

City, University of London Institutional Repository

Citation: Littlewood, B. & Burns, A. (2010). Reasoning About the Reliability of Multi-

version, Diverse Real-Time Systems. Paper presented at the 31st IEEE Real-Time Systems
Symposium, 30 November - 03 December 2010, San Diego, USA. doi:
10.1109/RTSS.2010.43

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1615/

Link to published version: https://doi.org/10.1109/RTSS.2010.43

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Reasoning about the Reliability of Multi-Version,
Diverse Real-Time Systems

A. Burns
Department of Computer Science,

University of York, UK.
Email: burns@cs.york.ac.uk

B. Littlewood
Centre for Software Reliability,

City University, UK.
Email: b.littlewood@csr.city.ac.uk

Abstract—This paper is concerned with the development of
reliable real-time systems for use in high integrity applications.
It advocates the use of diverse replicated channels, but does not
require the dependencies between the channels to be evaluated.
Rather it develops and extends the approach of Littlewood and
Rushby (for general systems) by investigating a two channel
system in which one channel, A, is produced to a high level
of reliability (i.e. has a very low failure rate), while the other, B,
employs various forms of static analysis to sustain an argument
that it is perfect (i.e. it will never miss a deadline). The
first channel is fully functional, the second contains a more
restricted computational model and contains only the critical
computations. Potential dependencies between the channels (and
their verification) are evaluated in terms of aleatory and epistemic
uncertainty. At the aleatory level the events “A fails” and “B is
imperfect” are independent. Moreover, unlike the general case,
independence at the epistemic level is also proposed for common
forms of implementation and analysis for real-time systems and
their temporal requirements (deadlines). As a result, a systematic
approach is advocated that can be applied in a real engineering
context to produce highly reliable real-time systems.

Keywords-Real-Time Systems, High-Integrity Systems, Safety-
Critical Systems, Diversity, Reliability.

I. INTRODUCTION

For high-integrity real-time systems, it is imperative that all
system deadlines are met on all occasions. A general approach
to improve reliability in systems is to introduce redundant
components. However, replication will not be effective if the
sources of unreliability are defects in the way the system
has been analysed, rather than in the implementation of the
system. In this paper we investigate the properties of a dual
channel system in which diverse forms of analysis (as well as
diverse implementations) are explored. The paper follows the
model introduced by Littlewood and Rushby[24] for general
system reliability. A two-channel system is employed. The
first channel (Channel A) is fully functional with its temporal
behaviour being validated by a measurement-based approach.
The other channel (Channel B) only implements the crucial
software components, has a restricted software architecture
and is validated by static analysis.

Channel B by virtue of its restricted complexity and formal
analysis is open to a claim of perfection. If the claim for
perfection is correct, then the channel will never miss a
deadline. Static timing analysis linked to formal scheduling
analysis is often claimed to provide an absolute guarantee.

Here we interpret “absolute guarantee” to mean that the
channel is perfect (in the temporal domain, which is the focus
for this paper). A claim for perfection may of course not be
valid; we denote by pnpB the probability that channel B is in
reality not perfect.

Channel A cannot claim perfection, but it can be engineered
to a high level of reliability. We denote by frA the failure rate,
e.g. one deadline miss per 103 hours of operation. At run-time
this claim will be deemed to be valid if deadline misses are
less frequent.

The use of a diverse argument (one channel is perfect, the
other is reliable) is in contrast to the more usual employment
of architectural diversity in which both channels claim a level
of reliability and a limit to their dependency. Unfortunately
it is hard/impossible to judge what the level of dependence
is between the channels, and therefore to be able to compute
overall system reliability [25]. However, as we shall show, it
is possible to claim independence between diverse arguments.

In the Littlewood and Rushby paper [24] a distinction is
made between real uncertainty “in the world”, which they call
aleatory uncertainty; and the inevitable uncertainty that comes
from trying to estimate/measure the aleatory uncertainty. The
latter is termed epistemic uncertainty. They demonstrated that
for aleatory uncertainty it is possible to bound the unreliability
of a two channel system to be pfdA×pnpB (where pfdA is the
probability of a failure on a demand for channel A). Epistemic
uncertainty is however harder to evaluate as it requires an
expert not only to provide values for these parameters but also
to judge the level of dependencies between these evaluations.
So although the events “A fails” and “B is imperfect” are
independent at the aleatory level, estimates of their values may
not be. In this paper we adapt the Littlewood and Rushby
framework to timing failures and failure rates, and argue that
there is also independence at the epistemic level.

The paper is organised as follows. In the next section a sys-
tem model is provided for a two-channel system. This model
first focuses on worst-case execution time (in Section II-A)
and then (Section II-B) on full channel implementation (tasks,
RTOS, software architecture etc), finally it gives in Section
II-C a short introduction to timebands. Section III presents
the adapted analysis framework and Section IV then derives
an estimate of the overall reliability of the replicated real-
time system. In Section V some alternative system models are

discussed, and Section VI considers related work. Conclusions
are presented in Section VII.

