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Analytical studies are conducted to develop an effective analytical model to simulate the non-linear response of

reinforced concrete (RC) walls subjected to three-dimensional (3D) loads. The interaction between the concrete and

steel is taken into account with consideration of the smeared behaviour of steel and tension stiffening of concrete.

The proposed model is formulated to address the interaction between the axial force, shear, bending and torsion

loads. The shear mechanism along the beam is modelled by adopting a Timoshenko beam approach for 3D frame

elements with arbitrary cross-section geometry. The non-linear behaviour of the composite element is derived

entirely from the constitutive laws of concrete and steel. The concrete constitutive model follows the softened

membrane model that predicts the tensile cracking, compression crushing, strain softening, steel yielding and

material damage under combined loadings. The validity of the model is established through a correlation study of

experimentally tested RC shear walls subjected to monotonic loading conditions.

Notation
f 9c uniaxial concrete compressive

strength

f sx, f s y, f sz reinforcing bar stresses along

the x, y and z directions

Kc1, Kc2, Kc3 biaxial strength

magnification factors in

1–2–3 directions

[R(Æ1)] rotating matrix

S(x) ¼ fN V W T M y M zgT section forces

{s} ¼ {�0 � y �z �x ªxy0 ªxz0)
T section deformations

[T] transformation matrix

fu0 v0 w0 Łx Ły ŁzgT frame displacements in global

system

x–y–z global coordinates of

reinforced concrete element

1–2–3 direction of applied principal

tensile stress

[Æ1] angle between (x–y–z)

coordinate system and

(1–2–3) coordinate system

Æ�r1 deviation angle between

applied stress angle Æ1 and

rotating angle Ær

f�g ¼ f�x ªxy ªxzg
T available strains

f�x � y �z ªxy ª yz ªxzg
T global strain vector

f�1 �2 �3 ª12 ª23 ª13g
T biaxial principal strains in

1–2–3 direction

f�1 �2 �3gT equivalent uniaxial strains

�1p, �2p, �3p ultimate strain in 1–2–3

directions

�sx, �s y, �sz equivalent uniaxial strain in

the reinforcement in x, y and

z directions

f�12 �21 �23 �32 �13 �31g
T Hsu/Zhu ratios

� softened coefficient of

concrete in compression

rs x, rs y, rs z smeared steel ratio in x, y and

z directions

f�g ¼ f� x �xy �xzgT available stresses

{�x �y �z �xy � yz �xz}
T global total stress vector

�1p, �2p, �3p ultimate stresses in 1–2–3

directions

f� c
1 � c

2 � c
3 �c

12 �c
23 �c

13g
T local concrete stress vector in

1–2–3 direction

Introduction
Reinforced concrete (RC) structural walls are effective in resist-

ing lateral loads imposed on buildings. They provide substantial

strength as well as the deformation capacity needed to meet the

demands of severe loading conditions. Simulation of the complex

behaviour of RC shear walls requires accurate constitutive

modelling of the RC material. Two-dimensional (2D) continuum

plane stress or three-dimensional (3D) solid elements are

typically used for this purpose, but such elements are computa-

tionally very expensive. Previous studies showed that beam–

column elements can be used to simulate the behaviour of RC

shear walls (Bolander and Wight, 1991). Care needs to be
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exercised, however, when using such elements since they cannot

simulate localised damage and local distortions in detailed

regions such as near openings. In addition, beam–column

elements based on elementary beam theories cannot predict the

behaviour of walls with small aspect ratios, typically less than 1

(Mazars et al., 2002).

Fibre beam–column elements (Spacone et al., 1996) are consid-

ered the most efficient beam elements owing to their ability to

accurately describe section behaviour through fibre discretisation.

Recently, these elements were extended in the context of a

Timoshenko beam formulation to consider shear effects (Mulla-

pudi, 2010; Mullapudi and Ayoub, 2010). Such elements permit

accurate evaluation of the behaviour of walls dominated by shear

as well as flexural behaviour, and are computationally suitable to

conduct parameter studies to investigate the effect of the different

parameters affecting the wall behaviour.

Lefas and Kotsovos (1990) analysed shear walls under mono-

tonically increasing lateral loads. The authors used eight node

isoparametric elements to model concrete and a three node bar to

model steel. Steel bars coincided with the sides of adjacent

concrete elements. Orakcal and Wallace (2006) presented detailed

information on the calibration of a non-linear wall macro model

by comparing model results with experimental results for slender

RC walls with T-shaped and rectangular cross sections. Results

obtained with the analytical model for rectangular walls agree

with experimental responses for flexural capacity, stiffness and

deformability, although some significant variations are noted in

local compression strains.

