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A vector-valued ground motion intensity measure incorporating normalized 
spectral area 

 

Aris-Artemis I. Theophilou1, Marios K. Chryssanthopoulos2, Andreas J. Kappos3 

 

Abstract A vector-valued intensity measure is presented, which incorporates a relative measure 
represented by the Normalized Spectral Area. The proposed intensity measure is intended to have 
high correlation with specific relative engineering demand parameters, which collectively can 
provide information regarding the damage state and collapse potential of the structure. Extensive 
dynamic analyses are carried out on a single-degree-of-freedom system with a modified Clough-
Johnston hysteresis model, using a dataset of 40 ground motions, in order to investigate the 
proposed intensity measure characteristics. Response is expressed using the displacement ductility, 
and the normalized hysteretic energy, both of which are relative engineering demand parameters. 
Through regression analysis the correlation between the proposed intensity measure and the 
engineering demand parameters is evaluated. Its domain of applicability is investigated through 
parametric analysis, by varying the period and the strain-hardening stiffness. Desirable 
characteristics such as efficiency, sufficiency, and statistical independence are examined. The 
proposed intensity measure is contrasted to another one, with respect to its correlation to the 
engineering demand parameters. An approximate procedure for estimating the optimum Normalized 
Spectral Area is also presented. It is demonstrated that the proposed intensity measure can be used 
in intensity-based assessments, and in scenario-based assessments with some limitations. 

 

Keywords Intensity measure; normalized spectral area; nonlinear response; probabilistic seismic 
demand assessment; ground motion selection. 

 

1 Introduction 

Probabilistic seismic response assessment is of interest both in the design of new structures, and in 
the assessment of existing structures. In the design of new structures the objective is to ensure that 
the safety level required by the building codes is fulfilled, while in the assessment of existing 
structures the objective is to evaluate the inherent safety level. The structural response, and hence 
the safety level, are best evaluated through dynamic time-history analysis, in which the intensity of 
the ground motion is defined by an appropriate seismic hazard analysis. A factor significantly 
affecting the accuracy of the response prediction is the ‘ground motion selection and modification’ 
(GMSM) method through which the ground motion suites are formed. The GMSM method is in 
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turn dependent on the measure used to express ground motion intensity, termed ‘intensity measure’ 
(IM).  

In the present article a vector-valued IM is presented, with which an efficient prediction of the 
structural response is sought. The vector-valued IM incorporates the Normalized Spectral Area 

parameter, ܵௗேሺ ଵܶ, ଶܶሻ, originally proposed by Theophilou and Chryssanthopoulos (2011), which is 
evaluated by integration of the displacement response spectrum and normalization to the spectral 

displacement at the fundamental period. Due to the normalization, ܵௗேሺ ଵܶ, ଶܶሻ does not change 

when the ground motion is scaled. In this way, it captures the effect of the excitation spectrum 
characteristics (i.e. frequency content) on the response. The proposed IM was developed with the 
intention of being used in a GMSM method (Theophilou and Chryssanthopoulos 2011), in which 

records are normalized to the spectral acceleration at the fundamental period, ܵ௔ሺ ଵܶሻ, and the 
estimation of the full distribution of the response is sought. 

The proposed IM is intended to exhibit high correlation with specific relative engineering demand 
parameters (EDPs). Collectively, these relative EDPs can provide information regarding the damage 
state and the collapse potential of the structure. The two relative EDPs investigated are the 

displacement ductility factor, ߤௗ, and the normalized hysteretic energy, ܰܧܪ. The use of relative 
EDPs in seismic design/assessment has the convenience that structures with similar design 
characteristics have similar EDP values. For example, the displacement ductility is expected to have 
similar values in buildings designed to the same ductility class; in contrast, roof displacement, 
which is an absolute measure that depends on the height of each building, may vary significantly. 

The IM is applied in the dynamic analysis of a single-degree-of-freedom (SDOF) system, in which 
the nonlinearity level is varied by varying the yield reduction factor. The hysteresis model adopted 
is the modified Clough-Johnston, which is capable of modelling stiffness degradation due to load 
reversals. Dynamic analyses are performed using a dataset of 40 real earthquake ground motion 
records. 

Correlation coefficients between ܵௗேሺ ଵܶ, ଶܶሻ and each of ߤௗ, and ܰܧܪ, are obtained through 
regression analysis. The effect of the system’s fundamental period and the strain-hardening stiffness 
are investigated through a parametric analysis. Desirable IM characteristics such as efficiency, 
sufficiency, and scaling robustness are examined from the perspective of the IM correlation to the 
EDPs. Overall, the proposed IM is shown to perform satisfactorily over a relatively wide range of 
parameters. 

Through examples it is demonstrated that the IM can be applied in intensity-based assessments of 
real systems, and in scenario-based theoretical parametric studies. The application in scenario-based 
assessments of real systems has certain limitations. 

Finally, an approximate procedure for estimating a suitable ܵௗேሺ ଵܶ, ଶܶሻ is presented. The procedure 

uses an ‘equivalent’ SDOF system, the maximum displacement of which is equal to the 
displacement of the SDOF system considered. The procedure estimates the ultimate elongation 

period, which is then used in the calculation of a suitable ܵௗேሺ ଵܶ, ଶܶሻ. 
2 Motivation and framework 

Predicting the response of a structure under a future earthquake can only be done in a probabilistic 
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sense. Probabilistic seismic demand assessment aims to evaluate the mean annual frequency of 

exceeding an EDP, ߣሺܲܦܧሻ, with respect to the mean annual frequency of exceeding an IM, ߣሺܯܫሻ. 
The concept is presented here using a scalar IM, and can easily be expanded to a vector-valued IM.  ߣሺܲܦܧሻ is evaluated through the following integral (e.g. Cornell and Krawinkler 2000), which is 

based on the total probability theorem 

ሻܲܦܧሺߣ  = නܲሺܯܫ|ܲܦܧሻ|݀ߣሺܯܫሻ|
 

(1)

Evaluation of ߣሺܲܦܧሻ involves two distinct tasks: seismic hazard analysis, and structural analysis. 

Seismic hazard analysis is performed to evaluate ߣሺܯܫሻ for the earthquake scenario considered. In 

the first of the two general approaches, termed ‘scenario-based assessment’, the known data are the 
seismological parameters of the earthquake source, such as the moment magnitude of the expected 
earthquake, the source-to-site distance, and the type of fault. It is then possible to evaluate the 
response at the site using a ground motion prediction model. In the second approach, termed 
‘intensity-based assessment’, the earthquake intensity at the site is given, usually expressed as peak 

ground acceleration or as ܵ௔ሺ ଵܶሻ. Most building codes convey the earthquake intensity data to the 
earthquake engineer through the Uniform Hazard Spectrum, which represents the peak response due 
to a large set of ground motions, at a specific probability of occurrence. The proposed IM can be 
used with both approaches. 

