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ABSTRACT 

Fuzzy logic techniques have been widely used in civil and earthquake engineering 

applications in the past four decades. However, no thorough research studies were 

conducted to use them for deriving attenuation relationships for peak ground accelerations 

(PGA). This paper is an attempt to fill this gap by employing a fuzzy approach with fuzzy 

sets for earthquake magnitude and distance from source with the objective of proposing 

new ground motion attenuation models.  Recent earthquake records from USA and Taiwan 

with magnitudes 5 or greater were used; and consisted of horizontal peak ground 

acceleration recorded on three different site conditions: rock, soil and soft soil. The use of 

Fuzzy models to quantify ground motion records, which are typically characterized by a 

high level of uncertainty, leads to a rational analytical tool capable of predicting accurate 

results. Testing of the fuzzy model with an independent data set confirmed its accuracy in 

predicting PGA values. 
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1. INTRODUCTION 

Earthquakes can inflict severe loss of life and property, especially when they occur in 

densely populated metropolitan areas (Po-Shen and Chyi-Tyi 2008). Recent earthquakes, such as 

Northridge (1994), Kocaeli and Düzce (1999), and Chile (2007) have alerted the community that 

much research studies still need to be conducted to avoid the damage caused by strong motion 

records. According to Sharma (2000), the estimation of peak ground acceleration in terms of 

magnitude, source-to-site distance, tectonic environment and source type using attenuation 

relationships has been a major research topic in seismic hazard estimation studies.  However, 

prediction of ground motion characteristics far from the source for a particular region is of much 

importance and needs to be accurately simulated. 

Earlier studies to derive ground motion models were conducted by Aptikaev and Kopnichev 

(1980), Campbel l(1985), Youngs et al. (1988, 1997), Crouse (1991), Spudich et al. (1997, 

1999), and Ambraseys and Douglas (2003). A comprehensive summary of ground motion 

models was prepared by Douglas (2004). Lately, next generation attenuation relationships for 

different soil types were proposed through a research effort conducted at the Pacific Earthquake 

Engineering Research Center (PEER) by Abrahamson and Silva (2008), Boore and Atkinson 

(2008), Campbell and Bozorgnia (2008), Chiou and Youngs (2008), and Idriss (2008). These 

studies represent the current state of the art in ground motion modeling for shallow crustal 

earthquakes. Validation of these models for a series of recent California earthquake records was 

performed by Kaklamanos and Baise (2011). Application of these models in China was 

performed by Zhang et al. (2012). Currently there is an on-going project conducted at PEER to 

develop next generation attenuation relationships for central and eastern North America. Most of 

these models have empirical nature and are developed based on a set of strong motion recordings 
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from extensional tectonic environments. Because of this, their application out of the region they 

were developed in is limited, so that accurate seismic hazard assessment cannot be achieved. 

Fuzzy logic, however, offers significant advantages over this kind of approaches due to its ability 

to naturally represent qualitative aspect of inspection data and apply flexible inference rules (Sun 

et al. 2002). 

Fuzzy logic techniques have been previously used in earthquake engineering to evaluate 

seismic hazard (Lamarre and Dong, 1986), to quantify  damage due to earthquake loads (Souflis 

and Grivas, 1986), to develop optimum systems for seismic design of reinforced concrete 

buildings (Yamada et al., 1992), to evaluate structural repair methods due to seismic loads 

(Furuta, 1993), to quantify the uncertainties in structural models and the subsequent response due 

to ground motions (Wadia-Fascetti and Smith, 1996), and to develop hybrid control systems of 

structures (Subramaniam et al., 1996). Recently it was used to develop earthquake response 

spectra models (Wadia-Fascetti and Gunes, 2000), to minimize accelerations of friction 

pendulum base isolators (Kim and Roschke, 2006), to improve structural vibrations caused by 

earthquakes (Nomura et al., 2007), and to control seismic vibrations of small-scale buildings 