Peng and Wong (2011) recently conducted experiments on RC

shear walls under monotonic eccentric lateral load with different

torque to moment ratios. The authors found that the flexural

strength and ductility were significantly reduced in the presence

of torque.

In the past three decades, constitutive models describing the

behaviour of concrete have considerably progressed, thereby

improving the numerical performance of RC structures. The

constitutive laws of concrete and steel bars are typically devel-

oped and calibrated through large-scale panel testing and relate

the smeared stresses to the smeared strains of the element (Hsu et

al., 1995).

An RC element under combined loading is a complex problem

owing to the presence of normal and shear stresses, in addition to

the shear caused by torsion. Vecchio and Selby (1991) developed

a finite-element program for 3D analysis of RC structures using

an eight node regular hexahedral element. Their constitutive

material model employed the modified compression field theory.

Cocchi and Volpi (1996) presented a non-linear analysis of RC

members subjected to combined axial, shear, bending and

torsional loads, based on an extension of the diagonal compres-

sion field theory. It is assumed that after concrete cracks under

torsion, the member becomes a hollow section with varying wall

thickness; shear deformations are not considered in the formula-

tion. Bairan and Mari (2006, 2007) developed a non-linear 3D

sectional model to account for combined loadings including

torsion, with a 3D constitutive model that allows warping and

sections shape distortion. They considered the coupled model for

arbitrary shaped cross-sections made of heterogeneous anisotropic

materials under 3D combined loadings. The theory is based on

equilibrium considerations and the superposition of 3D section

distortion as well as plane section hypothesis. Gregori et al.

(2007) developed a 3D model subjected to combined loading

conditions including axial, bending, shear and torsional loads.

The proposed fibre beam–column element model is a

displacement-based Timoshenko beam with simple kinematic

assumptions.

To predict the complete pre- and post-peak responses of the

shear stress–strain curves, the softened membrane model (SMM)

is adopted in this study, along with the Hsu/Zhu ratio (Poisson

ratio of cracked RC). The study tackles the extension of the

fibre-based beam element formulation to account for axial,

bending, shear and torsion interaction. Such interaction is

essential to predict accurately the complex behaviour of RC wall

members under combined loads. The model is developed using

the finite-element program FEAPpv (Taylor, 2005). The fibre

beam–column formulation for shear-critical elements is presented

first.

Displacement-based formulation
The model is developed based on a Timoshenko-type displace-

ment formulation with the assumption that plane sections remain

plane. The element comprises a two node frame member that

follows a directrix line between nodes one and two (Figure 1).

Each element is divided into several sections along the length of

the element and into several fibres across the cross section of the

member. The strain in each fibre is calculated from the centroidal

section strain and curvature with the help of the plane section

remaining plane assumption. The stresses and modulus of fibres

are calculated from the fibre strain values. The constitutive

relation of the section is derived by integration of the response of

the fibres; and the response of the element is also derived by

integration of the response of sections along the length of the

element.

The 3D response is described by defining six degrees of freedom

at each section of the element, which consists of three translations

u0, v0, w0 and three rotations Łx, Ły, Łz with the corresponding

forces N , V , W and moments T , M y, M z, respectively.

The kinematic assumptions are used to relate the displacements

at any point with the element degrees of freedom according to

the following equations

u(x, y, z) ¼ u0(x)þ zŁy(x)� yŁz(x)1:
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v(x, y, z) ¼ v0(x)� zŁx(x)2:

w(x, y, z) ¼ w0(x)þ yŁx(x)3:

Each element is further divided into a number of sections

composed of integration points. Section deformations and forces

are related to element deformations (Figure 2(a)) and forces

(Figure 2(b)) according to the given displacement shape func-

tions.

Equations 4–6 are used to derive the three strain components

�x, ªxy and ªxz at every section of the element

�x ¼
@u

@x
¼ @u0

@x
þ z

@Ły

@x
� y

@Łz

@x4:

ªxy ¼
@u

@ y
þ @v

@x
¼ @v0

@x
� Łz

� �
� z

@Łx

@x5:

ªxz ¼
@u

@z
þ @w

@x
¼ @w0

@x
þ Ły

� �
þ y

@Łx

@x6:

where �x is the normal strain and ªxy and ªxz are the shear

strains. The remaining strain vectors � y, �z and ª yz are deter-

mined by enforcing equilibrium between the concrete and the

steel, satisfying the equations � y ¼ 0, � z ¼ 0 and � yz ¼ 0:

