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Abstract. We investigate the symmetry algebras of integrable spin Calogero systems con-
structed from Dunkl operators associated to finite Coxeter groups. Based on two explicit
examples, we show that the common view of associating one symmetry algebra to a given
Coxeter group W is wrong. More precisely, the symmetry algebra heavily depends on the
representation of W on the spins. We prove this by identifying two different symmetry
algebras for a BL spin Calogero model and three for G2 spin Calogero model. They are all
related to the half-loop algebra and its twisted versions. Some of the result are extended to
any finite Coxeter group.
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1 Introduction

Dunkl operators [1] were introduced by C.F. Dunkl as part of a program on polynomials in
several variables with reflection symmetries related to finite reflection groups (or equivalently
finite Coxeter groups). Besides this important mathematical motivation, they quickly became
fundamental objects in the study of integrable quantum mechanical many-body systems intro-
duced by F. Calogero and B. Sutherland [2, 3] and generalized to any Weyl group in [4]. Indeed
they can be viewed as generalizations of momentum operators with which they share the cru-
cial property of forming an Abelian algebra. This fact allows one to implement the exchange
operator formalism described in [5] producing many-body integrable Hamiltonians. In [6, 7],
it was realized that this could be pushed further by representing the Coxeter group on spins1.
This gave L-particle integrable spin Calogero systems related to the group AL. Then one could
play several games such as changing the type of potential and/or the underlying group while
maintaining integrability.

Another big step was taken in [8] where the “FRT formalism” [9], so powerful with spin
chain type integrable models, was used in connection with the algebraic properties of the Dunkl
operators to construct the symmetry algebra. By this, we mean the algebra of the operators
commuting with the Hamiltonian of the system (and its hierarchy). In the case of [8], it is a non
Abelian infinite dimensional algebra which contains the whole hierarchy of the integrable AL spin
Sutherland model in its centre: the Yangian of glN [10]. This type of symmetry algebra is a very
efficient tool to study and, in particular, to compute explicitly the spectrum, the eigenvectors
and the correlation functions of a large class of integrable models: Sutherland model [11, 12,

?This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The full collection
is available at http://www.emis.de/journals/SIGMA/Dunkl operators.html

1Here the spin is to be understood as an internal degree of freedom taking N different values.
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13], Haldane–Shastry spin model [14, 15, 16, 17], non-linear Schrödinger equation [18, 19] and
Hubbard model [20].

The method developed in [8] was then derived in various ways, again accommodating various
groups and potentials, to identify the corresponding symmetry algebras. From there, following
several results in the literature, some standard views imposed themselves as granted: for in-
stance, the symmetry algebra of an AL Sutherland type model [8] should be a Yangian while the
Calogero counterpart (without harmonic confinement) should be the corresponding half-loop
algebra. Similarly, for BL Sutherland models, the reflection algebra [21] should be symmetry al-
gebra [22] with the corresponding twisted half-loop algebra as symmetry algebra of the Calogero
counterpart (this paper).

Actually, we show in this paper that this is not true and in general, it is not enough to specify
the type of potential and the underlying Coxeter group to identify the correct symmetry algebra
of the associated integrable model. In addition, one has to give the spin representation of the
Coxeter group. This is examplified in this paper by working with rational Dunkl operators (hence
producing Calogero type potentials) based on two particular finite Coxeter groups: BL and G2.
In the first three sections, we recall the background on finite reflection groups, half-loop algebras
and the link to dynamical spin integrable systems that is necessary for our purposes. In Section 5,
we deal with BL spin Calogero model for which we identify two different symmetry algebras by
choosing two different ways of representing BL on the spin configuration space. In Section 6, we
apply the same strategy with three different spin representations of G2 to obtain three different
symmetry algebras. All the symmetry algebras are related to the glN half-loop algebra and
its twisted versions. Various generalizations of our discussion are collected in Section 7. Our
conclusions are gathered in the last section.

2 Dunkl operators associated to finite reflection groups

Here we recall the ingredients we need from the theory of finite reflection groups (see e.g. [23])
and Dunkl operators [1]. A reflection in the real Euclidean space RL endowed with the scalar
product (ei, ej) = δij , where {ei}i=1,...,L are the canonical basis vectors of RL, is a linear opera-
tor sα (α ∈ RL, α 6= 0) on RL defined by

∀µ ∈ RL, sα(µ) = µ− 2
(µ, α)
(α, α)

α.

