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
Abstract—In this paper, the design and underpinning technical 

principles of the novel design of a negative pressure wave 
(NPW)-based pipeline leak detection (PLD) system has been 
reported, which is configured using Fiber Bragg Grating (FBG) 
pressure sensors. To evaluate this, a pipeline leakage test platform 
has been established and experiments have been conducted, to 
verify the performance of a system using this FBG-based 
approach. The results show that a system using FBG-based 
sensors can accurately determine the pressure change trends 
along the pipeline and thus allow the calculation of the NPW 
velocity online. A key comparison is made with traditional NPW 
detection techniques, showing that the novel detection system is 
capable of achieving the higher leak-location accuracy and the 
detection of smaller leakage volumes. This arises from the ability 
of the FBG-based system to allow an increased number of sensors 
to be multiplexed along the pipeline. Their corresponding output 
signals generated show a very satisfactory, high signal-to-noise 
ratio. The system has been evaluated, especially in its response to 
extraneous signals and thus disturbances caused by the pump 
starting or stopping can be eliminated. This was achieved through 
an analysis of the time sequence of the pressure changes captured 
by the multi-sensor array being carried out and thus immunity to 
such effects demonstrated. The system has thus been designed to 
minimize the instances where a false alarm occurs.   

Index Terms—Pipeline leak detection (PLD), negative pressure 
wave (NPW), pressure sensor, fiber Bragg grating (FBG), 
pressure change.  

I. INTRODUCTION 
IPELINES represent one of the most economical 

solutions to transport large quantities of oil, gas, chemicals 
and water over land, with the advantages of large volume, 
continuous operation, low cost and freedom from climatic 
impact and other limitations [1]. Pipeline transportation has 
become the fifth major transportation method following roads, 

Jiqiang Wang, Lin Zhao, Tongyu Liu, and Zhen Li are with Laser Institute of 
Shandong Academy of Sciences, No. 28789 Jingshidong Road, Jinan city, 
Shandong Province, China (e-mail: jiqiang.wang@sdlaser.cn; lin.zhao@ 
sdlaser.cn; tongyu.liu@iss-ms.com; zhen.li@sdlaser.cn). 

T. Sun, and K. T. V. Grattan are with the Photonics & Instrumentation 
Research Centre and City Graduate School, City University London, London, 
EC1V 0HB, U.K. (e-mail: T.Sun@city.ac.uk; k.t.v.grattan@city.ac.uk). 
Support from the Royal Academy of Engineering and the George Daniels 
Educational Trust is greatly appreciated. 

railways, waterways and aviation: it is often termed ‘lifeline 
engineering’. The total length of pipelines constructed for 
transportation across the globe is approximately 3,800,000km, 
as of 2014 [2]. Many more pipeline projects are in the planning 
stage with others under construction currently, most of which 
are distributed in densely-populated areas. Pipeline incidents 
such as pipeline explosions, breaks, leakages, illegal drilling 
into pipes and stealing oil have occurred in recent years and can 
present a problem to users and to the environment. Apart from 
unwanted human interactions (such as accidental damage, theft 
or sabotage) these problems are typically caused by mechanical 
aging, construction defects and pipeline corrosion [3], [4]. As a 
consequence, an effective pipeline leak detection (PLD) system 
is essential. This is both to ensure effective transportation of 
what may be an expensive fluid over long distances and to 
avoid any possible hazards to the environment as a result of 
pipeline leaks. 

The most effective pipeline detection techniques integrate 
knowledge that is both multi-disciplinary and multi-domain. At 
present, there are many methods and techniques reported for 
PLD [5], [6], the most important being leaking medium 
detection [7], [8], pipe wall parameter detection [9], the use of 
acoustic principles [10], [11], and optical fiber sensing 
detection [12], [13]. These methods differ in cost, effectiveness 
and applicability to different situations as well as how they may 
be deployed for long lengths of pipe, and in different weather or 
climatic conditions, for example. 