The available strains � and corresponding stresses � can be

written in vector form as

�f g ¼ �x ªxy ªxz

� �T
;

�f g ¼ � x �xy �xz

� �T
7:

Section deformations at the centre of the section, in matrix form,

can be written as

X

Z

Y

1

(a)

Z

W,γxz0

Mz z, �

My y, �

Tz z, �

X
N, ε0

(b)

Y
V,γxy0

fy

εy

Steel

Concrete
fc

Figure 1. (a) Wall element; (b) wall fibre discretisation

y v0

w0 θz

θx

x

u0

θy

(a) (b)

y V

My

W Mz

zz

x
N

T

Figure 2. (a) Section displacements; (b) section forces
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sf g¼ �0 � y �z �x ªxy0 ªxz0

� �T

¼ @u0

@x

@Ły

@x
� Łz

@x

@Łx

@x

@v0

@x
�Łz

@w0

@x
þŁy

� �T

8:

The strain vector at the fibre level � is related to the sectional

strain s as follows

�f g ¼ �x ªxy ªxz

� �T ¼ T½ � sf g9:

T½ � ¼
1 z y 0 0 0

0 0 0 �z 1 0

0 0 0 y 0 1

2
4

3
5

10:

where �0 is the longitudinal strain at the section centroid, � y and

�z are the curvatures about the y- and z- coordinate system, �x is

the angle of twist per unit length, and ªxy0 and ªxz0 are the

generalised shear strains.

The weak form of the displacement formulation is based on the

principal of virtual work and is demonstrated by the following

equationðð
�
	�T�d� ¼

ðð
�
	sT T T�d�

¼ 	sT

ðð
�

T T�d� ¼ 	sT F
11:

where F is the resulting sectional force vector

F ¼
ðð

�
T T� d� ¼

ðð
�

T T�d� ¼
ðð

�
T T�d�

¼
ðð

�

1 z y 0 0 0

0 0 0 �z 1 0

0 0 0 y 0 1

2
6664

3
7775

T � x

�xy

�xz

8>>><
>>>:

9>>>=
>>>;d�

¼ N M y M z T V y Vz½ �12:

The tangent stiffness of the section is calculated as

Ksection½ � ¼ @Ff g
@�f g ¼

ðð
�

@

@�
T T�ð Þd�

¼
ðð

�
T T @�

@�
d�

¼
ðð

�
T T @�

@s

@s

@�
d� ¼

ðð
�

T T DglT d�
13:

The nodal displacements at each integration point or section are

derived from the elemental end node displacements as

fug ¼ [a]fdg

uf g ¼

u

v

w

Łx

Ły

Łz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

631

¼

N1 0 0 0 0 0 N2 0 0 0 0 0

0 N1 0 0 0 0 0 N2 0 0 0 0

0 0 N1 0 0 0 0 0 N2 0 0 0

0 0 0 N1 0 0 0 0 0 N2 0 0

0 0 0 0 N1 0 0 0 0 0 N2 0

0 0 0 0 0 N1 0 0 0 0 0 N2

2
6666664

3
7777775

636n

u1

v1

w1

Łx1

Ły1

Łz1

u2

v2

w2

Łx2

Ły2

Łz2

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

6n3114:

where n is the number of nodes of the element.
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The section strains vector fsg ¼ [B]fdg derived from nodal

displacements is given by

�0

� y

�z

�x

ªxy0

ªxz0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

N1,x 0 0 0 0 0 N2,x 0 0 0 0 0

0 0 0 0 N1,x 0 0 0 0 0 N2,x 0

0 0 0 0 0 �N1,x 0 0 0 0 0 �N2,x

0 0 0 N1,x 0 0 0 0 0 N2,x 0 0

0 N1,x 0 0 0 �N1 0 N2,x 0 0 0 �N2

0 0 N1,x 0 N1 0 0 0 N2,x 0 N2 0

2
6666664

3
7777775

u1

v1

w1

Łx1

Ły1

Łz1

u2

v2

w2

Łx2

Ły2

Łz2

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

15:

The exact integration of the Timoshenko beam formulation using

linear shape functions produces parasitic shear; this leads to a

solution that is too stiff, which results in a slow convergence rate

owing to shear locking. This problem can be solved by using

reduced integration schemes, such as a one-point integration rule.

Unfortunately, in this case, the solution depends on the integra-

tion point.

In the calculation of shear strains, the section rotations Ły and Łz

are linear in x, and @v
@x

and @w
@x

are constant in x, which leads to

shear locking. This problem can be solved by assuming a linear

shear strain distribution through the use of a linear shape function

for rotations and a quadratic shape function for deflections

(Mullapudi and Ayoub, 2009).