(Kim et al. 2010). However, no thorough research studies were conducted to use them for 

deriving attenuation relationships. The objective of this study is, therefore, to develop new 

attenuation relationships of ground motions using fuzzy logic techniques. The data used in the 

study includes records from earthquakes of moment magnitude greater than 5, and site conditions 

characterized as soft soil, soil, and rock with closest distance less than 150 km. The fuzzy model 

in this study is established with inputs of earthquake magnitude and epicentral distance whereas 

the output is the horizontal component of peak ground accelerations (PGA).  
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2. A Review on Expert System Applications 

 

Expert systems have been applied in a variety of fields. According to Durkin (1990), expert 

systems have been developed in such diverse areas as science, medicine, engineering and 

business, to aid people engaged in these fields in increasing the quality, efficiency, and 

competitive leverage of their operations. 

An expert system was established by Nasir et al (1990) for inventory management. The 

objective of the study was on the development of a simple, user-friendly tool that can be used 

effectively by managers to increase the cost-effectiveness of their inventory systems. The study 

showed that expert system is capable of analyzing input parameters by performing statistical 

analyses of data bases, generating plots and graphs, implementing a set of rules for the selection 

of inventory models, and choosing a solution procedure.  

Calvin (1991) used expert system application to clinical investigations. The DESIGN 

EXPERT, a prototype expert system for the design of complex statistical experiments was 

developed in this study. The system was designed for scientific investigators and statisticians 

who must design and analyze complex experiments, and it was  able to (i) recognize specific 

types of complex experimental designs, based on the application of inference rules to 

nontechnical information supplied by the user; (ii) encode the obtained and inferred information 

in a flexible general-purpose internal representation for use by other program modules; (iii) 

generate analysis of variance tables for the recognized design and an appropriate Biomedical 

Computer Programs run file for data analysis, using the encoded information.  

Jo et al. (1997) established ramp scheduling system, called RACES (Ramp Activity 

Coordination Expert System), to solve complex and dynamic aircraft parking problems. RACES 

was developed from the domain knowledge and experience which were acquired from the 
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domain experts. The domain knowledge and experience were taken as important factors in 

controlling the scheduling procedure for the development of the expert system. RACES was 

developed to divide the problem into sub-problems and experimental heuristics in the knowledge 

acquisition process, and independently processes scheduling for the divided sub-problems and 

shares variables and domains. It then selects or confines the search space with domain filtering 

techniques by exploiting the characteristics of various constraints and knowledge. The main 

focus of the study was to produce a user-driven near-optimal solution by means of a trade-off 

scheduling method using heuristics between the size of aircraft and the best-fit time. The 

performance evaluation of the system showed that, for 400 daily flights, RACES made parking 

schedules for aircraft in about 20 s compared with 4–5 h by human experts. 

According to Al-Homoud and Al-Masri (1999), an expert system called Cut Slopes and 

Embankments Expert System (CSEES) was developed for Jordan with the objective of 

evaluating failure potential of cut slopes and embankments for the planning and design of roads. 

The expert system was designed to include a classification system for evaluating slope failure 

potential, and a data bank on landslides in the study area. Fuzzy set theory was used with the 

modified Monte Carlo simulation technique to obtain Slope Failure Potential Index (SFPI). 

Factors affecting slope stability, such as geology, topography, geomorphology, precipitation, 

vegetation, and drainage conditions were incorporated in obtaining the SFPI. The developed 

expert system was then applied to cut slopes and embankments in Jordan and it was proven to be 

successful for the areas that suffered landslides in the past. 

A study made by Yang et al. (2005) established an expert system called VIBEX (VIBration 

EXpert) in order to aid plant operators in diagnosing the cause of abnormal vibration for rotating 

machinery. A decision table based on the cause-symptom matrix as a probabilistic method for 
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diagnosing abnormal vibration was used in the work so as to automatize the diagnosis. Also a 

decision tree was used as the acquisition of structured knowledge in the form of concepts is 

introduced to build a knowledge base which is indispensable for vibration expert systems. The 

proposed system was written in Microsoft Visual Basic and Visual C++ and has been 

successfully implemented on Microsoft Windows environment. 