The negative pressure wave (NPW) method is the most 
widely used, among all the acoustic methods and is based on 
the assumption that a leak occurs between two points where 
two pressure sensors are installed. The principle is as follows: 
based on the NPW velocity, the wave arrival time difference 
and the known distance between the two pressure sensors, the 
leak location can thus be determined. This method is sensitive, 
accurate, adaptable and does not require the establishment of a 
detailed pipe model. This forms the basis of the novel approach 
taken in this paper, which is original in the use of specially 
designed Fiber Bragg Grating (FBG)-based sensors to replace 
the more familiar piezo- or MEMS-based sensors used in 
conventional systems. This is not a trivial substitution but has 
required a careful redesign of the transducer to incorporate the 
FBGs and thus to take advantage of the characteristics of FBGs 
that piezo- or MEMS-based systems do not show – for example 
in the signal processing or the use of long distances between 
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sensors. Further, a two-point pressure detection system has 
shown limitations due to the weak signals often generated – this 
work extends it to a multi-point system. In recent years, the 
research focus has often been on the signal extraction using 
various methods or algorithms [10], [11], for example, wavelet 
transform, fuzzy support vector machine analysis, empirical 
mode decomposition, Kalman filtering, etc, in order to identify 
the weak leak signatures. In addition, the familiar, traditional 
two-point pressure detection system may not function well due 
to what may be severe signal attenuation accompanying the 
need for increasing pipeline length. Tian et al. have proposed 
an approach in which the pressure sensors are distributed along 
the pipeline and simulation analysis has been carried out [11], 
but this system proposed still shows large location errors 
because the NPW velocity is assumed to be constant. Therefore, 
for long-distance PLD with accurate location identification, a 
new and improved method is required. This is achieved in the 
original approach in the work. 

As a recent sensing technology, optical fiber methods have 
been widely reported and are suitable for PLD. Optical 
fiber-based methods offer a very satisfactory solution to 
measurement needs of this type: the sensors are physically 
robust and have the advantages of small size, light weight, 
resistance to corrosion and low signal loss [14]-[16]. The 
techniques reported in recent years for fully distributed fiber 
optic monitoring have mainly focused on the use of fiber optic 
sensor systems based on Brillouin scattering, Raman scattering 
or interferometry and these have been tested on some pipelines 
[12], [13]. However, such techniques have shown some 
limitations for practical use. The Raman scattering-based 
system can only monitor leakages which lead to temperature 
change and with the Brillouin scattering-based technique, the 
signal processing poses a major challenge. An 
interferometer-based system is typically susceptible to 
environmental changes which are not necessarily related to the 
leaks themselves and in many cases these systems, discussed 
above, are too expensive to implement when lower value fluids 
are transported. 

By contrast, FBG techniques have been widely used and 
shown themselves robust for structural condition monitoring, 
due to their straightforward multiplexing capability, ease of the 
sensors being embedded, high reliability and moderate cost 
[17], [18]. Researchers have attempted to measure the PLD 
through the use of FBG-based sensing technology where, in the 
literature, a FBG strain monitoring device has been reported to 
measure the pipeline hoop-strain caused by the resulting 
pressure change [10], [19]. However such a simple approach is 
prone to false alarms because many different factors can cause 
pipeline strain, such as the temperature changes, vibration and 
so on and thus there are problems with its use in leak detection. 

This paper proposes an innovative, robust and improved 
method to replace the two-point pressure sensor approach with 
a novel quasi-distributed multi-point pressure sensor scheme. 
To do so exploits the favorable characteristics of FBGs as the 
basis of the sensor system and through the use of transducers 
configured with that technology, establishes a novel 
NPW-based methodology well suited to pipeline leak detection, 

offering high accuracy and reduced false alarms. 
II. MONITORING SYSTEM PRINCIPLE AND SCHEME

A. NPW-based Detection Principle 

 Fig. 1 illustrates a schematic of a section of a pipeline where 
a leak occurs between two points where two pressure sensors 
are installed. In the presence of a leak, the pressure at that 
leakage point will drop and this pressure change will spread 
upsteam (towards Sensor 1) and downstream (towards Sensor 2) 
along the pipeline. This occurs at the same velocity as the 
acoustic wave travelling in fluid, this being the negative 
pressure wave. Based on the NPW velocity, the wave arrival 
time difference at the two pressure sensors and the (known) 
distance between the sensors, the leak location can thus be 
determined through the following analysis. 