In this case, the deflection or transverse displacement in quadratic

terms can be written as

v(x) ¼ L� x

L
v1 þ

x

L
v2

þ x(L� x)

2L
Łz1 � Łz2ð Þ

16:

w(x) ¼ L� x

L
w1 þ

x

L
w2

þ x(L� x)

2L
Ły1 � Ły2ð Þ17:

where L is the length of the element.

The rotation in linear terms can be written as

Ły(x) ¼ L� x

L
Ły1 þ

x

L
Ły218:

Łz(x) ¼ L� x

L
Łz1 þ

x

L
Łz219:

The element stiffness can be calculated from the section stiffness

using

Kelement½ � ¼
ðð

A

BT Ksection BdA
20:

The resisting load fRg is calculated from the section forces using

Rf g ¼
ðð

A

BT FdA
21:

The finite-element solution for a displacement increment ˜d can

be calculated from

Kelement˜d ¼ ˜R22:

The section behaviour, as stated earlier, is evaluated through fibre

discretisation with the appropriate material constitutive models.

Longitudinal steel fibres are assumed to follow a smeared stress–

strain relation.

Concrete constitutive model
The 3D regions have six stresses f�3Dg and corresponding strains

f�3Dg; however, the current beam formulation considers only

three stress f�g and strain f�g components, while the other three

stress and strain components are derived by solving the given

equilibrium conditions

�3Df g ¼ � x � y � z �xy � yz �xz

� �T

�3Df g ¼ �x � y �z ªxy ª yz ªxz

� �T
23:
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�f g ¼ � x �xy �xz

� 	T

�f g ¼ �x � y ªxz

� 	T
24:

�UNf g ¼ � y � z � yz

� 	T

�UNf g ¼ � y �z ª yz

� 	T
25:

The unknown stress components �UN should be 0 to satisfy the

internal equilibrium between the reinforcing steel and concrete,

which will result in the corresponding three unknown strain

values �UN: As the constraint condition is non-linear, determina-

tion of the corresponding strains requires an iterative solution.

The proposed algorithm is shown in Figure 3 and is described in

detail in Mullapudi (2010).

The eigen vectors, or direction cosines [Æ1] used in Figure 3 to

determine the principal directions from the applied stresses �3D

are

Æ1½ � ¼

l1 l2 l3

m1 m2 m3

n1 n2 n3

2
664

3
775

26:

To rotate the stress and strain vectors from the global x–y–z

system to the applied principal stress direction system 1–2–3

with an angle of [Æ1], the rotation matrix R is used

Find the available strains on each fibre , ,ε γ γx xy xz

Assume transverse strain εy

Assume transverse strain εz

Assume principal stress γyz

Assume principal stress direction [ ]α1

Calculate uniaxial principal strains , ,ε ε ε1 2 3
_ _ _

Determine fibre uniaxial stress , , , Young’s modulus
based on current uniaxial principal strain state

σ�1 2 3σ σ� �

Calculate fibre local stiffness matrix and global stiffness matrix

Calculate fibre stresses in global reference system { }σ fibre

Calculate [ ] from { }α1
new

fibreσ

[ ] [ ] 01 1
new� �α α

Shear stress | |τyz 0�

Transverse stress | |σz 0�

Transverse stress | |σy 0�

Calculate section stiffness and forces

Yes
No

Yes
No

Yes
No

Yes
No

Yes

Figure 3. Iterative procedure to determine required 3D strains
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R(Æ1)½ � ¼

l2
1 m2

1 n2
1 l1 m1 m1 n1 n1 l1

l2
2 m2

2 n2
2 l2 m2 m2 n2 n2 l2

l2
3 m2

3 n2
3 l3 m3 m3 n3 n3 l3

2l1 l2 2m1 m2 2n1 n2 l1 m2 þ l2 m1 m1 n2 þ m2 n1 n1 l2 þ n2 l1

2l2 l3 2m2 m3 2n2 n3 l2 m3 þ l3 m2 m2 n3 þ m3 n2 n2 l3 þ n3 l2

2l3 l1 2m3 m1 2n3 n1 l3 m1 þ l1 m3 m3 n1 þ m1 n3 n3 l1 þ n1 l3

2
6666666664

3
7777777775

27:

In a fibre-based element formulation, the process of the state

determination at the fibre level requires the calculation of the

fibre stresses [ � x � y � z �xy � yz �xz ]T from the strain

state [ �x � y �z ªxy ª yz ªxz ]T : Because the model has

been implemented in a Timoshenko-type beam formulation, the

values of �x, ªxy and ªxz are typically known, while the lateral

strains � y and �z values must be evaluated from the equilibrium.