The term ܲሺܯܫ|ܲܦܧሻ expresses the probability of exceeding an EDP value given the IM value. It is 
evaluated through structural analysis using a dataset of ground motions, applied within the range of 
intensity levels of interest. The main objective of the present article is to propose an IM that results 

in a comparatively low variance of ߪ ,ܯܫ|ܲܦܧா஽௉|ூெଶ , which will result in a more accurate estimate 

of ߣሺܲܦܧሻ. 
The principle of reducing ߪா஽௉|ூெଶ  to improve the accuracy in estimating ߣሺܲܦܧሻ finds applicability 

in GMSM methods. By representing ground motion intensity through appropriate IMs, it is possible 
to obtain an optimized response prediction. An optimized response prediction requires a reduced 
number of ground motions to obtain the same level of prediction accuracy (compared to using a less 
efficient IM, or to random selection) or conversely, it exhibits an improved accuracy using the same 
number of ground motions. The present article presents the correlation between IMs and EDPs, on 
which the accuracy of certain GMSM methods depends. This concept has been investigated in other 
studies (Theophilou and Chryssanthopoulos 2011; Buratti et al. 2011), which concluded that a 
higher correlation between IM and EDP results in an increased accuracy in the response prediction. 

The earliest IMs used were scalar, such as the spectral acceleration at the fundamental period, ܵ௔ሺ ଵܶሻ, or compound parameters, such as the ݒ௠௔௫ݐௗ଴.ଶହ (Fajfar et al. 1990), where ݒ௠௔௫ is the peak 

ground velocity, and ݐௗ is the time duration of ground motion. Recently the trend has shifted 
towards vector-valued IMs, which have the advantage of being comprised of multiple parameters, 

thus capturing different mechanisms that affect response. Such IMs are the 〈ܵ௔ሺ ଵܶሻ,  by Baker and 〈ߝ

Cornell (2006), where ߝ is the number of standard deviations between the difference in the lnܵ௔ሺ ଵܶሻ 
of the record and the mean lnܵ௔ሺ ଵܶሻ obtained from a ground motion prediction model, and the 〈ܵ௔ሺ ଵܶሻ, ்ܴଵ,்ଶ〉 by Baker and Cornell (2006), where ்ܴଵ,்ଶ is the ratio ܵ௔ሺ ଶܶሻ ܵ௔ሺ ଵܶሻ⁄ . Conte et al. 
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(2003) proposed the use of 〈ܵ௔ሺ ଵܶሻ,  ோୀ௥ is the ratio of the minimum yield strengthܨ ோୀ௥〉, whereܨ

required to limit the response parameter ܴ to ݎ, to the minimum yield strength required for the 

system to remain elastic. Bojórquez et al. (2012) proposed 〈ܵ௔ሺ ଵܶሻ,  ஽ is the square ofܫ ஽〉, whereܫ
ground motion acceleration integrated with respect to the duration of the ground motion, normalized 

to the product of PGA and PGV (peak ground velocity), and 〈ܵ௔ሺ ଵܶሻ, ௣ܰ〉, where ௣ܰ is the 

geometric mean of the spectral accelerations between the fundamental period and a higher period, 

normalized to ܵ௔ሺ ଵܶሻ. In all the aforementioned vector-valued IMs, the ‘primary’ parameter is ܵ௔ሺ ଵܶሻ, and the ‘secondary’ parameter is unitless. Along the same line, the vector-valued IM 

proposed in the present article is comprised of ܵ௔ሺ ଵܶሻ, and ܵௗேሺ ଵܶ, ଶܶሻ.  
The correlation between absolute IMs, such as ߂௠௘௔௡ (Hutchinson et al. 2002), and relative EDPs, 

such as ߤௗ, and ܰܧܪ, has been found to be high in intensity-based assessments, in which ground 

motions were normalized to ܵ௔ሺ ଵܶሻ. However, in scenario-based assessments, in which the intensity 

of ground motions is expressed using seismological parameters, this correlation is negligible 

because ܵ௔ሺ ଵܶሻ varies. In this article it is demonstrated that this insufficiency is relieved if the 

intensity is expressed using the relative measure ܵௗேሺ ଵܶ, ଶܶሻ, in which case high correlation is 

observed regardless of the normalization to ܵ௔ሺ ଵܶሻ; this approach can be used in scenario-based 
parametric studies. 

3 Dynamic analysis 

3.1 Formulation 

The proposed IM is used in the dynamic analysis of a SDOF system with a natural period of ଵܶ =1.0 sec, and viscous damping ratio of ߞ = 5%. The strain hardening coefficient was taken as ߙ =3%; this value was used by Ruiz-Garcia and Miranda (2006) who concluded it plays an important 
role in the estimation of the residual displacement. 

The hysteresis model used for the SDOF system is the modified Clough-Johnston (Clough and 
Johnston 1966; Mahin and Lin 1983), shown in Fig. 1, which is capable of modelling stiffness 
degradation due to load reversals. Its force-displacement relationship is characterized by the elastic 

stiffness, ݇௘, the strain-hardening stiffness, ݇௦ =  ௘, and the yield strength, ௬݂. The displacement݇ߙ

capacity was assumed to be unlimited, as the purpose of the study is to evaluate the maximum 

displacement demand, ݑ௠. 
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Fig. 1 Modified Clough-Johnston hysteresis model. 

An equivalent elastic system having stiffness ݇௘ was used to evaluate the maximum elastic 

displacement, ݑ଴, and the maximum elastic force, ଴݂. The yield reduction factor, ܴ௬, is defined as 

the ratio of ଴݂ to the yield strength, ௬݂, or equivalently as the ratio of ݑ଴ to the yield displacement, ݑ௬, as shown below 

 ܴ௬ = ଴݂݂௬ = ௬ (2)ݑ଴ݑ

For every ground motion the spectral displacement, ܵௗሺ ଵܶሻ, is taken as equal to ݑ଴. 

The equation of motion for a SDOF system (Jacobsen 1930) is recast to account for the nonlinear 

force-displacement relationship, ݂ሺݑሻ, shown in Fig. 1, normalized to ݑ௬, and using ܴ௬ on the right 

hand side to express intensity, as shown below 

௬ݑሷݑ  + ௡߱ߞ2 ௬ݑሶݑ + ݂ሺݑሻ݉ݑ௬ = −ܴ௬ ଴ݑሻݐሷ௚ሺݑ  (3)

where ݑሷ ሶݑ , , and ݑ, are the acceleration, velocity, and displacement of the system respectively, ߱௡ is 

the natural circular frequency, ݉ is the mass, and ݑሷ௚ሺݐሻ is the ground acceleration. 

Equation (3) shows that if ݑሷ௚ሺݐሻ is scaled, while ܴ௬ is kept unchanged, the response ratio ݑ ⁄௬ݑ  

remains unchanged. This happens because scaling ݑሷ௚ሺݐሻ causes an equal scaling of ݑ଴, so the ratio ݑሷ௚ሺݐሻ ⁄଴ݑ  remains unchanged. One way of keeping ܴ௬ unchanged is by simultaneously scaling ݑሷ௚ሺݐሻ and ݑ௬ by the same factor, so that ݑ଴ ⁄௬ݑ  remains unchanged. 
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4 Dataset of ground motion records 

A ground motion record dataset was formed by selecting 40 records from the European Strong-
Motion Database (Ambraseys et al. 2002) and the NGA Database 2005 (PEER Center 2005), 
summarized in Table A1, with seismological characteristics similar to those of the considered 
earthquake scenario. The earthquake scenario has been conditioned to be a strong earthquake, at a 
site with rock ground conditions, at close distance from the fault, but sufficiently distant to avoid 
near-fault effects. 