Hatiboglu et al. (2010) developed a predictive tool by fuzzy logic in order to predict the 

outcomes of patients with intracranial aneurysm. The researchers recorded World Federation of 

Neurological Surgeons Scale (WFNSS), Fisher Scale and age at admission and Glasgow 

Outcome Score (GOS) at discharge from hospitalization for all the patients, and these were 

divided in to appropriate classes to develop fuzzy sets. The outcomes of the patients were then 

calculated with these sets by fuzzy model. According to the results of study, predicted outcome 

by fuzzy logic approach correlated with observed outcome scores of the patients (p>0.05), 

including 95% confidence interval. The study concluded that the outcome of the patient with 

intracranial aneurysm could be predicted accurately by fuzzy logic based expert system which 

was rarely used in medicine.  

A new adaptive prediction tool termed as Geno-Kalman filtering (GKF) was established by 

Altunkaynak (2010) by combining Genetic Algorithm and Kalman filtering in order to predict 

suspended sediment concentration. The establishment of the expert system involved three steps: 

relating discharge and suspended sediment concentrations by using dynamic linear model, 

obtaining an optimum transition matrix relating state variables by Genetic Algorithms (GAs) and 

calculation of an optimum Kalman gain, and prediction of suspended sediment concentration 

from discharge measurements by using Kalman filtering. The validation results of the proposed 

expert system were found to result in less errors and better efficiencies compared to perceptron 
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Kalman filtering. The combined Geno-Kalman Filtering (GKF) technique was again used to 

develop predictive models for estimation of significant wave height by Altunkaynak and Wang 

(2012) at stations LZ40, L006, L005 and L001 in Lake Okeechobee, Florida. The results of the 

study showed that the GKF methodology performed better in predicting significant wave height 

than those from Artificial Neural Network (ANN) models.  

Gudu et al. (2012) developed an experiment system named Medical Expert System (MES) 

for the diagnosis and treatment of Hypertension in Pregnancy (HIP). The main objective of the 

research was to develop Medical Expert System (MES) that can be used as an expert knowledge 

sharing tool by other medical personnel who are not specialists in diagnosis and treatment of HIP 

and reduce the acute shortage of specialist obstetricians. It is the belief of the researchers that the 

MES would be handy in sharing the much needed expert knowledge in the diagnosis and  

treatment  of  HIP  since  it  would  be  used  by medical officers, clinical officers and nurses in 

the absence of specialists. 

Modirzadeh et al. (2012) applied an expert system in order to survey the susceptibility of 

buildings constructed under earlier seismic codes to seismic hazard. The researchers used soft 

story, weak story, and the quality of construction as performance modifiers. The evaluation of 

buildings was performed through a pushover analysis, and performance objective was obtained 

through initial stiffness of the pushover curve. Using a design of experiments technique, a 

reliable system input–output relation was identified and used to evaluate the performance criteria 

at untried design points (i.e., buildings with different modifier values). This method of 

performance based evaluation was demonstrated through consideration of the different structural 

deficiencies on a typical six-storey reinforced concrete building in Vancouver, Canada.  
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A hybrid expert system to spatio-temporal seismic clustering was developed by building 

upon a novel density based clustering scheme that explicitly takes into account earthquake’s 

magnitude during the density estimation by Georgaulas et al (2013). In this study, the new 

density based clustering algorithm is made to consider both time and spatial information during 

cluster formation so that clusters lie in a spatio-temporal space. Finally, time information was 

made to be dropped before a hierarchical agglomerative clustering algorithm acts upon the 

identified clusters in order to come up only with the spatial description of seismic events. 