Evaluation of lateral strain
The equilibrium equations needed to evaluate the stresses in the

x–y–z coordinate system [� x � y � z �xy � yz �xz]
T as a function of

the principal stresses resisted by concrete [� c
1 � c

2 � c
3 �c

12 �c
23 �c

13]T

and the reinforcing bar stresses f sx, f s y and f sz along the x, y

and z directions, respectively, are

� x � y � z �xy � yz �xz

� �T

¼ R(Æ1)½ ��1 � c
1 � c

2 � c
3 �c

12 �c
23 �c

13

� �T

þ rsx f sx rs y f s y rsz f sz 0 0 0
� �T

28:

where [R] is the rotation matrix, [R]�1 ¼ [R]T , and rsx, rs y and

rsz are the smeared reinforcement ratios in the x, y and z

directions, respectively.

Transverse strains are internal variables determined by imposing

equilibrium on each fibre between concrete and steel stirrups.

Stirrup strains are not known in advance, and because of the non-

linear behaviour of the concrete and steel, an iterative procedure

is needed to satisfy the equilibrium in the y and z directions,

following the flow chart in Figure 3.

The second of the equilibrium equations in Equation 28 is used

to evaluate the lateral strain � y in fibre i, taking into consideration

that the value of � y equals 0

� c,i
1 m2

1 þ � c,i
2 m2

2 þ � c,i
3 m2

3 þ �c,i
12 2m1 m2

þ �c,i
23 2m2 m3 þ �c,i

31 2m1 m3 þ ri
s y f i

s y ¼ 029:

The third of the equilibrium equations in Equation 28 is used to

evaluate the lateral strain �z in fibre i; taking into consideration

that the value of � z equals 0

� c,i
1 n2

1 þ � c,i
2 n2

2 þ � c,i
3 n2

3 þ �c,i
12 2n1 n2

þ �c,i
23 2n2 n3 þ �c,i

31 2n3 n1 þ ri
sz f i

sz ¼ 030:

Here, ri
sy, ri

sz are the ratios of steel to concrete area in the y and

z directions of fibre i, and f i
s y, f i

sz are the transverse steel bar

stresses in the y and z directions of fibre i:

An iterative procedure is needed to determine the lateral strain � y

and �z that will also satisfy the previous two equations because of

the non-linear behaviour of the concrete and steel. An initial

value for � y and �z is assumed at each fibre, and the iterations

proceed until Equations 29 and 30 are internally satisfied.

Evaluation of concrete stress

The typical concrete stress–strain curves are derived from

uniaxial tests, so the biaxial strains in the x–y–z direction

[�x � y �z ªxy ª yz ªxz]
T need to be converted to equivalent uniax-

ial strains in the 1–2–3 direction [�1 �2 �3 ª12 ª23 ª13]T to

calculate the concrete stresses.

The direction of cracks is first calculated based on the strain

state. At this angle, the concrete shear stresses �c
12, �c

23 and �c
13

become 0, and the corresponding constitutive model becomes a

rotating angle softened truss model. The calculated principal

angle [Æ1] from the known stress state is evaluated after the � y,

�z and ª yz terms that satisfy the equilibrium conditions are

determined.

The biaxial principal strains are then evaluated as

�1 �2 �3 ª12 ª23 ª13

� �T

¼ R Æ1ð Þ
� 	

�x � y �z ªxy ª yz ªxz

� �T
31:

Biaxial principal strains are needed to evaluate the equivalent

uniaxial strains. The equivalent uniaxial strains are derived from

the biaxial strains with the help of the suggested Poisson ratio of

cracked concrete, also called the Hsu/Zhu ratios

f�12 �21 �23 �32 �13 �31g
T

(Zhu and Hsu, 2002). From the range

of j ¼ 1 to 3 and k ¼ 1 to 3, � jk is the ratio of the resulting

tensile strain increment in the principal j direction to the source

compressive strain increment in the principal k direction; �kj is

the ratio of the resulting compressive strain increment in the
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principal k direction to the tensile source strain increment in the

principal j direction. The following equations are suggested by

Jeng and Hsu (2009) for members subjected to torsion

� jk ¼ 0:16þ 680�sf , �sf < �yd32:

� jk ¼ 1:52, �sf . �yd33:

�kj ¼ 034:

where �sf is defined as the strain in the reinforcement that yields

first, and �yd is the yield strain of reinforcing steel.