It may be assumed that the pipeline length is L, the flow rate 
of the medium in the pipeline is u and the flow direction is from 
Sensor 1 to Sensor 2, the NPW propagation velocity is v. The 
position of Sensor 1 is set as the reference starting point, the 
leakage point is assumed to be at position X and the arrival 
times of NPW at both ends of the pipe are t1 and t2, respectively. 
The following then apply: 
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If Δt=t1-t2, then the leakage point, X can be determined by 
using the following equation: 

    22
2
1 uvtuvLvX     (2) 

In general, a typical NPW propagation velocity is 
approximately 900-1200m/s in oil and 1000-1500m/s in water. 
Compared to the above, the liquid flow rate u in the pipeline is 
typically within the range of 1-3m/s, which can be considered 
to be negligible. Therefore Eq. (2) can be simplified to: 

 tvLX  2
1  (3) 

From Eq. (3), it can be concluded that the accuracy with 
which the actual leak location can be determined is influenced 
by several key factors: the pipe length, the NPW velocity and 
the time difference measured for the NPW arriving at both ends 
of the pipe. In practical applications, the increase of the pipe 
length will cause signal attenuation of the NPW and thus a 
limitation in the use of such a two-point monitoring system. 

In any practical pipeline system, there are sources of 
interference – thus not only the leakage itself but also the 
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 Fig. 1. NPW leak detection principle with a two sensor system, Sensor 1 and 
Sensor 2 [20]. 



effects of the normal operation of the system (e.g., pump 
adjustment / start / stop) may also produce a NPW and this may 
cause a false alarm if not recognized. As a result, in traditional 
NPW-based systems, it may become difficult to identify 
whether the NPW is caused by leakage or one of these 
interfering effects, potentially causing false alarm errors. 
B. NPW-based PLD System Using FBG Pressure Sensors 

 Fig. 2 illustrates the novel NPW-based leak detection system, 
proposed in this work, to overcome the limitations discussed in 
the above (Section II (A)). The system has been designed to 
comprise an array of FBG-based pressure sensors, a 
transmission cable, a fast FBG interrogator, a monitoring host 
and the usual related instrumentation accessories. This 
approach takes advantage of the communication optical cable 
being present along the length of the pipeline as the signal 
transmission channel, and makes full use of the wavelength 
coding and multiplexing capabilities of the FBGs, whose 
transducer properties lie at the heart of the sensor system. 

Each of the FBG-based pressure sensor devices used is 
configured as a robust unit which includes a beam, a bellows 
and two FBGs bonded symmetrically on opposite sides of the 
beam, as shown schematically in Fig. 3 (a) and in Fig. 3 (b). 

 The sensor operates as follows – when the medium inside the 
pipeline exerts a pressure change, P, on the bellows, the 
deformation of the bellows disturbs the balance of the beam, 
which has been designed to be of ‘equal-strength’, thus 
allowing for the translation from the pressure change to the 

bending of the beam. The latter can be quantified by monitoring 
the wavelength shifts of the two FBGs in opposite directions. 
Both FBGs are specifically written into the optical fiber to have 
the same temperature coefficient, kT, and strain coefficient, kP, 
and the wavelength shifts of both FBGs caused by the 
environmental temperature effect would be identical. Therefore, 
the total wavelength shifts of the two FBGs can be described as 
follows: 

TkPk
TkPk

TP
TP




2
1

  (4) 
where the subscripts, 1 or 2, on each Δλ1,2 above signifies 
FBG-1 or FBG-2 respectively. Δλ is thus defined as follows, 
showing a direct measure of the pressure change. 