It sends the vector α to −α and leaves invariant the hyperplane Hα orthogonal to α. A root
system Φ is a subset of RL satisfying, for all α ∈ Φ,

(λ ∈ R, α ∈ Φ and λα ∈ Φ) ⇒ λ = ±1,

sαΦ = Φ.

Φ is a finite set and the group generated by {sα | α ∈ Φ} is a finite subgroup W of O(RL) called
the reflection group associated to Φ. Any root system can be written as Φ = Φ+ ∪ (−Φ+) (Φ+

is called the positive root system). A simple system ∆ is a subset of Φ such that ∆ is a vector
space basis of spanRΦ and each α ∈ Φ is a linear combination of ∆ with coefficients all of the
same sign.

An important result is that the reflection group W is generated by {sα | α ∈ ∆} subject only
to the relations, for α, β ∈ ∆

(sαsβ)m(α,β) = 1

with m(α, α) = 1 and m(α, β) > 1 (α 6= β). That is to say, by definition, W is a Coxeter group.
The possible values of m(α, β) such that the group W is finite provides a classification of the
finite reflection groups.
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To each Coxeter group W , one can associate Dunkl operators which are differential operators
acting on functions ϕ : RL → C. Let us define the natural action of W on such functions by

(ŝϕ)(µ) = ϕ(s−1(µ))

with s ∈ W and µ ∈ RL. The map s 7→ ŝ is a representation of the group W . A function
k : Φ → C is called a multiplicity function if

∀α, β ∈ Φ, k(β) = k(sα(β)).

Let k be given. For ξ ∈ RL, the Dunkl operator dξ acts on C1(RL) and is defined by

dξ = −i∂ξ + i
∑

α∈Φ+

k(α)
(α, ξ)
(α, x)

ŝα,

where ∂ξ is the derivative in the direction ξ, x = (x1, . . . , xL)t with xi the operator multiplica-
tion by xi. Note that our choice of Dunkl operators yields hermitian operators provided k is
real-valued. This is important for quantum mechanical applications. The Dunkl operators do
not depend on the choice of the positive root system Φ+ and have the following fundamental
properties2

Proposition 1 ([1]). The Dunkl operators are W -equivariant, i.e. for any s ∈ W , we get

ŝdξ ŝ
−1 = ds(ξ).

The Dunkl operators commute, i.e. for any ξ, ζ ∈ RL, we get

dξdζ = dζdξ.

3 Half-loop algebra and twists

This section is meant to give necessary definitions and notations to handle algebraic structures
related to some integrable models.

The glN half-loop algebra3 is the unital algebra glN [z] of polynomials in an indeterminate z
with coefficients in glN : it is generated by {eij zn | 1 ≤ i, j ≤ N,n = 0, 1, 2, . . . } where eij are
the generators of glN satisfying the commutation relations

[eij , ek`] = δjkei` − δi`ekj .

Let Eij be the matrix with 1 on the entry (i, j) and 0 elsewhere. The map eij 7→ Eij provides
a representation of glN . In the following, we will use auxiliary space notations to simplify
computations. We define the monodromy matrix of the half-loop algebra as follows

T (u) =
N∑

i,j=1

Eij ⊗
∞∑

n=0

ejiz
n

un+1
=

N∑
i,j=1

Eij ⊗ eji

u− z
∈ End(CN )⊗ glN [z][[u−1]],

where u is a formal parameter called the spectral parameter and End(CN ) is the auxiliary space
used to pack nicely the generators. The defining relations of the half-loop algebra can be written

[Ta(u), Tb(v)] = [Ta(u) + Tb(v), rab(u− v)] , (3.1)

2Strictly speaking, the proof in [1] is given for slightly different Dunkl operators simply related to ours by the
gauge transformation dξ 7→ φ−1(x)dξφ(x) where φ is a W -invariant function φ(s(x)) = φ(x) for all s ∈W .

3Also sometimes called Gaudin algebra.
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where a and b denote two copies of the auxiliary space End(CN ), Ta(u) = T (u) ⊗ IN , Tb(u) =
IN ⊗ T (u), IN is the identity in End(CN ), and

rab(u) =
N∑

i,j=1

Eij ⊗ Eji

u
≡ Pab

u

is a classical r-matrix solution of the classical Yang–Baxter equation [24].
Let σ ∈ End(CN ) with σn = IN for some n ∈ N. The eigenvalues of σ are the powers of the

n-th root of unity τ = e
2iπ
n . We denote A the inner automorphism of glN associated to σ. Its

action on the generators of glN is given by

A : eij 7→ (σ)jn emn (σ−1)mi.