The criteria used in the selection of the records are the following: (1) the moment magnitude is 
higher than 6, (2) the closest distance from fault is not larger than about 30 km, so that the 
attenuation of the seismic ground motion is sufficiently low, (3) records do not exhibit near-fault 
effects, such as velocity pulses of distinctly long period, (4) records from not more than two 
accelerographs from each earthquake event were used, (5) accelerographs were installed on free-
field conditions, or on one- to four-storey lightweight structures located at the lowest level, (6) 

accelerographs were installed on rock ground conditions with ௌܸଷ଴ ≥ 650	m sec⁄ , where ௌܸଷ଴ is the 
shear wave velocity in the top 30 m of the ground, and (7) selection was such that the dataset 
includes records from a variety of worldwide locations. 

4.1 Approach for estimating response distribution 

The goal in performing the dynamic analyses is to evaluate the probability distribution of the 
response with respect to a particular intensity level, or a range of intensity levels. In this section the 

rationale is presented as to why intensity should be expressed in terms of ܴ௬, which is a ‘relative 
measure’, rather than spectral displacement, ܵௗሺ ଵܶሻ, which is an ‘absolute measure’. 

To estimate the response distribution with good accuracy, all records should be considered. As 

different records exhibit different ܵௗሺ ଵܶሻ values, scaling needs to take place. Ideally, scale factors 

applied should not be much higher than the upper limits of 3 (Shome et al. 1998) or 4 (Iervolino and 

Cornell 2005). For the particular dataset used herein, the ܵௗሺ ଵܶሻ of the unscaled records had a 

maximum to minimum ratio of 56. If intensity was expressed in terms of ܵௗሺ ଵܶሻ, and records were 

normalized to the highest ܵௗሺ ଵܶሻ, unrealistically high scale factors would have been applied. 

Thus, the issue of scaling ground motions was tackled from a different angle, by expressing 

intensity in terms of ܴ௬, which represents the degree of nonlinearity experienced by the structure. In 

this way, at a given intensity level a uniform scale factor was applied to all ground motions. The 

physical meaning of increasing ܴ௬ is that ground motion is scaled up provided that ݑ௬ is equal to ݑ଴ 

of the unscaled ground motion, and that ݑ௬ remains unchanged throughout scaling; it can be 

deduced from equation (3) that ܴ௬ is equal to the scale factor. A range of ground motion intensities 

was investigated, by increasing ܴ௬ from 1 to 8, based on reaching the highest values (e.g. 8.5, ICBO 

1997) found in building codes. 

4.2 Engineering demand parameters 

The EDPs investigated are ߤௗ, and ܰܧܪ, both of which are relative EDPs. ߤௗ is a function of the 

ratio ݑ ⁄௬ݑ , and ܰܧܪ is a function of the ratios ݑ ⁄௬ݑ  and ݂ ௬݂⁄ ; it can be seen from equation (3) 

that both ratios depend on ܴ௬. Since ܴ௬ = ଴ݑ ⁄௬ݑ , it is inferred that the EDPs are not necessarily 
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dependent on ݑ଴ (and hence ܵௗሺ ଵܶሻ), and ݑ௬, when either is considered individually. In other words, 

if ݑ଴ is doubled, this does not by itself infer that ܴ௬ is also doubled; information about ݑ௬ is also 

needed to derive such a conclusion. 

The relative EDPs chosen to be investigated in the present study can be used collectively to provide 
an estimate of the structural damage state and collapse potential. One such application are damage 
indexes, such as the widely used Park-Ang index (Park and Ang 1985; Park et al. 1985), that are 
functions of a displacement-based EDP (e.g. maximum displacement), and an energy-based EDP 
(e.g. hysteretic energy dissipated). 

4.2.1. Displacement ductility factor 

Displacement ductility factor (DDF), ߤௗ, is the degree of inelastic displacement that the structure 
can experience before failure, defined as 

ௗߤ  = ௬ݑ௠ݑ  (4)

Fig. 2(a) shows the mean ߤௗ of all dynamic analyses, and Fig. 2(b) shows the coefficient of 

variation (COV) of ߤௗ. The estimates are compared to the relationships proposed by Ruiz-Garcia 
and Miranda (2003) derived through a statistical study using 216 records on a SDOF system with 
bilinear hysteresis. It is observed that the overall trends are similar in each graph, with the mean 
curves displaying better consistency than the COV curves. 

 

(a) (b) 

Fig. 2 (a) Mean ߤௗ, and (b) COV of ߤௗ. 

4.2.2. Normalized Hysteretic Energy 

Normalized Hysteretic Energy (Mahin and Bertero 1981), ܰܧܪ, is defined as the cumulative 

amount of the hysteretic energy dissipated, ܧு, normalized to the work required by the SDOF 
system to yield under monotonically increasing loading, given by the following equation  
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ܧܪܰ  = ௬ (5)ݑு௬݂ܧ

Fig. 3(a) shows the mean ܰܧܪ of all dynamic analyses, and Fig. 3(b) shows the COV. 

 

(a) (b) 

Fig. 3 (a) Mean ܰܧܪ, and (b) COV of ܰܧܪ. 

5 Proposed intensity measure 

The proposed vector-valued IM is denoted as  

 〈ܵ௔ሺ ଵܶሻ, ܵௗேሺ ଵܶ, ଶܶሻ〉 (6)

The first vector element is ܵ௔ሺ ଵܶሻ, which is an absolute measure. ܵ௔ሺ ଵܶሻ can be taken directly from 
most building codes and ground motion prediction models. It is required in the definition of the 
proposed IM to provide the level of intensity, given that the other vector element is relative and 
hence unitless. 

The second vector element is ܵௗேሺ ଵܶ, ଶܶሻ, which is a relative measure, given by 

 ܵௗேሺ ଵܶ, ଶܶሻ = 1ܵௗሺ ଵܶሻ ேܶ න ܵௗሺܶሻ݀ܶమ்
భ் ,   ଵܶ < ଶܶ

 

(7)

where ଵܶ is the initial fundamental period of the system, ଶܶ is an approximation of the elongated 

period of the system due to inelastic effects, ேܶ = 1.0	sec is a normalizing constant. ܵௗேሺ ଵܶ, ଶܶሻ is evaluated by integration of the displacement response spectrum from ଵܶ to ଶܶ, and 

normalization to ܵௗሺ ଵܶሻ. The normalization constant ேܶ is not dependent on either ଵܶ or ଶܶ. Due to 

normalization, the ܵௗேሺ ଵܶ, ଶܶሻ value does not change when ground motion is scaled. ܵௗேሺ ଵܶ, ଶܶሻ is 

statistically independent of ܵௗሺ ଵܶሻ, as explained later. In this way, ܵௗேሺ ଵܶ, ଶܶሻ captures the effect of 
the excitation spectral characteristics (i.e. frequency content) on the response. Thus, it is a measure 
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of intensity that affects the inelastic response associated with period elongation. In turn, the degree 
of period elongation depends on the frequency content, which is unique for each ground motion. 
Hence, the purpose of integrating the response spectrum is to capture the elongated period within 
appropriately estimated bounds. ܵௗேሺ ଵܶ, ଶܶሻ provides an indication of the local response spectrum shape between periods ଵܶ and ଶܶ. 

As noted in Fig. 4, which shows three displacement response spectra normalized to ܵௗሺ ଵܶሻ, the 

value of this parameter is subject to considerable variation. 

 

 

Fig. 4 Normalized Spectral Area between periods ଵܶ = 1.0	sec, ଶܶ = 2.0	sec : North Palm Springs ܵௗேሺ1.0,2.0ሻ = 0.69, San Fernando ܵௗேሺ1.0,2.0ሻ = 0.95, Duzce ܵௗேሺ1.0,2.0ሻ = 1.24. 

