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Abstract 

 

Humans might possess either a single (amodal) internal clock, or multiple clocks for different 

sensory modalities. Sensitivity could be improved by the provision of multiple signals. Such 

improvements can be predicted quantitatively, assuming estimates are combined by summation, a 

process described as optimal when summation is weighted in accordance with the variance 

associated with each of the initially independent estimates. We assessed this possibility for visual 

and tactile information regarding temporal intervals. In Experiment 1, 12 musicians and 12 non-

musicians judged durations of 300 and 600 ms, compared to test values spanning these standards. 

Bimodal precision increased relative to unimodal conditions, but not by the extent predicted by 

optimally weighted summation. In Experiment 2, six musicians and six other participants each judged 

six standards, ranging from 100 ms to 600 ms, with conflicting cues providing a measure of the 

weight assigned to each sensory modality. A weighted integration model best fitted these data, with 

musicians more likely to select near-optimal weights than non-musicians. Overall, data were 

consistent with the existence of separate visual and tactile clock components at either the 

counter/integrator or memory stages. Independent estimates are passed to a decisional process, but 

not always combined in a statistically optimal fashion. 

 

Statement of public significance 

 

 We are able to judge the duration of events as they unfold (e.g. the time for which 

somebody holds our gaze). Sometimes, this information is conveyed to several of our senses at once 

(e.g. both seeing and feeling the duration of a caress). Theorists argue about whether time intervals 

are calculated separately for each sense, or rely on a common centralised timer. This study suggests 

that when people experience the duration of events via both vision and touch, they gain a 

multisensory benefit, performing better than when they receive just visual or just tactile stimulation. 

This kind of benefit can only accrue if time is first estimated independently within each sense, 

suggesting that separate timers exist. 

  



 Humans and other animals express their ability to time intervals through a wide variety of 

behaviours. In the lab, this ability is often assessed by requiring experimental participants to make 

judgments about the duration of events. However, our knowledge regarding the neurocognitive 

bases of these judgments remains hazy. One debate concerns the centralised versus distributed 

nature of the hypothetical internal clock or clocks (Ivry & Schlerf, 2008; Ivry & Spencer, 2004). On 

the one hand, it is possible that all time-dependent behaviours rely on a single multimodal timer, 

through which a wide variety of sensory information is routed. On the other, it may be that there are 

different clocks for different purposes, for example for sensory versus motor timing (Keele, Pokorny, 

Corcos, & Ivry, 1985; Marinovic & Arnold, 2012), implicit versus explicit timing (Coull & Nobre, 2008), 

short versus long interval timing (Lewis & Miall, 2003; Rammsayer, 1999), and for timing in different 

sensory modalities (Eijkman & Vendrik, 1965; Merchant, Zarco, & Prado, 2008). 

 The single versus multiple clock debate has received some attention from psychophysical 

studies focussed on a single modality. For example, in both vision and touch, adaptation at a single 

spatial location can selectively affect subsequent interval judgments at that location, and not others 

(Johnston, Arnold, & Nishida, 2006; Watanabe, Amemiya, Nishida, & Johnston, 2010) perhaps 

implying multiple spatially localised timing mechanisms. However, there appears to be little or no 

statistical benefit from providing multiple visual inputs (which might reasonably be averaged to 

derive a more precise estimate of duration; see Ayhan, Revina, Bruno, & Johnston, 2012; and 

Morgan, Giora, & Solomon, 2008). This suggests either a severe attentional bottleneck for visual 

interval timing, or a single centralised mechanism that is modulated by localised visual inputs. 

 Further evidence pertinent to this debate comes from the multimodal literature. For 

example, the repetition of a visual stimulus with a particular duration can generate repulsive after 

effects, which can be measured when an adapted visual stimulus is compared to an auditory 

reference (and vice versa following auditory adaptation; see Heron et al., 2012). This implies that 

intervals in one modality either specifically, or disproportionately, adapt time perception within that 

same modality, suggesting modality-specific clocks. However, training on interval timing tasks in one 

modality can improve performance when precision is tested in a second sensory modality (Bartolo & 

Merchant, 2009; Bratzke, Seifried, & Ulrich, 2012; Nagarajan, Blake, Wright, Byl, & Merzenich, 1998; 

but see Lapid, Ulrich, & Rammsayer, 2009), instead suggesting a shared timing resource. 

 One behavioural method that can provide insights regarding the existence of multiple clocks 

involves assessing performance in unimodal conditions, and then seeking evidence for a bimodal 

improvement in precision resulting from the combination of initially independent sensory estimates 

(Macmillan & Creelman, 2005; Treisman, 1998). A widely adopted model of this process posits that 

information is combined via an optimally weighted summation process, known as maximum 



likelihood estimation (MLE) integration (Ernst & Banks, 2002; van Beers, Sittig, & Gon, 1999). In this 

case, each initially independent estimate receives a weighting in inverse proportion to its precision 

(i.e. the uncertainty regarding its accuracy). This model is typically contrasted with a less 

sophisticated strategy, in which observers rely on estimates arising from the modality that generally 

provides more precise information regarding the pertinent question. For example, auditory signals 

might dominate timing judgments, as auditory processing is typically more precise in the time 

domain than is vision. 

 The two computational strategies outlined above reflect just two possibilities. It is possible 

to envisage many intermediate models. For example, observers might be limited to using a single 

estimate, but may select this idiosyncratically, selecting their own most precise modality for a given 

experimental condition. Alternatively, they might make use of two modalities without actually 

averaging their estimates (e.g. via the max rule of probability summation from classic signal 

detection theory, in which both sensory estimates are evaluated and a decision is triggered if either 

reaches a criterion value). We could also consider an averaging of signals without optimal weighting 

of sensory evidence, or an averaging of signals containing partially correlated (rather than fully 

independent) sources of noise. In all cases, support for one or another of these models over others 

could be instructive regarding whether more than one independent estimate of duration has been 

derived on each experimental trial. Hence testing task performance in both unimodal and bimodal 

interval timing tasks could provide rich insights regarding the possible existence of multiple internal 

clocks. 