We extend this action to glN [z] in the natural way and we define

glN [z]σ = {M(z) ∈ glN [z] |A M(z) = M(τz)}.

One can see that glN [z]σ is a subalgebra of glN [z] which is called the (inner) twisted half-loop
algebra of order n. Now we proceed to derive the commutation relations of this algebra. For
k ∈ N, we introduce the projectors

Pk =
1
n

n−1∑
j=0

τ−jkAj .

Note that there are only n such projectors as Pn+k = Pk. This allows us to define a surjective
projection map from glN [z] to glN [z]σ by eijz

k 7→ Pkeijz
k. In turn, this maps T (u) to

B(u) =
1
n

n−1∑
j=0

τ j σj T (τ ju)σ−j ∈ End(CN )⊗ glN [z]σ[[u−1]], (3.2)

which contains the generators of glN [z]σ by construction. Next we have [25]

Proposition 2. B(u) satisfies the symmetry property

∀ j = 0, . . . , n− 1, B(u) = τ jσjB(τ ju)σ−j ,

and encodes the commutation relations of glN [z]σ as

[Ba(u), Bb(v)] =
1
n

n−1∑
j=0

[
τ j Ba(u) + Bb(v),

(σj)bPab(σ−j)b

u− τ j v

]
. (3.3)

For our purposes, the following facts are important. If b(u) = Tr B(u), where the trace is
taken over the auxiliary space End(CN ), then it follows from (3.3) that

[b(u), B(v)] = 0, [b(u), b(v)] = 0. (3.4)

4 Link with integrable dynamical spin models

The Dunkl operators allow us to construct integrable Hamiltonians by implementing the strategy
discussed in [5]. Indeed, any polynomial in the Dunkl operators commutes with the independent
and two by two commuting operators {dei | i = 1, . . . , L}. When it is of order 2, this polynomial
can usually be regarded as an Hamiltonian which is then integrable.
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The next step is to consider Hamiltonians for particles with N internal degrees of freedom.
The construction to introduce these “spins” has been pioneered in [6, 7] and the symmetry of
the corresponding models has been shown in [8]. The point is that the Dunkl operators only
act on the positions xi while now the wavefunctions become ϕ(x|s), x ∈ RL, s ∈ (CN )⊗M . Let
us remark that M may be different from L in general. So one has to come up with a method
allowing the Dunkl operators to act on the spins while maintaining their nice properties. This
is done with a suitable projector

Λ =
1
|W |

∑
w∈W

ŵRw.

Note that we require that the wavefunctions satisfy the following generalized statistics4 for
w ∈ W ,

ŵRwϕ(x|s) = ϕ(x|s),

where R : W → End((CN )⊗M ) is a representation of W .
One then acts with dξΛ on the wavefunctions. Unfortunately, usually [dξΛ, dζΛ] 6= 0 so the

idea to use directly polynomials in dξΛ to get an integrable hierarchy fails. The idea of [8] is
to use the monodromy matrix formalism and the underlying algebraic structures to circumvent
this problem. In our context, consider a set of M vectors {ξ1, . . . , ξM}. Then, the matrix

Ta(u) =
M∑

k=1

Pak

u− dξk

provides a representation of the half-loop algebra (3.1). At this point, let us emphasize that the
auxiliary space has no ‘physical’ meaning (in the sense it does not act on the wavefunctions)
but it is a powerful and convenient tool to deal with the infinite algebras we are interested in.
Then, the ‘physical’ operators are contained in the entries of the matrix.

One obtains B(u) through (3.2) with the properties (3.4). The crucial part is to show that,
for a suitable choice of ξ and of the twist, B(u)Λ is also a representation of the algebra (3.3).
To prove this statement, it is sufficient to show that ΛB(u)Λ = B(u)Λ which is guaranteed by,
for g any generator of W ,

ĝRgB(u)Λ = B(u)Λ. (4.1)

Finally, using properties (3.4) for B(u)Λ, we conclude that TrB(u)Λ provides a hierarchy of
commuting operators when expanding in powers of u−1. To prove the integrability, it is now
sufficient to prove that in this hierarchy there are L independent quantities. Noting that these
operators are polynomials in dξ times Λ, we may choose one of them as the Hamiltonian acting
both on the position and spin degrees of freedom of the wavefunctions. As a by-product, but
not the least, we prove that this Hamiltonian has the twisted half-loop algebra for symmetry
algebra.

It is very important to realize that it is the choice of R, the representation of W on the spins,
together with the requirement (4.1), that imposes the form of B(u) and hence the symmetry
algebra. This is the essential message of this paper.