After cracking, the Hsu/Zhu ratio � jk lies outside the typical

range of 0 to 0.5 for the Poisson ratio of continuous materials;

before cracking the Hsu/Zhu ratio �kj ¼ 0:2; and after cracking

the Hsu/Zhu ratio �kj ¼ 0, indicating that the tensile strain has no

effect on the compressive strain.

The equivalent uniaxial strains are derived from the biaxial

principal strains with Hsu/Zhu ratios f�12 �21 �23 �32 �13 �31g
T

as

�1 �2 �3

� �T ¼ �½ � �1 �2 �3

� �T
35:

where

�½ � ¼
1 ��12 ��13

��21 1 ��23

��31 ��32 1

2
4

3
5
�1

36:

The equivalent uniaxial strain in the longitudinal and transverse

reinforcement is derived after evaluating the direction cosines

[Æ1] and the rotation matrix [R(Æ1)]:

The equivalent uniaxial strain in the longitudinal reinforcement

along the x direction with the effect of the Hsu/Zhu ratio is

given by

�sx ¼ �1 l2
1 þ �2 l2

2 þ �3 l2
3 þ ª122l1 l2

þ ª232l2 l3 þ ª132l1 l337:

The equivalent uniaxial strain in the transverse reinforcement

along the y direction with the effect of the Hsu/Zhu ratio is given

by

�s y ¼ �1 m2
1 þ �2 m2

2 þ �3 m2
3 þ ª122m1 m2

þ ª232m2 m3 þ ª132m1 m338:

The equivalent uniaxial strain in the transverse reinforcement

along the z direction with the effect of the Hsu/Zhu ratio is

given by

�sz ¼ �1 n2
1 þ �2 n2

2 þ �3 n2
3 þ ª122n1 n2

þ ª232n2 n3 þ ª132n1 n339:

The equivalent uniaxial longitudinal steel stress f sx, transverse

steel stresses f s y and f sz are calculated from the equivalent

uniaxial steel reinforcement strains �sx, �s y and �sz through a bi-

linear stress–strain relationship (Belarbi and Hsu, 1994, 1995).

The current equivalent uniaxial strains �1, �2 and �3 are

individually used to calculate the concrete stresses � c
1, � c

2 and � c
3

in the principal direction of the uniaxial concrete material stress–

strain relationship. The concrete constitutive relations are de-

scribed in more detail in the next section.

Concrete triaxial constitutive relations
The concrete constitutive equations depend on the strain state and

the region of the cross section. The principal strains �1, �2 and

�3 are found from the global strains using the iterative algorithm

of Figure 3 and the Jacobi method; and the equivalent uniaxial

strains �1, �2 and �3 are derived based on the Hsu/Zhu ratio

(Jeng and Hsu, 2009). The local concrete material stiffness is

derived based on Young’s modulus and the Hsu/Zhu ratio. The

global stiffness in the Cartesian direction is calculated by

transforming the local stiffness to the global direction. The global

stiffness in the y, z and yz directions are condensed in the element

formulation and, during this process, the stresses in the axial,

flexure and shear directions are coupled.

The values of the concrete uniaxial strains in principal directions

1, 2 and 3 have eight conditions, and the strength in one direction

is affected by the strain state in the other directions following the

procedure proposed by Vecchio and Selby (1991). The uniaxial

strains are sorted in ascending order such that �1 . �2 . �3: The

values of concrete compressive strength � c
1 in direction 1 and

concrete compressive strength � c
3 in direction 3 can be found

based on their strain state, as discussed next. The same type of

rules applies for the 1–2 direction to determine the concrete

compressive strength � c
2 in direction 2.

Case 1: 1–tension, 3–compression

In case 1, the equivalent uniaxial strain of concrete �1 in principal

direction 1 is in tension, and the equivalent uniaxial strain �3 in

principal direction 3 is in compression. The uniaxial concrete

stress � c
1 in direction 1 is calculated from �1 and is not a function
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of the perpendicular concrete strain �3: The compressive strength

in principal direction 3, � c
3, will however, soften because of the

tension in the orthogonal direction. Jeng and Hsu (2009) derived

a softening equation in the tension–compression region, which is

implemented in the current model, and is based on panel testing,

as proposed by Hsu and Zhu (2002). The equation for the

compressive strength and strain reduction factor � is given by

� ¼ 5:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 9c(MPa)

p < 0:9

 !