3. FUZZY LOGIC TECHNIQUES  

Fuzzy logic techniques, pioneered by Zadeh (1965), are used to define processes that are 

imprecise and ambiguous. Fuzzy sets are used to define membership of data that do not belong to 

a particular set, but rather partially to a set. As an example, fuzzy sets are used to define 

earthquake magnitudes that can be considered “mild”, “moderate” or “severe”; and epicentral 

distances that are “near field”, “intermediate field” and “far field”. The membership degree of a 

set describes the level by which the data belong to that particular set. As an example, in the case 

of the distance from an earthquake source (Wadia-Fascetti and Gunes, 2000), it is given by: 

      ( ) 0,1NEARm x                                      (1) 

where mNEAR (x) is the degree of membership that X has in the fuzzy set of site “NEAR the 

earthquake source” and x is the distance between the site and the epicentral region. The fuzzy set 

of distance from source is shown in Figure 1. 

The membership function indicates the membership degree of the element in the fuzzy set. 

The higher the likelihood that the element belongs to the set, the higher its degree of membership 

in the set is. Data points with membership of zero imply that the element is not a member of the 
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fuzzy set, and membership of one implies the element belongs fully to the set. In this study, 

fuzzy sets are used to describe earthquake magnitude and source-to-site distance. 

Attenuation relationships have a number of parameters that can be considered ambiguous or 

imprecise. These include the soil type that corresponds to the site under consideration, the 

distance of the site from the epicentral region, and the magnitude of the earthquake that can 

range from mild to severe. Ambiguous parameters can be expressed as fuzzy sets as in the case 

of earthquake magnitude shown in Figure 2. 

As stated earlier, and similar to the study by Wadia-Fascetti and Gunes(2000), epicentral 

distance and earthquake magnitude are the two main fuzzy variables addressed in this study. 

Fuzzy model sets are used to describe inputs in terms of calibration (training) process. Sites are 

classified as rock, soil, and soft soil; Source-to-site (epicentral distance) as near field, 

intermediate field and far field; and earthquake magnitude as mild, moderate and severe (See 

Figures 1 and 2). Membership in a set was based on expert judgment and was constructed using 

Gaussian membership functions. Peak ground acceleration (PGA) is a function of earthquake 

magnitude, epicentral distance and type of soil, among other parameters. The objective of this 

study is to represent the attenuation relations of PGA at sites away from the source. The study 

will therefore aim at characterizing the value of PGA associated with each soil type, distance 

from source, and earthquake magnitude.  

In research studies, solutions to problems with deterministic and analytical models cannot 

always be performed. In this case, the solution requires uncertainty techniques. In all modeling 

techniques, whether analytical, probabilistic, or statistical, two parameters need to be well 

established: the model assumptions and the numerical data available for verification. In fuzzy 

techniques, however, neither crisp data nor restrictive assumptions are needed (Zadeh, 1968; 
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Mamdani, 1977; Dubois and Prade, 1991, 1996; Wang and Mendel, 1992; Russo and Jain, 2001; 

Yager, 1996; Altunkaynak et al., 2005; Altunkaynak, 2010; Uyumaz et al., 2006; Özger, 2009). 

This constitutes one of the major advantages of fuzzy logic techniques. 

The following steps are typically followed for application of fuzzy analysis techniques: 

(i) Fuzzification of the input and output variables by considering appropriate linguistic 

subsets. In this study, these subsets for earthquake magnitude are mild, moderate, and 

severe; and for epicentral distance are near, intermediate, and far-field. 

(ii) Construction of rules based on expert judgment. The rules relate the linguistic subsets 

of input variables to those of the output subsets. A fuzzy rule includes statements of 

“IF…THEN” with the first part that starts with IF and ends before the THEN referred 

to as the predicate or premise; and the second part that comes after “THEN” includes 

the fuzzy subset of the output based on the premise part. The input subsets within the 

premise part are typically combined with the logical “and” conjunction, while the 

rules are combined with logical “or”. 