In the rest of this paper, we detail this construction for two Coxeter groups, BL and G2.
In particular, we get the surprising result that spin Calogero-type integrable models built from
Dunkl operators associated to the same Coxeter group can have different symmetry algebras.

4Called this way because in the case W = AL and with the permutation representation on positions and spins,
these conditions amount to consider bosonic wavefunctions.
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5 Reflection group BL

We consider the Coxeter group BL. It is generated by L elements t1, . . . , tL−1 (generating the
Coxeter group AL−1) and r with defining relations

r2 = 1, t2i = 1, i = 1, . . . , L− 1,

(titi+1)3 = 1, i = 1, . . . , L− 2, (titj)2 = 1, |i− j| > 1,

(rtL−1)4 = 1, (rtj)2 = 1, j 6= L− 1.

5.1 The usual BL spin Calogero model

To fix ideas, we start with a known model [26]. We choose the usual positive root system
Φ+ = {ei ± ej , ek | 1 ≤ i < j ≤ L, 1 ≤ k ≤ L}. Then, the representation of the generators of BL

associated to simple roots are

ti = sei−ei+1 =


Ii−1

0 1
1 0

IL−i−1

 and r = seL =
(

IL−1

−1

)
,

where Ij is the j × j unit matrix. In this case, the Dunkl operators are given by

dek
≡ dk = −i∂ek

+ ikl

∑
j 6=k

(
1

xk − xj
ŝek−ej +

1
xk + xj

ŝek+ej

)
+

iks

xk
ŝek

. (5.1)

The constants kl and ks are the two arbitrary values that the multiplicity function can take
on BL. The action of BL on (CN )⊗L is taken as

Rti = Pii+1 and Rr = QL,

where Q ∈ End(CN ) satisfies Q2 = IN . We apply (3.2) to

Ta(u) =
L∑

k=1

Pak

u− dk

with σ = Q (so τ = −1 and n = 2). We get

Ba(u) =
1
2

(Ta(u)−QaTa(−u)Qa) =
1
2

L∑
k=1

(
Pak

u− dk
+

QaPakQa

u + dk

)
.

To prove that B(u)Λ satisfies (3.3), it is enough to prove

r̂RrB(u) = B(u)r̂Rr and t̂iRtiB(u) = B(u)t̂iRti . (5.2)

This is readily seen as

r̂RrB(u) =
1
2

L−1∑
k=1

(
Pak

u− dk
+

QaPakQa

u + dk

)
r̂Rr +

1
2

(
QLPaLQL

u− r̂dLr̂
+

QLQaPaLQaQL

u + r̂dLr̂

)
r̂Rr

and r̂dLr̂ = dreL = d−eL = −dL (recall also that Q2 = IN ). Similarly, one looks at the i-th and
i + 1-th term in the second relation in (5.2) and uses t̂idit̂i = dtiei = dei+1 = di+1 together with
Pii+1PaiPii+1 = Pai+1.
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One can now extract the commuting quantities by expanding b(u)Λ in powers of u−1. One
gets

b(u)Λ =
∞∑

n=0

1 + (−1)n

2un+1

L∑
k=1

dn
kΛ. (5.3)

We see that only J2n =
L∑

k=1

d2n
k Λ yield non trivial quantities. In particular, one gets the usual BL

spin Calogero Hamiltonian

H = J2 = −
L∑

j=1

∂2
ej

+ kl

∑
m6=j

(
kl − Pmj

(xm − xj)2
+

kl −QjPmjQj

(xm + xj)2

)
+ ks

L∑
j=1

ks −Qj

x2
j

. (5.4)

Then, we get the well-known result [26] that this hamiltonian is integrable by proving that
J2, J4, . . . , J2L are independent. In addition, as explained in Section 4, we prove that this model
has for symmetry the twisted half-loop algebra of order 2. This result may be also obtained by
considering the symmetry of the BL Sutherland model proved in [22] and taking the suitable
limit as explained in [8] for the AL case.