 To date, several studies have assessed cue combination for duration judgments via changes 

in bimodal precision1. Results have been mixed. The issue was, to our knowledge, first considered by 

Eijkman and Vendrik (1965). They applied detection-theoretic models to data from a filled duration 

discrimination task with auditory, visual and audiovisual conditions. Observers attempted to detect 

deviations from a standard duration of one second. Bimodal performance was essentially identical to 

performance in the unimodal conditions (which were of similar difficulty to one another). The 

authors therefore concluded that noise had been perfectly correlated for unimodal signals, 

consistent with a single multimodal duration processor. This conclusion was at odds with the one 

they reached regarding the detection of intensity increments, where noise appeared uncorrelated 

(yielding bimodal enhancement). It also sits uncomfortably with findings pertaining to the 

summation of signals encoded by a single mechanism, such as when two spots of light are encoded 

                                                             
1 We focus on predictions regarding precision as these are generally considered to provide more compelling 

evidence of cue combination, specifically when bimodal precision exceeds that of the best contributing 

unimodal signal. 



by a single sensory detector – here sensitivity doubles, as if noise accrues only after signal 

combination.  

More recent work has tended not to prioritise implications for models of the internal clock, 

focussing instead on establishing (or questioning) the general applicability of the MLE model of cue 

combination. For example, Burr, Banks, and Morrone (2009) found partial (but sub-optimal) 

integration for empty intervals demarcated by audiovisual stimuli. A follow-up developmental study 

from the same group showed little evidence of integration (Gori, Sandini, & Burr, 2012). Around the 

same time, Van Wassenhove, Buonomano, Shimojo, and Shams (2008) investigated integration as 

part of a series of experiments focussing on the biasing effects of looming and receding stimuli for 

durations signalled by filled visual, auditory and bimodal signals. The pertinent data (shown in their 

Figures S3 and 5) suggest partial, but sub-optimal, facilitation in the bimodal case.   

Some studies have tested relevant conditions without attempting to apply formal models of 

bimodal integration. For example, Gamache and Grondin (2010) illustrate a trend suggestive of 

multisensory facilitation in a subset of their unimodal and audiovisual conditions, which included 

matched auditory and visual standard durations. By contrast, a recent study testing high-functioning 

Autistics and matched controls on an auditory, visual and audiovisual interval comparison task 

obtained bimodal thresholds that were very similar to those of the best unimodal condition 

(Lambrechts, Yarrow & Gaigg, submitted). A classic paper comparing auditory and visual time 

perception alongside audiovisual conditions (Walker & Scott, 1981) similarly showed no evidence for 

bimodal precision exceeding the best unimodal condition, a tendency we have also noted in several 

more recent publications (e.g. Rattat & Picard, 2012). 

Two studies have used reproduction tasks and explicitly tested how auditory and 

tactile/motor (Shi, Ganzenmüller, & Müller, 2013) or visual and tactile (Tomassini, Gori, Burr, 

Sandini, & Morrone, 2011) time estimates are combined. These reported a partial integration and a 

very limited integration respectively (although it is difficult to properly partition sources of noise 

when using a reproduction task, in order to derive appropriate model predictions). However, 

Hartcher-O'Brien, Di Luca, and Ernst (2014) have recently reported optimally weighted integration 

for filled audiovisual stimuli of around 500 ms duration using an interval comparison task, and have 

suggested that this should be generally obtained for filled-interval stimuli. 

 Given the mixed results, and the pertinence of cue combination studies to the debate 

regarding the architecture of the human timing system, further research investigating bimodal 

integration for duration judgments seems warranted. One issue particularly affecting audiovisual 

research on this topic is that experimenters have often used either clearly suprathreshold stimuli (in 

which case temporal sensitivity tends not to be well matched between auditory and visual stimuli, 



and predicted facilitation is therefore limited, reducing experimental power; e.g. Lambrechts, 

Yarrow & Gaigg, submitted) or have degraded stimuli by introducing masking noise (in which case it 

seems likely that the equalisation of sensitivity that is achieved will reflect problems detecting 

temporal cues (presumably stimulus onsets and offsets) rather than a change in the scalar noise that 

usually dominates interval judgments; e.g. Hartcher-O'Brien, Di Luca, and Ernst, 2014). For both of 

these reasons, we chose to investigate integration of visual and tactile signals, which seemed more 

likely to give rise to similar levels of precision, even for non-degraded suprathreshold stimuli (Jones, 

Poliakoff, & Wells, 2009). We also investigated integration in individuals with differing levels of 

timing expertise, in order to determine whether integration might be experience dependent, 

operationalising this factor by assessing samples of participants with or without extensive musical 

training.  

 

 

Experiment 1 

 

Methods 

 

Participants 

Twenty-seven participants were tested, 12 musicians (each of whom had received 

Associated Board of the Royal Schools of Music (ABRSM) Grade 8 qualifications) and 15 non-

musicians (with no prior experience of musical training). Three non-musicians were excluded from 

the final analysis as they did not perform significantly above chance in one or more conditions (see 

data analysis, below). The final sample therefore consisted of 12 musicians, 9 male, with a mean age 

of 26 years (from multiple disciplines of musical training: 3 percussionists, 2 brass players and 7 

string instrumentalists), and 12 non-musicians, 4 male, with a mean age of 23 years. Each participant 

provided informed consent, with testing procedures approved by the Department of Psychology 

research ethics committee at City, University of London. 

 

Apparatus and stimuli 

The experiment was controlled by a Visual C++ program running on a PC interfaced with a 16 

bit A/D card (National Instruments X-series PCIe-6323) generating digitized signals at 44.1 MHz. 

