (3), gives 

€ 

pfdXh+sYh
≤ pfdXhYh

+ psi
X phi

Y f i
i
∑ = pfdXhYh

+ pfdXs
.pfdYh     (4) 

The maximum error that arises from ignoring software pfd variation is thus the 
difference between (3) and (4): 

psi
X phi

Y fi
i
∑ − pfdXs

.pfdYh         (5) 

Notice that this is zero if there is no variation in the Y-train hardware pfd: in this case 
the X-train software and the Y-train hardware fail independently. The error arising 
from incorrectly assuming the X-train software pfd does not vary is completely 
masked by the fact of there being no variation in the Y-train. This result was first 
noted in (Littlewood and Miller 1989): in general, if there is no difficulty variation in 
one channel, then the two channels fail independently, regardless of what happens in 
the other channel. 

In the next section we show how to compute the worst value (5) can take. 

3 Worst case error from ignoring software pfd variation 

We need to find the worst case value of the first term in (5) for a given value of the 
marginal software pfd, 

€ 

pfdXs
= psi

X f i
i
∑ . In other words, we need to find which 

allocation of 

€ 

pfdXs
 among the different demand classes maximizes 

€ 

psi
X phi

Y fi
i
∑ .  

Now 

psi
X phi

Y fi
i
∑ = Cov psi

X, phi
Y( ) + E psi

X( )E phi
Y( )  
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where E psi
X( )  is simply the marginal probability on demand of the software, 

pfdXs
= psi

X f i
i
∑ , and E phi

Y( )  is the marginal probability of failure on demand of the 

Y-channel hardware, pfdYh = phi
Y

i
∑ fi . If we keep these two probabilities constant, the 

maximum underestimate of 

€ 

psi
X phi

Y fi
i
∑  occurs when Cov psi

X , phi
Y( )  takes its maximum 

value. It is easy to see that this occurs when we associate large values 

€ 

psi
X  with large 

values of 

€ 

phi
Y . 

Informally, then, we proceed by allocating as much of 

€ 

pfdXs
 as we can to the demand 

class that has maximum Y-channel hardware pfd; we allocate as much of the 
remaining 

€ 

pfdXs
 to the demand class with the next largest Y-channel hardware pfd, 

and so on until we have ‘used up’ all of 

€ 

pfdXs
. 

Rather more precisely the procedure to find the worst case error in ignoring software 
pfd variation, (5), is as follows: 

Denote by 

€ 

i* the demand class that has maximum Y-train hardware pfd, i.e. 

phi*
Y =max phi

Y{ } . 

If 

pfdXs ≤ fi*          (6) 

then the maximum possible value of 

€ 

psi
X phi

Y fi
i
∑  occurs when 

€ 

psi*
X =

pfdXs

fi*
;  psi

X = 0 for all other values of i     (7) 

and the maximum value of 

€ 

psi
X phi

Y fi
i
∑  is then  

pfdXs .phi*
Y .         (8) 

In the event that the software pfd is too large, and (6) is violated, the result 
extends in an obvious way: as much as possible of the software pfd is assigned 
to the demand type with the largest Y-train hardware pfd, as here; as much as 
possible of the remaining software pfd is assigned to the demand type with the 
next largest Y-train hardware pfd; and so on until all the software pfd ‘has 
been used up’.  

We call this procedure ‘bin-filling’ as the demand ‘bins’ with the highest Y-train 
hardware failure probability are assigned a maximum software pfd (‘filled up’) until 
we run out of available software pfd. 
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The worst case error in estimation of system pfd from ignoring variation in software 
X-channel pfd is thus the value of the expression (5) using the maximum value of 

€ 

psi
X phi

Y fi
i
∑  computed as above. 

A proof of this result is too long for the present paper but can be found at the 
following URL:  

http://www.csr.city.ac.uk/people/andrey.povyakalo/BL_DISPO2_01_AppendixA.pdf 

4 Discussion 

The work by Eckhardt and Lee (and later work) introduced a new way of looking at 
the reasons for dependence between the failure behaviour of diverse versions. In these 
models, everything turns on what we have called ‘difficulty variation’ over demands. 
This earlier work gave novel insights into the reasons why claims for independence 
are rarely supportable. Unfortunately, it also introduced some serious difficulties for 
anyone wishing to exploit the models to estimate the actual probabilities of failure of 
real systems, since this requires estimation of these ‘difficulty functions’. 

In this paper we have looked at a particular system: a 1-out-of-2 system in which only 
one channel contains software. In the example that motivated this work – a protection 
system for a nuclear reactor – we were able to identify a small number of demand 
types (<20) for each of which a hardware pfd could be estimated. In fact these had 
been estimated as part of the wider safety case for the reactor.  For software, on the 
other hand, only a marginal pfd could be estimated. Our aim, therefore, was to obtain 
a bound on the error in the estimate of the system pfd in the event that the variation of 
software pfd across demands were to be ignored – essentially by making the false 
assumption that the marginal software pfd applied equally to every demand class. Our 
main result here is such a bound, but it may not be the tightest available – essentially 
because of conservatively ignoring the probability of simultaneous hardware and 
software failures in expression (3): we hope to present tighter bounds in future work. 

As we have found elsewhere whilst working on these models of diversity, these 
results are quite surprising and subtle: witness, for example, the pivotal role played by 
variation in Y-train hardware pfd when we take into account X-train software 
failures. We do not think that these results could have been obtained without the 
formal model of diversity, although we believe that they are intuitively plausible in 
retrospect. 

Of course, if a conservative value of the software pfd were to be used over all demand 
classes (i.e. one that is not exceeded by the true pfd of any demand class), then the 
calculated system pfd would be conservative. In fact, it may be very conservative: our 
result points to a way of lessening this conservatism. 

A small word of warning is appropriate at this stage. The results in Section 3 all 
depend upon some assumptions of conditional independence of failures: for example, 
independence between failures of the X-train (hardware and software), on the one 
hand, and the Y-train (hardware only) on the other, for each demand type i. 
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Essentially, this amounts to assuming an equivalence, or indifference, between 
demands that make up a demand type, i.e. assuming there is no pfd variation within a 
demand type (there is only variation between demand types and between the trains’ 
hardware and the software). If these assumptions are not correct, the worst case errors 
given above will be too optimistic.3  
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