(iii) The implication part of a fuzzy system is defined as the shaping of the consequent 

part based on the premise component. 

(iv) The result appears as a fuzzy subset, and thus it is necessary to defuzzify the output 

for obtaining crisp values. Defuzzification techniques are typically conducted using 

the centroid method (Ross, 1995). 

4. MEMBERSHIP FUNCTIONS AND FUZZY RULES FOR ATTENUATION 

RELATIONSHIPS 

To establish attenuation relationships, the following steps are conducted: 
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(a) Fuzzification step: Earthquake magnitude and site to source distance are considered as 

having vague and imprecise characteristics. Therefore, all the input and output variables 

are initially fuzzified. The fuzzy subsets and membership degree for epicentral distance 

and earthquake magnitudes used in this study are shown in Figures 1 and 2. Fuzzy 

subsets for other earthquake parameters, such as style of faulting, rupture depth, hanging 

wall effect, and soil/sediment depth effect were not considered. This is mainly to keep the 

model simple and reduce the number of fuzzy rules described in the next section. These 

effects were however indirectly accounted for through proper training of the model.  

(b) Inference: This step includes many fuzzy conditional statements as rules to model the 

system. In this study, the two input variables are: EM (earthquake magnitude), and D 

(epicentral distance); and the output variable is: PGA (peak ground acceleration). The 

conditional statements used to relate the input to the output variables are:  

R1 : IF EM is A(1) and D is B(1) THEN PGA is y1 

R2 : IF EM is A(1) and D is B(2) THEN PGA is y2   (2) 

   Also 

 

RN : IF EM is A(n) and D is B(n) THEN PGA is yN 

where n=3, N=3x3=9, A(1), A(2), A(3) represent mild, moderate, and severe; and B(1), B(2), 

B(3) represent near, intermediate, and far-field. These conditions make up the input fuzzy 

subsets, while y1, y2, …yN are the output fuzzy subsets. R1, R2, …, RN are the logical N rules that 

can be considered to relate the input to output variables.  

Gaussian membership functions are used to construct the input fuzzy subsets (Figures 1-2).  

Nine fuzzy rules with three fuzzy sets for each input variable were optimized based on the 

available data described in the next section as shown in Table 1 below. 
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All the rules in Eq. (2) might not be valid for the problem at hand. Each rule will be triggered 

in different strengths based on the available data set and input variables. Some rules might not be 

triggered at all, which indicates that they are irrelevant for the given problem. The final solution 

for the peak ground acceleration, PGA will be the union of the triggered rules of output fuzzy 

subsets. In this paper, Mamdani (1977) inference is used. 

Table 1.  Fuzzy Rules 

Rule Description 

R1 IF EM is Mild and D is Near field THEN  y1= 41.82EM-7.513D+16.37 

R2 IF EM is Mild and D is Intermediate THEN  y2= 167.3 EM-5.079 D-490.6 

R3 IF EM is Mild and D is Far field THEN  y3= -721.9EM-2.993D+5602 

R4 IF EM is Moderate and D is Near field THEN  y4= 1821 EM-61D-10220 

R5 IF EM is Moderate  and D is Intermediate THEN y5= -704EM-45.83D+8505 

R6 IF EM is Moderate  and D is Far field THEN  y6= 8680EM-272D-13710 

R7 IF EM is Severe and D is Near field THEN  y7= 143.5EM-7.345D-530.8 

R8 IF EM is Severe and D is Intermediate THEN  y8=20.78EM-1.441D+79.54 

R9 IF EM is Severe and D is Far field THEN  y9= 103.8EM-0.6304D-560.3 

EM: Earthquake Magnitude  

D: Epicentral Distance 

 

(c) Defuzzification: Finally, in order to calculate the deterministic value of PGA, a 

defuzzification method must be employed (Kiska et al., 1985): 
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where the PGA is the weighted average of all y functions with corresponding weight wi. 
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5. STRONG MOTION DATABASE 

The attenuation relationships were derived using a database that was compiled for 

earthquakes with moment magnitudes (Mw) greater than or equal 5, and consisted of horizontal 

peak ground accelerations recorded on three different site conditions classified as rock, soil, and 

soft soil. The data used in the analysis constitutes a total of 1082 records (Table 2): 509 in soil, 

549 in soft soil, and 24 in rock sites. These data were compiled from the Pacific earthquake 

Engineering Research Center (PEER) database. 