Visual stimuli were presented with a red LED (~0.5 degrees visual angle in diameter, ~60 mcd point 

source). It was placed on a desk to the left of a monitor approximately 50 cm from the participant. 

Vibrotactile stimuli were 200 Hz sine waves. They were delivered using a piezoelectric ceramic disc 



covered with a rubber sheath approximately 1 cm in diameter, powered by a bespoke amplifier, and 

were virtually silent. The piezoelectric disc was pinched between the forefinger and thumb, which 

rested on the desk close to (~10 cm) but not obscuring the LED.  

 

Design 

A 2x2x3 mixed factorial design included repeated measures on the last two factors. Factor 

one was the level of participant expertise: Musicians or non-musicians. Factor two was the standard 

duration: 300ms or 600ms. The order of standards was randomized (without replacement) in each 

block. The final factor was stimulus modality: Unimodal tactile, unimodal visual, and bimodal. This 

factor was blocked, and block order was counterbalanced across each set of six participants. In all, 

participants completed 3 blocks (600 trials). 

  

Procedure 

Participants sat at a desk with the computer screen and keyboard directly in front of them. 

The piezoelectric disc was held using the left hand in all conditions, including the unimodal visual 

condition. The right hand was used to indicate judgments using left or right arrow keys (or delete to 

cancel a trial due to an attentional lapse). Participants received 10 practice trials to familiarize 

themselves with the procedure in each condition, before beginning a block of 200 trials. No feedback 

on performance was given.  

On each trial, a standard duration of either 300ms or 600ms was presented, followed by a 

1000 ms inter-stimulus interval that proceeded the onset of a test stimulus (see Figure 1). The test 

stimulus was drawn at random from an adaptive distribution that was initially uniform (75-125% of 

the standard duration in 5% increments) but which could potentially expand to range from 25-175% 

of the standard duration: It was updated after each accepted trial according to the generalised Pólya 

urn procedure (Rosenberger & Grill, 1997) in order to sample the psychometric function in an 

efficient manner. 

Following each test presentation, participants reported which interval had seemed longer, 

the first or second. We used this interval comparison task as it should provide clean estimates of 

sensory noise for the purposes of deriving model-based predictions about integration.2 

 

Data Analysis 

                                                             
2 As we noted earlier, it is challenging to properly partition sources of variance from some timing tasks, such as 

reproduction, for the purposes of fitting models of multisensory integration. We revisit this issue in the 

General Discussion. 



For each participant, the proportion of tests judged longer than the standard was 

determined at each test duration in each condition. Data were imported into Matlab (The 

MathWorks Inc) and maximum-likelihood fitted to Cumulative Gaussian psychometric functions 

(with a fixed 1% lapse rate assumed). Points of subjective equality (PSE) and 84% thresholds (σ) were 

then estimated from these psychometric functions. PSE estimates represent the test value at which 

tests were judged to be longer than standard with a 0.5 probability. However, our main interest here 

was the threshold, which was estimated as the difference between test durations yielding “longer” 

judgments with probabilities 0.5 and 0.84. Under a standard observer model with Gaussian decision 

noise, this represents the standard deviation of the noise contributing to that decision.  

Data were additionally fitted using a one-parameter horizontal line. A straight line would 

best fit data if a participant was randomly guessing with some unknown response bias for each key. 

Participants were retained only when the cumulative Gaussian psychometric function fitted their 

data significantly better than a straight line (p<0.01) in all conditions, assessed by comparing the 

difference in best-fitting model deviances against an appropriate chi-squared distribution 

(Wichmann & Hill, 2001). 

Data from unimodal conditions were used to form predictions for both the optimally 

weighted integration (MLE) model and for a non-integration model, assuming each observer relied 

entirely on the sensory signal producing their highest precision for that particular condition. For the 

MLE model, the prediction regarding the bimodal threshold (σTV) is well-established (Ernst & Banks, 

2002): 
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Results and Discussion 

 

Figure 2 shows mean threshold (σ) estimates for musicians and non-musicians in all 

conditions, alongside model predictions. The inset graphs at the top of the figure present data from 

the unimodal tactile and visual conditions. Importantly, average performance was similar for 

vibrotactile and visual signals, providing scope for the combination of information to result in 

detectable performance improvements in bimodal conditions (relative to relying on one or other 

sensory modality alone). However, visual thresholds were generally slightly higher than tactile 

thresholds. As expected, unimodal thresholds increased near linearly with increasing standard 

duration (i.e. the scalar property of time) and were higher for non-musicians than for musicians, 

consistent with many previous reports (e.g. Cicchini, Arrighi, Cecchetti, Giusti, & Burr, 2012; 



Rammsayer, Buttkus, & Altenmüller, 2012). These observations were confirmed by a 2x2x2 mixed-

design ANOVA showing a main effect of musical experience (F[1,22] = 14.93, p = 0.001), a main effect 

of standard duration (F[1,22] = 51.85, p < 0.001), and a main effect of sensory modality (F[1,22] = 4.55, p 

= 0.044). A group x standard duration interaction (F[1,22] = 12.43, p = 0.002) suggested that the 

increase in threshold with increasing standard duration was more pronounced for non-musicians 

than for musicians. No other interactions reached significance. 

Our main interest lay in determining whether performance in bimodal conditions reflected 

the combination of independent unimodal sources of information. The larger graphs towards the 

bottom of Figure 2 show predictions based on using the most precise unisensory signal (selected for 

each participant in each condition; black bars) vs. predictions based on an optimally weighted 

combination of both unimodal signals (white bars). These predictions are plotted alongside mean 

thresholds for the bimodal conditions (grey bars). In general, bimodal thresholds lie between 

predictions based on optimal cue combination and those based on use of the best unimodal signal. 