6 Statistical dependence between intensity and response 

6.1 Regression analysis 

Regression analyses were carried out between the IM and the EDPs, to find suitable models that 
describe their relationship and to evaluate their correlation. Regression analyses were carried out at 

each ܴ௬ level, by considering as the two regression variables ܵௗேሺ ଵܶ, ଶܶሻ, and each of the EDPs. 

The probability distribution of ܵௗேሺ ଵܶ, ଶܶሻ was evaluated for the integration intervals from ଵܶ =1.0	sec to ଶܶ = 1.4, 1.6, 1.8, 2.0,	and	2.2	sec. The empirical distribution of ܵௗேሺ ଵܶ, ଶܶሻ was then 

tested for conformity to the normal and lognormal distributions. The first method employed was 
Lilliefors test (Lilliefors 1967; Van Soest 1967), and the second method was visual inspection of the 
cumulative distribution graphs, shown in Fig. 5. It was concluded that the empirical distribution of ܵௗேሺ ଵܶ, ଶܶሻ can be characterized well by both distributions, at a significance level of ߙ௦ = 5%. 
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(a) (b) 

Fig. 5 Cumulative distribution function of (a) ܵௗேሺ1.0,1.6ሻ, and (b) ܵௗேሺ1.0,2.0ሻ. 
The empirical probability distribution of the EDPs was evaluated at each ܴ௬ level. For each EDP 

Lilliefors test was used to determine the conformity of the empirical distribution to a known 

distribution, at a significance level of ߙ௦ = 5%. Lilliefors test was complemented by a visual 

inspection of the cumulative distribution graphs. As a result, the distributions of both ߤௗ, and ܰܧܪ, 
were found to be lognormal. 

For the relationship between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and each of lnሺߤௗሻ, and lnሺܰܧܪሻ the simple linear 

regression model was adopted at each ܴ௬ level. An important conclusion is that the simple linear 

regression model is suitable for describing these relationships. This is illustrated in Fig. 6, which 
shows that the regression lines describe well the raw data. 

 

(a) (b) 

Fig. 6 Regression analysis between ln൫ܵௗேሺ1.0,2.0ሻ൯ and (a) lnሺߤௗሻ, (b) lnሺܰܧܪሻ. 
The correlation coefficient, ߩ, between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and each of lnሺߤௗሻ, and lnሺܰܧܪሻ was 
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estimated through the Pearson sample correlation coefficient, shown in Fig. 7. 

 

(a) (b) 

Fig. 7 Correlation coefficients, ρ, between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and (a) lnሺߤௗሻ, (b) lnሺܰܧܪሻ. 
It can be observed that ߩ is generally high, in the range 0.6-0.8, for both relationships. It is also 

observed that ߩ varies with ܴ௬ (i.e. the nonlinearity level). Some discrepancies exist between the ߩ 

curves in each graph. These are attributed to the ଶܶ value used, which is assumed to match the 

elongated period of the structure. At very low nonlinearity levels, i.e. ܴ௬ = 2, the highest ߩ is 

obtained using ଶܶ = 1.4	sec, while at moderate to high nonlinearity levels, i.e. ܴ௬ = 4 − 8, using ଶܶ = 1.6 − 2.2	sec results in the highest ߩ. Misestimating the true elongated period results in a ߩ 

lower than the highest possible ߩ. It is therefore confirmed that the ଶܶ value at which the highest ߩ 
is observed is dependent on the nonlinearity level. 

6.2 Parametric analysis 

The previous regression analyses were conducted for a SDOF system with specific parameters. To 
generalize these conclusions and investigate the domain of applicability of the IM, a parametric 

analysis was carried out. The two variables considered were ଵܶ, between 0.5 sec and 2.5 sec, and ߙ, 

between 3%-10% (Ruiz-Garcia and Miranda 2006). For the purposes of the parametric analysis ଶܶ 

was taken as equal to 2. 0 ଵܶ throughout, which is an upper bound approximation of the elongated 
period at the high nonlinearity levels, as suggested in some previous studies (Bojórquez and 
Iervolino 2011, Cordova et al. 2001). 

Using Lilliefors test the probability distribution of ܵௗேሺ1.5,3.0ሻ was found to conform well to the 

normal and lognormal distributions, and the distributions of ܵௗேሺ0.5,1.0ሻ and ܵௗேሺ2.0,4.0ሻ were 

found to conform well to the lognormal distribution, at a significance level of ߙ௦ = 5%. The 

distribution of ܵௗேሺ2.5,5.0ሻ was found not to conform to either the normal or the lognormal 

distributions, hence ଵܶ = 2.5	sec was rejected as exceeding the domain of applicability. 

Regression analysis was carried out using the simple linear model, for each ሺ ଵܶ,  ሻ combination, toߙ

find ߩ between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯, and each of lnሺߤௗሻ, and lnሺܰܧܪሻ. Fig. 8, and Fig. 9 show ߩ 
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plotted against ܴ௬, at ߙ = 3%, and ߙ = 10%, respectively. It can be observed that the ߩ trends are 

similar between the two figures, and also similar to the trends in Fig. 7. In particular, the maximum ߩ reached is in the range 0.6-0.9 for both lnሺߤௗሻ, and lnሺܰܧܪሻ. From the high ߩ observed it is 

concluded that ܵௗேሺ ଵܶ, ଶܶሻ is applicable within the domain of ଵܶ = 0.5 − 2.0	sec, and ߙ = 3%−10%. 

 

(a) (b) 

Fig. 8 Correlation coefficients between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and (a) lnሺߤௗሻ, (b) lnሺܰܧܪሻ, at ߙ = 3%. 

(a) (b) 

Fig. 9 Correlation coefficients between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and (a) lnሺߤௗሻ, (b) lnሺܰܧܪሻ, at ߙ = 10%. 

6.3 Estimation error in the correlation coefficient 

The estimation error in ߩ can be calculated using ‘Fisher-z’ transformation (e.g. Sachs 1984). In 

Fisher-z transformation the standard error is given by ሺܰ − 3ሻିଵ ଶ⁄ , where ܰ is the sample size. In 

the present regression analysis the sample size is 40, which corresponds to a standard error of 16%. 
This order of standard error is deemed higher than the desirable, which would ideally be 5-10%, yet 
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it is a result of the limitation in available records. 

6.4 Correlation of ܵௗேሺ ଵܶ, ଶܶሻ to other variables 

Regression analysis was carried out between ܵௗேሺ ଵܶ, ଶܶሻ ( ଶܶ = 2.0 ଵܶ), as the first regression 

variable, and each of ܵௗሺ ଵܶሻ, moment magnitude (ܯ), and Significant Duration (ܵܦ) (Trifunac and 

Brady 1975), as the second regression variable, within the ଵܶ range 0.5-2.0 sec. Fig. 10 shows the 

correlation coefficient, ߩ, plotted against ଵܶ. Such low correlation levels infer that these parameters 

can be assumed to be statistically independent, and therefore the IM can be used throughout the 

entire ଵܶ range investigated. Another analysis was carried out between the natural logarithms of 
these variables, with similar results. 

 

 

Fig. 10 Correlation coefficient between ܵௗேሺ ଵܶ, ଶܶሻ and (a) ܵௗሺ ଵܶሻ, (b) moment magnitude, and (c) 
Significant Duration. 