Pk P 221                         (5) 
Thus this FBG-based pressure sensor unit not only offers a 

high sensitivity for pressure measurement, but also inherently 
overcomes the cross-sensitivity of FBGs to temperature 
variation by using the inbuilt differential structure. These 
sensors are not fragile to use and thus high sensitivity pressure 
sensors of this type may be installed at known intervals along 
the pipe, allowing a linear sensor array to be formed, as shown 
in Fig. 2. 
C. Leak Location Identification 
(i) Identification of the leak zone 

The FBG-based pressure sensors discussed form the basis of 
the overall sensor system. The devices (which are shown in Fig. 
3 were uniformly distributed along the pipes, and the outputs 
were connected to a fast FBG interrogator, in series or in 
parallel. The demodulation data obtained were processed 
through the development of a new software, following the 
scheme in the flow-chart shown in Fig. 4, by first identifying 
the zone where the leak occurs. Next the NPW method 
(discussed in detail in Section II (A)) is used to calculate the 
leak location to high precision.  

 Fig. 4 shows the sensor response situation clearly: if there is 
no leak, none of the sensors picks up the negative pressure 
(point ‘a’ on Fig. 4) and if there is any interference, a single 
localized sensor only would indicate the change (point ‘b’). If 

…… …… 
Station A Station B

Sensor 1 Sensor 2 Sensor i Sensor i+1 Sensor n
Leakagepoint 
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Fig. 2. Schematic of the PLD system using FBG-based pressure sensors. 

(a) 

(b) 
Fig. 3. Illustrations of the FBG-based pressure sensor designed: (a) Pressure 
sensing schematic; (b) FBG pressure sensor structure   1,  iiis XLX

 Fig. 4. Flow-chart for NPW leak location using FBG-based pressure sensors. 



there is a leak, the NPW generated by the leak would first be 
monitored by the two neighboring sensors, between which the 
leak occurs (point ‘c’). Further, the closer the sensor is to the 
actual leak, the sooner it will capture the signal associated with 
the pressure change as the pressure wave spreads out. After the 
identification of the leak zone, the NPW velocity then is 
calculated (point ‘d’): this calculation takes into account any 
interference effects (point ‘e’). Finally Eq. (3) is used to 
calculate the location of the leak (point ‘f’ on Fig. 4). 
(ii) NPW velocity calculation and elimination of false alarms 

The NPW propagation velocity, v, in the pipe will vary with 
the temperature distribution and the pressure distribution along 
the pipeline – this velocity cannot simply be considered to be 
constant as various interference effects can influence it. For 
example, under normal working conditions (e.g., when the 
pump is starting or stopping), negative pressure can also be 
induced and this could be one of the main sources of false 
alarms. In addition, the effect of temperature on the NPW 
velocity must be considered; here v should not be considered as 
a constant even though there are temperature and / or pressure 
variations. 

Using the setup discussed, a novel FBG-based approach to 
determine the NPW velocity is presented. This utilizes the 
distance of any two sensors from the leakage point and the time 
difference of the signals received at these two sensors capturing 
the pressure variation, thus 
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In Eq. (6), tl, tl+m are respectively the times at which the 
signal is received by Sensor l and Sensor l+m (thus capturing 
the pressure variation) and Ll,l+m is the distance along the pipe 
between the two sensors. Here l, m are positive integers (1≤l
≤i-1 and 2≤l+m≤i, or i+1≤l≤n-1 and i+2≤l+m≤n) and it
is assumed that the leak occurs between Sensor i and the next 
sensor along, Sensor i+1). 