There appears to be a trend for musicians to perform closer to the level predicted by optimal 

summation with a 600 ms standard compared to a 300 ms standard, with the opposite pattern 

emerging for non-musicians. 

To evaluate the degree to which each model could be rejected by the data, we ran a 

separate 2 (musical group) x 2 (model vs. data) x 2 (standard duration) mixed-design ANOVA for each 

model, with our interest focussed on main effects and interactions involving the model vs. data 

comparison. For the best unimodal model, there was a main effect of model vs. data (F[1,22] = 10.18, 

p = 0.004) suggesting that this model could be rejected, with no interactions involving this factor. 

Broadly the same pattern emerged for the optimally weighted integration model (model vs. data 

F[1,22] = 6.46, p = 0.019) allowing us to also reject that model. In this case, a three-way interaction 

(F[1,22] = 4.37, p = 0.048) reflected the observed trend for musicians to differ from optimality more 

with a 300 ms standard (t[11] = 2.68, p = 0.022) while non-musicians showed greater discrepancy for a 

600 ms standard (t[11] = 1.87, p = 0.088). 

Summarising the results of Experiment 1, bimodal performance exceeded the predictions of 

a model assuming participants relied on their best unimodal estimate. However, bimodal precision 

failed to reach the level predicted by a model assuming an optimally weighted summation of 

unisensory estimates. Although our rejection of the best unisensory estimate model already 

provides some evidence against a neurocognitive architecture containing only a single amodal 

internal clock, we felt compelled to attempt to determine what decisional strategy or mechanism 

our observers were actually using. In particular, we were concerned that interval comparisons are 

likely to include sub-processes that each contribute noise to the decision, such that improvements in 



precision might reflect optimal integration for some, but not all sources of noise. This would clearly 

affect conclusions regarding any putative clock architecture. In particular, we wondered if 

participants might be integrating estimates of event onset and offset (likely affected by clock switch 

latency variability) without integrating estimates derived mainly from the integration of the  

intervening time (often thought of as a clock count), or vice versa. 

To address this issue, we designed a second experiment in which six standard durations 

ranging from 100 to 600 ms were used. This allowed us to apply a slope analysis method (Ivry & 

Hazeltine, 1995; Narkiewicz, Lambrechts, Eichelbaum, & Yarrow, 2015) in order to decompose 

judgment variability into a component contributed by non-scalar operations (including starting and 

stopping the clock) and a scalar component that grows with the duration being timed (reflecting 

counter and/or memory processes). With separate estimates, we were able to make predictions 

regarding the integration of one but not both sources of noise. We also took the opportunity to 

introduce a small discrepancy between tactile and visual components of our standard stimuli. This 

approach is commonly used (e.g. Ernst & Banks, 2002; Ley, Haggard, & Yarrow, 2009) in order to 

estimate the weight being assigned to each sensory modality, and thus provide a further means of 

assessing the predictions of weighted integration models.  

 

 

Experiment 2 

 

Methods 

Methods were identical to those used in the first experiment, with the following exceptions. 

 

Participants 

Thirteen participants were tested including 7 musicians (with ABRSM Grade 8 qualifications) 

and 6 psychophysical observers (i.e. lab members from local groups recruited specifically because 

they had experience participating in experimental tasks of this kind).3 One musician completed only 

a few blocks before being excluded from further participation, as they reported great difficulty 

detecting the vibrotactile stimulus (confirmed by their very poor performance in tactile conditions). 

                                                             
3 Of course, strictly, all of our participants could be considered psychophysical observers. We refer to this 

group as psychophysical observers, as opposed to non-musicians, for two reasons. Firstly, it contextualises 

their strong timing performance; they were distinct from the musician group in another important respect, not 

just in being less musically expert. Secondly, we did not exclude participants from this group for having some 

degree of past musical training (although their musical attainment was in no sense equivalent to our musician 

group). In fact, in Experiment 2 we recruited musicians not so much because we expected them to be 

different, but rather because Experiment 1 had indicated that this group would perform timing tasks well. 



The final sample therefore consisted of 6 musicians (3 pianists, 2 string instrumentalists, 1 brass 

player), all female, with a mean age of 22 years, and 6 psychophysical observers, 4 female, with a 

mean age of 29 years. 

 

Design and Procedure 

Figure 3A schematises the design and procedure. Participants completed 18 blocks (3600 

trials). A 2x6x3 mixed factorial design was employed with repeated measures on the last two factors. 

Factor one reflected the characteristics of the participants: Musicians or psychophysical observers. 

Factor two varied the standard’s duration: 100 to 600 ms. Standards were blocked with the following 

fixed order: 300; 400; 200; 500; 100; 600 ms. This ensured that conditions with the strongest 

implications for our slope analysis (see data analysis, below) were only completed after substantial 

practice. The third factor was modality of stimulus presentation: Unimodal tactile, unimodal visual, 

and bimodal. This factor was again blocked, with block order counterbalanced across each set of six 

participants, and a Latin square used to ensure each participant received a different order from all 

other participants in their group at each of the six standard durations. 

The experiment was completed in sets of three blocks so that all three modalities were 

always presented within a single session for a given standard duration. A final nested manipulation 

was applied only to bimodal conditions, introducing a discrepancy between the tactile and visual 

components of the standard stimulus: Tactile-long-Visual-short vs. Visual-long-Tactile-short. 

Discrepancies were introduced by presenting one modality for 97.5% of the standard duration, and 

the other for 102.5% of the standard duration, with midpoints aligned. This factor was randomised 

(without replacement) within each relevant experimental block, with 100 trials for each discrepancy 

per block of 200 trials.  

 

Data Analysis 

Thresholds were determined for each participant at each of the 18 combinations of standard 

duration and sensory modality (collapsing across discrepancy conditions in the bimodal conditions). 