Table 2.Earthquake Records Used in the Development of PGA Attenuation Relationships 

YEAR Month-Day Earthquake Name Earthquake Magnitude Soft Soil Soil Rock 

1987 1001 Whittier Narrows-01 5.99 56 46 4 

1987 1004 Whittier Narrows-02 5.27 7 3 1 

1994 0117 Northridge-01 6.69 71 71 14 

1994 0117 Northridge-02 6.05 7 3 - 

1994 0117 Northridge-03 5.20 2 - - 

1994 0117 Northridge-04 5.93 - 2 - 

1994 0117 Northridge-05 5.13 1 3 - 

1994 0320 Northridge-06 5.28 19 12 2 

1999 1016 Hector Mine 7.13 33 17 - 

1999 0920 Chi-Chi, Taiwan 7.62 162 160 2 

1999 0920 Chi-Chi, Taiwan-02 5.90 29 80 - 

1999 0920 Chi-Chi, Taiwan-03 6.20 54 - - 

1999 0920 Chi-Chi, Taiwan-04 6.20 40 - - 

1999 0922 Chi-Chi, Taiwan-05 6.20 68 68 1 

1999 0925 Chi-Chi, Taiwan-06 6.30 - 44 - 

In the data set, the earthquake intensity is characterized by moment magnitude Mw, as 

defined by Hanks and Kanamori (1979). The magnitudes are restricted to Mw≥ 5.0. Records for 

which the peak acceleration was less than 0.04 g were omitted. The soil types were divided into 

three groups in ascending order with respect to shear wave velocity: soft soil, soil, and rock. The 

average shear wave velocities for these groups are 200, 400 and 700 m/s, respectively. 
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6. ATTENUATION RELATIONSHIP DEVELOPMENT 

The procedure used to construct the attenuation functions consists of two stages. In the first, 

attenuation relationships were developed for PGA through training of the values in the database. 

In the next stage, testing of the results was performed over the range of earthquake magnitudes 

considered (Mw 5 to 7.5) and distances (rcl) up to 150 km, and for all three site types. 

The observed data, as well as the calculated attenuation relationships using the proposed 

Fuzzy approach for PGA for soft soil sites are shown in Figures 3 through 5 for different 

magnitudes. These magnitudes are denoted as M=5.5 for magnitude 5 M<6; M=6.5 for 

magnitude 6 M<7; and M=7.5 for magnitude 7 M<8. 

A comparison between the Fuzzy approach and the classical Boore et al. (1997) approach for 

soft soil is shown in Figure 6. It is observed that Fuzzy analysis offers solution points that lead to 

a dynamic structure of the model rather than a static one. An important contribution is its 

inherent capability to capture non-linear relationships. The Boore approach is based on the 

following equation: 

  2

1 2 3ln ( 6) ( 6) ln ln( )s
s v

A

v
Y b b M b M b r b

v
           (4) 

     
2 2 0.5( )clr r h        (5) 

where Y is the ground motion parameter (peak horizontal acceleration PGA in g); M is (moment) 

magnitude; rcl is the closest horizontal distance from the station to a site of interest in km; Vs is 

the shear wave velocity for the station in m/s; b1=-0.242, b2=0.527, b3=0, bs=-0.778, h=5.57, 

bv=-0.371, and VA=1396m/s. 