5.2 Another BL spin Calogero model

Here we follow the approach of [27] and use another representation of BL for the spins while
keeping the same on RL. Let us fix µ ∈ RL. The orbit of the vector µ under the group BL is
written

{w(µ) | w ∈ BL} ≡ {µ1, . . . , µM}

for some M ∈ N and with µj ∈ RL. The group BL acts transitively on this set, i.e. for any µj , µk

there exists w ∈ BL such that w(µj) = µk. For any w ∈ BL, we obtain an action on the set
{1, . . . ,M} by defining

w̌(i) = j iff w(µi) = µj . (5.5)

The map w 7→ w̌ is a representation of BL. We can now define a representation of BL on
(CN )⊗M as the map w 7→ Rw where

Rwv1 ⊗ · · · ⊗ vM = vw̌−1(1) ⊗ · · · ⊗ vw̌−1(M) (5.6)

with vi ∈ CN .
At this stage, one can see that

Ta(u) =
M∑

k=1

Pak

u− dµk

commutes with the projector Λ in the chosen representation. Indeed, for each w ∈ BL

ŵRw

M∑
k=1

Pak

u− dµk

=
M∑

k=1

Paw̌(k)

u− dw(µk)
ŵRw =

M∑
n=1

Pan

u− dµn

ŵRw,

where the last equality is obtained by relabelling the sum according to (5.5). Thus, T (u)Λ
satisfies the half-loop algebra relations and Tr T (u)Λ ≡ t(u)Λ provides the commuting elements.
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So we find that all the BL spin Calogero Hamiltonians obtained in this way (e.g. in [27]) have
the half-loop algebra as symmetry algebra.

As an example, we apply this to µ = e1, the first vector of the canonical basis of RL. Then the
orbit contains 2L elements ±ej , j = 1, . . . , L which we order as follows (e1,−e1, . . . , eL,−eL) ≡
(µ1, µ1̄, . . . , µL, µL̄). Then, by inspection we get

ř(j) =


L̄, j = L,

L, j = L̄,

j, otherwise

and ťi(j) =



i + 1, j = i,

i, j = i + 1,

i + 1, j = ī,

ī, j = i + 1,

j, otherwise.

This gives

Rr = PL,L̄, Rti = Pi,i+1Pī,i+1.

We get

Ta(u) =
L∑

k=1

Pak

u− dµk

+
Pak̄

u− dµk̄

=
L∑

k=1

Pak

u− dk
+

Pak̄

u + dk
,

where the Dunkl operators are given by (5.1). The following BL spin Calogero Hamiltonian has
the half-loop algebra as symmetry algebra

H = −
L∑

j=1

∂2
ej

+ kl

∑
m6=j

(
kl − PmjPm̄j̄

(xm − xj)2
+

kl − Pmj̄Pm̄j

(xm + xj)2

)
+ ks

L∑
j=1

ks − Pjj̄

x2
j

. (5.7)

As previously, TrT (u)Λ provides only the even conserved quantities J2k =
L∑

j=1
d2k

j Λ but it is

sufficient to prove the integrability since J2, J4, . . . , J2L are again independent. Comparing (5.4)
and (5.7), it is manifest that the only difference lies in the action on the spins, the potentials
being indentical. Yet, these two systems based on BL have different symmetry algebras. It is
also interesting to remark that (5.7) represents a system of L particles on the line with two spin
degrees of freedom attached to each particle.

6 Group G2

We consider the Coxeter group G2 (which is the dihedral group I2(6) of order 12). It is generated
by 2 elements t and r subject only to the following relations

r2 = 1, t2 = 1, (tr)6 = 1.

It may also be generated by 2 elements a and b subject only to the following relations

a6 = 1, b2 = 1, ba = a−1b.

The isomorphism between the two presentations reads

a 7→ tr and b 7→ t.
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6.1 Model with three particles and six spins

The choice in this section for the positive roots of I2(6) in R3 are Φ+ = {e1−e2, e3−e1, e3−e2}∪
{−2e1 + e2 + e3, e1 − 2e2 + e3,−e1 − e2 + 2e3}. Then, the the representation of the generators
of I2(6) associated to simple roots are

t = se1−e2 =

 0 1 0
1 0 0
0 0 1

 and r = s−2e1+e2+e3 =
1
3

 −1 2 2
2 2 −1
2 −1 2

 . (6.1)

To write down the Dunkl operators explicitly, it is useful to express all the reflections in terms
of r and t

se1−2e2+e3 = trt, se1−e3 = rtr, se2−e3 = trtrt, se1+e2−2e3 = rtrtr.

We give only one example as the other ones are computed similarly:

de1 = −i∂e1 + iks

(
1

x1 − x2
t̂ +

1
x1 − x3

r̂tr

)
+ ikl

(
1

x1 − 2x2 + x3
t̂rt− 2

1
−2x1 + x2 + x3

r̂ +
1

x1 + x2 − 2x3
r̂trtr

)
.