3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 400�1

p
� �

1�
Æ�r1
�� ��
328

� �
40:

where

Æ�r1 ¼ 0:5 tan�1 2ª13

�1 � �3

� �
41:

The softening coefficient � value is limited to 0.9 because the

uniaxial concrete compressive strength f 9c is calculated from

standard cylinder tests, while results of panel experiments

performed at the University of Houston showed that the concrete

strength does not reach f 9c: These results are attributable to the

panel size and shape, and loading rate, which have ample effect

on the concrete compressive strength f 9c: The ultimate stress in

the orthogonal direction is � f 9c at softened strain ��0 when � is the

softening coefficient; Æ�r1 is the deviation angle in degrees, which

is the difference between the applied stress angle Æ1 and the

rotating angle through global strain values; �1 is the lateral tensile

strain; �0 is the concrete strain at peak compressive strength f 9c;

and � f 9c is the softened concrete compressive strength.

Case 2: 1–tension, 3–tension

The equivalent uniaxial strain of concrete �1 in direction 1 is in

tension, and the equivalent uniaxial strain �3 of concrete in

direction 3 is also in tension. In case 2, the uniaxial concrete

stress � c
1 in direction 1 is evaluated from �1, and � c

2 in direction

3 is evaluated from �3: � c
1 and � c

3 are functions only of the

orthogonal concrete strains �1 and �3, respectively.

Case 3: 1–compression, 3–compression

The equivalent uniaxial strains of concrete in principal directions

1 and 3 are in compression. The current research uses the

Vecchio (1992) simplified version of the Kupfer et al. (1969)

biaxial compression strength equation. The concrete compressive

strength increase in one direction depends on the confining stress

in the orthogonal direction. The enhanced strength and increased

ductility depend on the biaxial compressive stresses. Concrete in

compression exhibits lateral expansion and increases in the value

of the Poisson ratio. An upper limit of 0.5 has been set for the

Poisson ratio. The principal stresses in the two orthogonal

directions are denoted by � c
1, � c

3, and their corresponding strains

are referred to by the functions �1 and �3: The equations for the

biaxial compression failure surface are

Kc1 ¼ 1þ 0:92
�� c

3

f 9c

� �
� 0:76

�� c
3

f 9c

� �2

Kc3 ¼ 1þ 0:92
�� c

1

f 9c

� �
� 0:76

�� c
1

f 9c

� �2

42:

where Kc1 and Kc3 are the biaxial strength magnification factors.

The ultimate stresses in the orthogonal directions are

�1p ¼ Kc1 f 9c, �3p ¼ Kc3 f 9c43:

The ultimate strains in the orthogonal directions are

�1p ¼ Kc1�0, �3p ¼ Kc3�044:

where �0 is the uniaxial compressive strain of the concrete at

peak stress.

Analysis of shear walls
RC shear walls are typically modelled with 2D continuum

elements or 3D solid elements. Such models can accurately

describe the local behaviour of the wall element. Continuum and

solid models are computationally very expensive though, which

limits their applicability to larger structures. Fibre beam elements,

on the other hand, are able to model the behaviour of slender

walls and are computationally efficient. With the inclusion of

shear deformations and concrete constitutive models under a

biaxial state of stress, fibre models can also accurately simulate

the behaviour of walls with aspect ratios greater than 1. The

previously developed fibre-based finite-element model is vali-

dated through a correlation study with experimentally tested RC

walls.

Simulation of Pilakoutas and Elnashai (1995) shear wall

SW 7

Pilakoutas and Elnashai (1995) tested the RC cantilever wall

(SW7) under lateral load. The wall has an aspect ratio of 2.0. The

wall has a clear height of 1200 mm, and a cross section of

600 mm 3 60 mm. The wall is reinforced with 0.47% flexural

web reinforcement and 0.39% shear reinforcement.

The concrete cube strength f cu of the specimen equals 32 MPa.

The yield stresses of the longitudinal and transverse reinforce-

ment are 543 MPa and 553 MPa, respectively. Young’s modulus

of steel is assumed to equal 200 000 MPa.

Figure 4 shows the experimental and analytically derived lateral

load–displacement response of wall SW7. The figure reveals that
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the model predicted well the stiffness, as well as the yield and

peak load. The response of this specimen was dominated by

yielding of the transverse reinforcement prior to shear failure.