In addition to thresholds, we recorded 95% confidence intervals about thresholds to assist with 

model fitting (below).  

A widely accepted property of interval timing is its adherence to a generalised version of 

Weber’s law (Getty, 1975; Wearden & Lejeune, 2008). There is typically a linear relationship 

between interval duration and the standard deviation of trial-to-trial noise. This “scalar” noise rides 

atop a constant “non-scalar” variability, which can be found by determining the y intercept of a 

straight-line function fitted to threshold data (see Figure 3b). The six thresholds within each sensory 



modality were therefore fitted with a two-parameter model, with the intercept constrained to be ≥ 

0. To avoid undue influence from poorly estimated thresholds (and to appropriately weight the more 

precisely estimated thresholds typically observed at lower standard durations) we utilised a 

maximum-likelihood (rather than least squares) fit, assuming a Gaussian data model with separate 

scale parameters reflecting uncertainty for each threshold (based on their 95% confidence intervals). 

In addition to an estimate of non-scalar variability, this fitting procedure provided a set of cleaned 

data points (i.e. the scalar model’s predicted values) which were used in all subsequent calculations 

and analyses.4 

For this experiment, we estimated thresholds in all conditions, in addition to the weights 

assigned to the tactile modality in bimodal conditions. Empirical weights were derived by fitting 

cumulative Gaussians to data collapsed across all six standard durations (with the test values 

normalised by their standard durations and expressed as percentages) but separated on the basis of 

the discrepancy within the standard stimulus (tactile-long-visual-short vs. visual-long-tactile-short). 

The PSEs from these fits were differenced, and this difference scaled to generate an empirical 

estimate of tactile weight: 

 

(2) �� = 0.5 + �����
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These empirical weights were used in modelling (see below) and also to test the optimally 

weighted integration model. For the MLE model, the prediction regarding optimal weights is well-

established (Ernst & Banks, 2002): 
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For the purposes of this prediction, we used the average of thresholds at each standard 

duration, normalised by their respective standards. 

Data from the unimodal conditions were also used to form predictions for six different 

models regarding bimodal thresholds. In addition to the optimally weighted integration and best 

                                                             
4 We consider these cleaned data preferable to the raw data as they make best use of well-established 

properties of time perception to reduce measurement noise. We return to this issue in the discussion. Note, 

however, that it would have also been difficult to have proceeded from the raw data in our analyses, as two of 

our twelve participants produced large and very poorly estimated thresholds in a small subset of conditions, 

despite generally performing well. With 18 conditions per participant, we preferred not to reject entire 

participants on the basis of one or two poor estimates, and our fitting procedure made this feasible. 



unimodal predictions (outlined in Experiment 1), we calculated predictions for two hybrid models, in 

which non-scalar variance was integrated optimally and scalar variance came from the best 

unimodal stimulus, or vice versa. We also considered a model utilising the max rule of probability 

summation: Observers were assumed to have access to both unimodal estimates, and to compare 

tests to standards in both cases, responding longer if either unimodal test exceeded its 

corresponding standard. Finally, we tested a model of weighted integration (i.e. averaging) but with 

weights based not on the optimal selection strategy described in Equation 3, but rather derived 

empirically (as described in Equation 2). Predictions for these final two models were based on 

Matlab simulations, with simulated data subjected to a cumulative Gaussian fit (in a similar manner 

to our real data) to generate predicted thresholds (cf. Treisman, 1998). 

Our main inferential analysis again used ANOVA, but to assist data visualisation and 

inference at the level of the individual participant, we also made use of non-parametric 

bootstrapping, using the bias-corrected method with 1999 bootstrap resamples. For bootstrap 

inference, we calculated 95% confidence intervals on the difference between estimates from pairs of 

conditions. 

 

Results and Discussion 

 

In Experiment 2 we included a small discrepancy between the vibrotactile and visual 

components of our bimodal standards. This allowed us to estimate the degree to which each 

participant relied on tactile (vs. visual) information to inform their decisions. Estimated tactile 

weights are plotted in Figure 4a, against weights that would be predicted for optimally weighted cue 

combination (based on performance in unimodal conditions). Across the sample as a whole, we did 

not obtain the predicted linear relationship (with a slope of 1.0) between optimal and empirical 

tactile weights (r = 0.186, p > 0.05). However, it is apparent that our musician subgroup (black 

circles) showed a much greater degree of optimality in their empirically derived tactile weights than 

did our psychophysical observers (white circles). 

The additional standard durations and empirical estimates of tactile weights available in 

Experiment 2 allowed us to consider a wider range of model predictions regarding bimodal 

thresholds. Figure 4b plots the predictions of several models (in the leftmost column of graphs) for 

the group as a whole, and also separately for each subgroup. It is clear that for these participants, 

relying on the most precise (i.e. best) unisensory modality would generate very similar predictions to 

using this same strategy supplemented by the optimally weighted integration of only non-scalar 

sources of independent information (e.g. clock onset/offset times) or indeed to making use of both 



modalities independently via a max response rule (i.e. probability summation).5 Meanwhile, 

predictions from the optimally weighted integration model are very close to those of a model in 

which only scalar sources of independent information are combined via optimal weighting. Finally, 

weighted combination based on empirically derived tactile weights falls midway between these 

groups of predictions, at least for the sample as a whole. However, this form of cue combination 

provides near-optimal predictions about threshold for the musician subset (as they appeared to 

select near-optimal weights) but predicts thresholds similar to using the best unimodal stimulus for 

the non-musician subset (who appeared to give an inappropriately high weighting to the vibrotactile 

stimulus). 