II. SYSTEM MODEL

We focus on a “one-out-of-two” system; although the argu-
ments presented here may be applicable to other architectures.
The two channels that make up the system execute on the same
inputs and then produce channel-specific outputs. The chan-
nels have their own hardware (power supplies etc). System
correctness requires that the right outputs are produced at the
right time. Safety cases typically partition the overall case into
domains (requirements, hardware, software, timing) and then
argue for the required level of evidence in each domain[4],
[6], [5]. In this paper we are only concerned with timing
failures. We assume other elements of the overall safety case
are satisfactory (to the same level of reliability).

On each channel a multi-tasking program is executing on
a single processor (ie one processor per channel). Each task
executes a series of invocations (jobs), each of which has
a deadline by which it must complete its execution. There
are differences between the software architectures of the two
channels, but for each critical output there is a task/job in
channel A with the same release condition and deadline as
its corresponding task/job in channel B. The system suffers
a timing failure only when both channels miss the same
deadline. The channels do not vote, but they may exchange
data to ensure they do not diverge (other than when a failure
occurs).

The type of application that is considered here is a con-
tinuous control system as found in production control and
avionic fly-by-wire configurations. For this type of system it is
conventional to argue about failure rate rather than probability
of failure per demand. The necessary level of reliability is
therefore expressed with respect to a period of time. This
could correspond to the duration of a mission (or flight) for
a relatively ‘short-lived’ continuous system. For a ‘long-lived’
(non-stop) system a unit of time such as an hour of continuous
execution would be more natural. Here we will use this latter
interval, and define frA as the (real) failure rate, per hour, of
channel A. Channel B is the one for which an argument of
perfection is applied, with pnpB denoting the probability that
this is not in reality the case. We will revisit (in Section III-A)
the derivation of the aleatory uncertainty for this (frA, pnpB)
vector.

We assume that the values of the deadlines are themselves
correct (i.e. small enough for safe operation). It would clearly
be a common-mode failure if each channel satisfied the
specified deadline, but that these deadlines were too lax for,
say, stable flight. The use of an incorrect deadline is viewed
as a failure of the requirements process. Hence, here we are
dealing with system failure rates conditional on the deadlines
being defined appropriately.

Even in the most stringent of safety-critical software much
of the code is actually not part of the critical functionality.
Health monitoring, trend analysis, data gathering for perfor-
mance evaluation etc. are all associated with the key code

but are not strictly necessary for safe operation. Hence we
require that only channel A has full functionality. Channel B,
by comparison, only has the critical code. Its functionality is
a strict subset of that of Channel A1.

The implementation and analysis approaches for the two
channels are as follows. Note these are examples of possible
architectures, others within the same basic approach could be
defined.

Channel A, the full functional channel, that can claim a high
level of reliability, is characterised by:

1) Preemptive execution.
2) Event- (and time-) triggered job releases.
3) Scheduling by the Earliest Deadline First (EDF) policy

with associated scheduling analysis.
4) Implementation on a full Real-Time Operating System

(RTOS).
5) Exploiting advanced hardware features.
6) Execution times (RTOS and application code) analysed

by measurement.
Channel B, that is open to a claim of perfection, but has

only partial functionality is characterised by:
1) Non-preemptive (cooperative or deferred preemptive)

execution.
2) Time-triggered job releases only.
3) Fixed-Priority (FP) scheduling with associated timing

analysis.
4) Minimum RTOS (e.g. that provided by the Ravenscar

profile[20]).
5) Restricted use of advanced hardware features.
6) Execution times (RTOS and application code) obtained

via static timing analysis.
In a broad sense Channel A is analysed by a measurement-

based approach, and Channel B by formal models. However,
this is not a strict distinction as formal schedulability analysis
may be undertaken on both channels. This issue will be
returned to later (Section V). The channels also differ in the
degree to which they exploit all the available hardware power.
Channel A uses a number of optimal schemes (for example
preemption and EDF scheduling) and efficient techniques (e.g.
fully exploiting the hardware and using measurement for
execution time estimation). Channel B characteristics are not
optimal (in terms of resource usage), it is therefore necessary
that channel B has a lower load (i.e. only the essential
software).

Although there are a number of significant differences
between the two channels it is in their approach to computing
estimates of job execution times that the channels differ
most. Timing analysis (i.e. the process of obtaining estimates
of individual task’s worst-case execution time) is therefore
considered first before other aspects of the system model.

1Whether it is a subset of the actual code depends on the approach taken
to functional reliability; diverse software, programming languages, compilers
and hardware could all be employed to enhance the diversity between the two
channels. From a timing point of view these issues are not significant as we
assume adequate functional reliability.

A. Timing Analysis

Whatever the system model, it is always necessary to know,
with a high level of confidence, what the worst-case execution
time (WCET) is of each sequential thread of code within the
application (and all code in the RTOS or equivalent). As the
input space for the code is finite and the hardware’s behaviour
at the basic level is deterministic it is reasonable to argue that
there is a real WCET, WCET real, that is an upper bound
on the execution time of the code for all possible execution
behaviours. This value is, of course, in general unknown
(and is potentially unknowable). Schedulability analysis of the
entire system will use an estimate of each task’s worse case
execution time, C; with the assumption that C ≥ WCET real

for all tasks.
Within the research community of WCET analysis there

is on-going informed debate about the use of static analysis
(using a model of the code and a model of the hardware)
or measurement (using a simpler model of the code and
measurement of the hardware) to obtain an estimate of WCET.
If we define WCET stat to be the estimate obtained by static
analysis and WCET obs to be the maximum value observed
during measurement then the following predicates are usually
accepted:

WCET real < WCET stat

and

WCET obs ≤ WCET real

Unfortunately for modern processors and conservative analy-
sis, WCET stat can be substantially greater than WCET obs.