7 Appraisal of proposed intensity measure 

7.1 Desirable intensity measure characteristics 

Desirable characteristics of IMs are efficiency, sufficiency, and scaling robustness. 

Efficiency is the relatively low variance of the predicted EDP given the IM, ߪா஽௉|ூெଶ , obtained using 

ா஽௉|ூெଶߪ  = ሺ1 − ா஽௉ଶߪଶሻߩ  (8)

where ߪா஽௉ଶ  is the variance of the EDP. 

Equation (8) shows that the higher the ߩ, the lower is the ߪா஽௉|ூெଶ . The high ߩ found, in the range 

0.6-0.8, infer that ߪா஽௉|ூெଶ  is relatively low, especially at ܴ௬ ≥ 4. Furthermore, the efficiency should 

be seen with respect to the objective for which the proposed IM was developed, which, as 
mentioned earlier, is to be used in a GMSM method. Theophilou (2013) found that significant 
reduction in computational work results when using the proposed IM with a GMSM method for the 
response prediction of a SDOF system, due to the reduced number of records required to achieve 
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the same prediction accuracy. Therefore the proposed IM can be characterized as efficient. 

Sufficiency is the degree by which an IM can be used independently of any other seismological 

parameter, in estimating the probability ܲሺܯܫ|ܲܦܧሻ. Sufficiency can be expressed in terms of |ߩ|: 
the higher the |ߩ|, the lower the dependency of the EDPs on other parameters. At the upper limit, |ߩ| = 1.0, the EDP is a deterministic function of the IM, hence the former depends entirely on the 

latter; at the lower limit, ߩ = 0, the EDP is independent of the IM. The high ߩ found, in the range 
0.6-0.8, infer that the presented IM is highly sufficient, given the substantial variance of the 
seismological parameters of the ground motions, some of which are presented in Table A1. The high 

sufficiency is further evidenced by the low correlation to ܵܯ ,ܦ, and ܵௗሺ ଵܶሻ, as shown previously 

in Fig. 10. 

Scaling robustness is the degree by which using an IM results in an unbiased EDP estimation after 

scaling. As described earlier in this article, the EDPs examined are dependent on ܴ௬. Between ܴ௬ =4 and ܴ௬ = 8, which correspond to scale factors of 4 and 8, respectively (by scaling up ݑሷ௚ and 

keeping ݑ௬ constant), it is observed that there is no significant change in ߩ, which is maintained at 

high levels, in the range 0.6-0.8, for both  ߤௗ, and ܰܧܪ. The high correlation at the moderate to 

high nonlinearity levels infers that the concept on which the development of ܵௗேሺ ଵܶ, ଶܶሻ is based 
(i.e. that it tracks the elongated period on the response spectrum) stands true. If it is assumed that 
scale factors of 4 are legitimate, as Iervolino and Cornell (2005) suggest, then this is an indication 
that scale factors of 8 are also legitimate. This argument is based on the assumption that ground 
motion characteristics can be extrapolated to the intensity of the scaled record. It is possible, 
however, that other epistemic uncertainties invalidate this assumption, such as the frequency 
content of higher intensity earthquakes. Further cross-bin scaling comparisons are needed, which in 
practice cannot always be achieved due to the scarcity of high intensity records, if more reliable 
conclusions are to be derived with regard to the distortion caused by scaling. 

7.2 Comparison to epsilon 

The proposed IM was compared to 〈ܵ௔ሺ ଵܶሻ, Similarly to ܵௗேሺ .(Baker and Cornell 2006) 〈ߝ ଵܶ, ଶܶሻ, 
epsilon, ߝ, is an indicator of the response spectrum shape. The equation for epsilon, ߝ, is given 

below 

ߝ  = lnܵ௔ሺ ଵܶሻ − ,ܯlnௌೌሺߤ ܴ, ଵܶሻߪlnௌೌሺܯ, ܴ, ଵܶሻ  (9)

where ܴ is the distance to the fault. 

The compared parameter was the correlation coefficient, ߩ, between the IMs and each of the EDPs 

considered in this study, evaluated in the ܴ௬ range from 2 to 8. The random variable of vector 〈ܵ௔ሺ ଵܶሻ,  which is independent of scaling, and hence is also ,ߝ ,considered was epsilon 〈ߝ

independent of ܵ௔ሺ ଵܶሻ. 
The probability distribution of ߝ was found to be normal, using Lilliefors test and by visual 
inspection of the cumulative distribution graphs. The simple linear model was adopted in the 

regression analysis. To investigate the effect of ଵܶ, a parametric analysis was also conducted by 
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varying ଵܶ between 0.5 and 2.0 sec. The |ߩ| (shown as absolute value because ߩ is negative for ߝ) 
of each EDP are shown in Fig. 11. 

 

(a) (b) 

Fig. 11 Correlation coefficients between various IMs and (a) lnሺߤௗሻ, (b) lnሺܰܧܪሻ (Epsሺܶሻ: Epsilon 

at ܶ, ܵௗேሺ ଵܶሻ: ܵௗேሺ ଵܶ, 2.0 ଵܶሻ). 
It is observed in Fig. 11 that ܵௗேሺ ଵܶ, ଶܶሻ has a generally much higher |ߩ| than ߝ.  

The high efficiency of ߝ in estimating the inelastic response of a SDOF system is attributed to the 

fact that it contains information about the tendency of the response spectrum shape in the elongated 

period region (Baker and Cornell 2006). For two ground motions scaled to the same ܵ௔ሺ ଵܶሻ, the 

ground motion with lower ߝ tends to have a higher inelastic displacement, since the response in the 

elongated period region tends to be higher. However, ߝ is influenced by other characteristics of the 

response spectrum which are not related to the inelastic response of the SDOF system, such as the 

period region below ଵܶ and the period region beyond ଶܶ. ܵௗேሺ ଵܶ, ଶܶሻ is potentially more efficient 

than ߝ in estimating the inelastic response, because it is bounded between ଵܶ and ଶܶ, thus excluding 

the period ranges that do not affect the response. 

7.3 Using IM with GMSM methods 

The implication of high ߩ is that using the proposed IM with certain GMSM methods (Theophilou 
2013) is expected to result in an optimized response prediction, compared to using an IM with 

lower ߩ, or to random selection. Different ଶܶ should be used with respect to the nonlinearity level, 

so as to obtain the peak ߩ, on which the accuracy of the prediction depends. This observation can 

affect ground motion selection, as applied in building codes.  

7.4 Correlation between intensity and response using absolute and relative measures 

In this section it is explained that there is a conceptual difference between the correlation of a 

relative IM, such as ܵௗேሺ ଵܶ, ଶܶሻ, with a relative EDP, such as ߤௗ, and the correlation of an absolute 

IM, such as the Mean Spectral Displacement, ߂௠௘௔௡ (Hutchinson et al. 2002), defined in (10), with 
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a relative EDP, such as ߤௗ. 