Given the grouping of model predictions we observed, we went on to test whether just 

three of our candidate models differed from the data. As in Experiment 1, we did this by contrasting 

bimodal thresholds with the predictions of each model in turn, via ANOVA, focussing on effects of 

model vs. data. In Figure 4, the set of graphs second from the left show model predictions alongside 

bimodal data for a model in which participants relied on the best unimodal stimulus in each 

condition of the experiment. A 2 (musical group) x 2 (model vs. data) x 6 (standard duration) mixed-

model ANOVA (with Greenhouse-Geisser corrections for violations of sphericity) showed a 

significant main effect of model (F[1,10] = 5.33, p = 0.045) but also a three-way interaction (F[5,50] = 

9.62, p = 0.010). The interaction reflected that fact that for the psychophysical observers, bimodal 

thresholds did not differ from best unimodal model predictions6, whereas for musicians, they did 

(F[1,5] = 7.80, p = 0.039), with a trend toward a greater difference at longer durations (model vs. data 

x duration interaction F[5,25] = 6.49, p = 0.050). 

The row of graphs second from the right show model predictions alongside bimodal data for 

predictions based on the optimally weighted combination of cues. Here, it is apparent that the 

musicians match the data but the psychophysical observers do not. ANOVA revealed a main effect of 

model (F[1,10] = 13.71, p = 0.004) but also a three-way interaction (F[5,50] = 7.14, p = 0.023). In this 

case, the interaction was driven by a difference between optimally weighted integration model 

predictions and bimodal data for psychophysical observers (F[1,5] = 27.95, p = 0.003), particularly at 

longer durations (model vs. data x duration interaction F[5,25] = 21.66, p = 0.005), but not for 

musicians (Fs <= 1.0). 

                                                             
5 In its simplest form this approach also predicts large shifts in PSE for bimodal conditions (Treisman, 1998). 

We have not reported PSEs here, but did not observe shifts of this kind. In classic signal detection-theoretic 

experiments (which use a single stimulus level) probability summation outperforms single-modality detection, 

but this does not always hold true when a full psychometric function is mapped, in part because this function 

becomes highly asymmetric when modalities differ greatly in precision, so cumulative Gaussian fits are poor 

and generate large threshold estimates. 
6 There was an interaction between the model vs. data comparison and the standard duration, but no pairwise 

comparison approached even uncorrected significance. 



Finally, the rightmost row of graphs show model predictions alongside bimodal data for 

predictions based on the weighted combination of cues, but with weights estimated empirically and 

(particularly for the psychophysical observers) tending to deviate from the optimal choice. In this 

case, it is clear that model and data are in close agreement, both for the overall sample and when 

broken down by musical subgroup, with ANOVA showing no effects involving the model vs. data 

contrast (all Ps > 0.1). 

The comparison of each model’s predictions to bimodal data for our entire sample (and to a 

lesser extent for each subgroup) provides a sense of how accurately the models perform on average. 

However, this may disguise problems predicting performance for each individual observer. Given the 

larger number of trials (and subsequent data cleaning) utilised in Experiment 2 compared to 

Experiment 1, individual estimates were more reliable, so we also examined predictions for each 

participant separately. These are presented for our three most distinct models in Figure 5, expressed 

as differences between model predictions and bimodal thresholds. Figure 5 also summarises 

occasions where bootstrap contrasts were found to indicate significant differences between models 

and data for each participant (uncorrected for multiple comparisons). It is apparent that although 

the weighted integration model performed well for (sub)group-averaged data, it was not particularly 

accurate at the individual level, and although it was rejected less often for our sample than 

alternative models (in which participants are assumed to either rely on their best unimodal estimate 

or to combine cues optimally) this was partly because its predictions are estimated less precisely. 

In summary, Experiment 2 generated average bimodal data that differed significantly from 

predictions assuming a simple reliance on the best sensory modality, and from the predictions of 

MLE cue combination, but which matched well with a weighted averaging process in which weights 

might be selected sub-optimally. However, even empirically weighted averaging struggled to predict 

thresholds for each participant considered individually. 

 

General Discussion 

 

 We ran two experiments in which participants (with or without high levels of musical 

training) judged the durations of sub-second intervals that could be filled with either vibrotactile, 

visual, or vibrotactile and visual signals. Performance in unimodal conditions was used to predict 

bimodal performance via various models of sensory and decisional processes. In Experiment 1, 

participants performed better than predicted by assuming that they could use just one of the 

available signals, but worse than predicted assuming they had based decisions on an optimally 



weighted summation of initially independent sensory estimates. Hence neither model received 

strong support. 

In Experiment 2 we were able to explore additional models and, in particular, a weighted-

integration model which combined cues using empirical weights suggested by PSE differences when 

the standard stimulus contained a conflict. This model which, unlike MLE integration, did not imply 

that participants had accurate knowledge of their own unimodal precision, predicted data well, at 

least at the group-average level. Although we cannot test it formally against data from Experiment 1, 

it seems qualitatively consistent with those data too. However, it may simply be that some people 

are near optimal, while others fail to integrate information via any form of averaging. To the extent 

that weighted averaging can summarise our data, the sub-optimal selection of weights did not seem 

to reflect overall performance (our psychophysical observers in Experiment 2 often had lower 

thresholds than our musicians) suggesting that the musician’s life experiences might have caused 

them to select more optimal weights. However, this assertion should be treated with caution given 

the small sample in Experiment 2 and the failure of the sample of musicians in Experiment 1 to 

achieve optimal integration. 

 Several previous studies have used methods similar to ours to assess the integration of 

bimodal duration cues, although they have generally examined only one or two models of bimodal 

performance, which may create a false sense of certainty regarding how well particular accounts 

have fared. Most such studies seem broadly consistent with our results. For example, both Shi et al. 