The action on the spins is defined as in Section 5.2 replacing the group BL by I2(6). That
is, we define for µ ∈ R3,

{µ1, . . . , µM} = {w(µ) | w ∈ I2(6)}

which provides a representation Rw acting on spins. Thus, we have again that

Ta(u) =
M∑

k=1

Pak

u− dµk

commutes with the projector Λ in the chosen representation (the proof follows the same lines
than the one in Section 5.2). We conclude that the half-loop algebra is the symmetry algebra
of the integrable hierarchy contained in TrT (u)Λ.

We give an example. We may choose µ = e1. Then the orbit is{
µ1 = e1, µ2 = e2, µ3 = e3, µ1̄ = 1

3(−e1 + 2e2 + 2e3),

µ2̄ = 1
3(2e1 − e2 + 2e3), µ3̄ = 1

3(2e1 + 2e2 − e3)
}

.

So, we get M = 6. We deduce the following representation of I2(6) on (CN )⊗6

Rt = P12P1̄2̄ and Rr = P11̄P23̄P32̄.

The coefficient in front of u−2 in the expansion of t(u)Λ is proportional to the total momentum
P = −i∂1 − i∂2 − i∂3 and the one in front of u−3 is proportional to the Hamiltonian and reads

H = −
3∑

i=1

∂2
ei

+ ks

∑
m6=j

ks − PmjPm̄j̄

(xm − xj)2
+ kl

∑
n6=m6=j

kl − Pnn̄Pjm̄Pmj̄

(−2xn + xm + xj)2
.

By direct computation, we can show that the coefficients in front of u−4, u−5 and u−6 are not
independent of P and H whereas J6, the one in front of u−7, is independent of them. Then
P , H and J6 provides 3 independent conserved quantites which proves the integrability of H.
Let us remark that the degree in di of the conserved quantities (i.e. 1, 2, 6) are in agreement
with the degrees of the invariant polynomials by the Coxeter group I2(6). In fact, it is not
a coincidence since the conserved quantities we constructed may be seen as polynomials in
terms of the variables di and are, by construction, invariant under I2(6).
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6.2 Model with three particles and three spins

We keep the same positive roots as in Section 6.1. Then, the action of I2(6) on R3 is still the
one defined by (6.1) but we take now the following representation of I2(6) on (CN )⊗3

Rr = P23Q1Q2Q3, Rt = P12,

where Q2 = IN . The projector may be written as follows

Λ = ΛQΛP = ΛP ΛQ,

ΛQ = 1
2(1 + (t̂r)3 Q1Q2Q3),

ΛP = 1
6(1 + t̂ P12 + t̂rtrt P23 + r̂trt P12P23 + t̂rtr P23P12 + r̂tr P13).

The projector ΛP is the usual symmetriser of the eigenfunctions for bosons and ΛQ yields

φ(x1, x2, x3 | s1, s2, s3) = φ(−x1 + 2X,−x2 + 2X,−x3 + 2X | s∗1, s
∗
2, s

∗
3),

where s∗ = Qs and X = 1
3(x1 + x2 + x3) is the center of mass of the three particles.

The monodromy matrix is taken to be (with di ≡ dei),

Ta(u) =
Pa1

u− d1
+

Pa2

u− d2
+

Pa3

u− d3
.

We apply a slight variant of (3.2) and define

B̂a(u) = Ta(u)−QaTa(−u + D)Qa

=
Pa1

u− d1
+

Pa2

u− d2
+

Pa3

u− d3
+

Q1Pa1Q1

u + d1 −D
+

Q2Pa2Q2

u + d2 −D
+

Q3Pa3Q3

u + d3 −D
,

where D = 2
3(d1 + d2 + d3). B̂(u) satisfies the following commutation relations

[
B̂a(u), B̂b(v)

]
=

1
2

[
B̂a(u) + B̂b(v),

Pab

u− v

]
+

1
2

[
−B̂a(u) + B̂b(v),

QaPabQa

u + v −D

]
. (6.2)

This algebra is isomorphic to the twisted half-loop algebra of order 2: B̂(u) 7→ B(u + D/2).
The crucial points now are that B̂(u) commutes with Λ and we still have [Tr B̂(u),Tr B̂(v)] = 0.
Then, the coefficient of u−2 in b(u)Λ is proportional to the total momentum P = −i∂1−i∂2−i∂3

and the one of u−3 contains the following Hamiltonian, studied in [28],

H = d2
1 + d2

2 + d2
3 = −

3∑
i=1

∂2
ei

+ ks

∑
m6=j

ks − Pmj

(xm − xj)2
+ kl

∑
n6=m6=j

kl − PmjQnQmQj

(−2xn + xm + xj)2
. (6.3)

As before, the coefficients of u−4, u−5 and u−6 are not independent of P and H. It is again J6,
the coefficient of u−7, which provides the third independent conserved quantity and allows us
to prove that the previous Hamiltonian is integrable.