A method to eliminate the false alarms that is important for 
the success of the scheme is proposed in this paper. To do so 
takes into account the output of another sensor, Sensor j (j=3, 
4, …, i-1). The source of the pressure change is determined 
knowing the distance between the adjacent sensors (L1,2 is the 
distance between Sensor 1 and Sensor 2, L2,j is the distance 
between Sensor 2 and Sensor j) and the time difference of the 
corresponding sensors capturing the pressure change. Thus if 
the time signal from the pressure change, captured by Sensors 1, 
2 and j are respectively t1, t2, tj, and 
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then it can be concluded that the pressure changes are not 
caused by pipeline leakage but by extraneous ‘noise’ effects – 
such as is seen from the often routine operation of the pressure 
pump at Station A (as shown in Fig. 2). The disturbances 
caused by the pump at Station B could be eliminated by using 
the same method. 
(iii) Leak location identification 

Section (i) has shown the determination of the leak zone and 
Section (ii) the calculation of NPW velocity and elimination of 

false alarms. Now the leak location can be calculated accurately 
using Eq. (3). As illustrated in Fig. 2, the leakage point has been 
determined (in a preliminary estimation) to lie at a point 
between Sensor i and Sensor i+1. Thus the length, Xi,i+1 represents the distance between the leakage point and the 
monitoring starting point (at Sensor i, where the distance to 
Sensor 1 is Ls(i)=(i-1)L/(n-1)) – it can be obtained using Eq. (3).  1,1,1, 2

1
  iiiiii tvLX   (8) 

In Eq. (8), Δti,i+1 is the time difference determined from the 
signals at the two sensors first capturing the pressure change, 
and Li,i+1 is the distance between the two sensors, Li,i+1=L/(n-1). 
So the distance of the leakage location from Sensor 1 can be 
expressed as: 
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III. PIPELINE LEAK TEST PLATFORM AND EXPERIMENTAL 
SYSTEM 

A. Pipeline Leak Test Platform 
TABLE I 

PIPELINE LEAK TEST PLATFORM PARAMETERS 
Parameter Value 

Pipe diameter 100mm 
Length 112m 

Material Carbon steel 
Young's modulus 2.0-2.1*105MPa 

Wall thickness 2mm 
Leak hole diameter 32mm (Adjustable) 
Operation pressure 0-0.4MPa 

Tank volume 1*1.4*1.5m3 

 To evaluate this, a pipeline leak test platform was 
constructed, using water as the fluid and transmission medium, 

(a) 

(b) 
Fig. 5. Pipeline leak test platform: (a) photo of the test platform; (b) pipeline 
layout with ‘artificial’ leaks built in at various known points. 



and composed of a water tank, a pressure pump, a section of 
pipeline with 5 sensor mounting holes and 3 simulated leaks, 
and a pipeline-pressure adjusting device. The detailed 
specifications are given in Table I. The pipeline is arranged in a 
spiral shape, and supported by steel brackets, as illustrated in 
Fig. 5 (a). In addition, a standard pressure gauge and a standard 
commercial flow meter are installed in this platform for 
cross-comparison. The positions of the 5 sensor mounting holes 
and the 3 simulated leaks are as shown in Fig. 5 (b). 
B. FBG-based Pressure Sensors Calibration 

To evaluate the performance of these sensors the following 
procedure is applied. Standard, known pressures in the range 
from 0.1MPa to 1MPa are applied to enable an accurate 
calibration of 5 similar FBG-based pressure sensors (of the type 
shown in Fig. 3) and a linear fitting is carried out (using the 
least squares method) of the data. Using the information from 
this calibration, the appropriate fitting coefficients and the 
correlation coefficients for these 5 sensors were obtained and 

are shown in Fig. 6. The data from this figure indicates that the 
sensor network installed on the pipeline can achieve both good 
pressure sensitivity and linearity in performance. 

 
C. Sensors and Wavelength Interrogation 

A NPW-based PLD system using the FBG-based pressure 
sensors described above has been set up, with the sensors 
placed as shown in Fig. 2. In this system, the 5 pressure sensors, 
calibrated as described before (from the data in Fig. 6), are 
installed along the pipeline, with their wavelength outputs 

monitored using the same 8-channel interrogating system (type 
GC-97001C-8, with a scanning frequency of 1000Hz and 
supplied by Arcadia Optronix Company, Zhuhai City, China). 
With a fiber length of less than 50m, the optical signal 
transmission delay in the fiber is assumed negligible. 