௠௘௔௡߂  = 1ଶܶ − ଵܶ න ܵௗሺܶሻ݀ܶమ்
భ் ,   ଵܶ < ଶܶ

 

(10)

In the first example, a SDOF system with a given ݑ௬ is considered. As the EDPs examined are 

independent of ݑ௬ (when considered individually), the latter can correspond to any value. All 

ground motions are normalized with respect to ݑ଴ (i.e. ܵௗሺ ଵܶሻ) at any given ܴ௬, which is consistent 

with the intensity-based approach. The correlation between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺߤௗሻ, and 

between lnሺ߂௠௘௔௡ሻ and lnሺߤௗሻ are plotted in Fig. 12(a), using ଵܶ = 1.0	sec, and ଶܶ = 2.0	sec. It 
can be observed that the difference between the two lines is very small, which is attributed to the 

fact that the coefficient of variation of ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ is approximately equal to the coefficient of 

variation of lnሺ߂௠௘௔௡ሻ. Similar trend is observed in the correlation between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺܰܧܪሻ, and between lnሺ߂௠௘௔௡ሻ and lnሺܰܧܪሻ, plotted in Fig. 12(b). 

  

(a) (b) 

Fig. 12 Correlation coefficient between the IMs and (a) ߤௗ, (b) ܰܧܪ, for a system with given ݑ௬. 

In the second example, the ground motions match a particular earthquake scenario, defined by 
seismological parameters such as the magnitude and distance from fault. This is consistent with 
“objectives 1 and 2” in PEER Report 2009/01 (Haselton 2009), which allow for ground motions to 

be selected in this way. The system ݑ௬ is taken as equal to ݑ଴, for each unscaled ground motion, in 

this way applying a uniform scale factor to all ground motions. This is a theoretical example that 
can be used in parametric studies, whereas the previous example corresponds to a real system. The 

correlation between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺߤௗሻ, and between lnሺ߂௠௘௔௡ሻ and lnሺߤௗሻ, are plotted in 

Fig. 13, using ଵܶ = 1.0	sec, and ଶܶ = 2.0	sec. It can be observed that the correlation between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺߤௗሻ is the same as in the previous example, which is attributed to the fact 

that the two measures are relative and hence unitless, thus, they do not change with scaling. In 

contrast, the correlation between lnሺ߂௠௘௔௡ሻ and lnሺߤௗሻ is so low that can be regarded as zero, 
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which is attributed to the fact that ߂௠௘௔௡ is an absolute measure, whereas ߤௗ is a relative measure. 

Similar trend is observed in the correlation between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺܰܧܪሻ, and between lnሺ߂௠௘௔௡ሻ and lnሺܰܧܪሻ, plotted in Fig. 13(b). 

 

(a) (b) 

Fig. 13 Correlation coefficient between the IMs and (a) ߤௗ, (b) ܰܧܪ, for systems with ݑ௬ not 

normalized. 

It is, therefore, concluded that the correlation between a relative IM, such as ܵௗேሺ ଵܶ, ଶܶሻ, and a 

relative EDP, such as ߤௗ, and ܰܧܪ, is not dependent on the normalization of the ground motions. In 

contrast, the correlation between an absolute IM, such as ߂௠௘௔௡, and a relative EDP, such as ߤௗ, 

and ܰܧܪ, is dependent on the normalization of the ground motions. The same concept applies with 
other absolute IMs based on spectrum integration, such as the classical Spectral Intensity (Housner 
1952), the Acceleration Spectrum Intensity (Von Thun et al. 1988), the Displacement Spectrum 
Intensity (Bradley 2011). This infers that the proposed IM can be used in both intensity-based 
assessments, where ground motions are normalized, and also in scenario-based parametric studies, 
where ground motions are not normalized. 

7.5 Limitation of proposed intensity measure 

The proposed IM presents a limitation when applied in scenario-based assessments. This is 

exemplified using a SDOF system with ଵܶ = 1.0	sec and ݑ௬ = 0.010	m. The ground motions are 

scaled to match a particular earthquake scenario, defined by a moment magnitude of 8.5 and 
distance from fault of 15 km, adopting the procedure proposed by Ay and Akkar (2012). With this 
procedure a different scale factor is applied to each ground motion. The advantage of selecting 

ground motions in this way is that the aleatory variance in ܵ௔ሺ ଵܶሻ is maintained. The entire dataset 

of 40 ground motions has a coefficient of variation in ܵ௔ሺ ଵܶሻ of 0.83, and negligible correlation 

between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and lnሺߤௗሻ. It appears that this is a limitation of the proposed IM, 

attributed to the relatively high variance in ܵ௔ሺ ଵܶሻ, which results in a relatively high variance in the 

nonlinearity level. This limitation can be alleviated by selecting a subset of 10 ground motions, by 

eliminating the 15 lowest and the 15 highest ܵ௔ሺ ଵܶሻ. This subset has a reduced coefficient of 
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variation in ܵ௔ሺ ଵܶሻ of 0.13, and a correlation between ln൫ܵௗேሺ1.0,1.8ሻ൯ and lnሺߤௗሻ of 0.66. This 

correlation level is similar to the one obtained using a uniform scale factor throughout.  

8 Practical application 

8.1 Estimation of ଶܶ 

To obtain the most accurate response prediction, the optimum value of ܵௗேሺ ଵܶ, ଶܶሻ should be used. 

At the optimum ܵௗேሺ ଵܶ, ଶܶሻ the highest correlation to the EDPs is observed. This requires the 

estimation of the corresponding ଶܶ, which represents the highest elongated period of the SDOF 
system and is a function of the nonlinearity level. Theoretically, the user should first perform a 
rigorous regression analysis, with which to obtain correlation graphs similar those in Fig. 7, and 

subsequently select the optimum ଶܶ. In practice, however, this is a very computationally expensive 

task, and furthermore this task may be impeded by the limited number of available records. In this 

section a simplified procedure for estimating a suitable ଶܶ is presented. 

During the inelastic deformation of the system, period elongation is observed, which can be 

estimated via the secant stiffness, ݇௘௤, obtained by 

 ݇௘௤ = ݇௘ ௠ (11)ݑ௬ݑ

Rosenblueth and Herrera (1964) proposed a methodology for estimating the inelastic displacement 

of a system, using an equivalent linear system of period ௘ܶ௤, stiffness ݇௘௤, and damping ratio ߞ௘௤. 

The concept is that the energy dissipated by the original inelastic system of period ଵܶ and viscous 

damping ratio ߞଵ, equals the energy dissipated by the equivalent linear system, within one cycle of 
oscillation in simple harmonic motion. For a system with bilinear force-displacement relationship, ௘ܶ௤ is obtained using the equation (e.g. Chopra and Goel 2001) below 

 ௘ܶ௤ = ଵܶඨ ௗሻ1ߤሺܧ − ߙ + ௗሻ (12)ߤሺܧߙ

where ܧሺߤௗሻ is the mean ߤௗ at the ܴ௬ considered. An estimation of ܧሺߤௗሻ can be obtained using 

the aforementioned relationships by Ruiz-Garcia and Miranda (2003). 

Period ௘ܶ௤, obtained using equation (12), is contrasted in Fig. 14 to the estimated period ଶܶ at which 

the maximum correlation coefficient was observed. It is observed that, the EDP points show a 

reasonable conformity to the ௘ܶ௤ curve. It is, therefore, concluded that the proposed procedure for 

calculating ௘ܶ௤ can be used to obtain a reasonable estimate of ଶܶ. 
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Fig. 14 Estimation of period ଶܶ. 

A significant factor affecting the optimum ଶܶ is the sequence of pulse intensities in the ground 
motion. The authors are not aware of any existing methodology that allows for the sequence of the 

ground motion pulse intensities. The present estimation of a suitable ଶܶ ignores this significant 

factor and approaches the problem from a statistical analysis perspective. The estimation error 
resulting from the number of 40 ground motions used was calculated previously, and it is 
acknowledged that a larger number would have resulted in a reduced error. 