(2013) and Tomassini et al. (2011) report sub-optimal integration (at least based on precision 

measures) for tasks involving a tactile component. However, two audio-visual experiments stand out 

for generating results that appear to favour either no integration at all (Eijkman & Vendrik, 1965) or 

optimal integration (Hartcher-O'Brien et al., 2014). It is not clear which procedural differences (e.g. 

duration, 1000 ms vs. 500 ms respectively; stimulus degradation, none vs. substantial, respectively) 

are critical in generating these contrasting results. However, we speculate that either the quality of 

the observers (visual weber fractions ~10% vs. ~40% respectively, both based on σ as a threshold 

measure) or the degree of spatial overlap between unimodal stimuli (none vs. complete, 

respectively) might be important. Our own experiments were somewhat intermediate in relation to 

both of these measures, with average visual weber fractions ranging from ~45% (non-musicians, E1) 

to ~17% (psychophysical observers, E2) and a visual stimulus that was placed near, but not exactly 

over, the vibrotactile stimulus. Of course, both previous reports might be consistent with our own 

(and with each other) if selection of weights by participants was simply particularly unfortunate in 

Eijkman and Vendrik's (1965) work and particularly fortunate in Hartcher-O'Brien et al. (2014). 



 Our findings have clear implications for the current debate concerning the nature of the 

internal clock, and in particular for its unitary vs. distributed character. Any form of improvement 

through averaging, even one based on sub-optimal weights, implies the existence of two duration 

estimates subject to partially independent sources of noise. However, this leaves open several 

possibilities regarding where such noise might arise, and hence several plausible clock architectures. 

Two such possibilities are schematised in Figure 6. If we assume that the major source of noise in 

duration judgments comes from some kind of counting or temporal integration process (e.g. 

Taatgen, van Rijn, & Anderson, 2007), then our data would point towards the existence of two 

separate counters, one tactile and one visual. However, classical amodal clock models have tended 

to attribute most of the noise in duration perception tasks to memory processes, for example to 

noise arising during the conversion of an accumulated clock count into a stored memory (Gibbon, 

Church, & Meck, 1984).7 Hence another viable account of our data would be to posit just one 

counter, with transfer of the accumulated estimate into two (sensory specific) memory stores that 

each contribute independent noise. Of the two possibilities, the latter could be said to be less 

parsimonious, as it assumes dual independent memory stores in addition to early, initially 

independent, sensory processes, but we note that there is some evidence from selective 

interference experiments suggesting that separate short-term memory stores might be used when 

interval estimates arise from different sensory modalities (e.g. Rattat & Picard, 2012, but see 

Filippopoulos, Hallworth, Lee, & Wearden, 2013). 

Our data are consistent with broader evidence suggesting separate clocks for separate 

modalities, such as the modality-specific duration adaptation effects alluded to in the introduction 

(Heron et al., 2012). However, we are at odds with other findings, such as performance correlations 

between auditory and visual timing tasks (Merchant et al., 2008) and transfer of training benefits 

from one modality to another (Bartolo & Merchant, 2009; Bratzke et al., 2012; Nagarajan et al., 

1998). Of course, both of these findings might result from the sharing of some, but not all, clock 

components across modalities (or, in the former case, the existence of multiple clocks either built in 

similar ways, or depending upon some general property, such as neural efficiency). 

In addition to empirical findings, there are some theoretical puzzles affecting a multiple 

clock account. Interval timing does not require a continuous signal, and it is not noticeably worse 

without one, as when we time empty intervals. What is going on in these situations? If it is the 

recruitment of an amodal clock, then why, with this clock available over and above sensory-specific 

                                                             
7 This attribution seems to rest mainly on the assumption that the counter would be a Poisson noise source. 

While not unreasonable, this is by no means certain. 



ones, isn’t filled interval timing consistently better than empty interval timing? In fact, some 

psychophysical evidence suggests it may be (e.g. Horr & Di Luca, 2015; Rammsayer, 2010). 

Our apparent ease at converting interval estimates arising in different modalities also makes 

an amodal clock account appealing. However, a lifetime of experience might bring different clocks 

into alignment. More generally, our current findings favouring sense-specific clocks form part of a 

wider body of evidence that speaks against single amodal internal stopwatch accounts, like scalar 

expectancy theory, which can be criticised on both theoretical grounds (e.g. this model achieves 

scalar timing via an ad hoc multiplicative constant, rather than by any feature of its basic 

architecture; see Staddon & Higa, 2006) and on empirical considerations (including that humans do 

not appear able to stop and restart their timer at will, as this model suggests, without suffering large 

drops in precision; Narkiewicz et al., 2015). 

There are, of course, caveats to our preferred interpretation. Regarding the degree to which 

we obtained optimal integration, we have already noted that the spatial congruence of our stimuli 

was only approximate. This might be an important factor. More generally, we are not aware of any 

multimodal study that has gone very far towards promoting an ecologically valid scenario for the 

combination of interval timing stimuli. Furthermore, our findings only apply to the range of sub-

second intervals that we made use of. Different mechanisms might apply for supra-second timing 

(Lewis & Miall, 2003; Rammsayer, 1999). 

Another concern regards the assumptions underlying our various model predictions. We 

noted in the Introduction that it can be difficult to formulate accurate predictions when decisions 

reflect multiple sources of noise. This point was made as we are mindful of studies using 

reproduction tasks, where motor noise contributes toward interval estimates, but might not itself be 

amenable to integration (Shi, Ganzenmüller, & Müller, 2013; Tomassini, Gori, Burr, Sandini, & 

Morrone, 2011). Our comparison task was free from motor noise. However, a similar issue might 

apply to decision noise, for example trial-by-trial variance in the placement of a decision criterion. 

Any such noise, affecting estimates in unisensory conditions must also apply in entirety to the 

bimodal condition, so predictions assuming purely sensory noise might overestimate the degree of 

bimodal improvement that is possible. We were able to generate predictions for models that 

partitioned sensory noise into scalar and non-scalar components in our second experiment, and 

optimal integration of just one or the other of these sources appeared to constitute an unlikely 

explanation of our data. However, we acknowledge that with sufficient inventiveness there might be 

other model-based accounts that could explain our data in addition to the one we have presented. 