(a)    (b) 

(c)                                                                                                            (d) 
Fig. 7. De-noising by wavelet transform: In each case for Sensors 1 – 5 (a) Original signal; (b) De-noised signal; (c) Original signal at pressure change; (d) 
De-noised signal at pressure change 

 Fig. 6. Calibration of five different pressure sensors of the type shown: fitting 
between the calibration pressure and the measured value of Δλ.



D. De-noising by Use of a Wavelet Transform Approach 
An important consideration when using the NPW-based PLD 

method is to detect, as accurately as possible, the pressure 
change point associated with the leak, in the knowledge that 
extraneous noise will cause errors. Therefore it is necessary to 
minimize the noise to achieve greater measurement accuracy 
and to do so, the wavelet transform method is used to filter the 
signals received. This approach has excellent characteristics of 
time-frequency localization, and benefits the measurement 
through enabling the key features of the signals received to be 
more evident, while at the same time effectively reducing the 
interfering noise signals. 
E. Experimental Measurement Parameters 

The experiment carried out had the following experimental 
parameters: a starting pressure of 0.32MPa; a water 
temperature of 16℃ and an average flow rate of 29.5m3/h.  The 
3 valves which were used in the pipeline (Fig. 5) to simulate a 
leak were fully opened and then closed successively, following 
which the pressure pump was shut down. The signal data 
received from the 5 pressure sensors, located as shown in Fig. 
5(b), are illustrated in Fig. 7. Analyzing the results, it can be 
seen that Fig. 7 (a) shows the original pressure signals collected 
by all the 5 installed sensors and Fig. 7 (b) indicates the 
‘de-noised’ signal, after applying a 4-layer decomposition by 
using the ‘sym8’ wavelet. It can be seen that the result of 
de-noising is successful in providing the greater clarity needed 
to allow the simulated leak situation to be well understood. 
Details of the differences can be seen when the original and 
de-noised signals are amplified, being monitored at the time of 
opening valve 1, as shown in Fig. 7 (c) and (d). As clearly 
indicated in Fig. 7 (d), the first two sensors to receive the 
negative pressure signals are Sensors 1 and 2, indicating that 
the leak is located in the zone between these two sensors. The 
analysis further confirms the value of the wavelet de-noising 
approach, as it yields excellent performance in maintaining the 
desired local signal characteristics at the pressure change. This 
then allows the next step in locating the leakage points 
precisely to be taken. 
F. NPW Velocity Calculation 

The NPW velocity can be calculated using Eq. (6).  Here 
Table II shows the time measured for the arrival of the first 
pressure change signal at the 5 different sensors (when, in this 
experiment, the simulated leak is caused by the opening of 
valve 1). 

In this simulation, the pipeline length in the test platform is 
comparatively short (at just over 100m), so small deviations in 
the time difference of the pressure change signals received from 
the two sensors may cause larger errors in NPW velocity 
calculation (using Eq. (6)) than would happen in practical 
situations where the pipeline length is much longer (many 
hundreds of meters, or kilometers). To decrease the 
measurement error, the NPW velocity can be determined from 
a knowledge of the distance between Sensor 2 and Sensor 5 and 
the time difference between the signals received from the two 
sensors capturing the pressure change (together with a 

knowledge of v=1277.42m/s). 
TABLE II 

TIME FOR THE PRESSURE CHANGE SIGNAL TO ARRIVE AT THE 5 SENSORS 
Sensor number 1 2 3 4 5 

Sensor location (m) 0 23.6 50.3 76.7 102.8 
Time for pressure 
change signal (s) 3.767 3.773 3.794 3.815 3.835 