Concerning the symmetry algebra, one has to be careful since the commutation relations (6.2)
depend on the operator D which is proportional to the total momentum. We can talk about
the symmetry of the model (6.3) only in the sectors where the total momentum P has a given
value p. This is not a problem as the states are defined by three quantum numbers, p being
one of them and in the sectors of fixed p, the symmetry algebra is isomorphic to the twisted
half-loop algebra. For example, in the center of the mass frame (p = 0), the symmetry algebra
of (6.3) is the usual twisted half-loop algebra of order 2.
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6.3 Model with two particles and two spins

Our choice for the simple roots of I2(6) in R2 is e1 − e2 and −e1 + cot
(

π
12

)
e2. Then the other

4 positive roots are

e1 − tan
( π

12

)
e2, e1 + tan

( π

12

)
e2, e1 + e2, e1 + cot

( π

12

)
e2.

Then, the action of both generators of I2(6) on R2 is given explicitly by

b =
(

0 1
1 0

)
and a =

(
cos(π

3 ) − sin(π
3 )

sin(π
3 ) cos(π

3 )

)
.

It is useful to express all the reflections in terms of a and b

se1−e2 = b, se1−tan( π
12)e2

= ab, se1+tan( π
12)e2

= a2b,

se1+e2 = ba3 = a3b, se1+cot( π
12)e2

= ba2, s−e1+cot( π
12)e2

= ba.

Then, for example, we get

de1 = −i∂e1 + iks

(
1

x1 − x2
b̂ +

1
x1 + (2−

√
3)x2

â2b̂ +
1

x1 + (2 +
√

3)x2

b̂â2

)
+ ikl

(
1

x1 − (2−
√

3)x2

âb̂ +
1

x1 + x2
â3b +

1
x1 − (2 +

√
3)x2

b̂â

)
,

where we have used tan( π
12) = 2 −

√
3 and cot( π

12) = 2 +
√

3. We define the action on (CN )⊗2

by

Ra = Q1Q
−1
2 , Rb = P12,

where Q6 = IN . The projector Λ may be written as follows

Λ = ΛQΛP = ΛP ΛQ, (6.4)

ΛP =
1
2
(1 + b̂ P12),

ΛQ =
1
6

(
1 + âQ1Q

−1
2 + â2(Q1Q

−1
2 )2 + â3(Q2Q

−1
1 )3 + â4(Q1Q

−1
2 )4 + â5(Q2Q

−1
1 )5

)
.

So, it is easy to see that the eigenfunctions are totally symmetric φ(x1, x2|s1, s2)=φ(x2, x1|s2, s1)
and satisfy the additional relation

φ(x1, x2 | s1, s2) = φ

(
x1 +

√
3x2

2
,
x2 −

√
3x2

2

∣∣∣Qs1, Q
−1s2

)
.

It turns out to be convenient to map R2 into C. Let us define

d = de1 + ide2 and d = de1 − ide2 ,

and similarly for ∂, ∂̄. We write the Dunkl operators in terms of z = x1 + ix2 and z = x1 − ix2

d = −i∂ + 2
2∑

j=0

(
iks

iτ2jz + z
b̂â2j +

ikl

iτ2j+1z + z
b̂â2j+1

)
,
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d = −i∂̄ + 2
2∑

j=0

(
iks

z − iτ2jz
â2j b̂ +

ikl

z − iτ2j+1z
â2j+1b̂

)
,

where τ = exp(iπ/3). The action of the generators of I2(6) on these Dunkl operators are

âd = τ−1dâ, âd = τdâ, b̂d = idb̂ and b̂d = −idb̂.

Now, we introduce

Ta(u) =
Pa1

u− d
+

Pa2

u− id

and also

B̂a(u) =
5∑

j=0

τ jQ−j
a Ta((u− dd)τ j)Qj

a =
5∑

j=0

Q−j
a Pa1Q

j
a

u− dd− τ−jd
+

Q−j
a Pa2Q

j
a

u− dd− iτ−jd
.

This satisfies the commutation relations of the twisted half-loop algebra of order 6 with a shift
of dd in the spectral parameters. We can show by direct investigation that B̂(u) commutes with
the projector defined by (6.4). As usual, the series Tr B̂(u)Λ provides the conserved quantities.
We can show that 2 are independent: the coefficients in front of u−2 and u−7 proportional
respectively to

H = d d and J6 = d6 − d
6 + 2(d d)6.