8.2 Practical calculation of ܵௗேሺ ଵܶ, ଶܶሻ 
The calculation of ܵௗேሺ ଵܶ, ଶܶሻ requires the prior calculation of ܵௗሺܶሻ between ଵܶ and ଶܶ. The 

spacing of the ܶ intervals should be small enough, e.g. 0.01 sec, so as to capture the jaggedness of 

the response spectrum. In practical application, the ܵௗேሺ ଵܶ, ଶܶሻ of each record can be efficiently 

calculated using a computer program. Due to large number of ܶ intervals, the manual calculation of ܵௗேሺ ଵܶ, ଶܶሻ is rather prohibitive. 

9 Conclusions 

A vector-valued IM has been presented, denoted as 〈ܵ௔ሺ ଵܶሻ, ܵௗேሺ ଵܶ, ଶܶሻ〉. The Normalized Spectral 

Area parameter, ܵௗேሺ ଵܶ, ଶܶሻ, is evaluated by integration of the displacement response spectrum 

between periods ଵܶ and ଶܶ, and normalization to ܵௗሺ ଵܶሻ. Due to the normalization, the ܵௗேሺ ଵܶ, ଶܶሻ 
value does not change when the ground motion is scaled. ܵௗேሺ ଵܶ, ଶܶሻ captures the effect of the 
ground motion frequency content and period elongation on the structural response. The proposed 
IM was developed with the intention of being used in a GMSM method aimed at estimating the 

damage state and collapse potential, wherein records are normalized to ܵ௔ሺ ଵܶሻ and the estimation of 

the full distribution of the response is sought. 

To evaluate the characteristics of the IM, dynamic analyses were conducted on a SDOF system 
using a dataset of 40 ground motion records. It was explained that by expressing ground motion 

intensity using ܴ௬ in the estimation of the response distribution, the problem of using unrealistic 

scale factors is avoided. The relative EDPs investigated were ߤௗ, and ܰܧܪ. Regression analysis 

was then carried out between ln൫ܵௗேሺ ଵܶ, ଶܶሻ൯ and each of lnሺߤௗሻ, and lnሺܰܧܪሻ, using the simple 

linear model. The correlation coefficients at moderate to high nonlinearity levels were found to be 
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in the range 0.6-0.8. The implication of such high correlation is that using the proposed IM with 
certain GMSM methods is expected to result in an optimized EDP prediction, contrasted to using an 
IM with lower correlation or to random selection. The parametric analysis carried out allows the 

generalization of the conclusions in the range of periods ଵܶ = 0.5 − 2.0	sec, and in the range of 

strain-hardening stiffness ܽ = 3% − 10%. Regression analysis has confirmed that the upper 

integration period ଶܶ, at which the peak ߩ was observed, depends on the nonlinearity level. This 
finding can affect ground motion selection as applied in building codes. 

Compared to 〈ܵ௔ሺ ଵܶሻ,  the proposed IM was found to have generally higher correlation with the ,〈ߝ
relative EDPs investigated. It was explained that the correlation between a relative IM, such as ܵௗேሺ ଵܶ, ଶܶሻ, and a relative EDP, such as ߤௗ, is not dependent on the normalization of the ground 

motions, which means that the proposed IM can be used in both intensity-based assessments, and in 
scenario-based parametric studies. The use in scenario-based assessments of real systems has 

certain limitations. Finally, a procedure was proposed for estimating ଶܶ, based on which a suitable ܵௗேሺ ଵܶ, ଶܶሻ can be found with respect to ܴ௬. 

10 Appendix 

Table A1 presents the dataset of 40 records used in the dynamic analyses. 

 

Earthquake Station Mom. 
Magnitud

Epicentr
al

Azimuth
/

 ૚ሻࢀሺࢇࡿ
[m/sec2

.ሺ૚ࡺࢊࡿ ૙, ૛. ૙
Loma Prieta 
18/10/1989 – 

CDMG 47379  
Gilroy Array #1 

6.93 28.64 000 1.088 1.60
090 3.077 1.45 

Victoria, Mexico 
09/06/1980 – 

UNAMUCSD 6604  
Cerro Prieto 

6.33 33.73 045 5.811 1.08 
315 2.613 0.99 

Coalinga 
02/05/1983 – 

CDMG 46175  
Slack Canyon  

6.36 33.52 045 2.404 1.28 
315 2.652 1.18 

San Fernando 
09/02/1971 – 

CDMG 126  
Lake Hughes #4  

6.61 24.19 111 0.678 1.05 
201 1.096 0.95 

Duzce, Turkey 
12/11/1999 

Lamont 531 7.14 27.74 000 0.758 1.24 
090 1.580 1.14 

Kozani, Greece 
13/05/1995 – 

ITSAK 99999  
Kozani  

6.40 18.27 L 1.245 1.10 
T 0.652 0.79 

Irpinia, Italy 
23/11/1980 – 

ENEL 99999  
Bagnoli Irpinio 

6.20 22.29 000 0.604 0.98 
270 0.638 1.19 

Whittier Narrows 
01/10/1987 – 

CDMG 24399  
Mt Wilson - CIT 

5.99 19.56 000 0.475 0.89 
090 0.259 0.67 

Basso Tirreno  
15/04/1978 – 

Milazzo 6.00 34 NS 0.396 0.94 
EW 0.312 1.26 

Montenegro  
15/04/1979 – 

Hercegnovi Novi –  
Pavicic School   

6.90 65 NS 1.684 0.80 
EW 1.680 0.99 

Tabas, Iran 
16/09/1978 

9102 Dayhook 7.35 20.63 LN 2.200 1.36 
TR 3.376 1.29 

Umbria Marche 
26/09/1997 

Assisi-Stallone 6.00 21 NS 0.468 1.18 
EW 0.231 1.77 

North Palm 
Springs 

CDMG 12206 Silent 
Valley - Poppet Flat

6.06 20.70 000 0.174 1.05 
090 0.362 0.69 
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Loma Prieta 
18/10/1989 – 

USGS 1032 
Hollister –  

6.93 49.52 270 0.864 0.91 
360 0.962 0.82 

Chi-Chi, Taiwan  
20/09/1999 

CWB 99999 
TCU045 

7.62 77.50 N 4.248 1.06 
E 2.922 1.09 

Northridge   
17/01/1994 – 

USC 90059 Burbank 
–  

6.69 23.18 060 0.879 1.16 
330 0.891 1.16 

San Fernando  
09/02/1971 – 

USGS 266 Pasadena 
–  

6.61 39.17 180 0.623 1.09 
270 1.388 0.83 

Whittier Narrows 
01/10/1987 – 

USC 90017  
LA - Wonderland 

5.99 28.48 075 0.126 1.30 
165 0.103 1.02 

Northridge   
17/01/1994 – 

USGS 5080 Monte  
Nido Fire Station 

6.69 19.19 270 0.492 1.01 
360 1.118 0.95 

Irpinia, Italy 
23/11/1980 – 

Auletta 6.90 33.10 000 0.469 1.83 
270 0.651 1.67

Table A1. Ground motion records. 

 

References 

Ambraseys N, Smit P, Sigbjornsson R, Suhadolc P, Margaris, B. (2002) Internet-Site for European 
Strong-Motion Data, European Commission, Research-Directorate General, Environment and 
Climate Programme. http://smbase.itsak.gr/. Accessed 19 September 2012. 