Assuming j=5 in Eq. (7) and the data recorded in Table II 
may then be substituted into Eq. (7), where the following can be 
obtained: 
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As it is evident that the two values are not equal, it can 
readily be deduced that the pressure change is caused by 
leakage occurring between Sensor 1 and Sensor 2. 
G. Leak Location – Experimental Evaluation and Comparison 
of ‘Traditional’ and Novel FBG-based Sensor Systems 

TABLE III 
TRADITIONAL NPW-BASED METHOD 

Leak 
position

(m) 
0.32MPa 0.25MPa 0.13MPa 

Location
(m) 

Relative 
error 

Location
(m) 

Relative 
error 

Location
(m) 

Relative 
error 

7.8 7.3 0.49% 8.6 0.78% 8.6 0.78% 
32.3 31.9 0.39% 31.8 0.49% 32.5 0.19% 
73.3 72.2 1.07% 70.9 2.33% 69.7 3.50% 

TABLE IV 
NOVEL NPW-BASED METHOD USING FBG PRESSURE SENSORS 

Leak 
position

(m) 
0.32MPa 0.25MPa 0.13MPa 

Location
(m) 

Relative 
error 

Location
(m) 

Relative 
error 

Location
(m) 

Relative 
error 

7.8 7.9 0.10% 7.40 0.39% 8.1 0.29% 
32.3 31.2 1.07% 32.4 0.10% 32.6 0.29% 
73.3 73.3 0.00% 73.5 0.19% 73.4 0.10% 

A comparison is now made between the results from a 
‘traditional’ NPW-based PLD unit (composed of Sensor 1 and 
Sensor 5) and the average NPW velocity v=1259.2m/s at 
0.22MPa (this being used as the reference velocity) and the 
novel NPW-based PLD system, composed of Sensors 1-5. 
Tables III and IV show the comparison of the performance of 
the leak locating methods and the accuracy in leak location 
obtained. This is compared to the ‘traditional’ NPW-based 
method (Table III - using Eq. (3)) and the novel NPW-based 
method (Table IV – using Eq. (9)). From the data in the Tables, 
it can be seen that the location error using the ‘traditional’ 
system increases approximately with the decrease of pipe 
pressure, but the novel method based on the quasi-distributed 
FBG pressure sensors is less affected by the pipe pressure 
change, and has higher location accuracy than the ‘traditional’ 
method. This validates the use of the novel FBG-based 



IV. CONCLUSIONS AND FUTURE WORK
In this paper, a novel NPW-based PLD system using 

specially-designed quasi-distributed FBG pressure sensors has 
been reported, and used to monitor the pressure distribution of 
the medium used in the pipeline. The feasibility of this 
innovative approach and the high pipeline location accuracy 
have been verified by a series of experiments, using a special 
pipeline creating a simulated leak-test platform. The detection 
system implemented can accurately determine the pressure 
change trends along the pipeline and allow the calculation of 
the NPW velocity. Also, this novel detection system is capable 
of achieving the high leak location accuracy required, as well as 
enabling the monitoring of smaller leakage levels, due to the 
reduction of the signal attenuation which is monitored. This is 
done through increasing the sensor location density along the 
pipeline. At the same time, noting the time sequence of the 
pressure changes captured by the linear sensor array, the signal 
interference effects (such as are caused by the starting or 
stopping of the pump) can be reduced and therefore the leakage 
false alarm rate is reduced. All these are positive features of the 
FBG-based sensor system discussed in this work. 

The evaluation was carried out in the laboratory, and at a 
controlled room temperature. It is well known that the NPW 
velocity and the NPW signal characteristics will vary with the 
temperature of the medium [21]. Future work will tackle this 
aspect through the addition of FBG-based temperature sensors 
to the system. Thus the temperature distribution along the 
pipeline can additionally be obtained and where needed a 
correction applied before the pressure change data are 
calculated. On-going work will also look to support the 
experimental research with the development of a more 
complete mathematical model for the pipeline operation, based 
on this type of quasi-distributed pressure and temperature 
distribution information. Thus the overall aim is for better 
pipeline integrity monitoring and to be able accurately to locate 
and tackle leak incidents. 
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