The observed and calculated attenuation relationships for PGA for soil sites are shown in 

Figures 7 through 9. A comparison between the Fuzzy and the Boore (1997) results for soil is 



 
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shown in Figure 10. All these results show that the Fuzzy analysis proved to capture the non-

linear relationship of solution points, particularly for distances greater than 10 km.  

The attenuation relationships for PGA for rock sites are shown in Figures 11 through 13. In 

this case, no records exist in the database for earthquakes with magnitudes M>7. 

7. COMPARISON WITH OTHER GROUND MOTION MODELS 

The fuzzy model developed in this study for ground motion prediction is compared to those 

developed by Boore et al. (1997), Campbell et al. (1997), Spudich et al. (1999), Ambraseys et al. 

(1996), as well the next generation attenuation (NGA) models of Boore and Atkinson (2008) and 

Campbell and Bozorgnia (2008). The equations of Boore et al. and Ambraseys et al. divided the 

soil types into four groups according to shear wave velocities. The model by Campbell pertains 

to alluvium soil, soft rock and hard rock. Spudich et al. state that their equations are applicable 

for rock and soil sites. Boore and Atkinson’s NGA model is most suitable for distances greater 

than 80 km, and Campbell and Bozorgnia’s NGA model has complex parameterization that 

account for hanging wall effects, rupture-depth effects, and soil/sediment depth effects. The 

comparison is shown in Figures 14 and 15 for a magnitude 6 M<7 at rock sites and 7 M<8 at 

soil sites, respectively. The comparison shows that the Fuzzy approach provides, in general, 

more conservative results than the other models, both for rock and soil cases.  

8. PERFORMANCE EVALUATION OF MODEL 

The main sources of uncertainty in deriving attenuation functions is due to the different 

geological characteristics of sites, and determination of seismic record properties at different 

distances from source. The fuzzy logic techniques used in this study does not eliminate these 

 
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uncertainties; however it provides a better and more accurate approach to address them than do 

traditional physical models.  

The model performance was quantitatively evaluated in terms of the mean square error 

(MSE) and coefficient of efficiency (CE): 

     2
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Where Js,pi , Js,mi , Js,m are the predicted, measured, and mean of the specific values of 

attenuation relationships in observation i, respectively. N is the total number of observations. 

 Figure 16 and 17 show the comparison between the measured and predicted values of 

attenuation relationships both for the fuzzy and the classical Boore et al. (1997) models, 

respectively.  It is observed that the randomness and dynamism throughout these figures from the 

fuzzy analysis is much higher than from the Boore’s analysis, and this confirms the positive 

contribution of the fuzzy methodology to the process. In general, there is an underestimation of 

observed values, particularly for large PGA, however the deviation from the 45°diagonal line is 

minimum in the case of the fuzzy model. This confirms that the fuzzy analysis shows better 

agreement between measured and predicted values compared to Boore’s analysis. These results 

show that the fuzzy analysis results in general in a very good prediction performance. 

The coefficient of efficiency defined in Eq. 7 is typically used for quantifying the 

performance relative to a naive baseline, and is defined as the subtraction of the ratio of mean 

square error to observation variance from unity (CE=1-(mean square error)/(variance of 
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observations)). The coefficient of efficiency for the fuzzy and Boore’s models is obtained as 0.65 

(Fig. 16) and 0.45 (Fig. 17), respectively, indicating a much better agreement between observed 

and predicted values for the fuzzy model.        

9. DISCUSSION AND CONCLUSIONS 

The paper presents attenuation relationships for the estimation of peak ground acceleration 

for earthquakes with magnitude of Mw 5 to 7.5 and rcl < 150 km for soft soil, soil and rock sites. 

A database of 1082 records was prepared and used in the study. Records with peaks of less than 

0.04 g were omitted. A fuzzy logic approach was adopted to derive the attenuation relationships. 