In a similar vein, the framework applied in this study attributes improvements in precision to 

mechanisms that are fully specified within simple models of psychophysical decisions. It is possible 



to conceive of higher-level factors that could affect precision, which these models don’t consider. 

For example, perhaps participants try harder, or concentrate more, when there are two stimuli, 

feeling that they should really do better in this situation. Predicted performance improvements are 

certainly not so substantial that we can reject this kind of account. Nonetheless, specific models of 

cue combination are both elegant and quantitatively precise in a way that higher-level explanations 

are not, and to that extent seem to justify the attention they have received. 

Finally, it is possible that the conclusions drawn from Experiment 2, where data were 

cleaned by fitting a generalized version of Weber’s law, are overstated or biased, because scalar 

timing with an additional constant source of noise might be an oversimplification of how timing 

precision varies with stimulus duration. For example, some reports suggest a “dipper” function 

relating thresholds to duration for very brief intervals (Burr, Silva, Cicchini, Banks, & Morrone, 2009). 

However, this is likely to be the result of a separate mechanism operating in the flutter/flicker fusion 

range. The near miss to Weber’s law has received considerable empirical support (reviewed in 

Wearden & Lejeune, 2008) for typical subsecond-range interval timing, despite occasional deviant 

results (e.g. Kristofferson, 1980). 

In conclusion, overall our experiments suggest that at least some people are able to extract 

and combine independent estimates of duration from simultaneously presented tactile and visual 

stimuli. However, average improvements in precision based on cue combination fall short of those 

predicted by an optimally weighted summation of initially independent sensory estimates. Hence 

our data suggest that participants do not generally have accurate knowledge of their own unimodal 

encoding precision. Regardless of whether all subjects perform integration, but sub-optimally, or 

some integrate optimally and some not at all, our findings suggest that any realistic model of interval 

timing must incorporate sense-specific cognitive components that contribute a large part of the total 

variability in the precision of people’s duration decisions. These components are subject to 

independent noise, and are likely located at either the counter or memory stage of temporal 

information processing. 
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Figure legends 

 

Legend to Figure 1 

 

Schematic of methods for Experiment 1. Participants compared a standard interval to a test interval 

in unimodal tactile, unimodal visual, and bimodal conditions (in separate blocks). Standards could be 

300 or 600 ms long (randomly interleaved) with tests spanning each standard. Fitted cumulative 

Gaussians provide threshold estimates corresponding to the standard deviation (σ) of the underlying 

difference distributions assumed to support duration judgments. 

 

Legend to Figure 2 

 

Results of Experiment 1 for (A) musicians, (B) non-musicians, and (C) the entire group. Inset graphs 

(top) show mean threshold estimates for performance in the unimodal conditions. Main graphs 

(bottom) show threshold predictions for the bimodal condition, derived from the unimodal 

estimates by assuming either optimally weighted integration or reliance on the most precise sensory 

modality, alongside bimodal data. Individual participant thresholds are shown in light grey. Error 

bars denote standard error of the mean. 

 

Legend to Figure 3 

 

Schematic of methods for Experiment 2. A. Participants compared a standard interval to a test 

interval in unimodal tactile, unimodal visual, and bimodal conditions, with six standards ranging from 

100 to 600 ms in duration (all in separate blocks). In bimodal conditions, there was a 5% discrepancy 

in duration between contributing unimodal stimuli (with the direction of this discrepancy randomly 

interleaved). Fits to tactile-long-visual-short vs. visual-long-tactile-short trials were used to derive a 

shift in PSE for the purposes of estimating the weights given to each modality. B. Scalar fits for one 

illustrative observer. Maximum-likelihood fits were obtained by using the standard error of the 

threshold parameter (obtained from separate cumulative Gaussian fits at each standard duration) to 

scale a Gaussian data model informing likelihoods. Error bars show the estimated standard error 

multiplied by 10 to better illustrate how precision of estimation scaled with standard duration. 

 

Legend to Figure 4 

 



Group average results of Experiment 2. A. Scatter plot of empirical vs. optimal (predicted) tactile 

weights for both musicians and psychophysical observers. Error bars show 95% bootstrap confidence 

intervals. Musicians appear to select near optimal weights. B. Comparison of predictions for various 

models against mean thresholds from the bimodal conditions. Data are shown for all participants 

(top) or separately for psychophysical observers (middle) and musicians (bottom). Model predictions 

are shown in the left hand set of graphs. Predictions from selected models are then repeated with 

their standard errors (grey regions) alongside bimodal data (error bars show standard errors) for 

(from left to right) the best unimodal prediction, the optimally weighted integration prediction, and 

the empirically weighted integration prediction (based on empirical weights from part A.) Asterisks 

(*) show significant differences between models and data. 

 

Legend to Figure 5. 

 

Individual data for Experiment 2, shown for all psychophysical observers (top) and musicians 

(bottom). Model predictions are shown as deviations from thresholds observed in the bimodal 

conditions. Opt = optimally weighted integration prediction, Weight = weighted average integration 

prediction, Best = best unimodal prediction. Error bars show 95% bootstrap confidence intervals. 

Asterisks (*) below plots denote significant differences between models and data. 

 

Legend to Figure 6. 

 

Schematic of two possible internal-clock architectures. A. Separate clocks exist for tactile and visual 

stimuli, each contributing independent noise, with estimates averaged prior to a comparison 

decision. B. A single clock receives both tactile and visual inputs, but contributes relatively little 

noise. Its output is stored in separate tactile and visual memory stores, with independent noise 

accrued at this stage (or later) before estimates are averaged for a comparison decision. 
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