Simulation of Peng and Wong (2011) shear walls SW10-

100 and SW10-400

Three similar RC walls with the same cross section and reinforce-

ment arrangements and material have been tested under mono-

tonic loading by Peng and Wong (2011). One wall (SW10-0) is

tested under only flexure and shear about the major axis of the

wall generated by a lateral force acting at the top of the wall with

no eccentricity. The other two walls (SW10-100 and SW10-400)

are tested under flexure, shear and torsion with an eccentricity of

100 mm and 400 mm, respectively, with respect to the major axis

of the wall. All of the wall units have a length of 1000 mm and a

width of 150 mm (Figure 5(a)). All of the wall specimens have a

height of 1500 mm and are mounted with a loading slab of
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and loading set-up (Peng and Wong, 2011)
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1250 mm 3 750 mm 3 200 mm at the top of the wall. A steel

loading transfer plate of 40 mm thick is mounted on top of the

loading slab (Figure 5(b)).

The wall is modelled with five Gauss–Lobatto integration points

along the element length. Every section represents one integration

point, and each section is divided into eight longitudinal and

transverse fibres. The top steel transfer plate, the loading slab and

the top part of the 300 mm wall portion are modelled with an

elastic material. The walls are modelled as a cantilever with fixed

base, and the lateral load is applied at the top of the wall, as

shown in Figure 5(c). The wall is reinforced with eight long-

itudinal reinforcements of 12 mm diameter on each face, and

with 10 mm diameter transverse reinforcements at 200 mm

centre-to-centre spacing. An average compressive strength of

concrete of 40.2 MPa, yield strength of longitudinal steel of

535 MPa and yield strength of transverse reinforcement of

564 MPa are used in the analysis. A clear cover of 20 mm is used

in the analysis.

Figure 6 shows the wall SW10-0 flexure–shear response without

torsional effect. Wall SW10-0 failed under ductile flexure with

the formation of a plastic hinge at the bottom of the wall. At the

peak load, both the longitudinal and transverse steel yielded at

the bottom of the wall. The fibre beam element was able to

predict the cracking, yielding, ultimate load and corresponding

displacement ductility accurately compared to the experimental

results.

Figure 7 shows the shear force–displacement response of wall

SW10-100. This wall failed under ductile flexure failure because

the bending behaviour dominated the torsional behaviour of the

wall. A plastic hinge was formed at the bottom of the wall. At

the peak load, both the longitudinal and transverse steel yielded

at the bottom of the wall. The strength, stiffness and ductility are

reduced in the presence of the torque. The fibre beam element

was able to predict the cracking and yielding loads and corre-

sponding displacements rather well, but a deviation was found at

the peak load because this wall failed prematurely during the

experiment due to lack of the required strength of the bottom

slab. Owing to the applied torque, the flexural strength of the wall

is reduced by about 28%, and the flexural ductility is reduced by

48% compared to the SW10-0 wall response.

Figure 8 shows the shear force–displacement response of wall

SW10-400. This wall failed under the domination of shear over

flexure, with the formation of a plastic hinge at 400 mm from the

bottom of the wall. At the peak load, the longitudinal and

transverse steel yielded at the bottom and middle of the wall. The

strength, stiffness and ductility are reduced in the presence of the

torque. The fibre beam element was able to predict the load–

deformation response well. From the figure, it is apparent that

with the increase of the torque, the flexural strength is reduced by

60% and the flexural ductility is reduced by 90% compared to the

SW10-0 wall response.

Figure 9 shows the response of the torque–angle of twist

response for wall SW10-100. The fibre beam element was able to

capture the cracking, yielding and peak behaviour rather accu-

rately, but the post-peak response did not match well because of

the premature experimental failure of the wall.
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Figure 10 shows the torque–angle of twist response of wall

SW10-400. This wall is loaded with about 120% torsional load

higher than the SW10-100 wall. The torsional strength, stiffness

and ductility are reduced with the increase of the torque. The

fibre beam element was able to capture the cracking, yielding,

peak load and corresponding twisting angles rather well. At first

yield, the transverse reinforcement yielded, but at the peak load,

both the longitudinal and transverse reinforcements yielded.

Conclusions
The analysis conducted in this study on shear walls subjected to

combined loadings has served to address the effect of torsion on

wall behaviour. A 3D fibre beam element is developed with

Timoshenko beam formulation to incorporate shear effects. The

combination of an appropriate finite-element formulation and the

SMM provided a simple and reliable analytical tool for evaluating

the behaviour of walls subjected to combined loadings, including

torsion. The displacement control scheme is stable, and is able to

predict the pre-peak and post-peak behaviour of the hysteresis

loop. With the increase of the torque to moment ratio, the

torsional stiffness degrades rapidly as compared to the flexural

stiffness, and the flexural energy dissipation is reduced consider-

ably. The new model accurately predicted the stiffness, cracking,

yield point, ultimate strength, energy dissipation and failure

modes of the wall specimens, confirming its applicability as an

analysis and design tool for engineers.
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