Two fuzzy sets were defined, one for earthquake magnitudes categorized as severe, moderate 

and mild; and the other for epicentral distances defined as near, intermediate, and far. The 

epicentral distance and soil type proved to have a major effect on the attenuation characteristics. 

Comparison with previously developed physical models for attenuation functions was conducted. 

The study showed that the fuzzy approach results in general in a higher coefficient of efficiency. 

The proposed approach clearly results in a method that can accurately predict the PGA of ground 

motions at different distances away from the source. 

While this paper represents an initial study on the use of fuzzy logic techniques to develop 

attenuation functions, the results obtained could be enhanced as additional records, shear wave 

velocities of soil profiles, and better determined distance from source data become available. 

Furthermore, the attenuation relationships proposed in this study can be improved and modified 

to account for additional earthquake parameters. The study clearly confirms that new techniques 

such as fuzzy methodologies can be used to improve the development of attenuation functions 

for use in important engineering applications. The application of the fuzzy methodology in this 
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study demonstrates in general the use and great potential of fuzzy logic in quantifying 

uncertainties related to earthquake ground motions.  
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FIGURE CAPTIONS 

 

Figure 1.Distance Fuzzy Sets 

Figure 2.Magnitude Fuzzy Sets 

Figure 3.Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at soft soil sites.  

Figure 4.Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at soft soil sites.  

Figure 5.Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soft soil sites.  

Figure 6.Curves of peak acceleration versus distance for a magnitude 5.5, 6.5 and 7.5 earthquakes at soft 

soil sites.  

Figure 7.Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at soil sites.  

Figure 8.Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at soil sites.  

Figure 9.Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soil sites.  

Figure 10.Curves of peak acceleration versus distance for magnitude 5.5, 6.5 and 7.5 earthquakes at soil 

sites.  

Figure 11.Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at rock sites.  

Figure 12.Curves of peak acceleration versus distance for magnitude 6.5 earthquake at rock sites.  

Figure 13.Curves of peak acceleration versus distance for magnitude 5.5 and 6.5 earthquakes at rock sites.  

Figure 14.Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at rock sites.  

Figure 15.Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soil sites.  

Figure 16.Observed versus Predicted (Fuzzy Analysis) Attenuation Relationships ( g ) 

Figure 17.Observed versus Predicted (Boore et. al (1997)) Attenuation Relationships ( g ) 
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Figure 1. Distance Fuzzy Sets 

 

 

 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epicentral distance (km)

D
eg

re
e 

of
 m

em
be

rs
hi

p
Near field Intermediate field Far  field



 

 
26 

 

 

 

Figure 2. Magnitude Fuzzy Sets 
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Figure 3. Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at soft soil sites.  
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Figure 4. Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at soft soil sites.  
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Figure 5. Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soft soil sites.  
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Figure 6. Curves of peak acceleration versus distance for a magnitude 5.5, 6.5 and 7.5 earthquakes at soft 

soil sites.  
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Figure 7. Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at soil sites.  
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Figure 8. Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at soil sites.  
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Figure 9. Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soil sites.  
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Figure 10. Curves of peak acceleration versus distance for magnitude 5.5, 6.5 and 7.5 earthquakes at soil 

sites.  
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Figure 11. Curves of peak acceleration versus distance for a magnitude 5.5 earthquake at rock sites.  
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Figure 12. Curves of peak acceleration versus distance for magnitude 6.5 earthquake at rock sites.  
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Figure 13. Curves of peak acceleration versus distance for magnitude 5.5 and 6.5 earthquakes at rock 

sites.  
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Figure 14. Curves of peak acceleration versus distance for a magnitude 6.5 earthquake at rock sites.  
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Figure 15. Curves of peak acceleration versus distance for a magnitude 7.5 earthquake at soil sites.  
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Figure 16. Observed versus Predicted (Fuzzy Analysis) Attenuation Relationships ( g ) 
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Figure 17. Observed versus Predicted (Boore et. al (1997)) Attenuation Relationships ( g ) 
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