Explicitly, the Hamiltonian is

H = −∂z∂z + 4i

2∑
j=0

(
ksτ

2j Q−2j
1 P12Q

2j
1 − ks

(z − iτ2jz)2
+ klτ

2j+1 Q
−(2j+1)
1 P12Q

2j+1
1 − kl

(z − iτ2j+1z)2

)
.

As in Section 6.2, the commutation relations satisfied by B̂(u) depend on one operator of
our theory (H). Thus, in each sector of fixed energy, the symmetry algebra of the integrable
hierarchy is isomorphic to the twisted half-loop algebra of order 6.

7 Generalizations

Let us remark that the construction of Section 6.3 for I2(6) extends to I2(m), a presentation of
which is

am = 1, b2 = 1, ba = a−1b.

The results follow by taking Q with Qm = IN and τ = e
2iπ
m . In the expressions for the Dunkl,

one has to modify the sum and the two independent operators are to be found at orders u3

and um+1. The relevant symmetry algebra is the twisted half-loop algebra of order m.
Another general result holds: the construction of the spin representation described in Sec-

tions 5.2 and 6.1 applies to any finite Coxeter group W as explained in [27]. So fixing µ and
denoting {µ1, . . . , µM} the orbit of µ under W , the representation R as defined in (5.6) is always
well-defined on (CN )⊗M and the monodromy matrix

Ta(u) =
M∑

k=1

Pak

u− dµk
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commutes with the projector Λ in the chosen representation. So we find that all the W spin
Calogero Hamiltonians obtained in this way have the half-loop algebra as symmetry algebra.

At this stage, it is worth mentioning that potentially physically interesting integrable Hamil-
tonians can always be constructed. Indeed, from the general theory of invariant polynomials
under finite Coxeter groups, the polynomial of order two in the variables is always invariant.
This means that Hamiltonians of the form

−
L∑

j=1

∂2
ei

+ interactions terms

can always be extracted from the hierarchy. We note however that M can be different from L
so these systems may represent particles with more than one spin attached to them.

8 Conclusions

We have shown that, as far as symmetry is concerned, speaking of a W spin Calogero model
is not enough. Even if the root structure of W provides the form of the interaction term in
Hamiltonians constructed from Dunkl operators based on W , the symmetry algebra heavily
depends on the choice of representation of W on the spins. Using the method pioneered in [8],
we showed this explicitly for the case of the Coxeter groups BL and I2(6). For the former, two
different symmetry algebras were constructed while we proposed three of them for the latter.
We stress that in all cases, the identification of the symmetry algebra is an original result in
itself.

It should be noted that one systematic method, based on [27], always yields the same sym-
metry algebra (here the half-loop algebra for Calogero type models) for all Coxeter groups.
However, there seems to be no systematic understanding of how to produce other possibilities
such as those of Section 5.1 for BL and Sections 6.2, 6.3 for G2. In physical terms, such an
understanding would allow one to control the number of spins M and make it coincide (if de-
sired) with the number of particles L. Indeed, it all amounts to finding a construction of spin
representations based on orbits of conveniently chosen subgroups of W . We hope to come back
to this question in the future.

Other directions of investigation could involve the so-called Sutherland models, whose tra-
ditional study involves the same tools as described in this paper. However, it is expected that
novel algebraic structures should be understood first. Indeed, already in the AL case, the sym-
metry algebra for spin Sutherland models is related to the Yangian of glN , a deformation of
the half-loop algebra. For the BL case, the reflection algebra appears (when choosing the same
spin representation as in Section 5.1) which is a deformation of the twisted half-loop algebra of
order 2. However, for higher order twisting, the corresponding deformations are not known.

Finally, the symmetry algebras of the different spin Calogero models obtained in this paper
might be useful to compute their eigenstates. Indeed, in the case of the AL Sutherland model, the
Yangian symmetry was the cornerstone of the explicit construction of the eigenvectors [11, 12].
It is based on representation theory of the Yangian and, in particular, on the construction of
the Gelfand–Zetlin bases [29] which uses the knowledge of the maximal Abelian subalgebra
containing the center. Let us remark that strangely enough, the situation in the case of the half-
loop algebra seems more complicated. Indeed, the maximal Abelian subalgebra of the half-loop
algebra has been discovered 10 years after the one of the Yangian [30]. Thus, we hope that the
present paper provides one additional motivation to look for the maximal Abelian subalgebra
of the twisted cases.
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