Ay BÖ, Akkar S. (2012) A procedure on ground motion selection and scaling for nonlinear response 
of simple structural systems, Earthquake Engineering and Structural Dynamics; 41(12): 1693-1707. 
DOI: 10.1002/eqe.1198. 

Baker JW, Cornell CA. (2006) A vector-valued ground motion intensity measures for probabilistic 
seismic demand analysis, Report 2006/08. Pacific Earthquake Engineering Center, Stanford 
University, California. 

Bojórquez E, Iervolino I. (2011) Spectral shape proxies and nonlinear structural response. Soil 
Dynamics and Earthquake Engineering; 31 (7): 996-1008. DOI: 10.1016/j.soildyn.2011.03.006. 

Bojórquez E, Iervolino I, Reyes-Salazar A, Ruiz SE. (2012) Comparing vector-valued intensity 
measures for fragility analysis of steel frames in the case of narrow-band ground motions. 
Engineering Structures; 45: 472-480. DOI: 10.1016/j.engstruct.2012.07.002. 

Bradley BA. (2011) Empirical equations for the prediction of displacement spectrum intensity and 
its correlation with other intensity measures. Soil Dynamics and Earthquake Engineering; 31 (8): 
1182-1191. DOI: 10.1016/j.soildyn.2011.04.007. 

Buratti N, Stafford PJ, Bommer JJ. (2011) Earthquake accelerogram selection and scaling 
procedures for estimating the distribution of drift response. Journal of Structural Engineering, 
American Society of Civil Engineers; 137 (3): 345-357. DOI: 10.1061/(ASCE)ST.1943-
541X.0000217. 

Chopra AK, Goel RK. (2001) Direct displacement-based design: Use of inelastic vs elastic design 
spectra. Earthquake Spectra; 17 (1): 47-64. DOI: 10.1193/1.1586166. 



22/23 

Clough RW, Johnston SB. (1966) Effect of stiffness degradation on earthquake ductility 
requirements. Proceedings of the Japan Earthquake Engineering Symposium. 

Conte JP, Pandit H, Stewart JP, Wallace JW. (2003) Ground motion intensity measures for 
performance-based earthquake engineering, Proceedings of the 9th International Conference in 
Applied Statistics and Probability in Civil Engineering, San Francisco, USA. 

Cordova PP, Dierlein GG, Mehanny SSF, Cornell CA. (2001) Development of a two parameter 
seismic intensity measure and probabilistic assessment procedure. Proceedings of the second US-
Japan workshop on performance-based earthquake engineering methodology for reinforced 
concrete building structures, Japan pp 195-212. 

Cornell CA, Krawinkler H. (2000) Progress and challenges in seismic performance assessment. 
PEER Center News 3 (2). 

Fajfar P, Vidic T, Fischinger M. (1990) A measure of earthquake motion capacity to damage 
medium-period structures. Soil Dynamics and Earthquake Engineering 9 (5): 236–242. 

Haselton CB. (2009) Evaluation of ground motion selection and modification methods, PEER 
Report 2009/01. Pacific Earthquake Engineering Centre, University of California, Berkeley. 

Housner GW. (1952) Intensity of ground motion during strong earthquakes. Earthquake Research 
Laboratory, California Institute of Technology, Pasadena, California. 

Hutchinson TC, Chai YH, Boulanger RW, Idriss IM. (2002) Inelastic seismic response of extended 
pile shaft supported bridge structures, Report 2002/14. Pacific Earthquake Engineering Center, 
Stanford University, California. 

Iervolino I, Cornell CA. (2005) Record selection for nonlinear seismic analysis of structures. 
Earthquake Spectra 21 (3): 685-713. DOI: 10.1193/1.1990199. 

International Conference of Building Officials (1997) Uniform Building Code, Volume 2: structural 
engineering design provisions. Whittier, California. 

Jacobsen LS. (1930) Steady forced vibrations as influenced by damping. ASME Transactions 52 
(1): 169-181. 

Lilliefors HW. (1967) On the Kolmogorov-Smirnov test for normality with mean and variance 
unknown. Journal of the American Statistical Association 62 (318): 399–402. 

Mahin SA, Bertero VV. (1981) An evaluation of seismic design spectra. Journal of Structural 
Division, Proceedings of ASCE 107 (ST9): 1777-1795. 

Mahin SA, Lin J. (1983) Construction of inelastic response spectra for single degree of freedom 
systems. UCB/EER-83/17, Earthquake Engineering Research Center, University of California at 
Berkley. 

Pacific Earthquake Engineering Research Center. (2005) NGA Database 2005. University of 
California at Berkley. http://peer.berkeley.edu/nga/. Accessed 18 February 2015. 

Park YJ, Ang AH-S. (1985) Mechanistic seismic damage model for reinforced concrete. Journal of 
Structural Engineering, American Society of Civil Engineers 111 (4): 722–739. DOI: 
10.1061/(ASCE)0733-9445(1985)111:4(722). 



23/23 

Park YJ, Ang AH-S, Wen YK. (1985) Seismic damage analysis of reinforced concrete buildings. 
Journal of Structural Engineering, American Society of Civil Engineers 111 (4): 740–757. DOI: 
10.1061/(ASCE)0733-9445(1985)111:4(740). 

Rosenblueth E, Herrera I. (1964) On a kind of hysteretic damping. Journal of the Engineering 
Mechanics Division, Proceedings of the American Society of Civil Engineers 90 (EM4): 37-48. 

Ruiz-Garcia J, Miranda E. (2003) Inelastic displacement ratios for evaluation of existing structures. 
Earthquake Engineering and Structural Dynamics 32 (8): 1237-1258. DOI: 10.1002/eqe.271. 

Ruiz-Garcia J, Miranda E. (2006) Residual displacement ratios for assessment of existing 
structures. Earthquake Engineering and Structural Dynamics 35 (3): 315-336. DOI: 
10.1002/eqe.523. 

Sachs L. (1984) Applied Statistics – A Handbook of Techniques, second edition. Springer-Verlag. 

Shome N, Cornell CA, Bazzuro P, Carballo JE. (1998) Earthquakes, records and nonlinear 
responses. Earthquake Spectra 14 (3): 469-500. DOI: 10.1193/1.1586011. 

Theophilou AI. (2013) A ground motion selection and modification method suitable for 
probabilistic seismic assessment of building structures, PhD Thesis. Faculty of Engineering and 
Physical Sciences, University of Surrey, Surrey, UK. 

Theophilou AI, Chryssanthopoulos MK. (2011) A ground motion record selection procedure 
utilizing a vector-valued IM incorporating normalized spectral area. Proceedings of the 11th 
International Conference of Applied Statistics and Probability in Civil Engineering, Zurich, 
Switzerland. 

Trifunac MD, Brady AG. (1975) A study on the duration of earthquake strong motion. Bulletin of 
the Seismological Society of America 65 (3): 581–626. 

Van Soest J. (1967) Some experimental results concerning tests of normality. Statistica, Neerlandica 
21: 91–97.  

Von Thun JL, Roehm LH, Scott GA, Wilson JA. (1988) Earthquake ground motions for design and 
analysis of dams. Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-
Motion Evaluation, Geotechnical Special Publication, American Society of Civil Engineers 20:463–
481. 

 