The analytical approach can of course be in error (for
example, a parameter such as the number of wait states for
an instruction may be wrong in the processor manual, or the
algorithm for branch prediction may not be complete – see
Section IV-C). However it is possible to believe that the first
predicate (WCET real < WCET stat) is indeed true – open
to an argument of perfection in the terms used in this paper.
When static analysis is used, some level of testing will also
always be employed, and this will increase the confidence in
the claim of perfection.

There are a number of different forms of static analysis.
In general the simpler the model the larger the value of the
resulting WCET stat. But the simpler the model the greater
the confidence in the claim of perfection, ie. the smaller the
value of pnpB . We shall return to the issue of estimating pnpB

in Section IV-C.
Those techniques that focus on measurement do not, in gen-

eral, rely totally on the worst-case observed value. They never
claim complete coverage and hence the real worst-case may
not have been experienced during testing. Typically a “safety
factor” is added to this value or, more analytically, some
form of extreme value statistical approach is used [18], [17],
[19] to construct a predicted value of WCET (WCET pred)
with WCET obs < WCET pred < WCET stat, and the
assertion:

WCET real ≤ WCET pred

Extensive testing (measurements) can be used to gain con-
siderable confidence in this assertion.

B. Scheduling Analysis

To assert that all deadlines for all tasks will be met in
all situations, it is necessary to account for task interactions,
context switches, RTOS overheads, interrupt load etc. The
characteristics and techniques outlined above for Channel A
are all mature engineering approaches and it is possible to
undertake EDF-based scheduling analysis based on measured
execution times of all components (RTOS and application
code).

Testing of the complete system becomes more complicated
and time consuming due to the difficulty in getting adequate
coverage over the many different execution patterns that are
possible with Channel A’s flexibility. This is why measurement
is made at the component level and schedulability analysis is
undertaken at the system level.

The system model for Channel A allows for event-triggered
computation, typically generated from interrupts. Schedulabil-
ity analysis requires there to be a bound on the number of such
events (from the same source) in any time interval. Usually
this bound is obtained by assuming a minimum temporal
separation between successive events. A measurement-based
approach must therefore not only measure execution times but
also event (interrupt) occurrences.

For Channel B, non-preemptive execution and only time-
triggered computation leads to simple run-time behaviour and
a minimum run-time support system (RTOS) that itself can
be analysed for its worst-case behaviour. A schedulability
analysis tool is not complex and its results can be checked
manually. Fixed priority dispatching with non-preemptive (or
cooperative/deferred preemption) execution is fully predictable
and has the useful property that during an overload, if one did
occur, the tasks with the larger priorities would be the last
ones to miss their deadlines.

The methods of analysis outlined above are all established
techniques described in standard textbooks [27], [12], [10].
Details are therefore not included here.

C. The Timeband Structuring Framework

A final aspect of the system model involves the use of a
granulated time framework called timebands[8], [9], [32].

One characteristic of many real-time systems is that they
are required to function at many different time scales (from
microseconds or less, to days or more). In the timeband
framework a system is assumed to consist not of a single time
dimension but a finite set of partially ordered bands. Each
band is represented by a granularity (expressed as a unit of
time that has meaning within the band, e.g. the millisecond
band) and a precision that is a measure of the accuracy of the
time frame defined by the band.

A band is populated by events and activities. Events, in
the normal way, are considered to be instantaneous (a cut of
the time line) within the band of their definition. Activities
by comparison have duration of one or more ‘units’ of the
band’s granularity. Behaviours across bands are formulated
as mappings between events in one band and activities in
a ‘lower’ band. So an activity that has duration in a lower
(finer) band may map to an instantaneous event in a higher
band. This property is employed in this paper to move from
a discrete view of a typical execution cycle to a continuous
view in which succeeding or failing cycles can be represented
as points on a continuous time line.

III. ADAPTING THE LR MODEL FOR TIMING FAULTS

In this section we reformulate the Littewood & Rushby
(LR) analysis [24] as it applies to the timing faults of a
real-time, continually executing, two-channel system. First, we
show that at the aleatory level a simple multiplication of two
channel-specific values is sufficient to obtain a measure of
the reliability of the whole system. Then, in the next section,
we consider how a domain expert (or possibly an assessor
or certification agency) could estimate these parameters. This
latter consideration of the epistemic uncertainty needs not only
to provide meaningful estimates of the parameters but also
has to assess the likelihood of dependencies between these
estimations.

The LR paper addresses a serious problem that arises
when multiple diverse software versions are used to achieve
high reliability: specifically, the different versions cannot be
assumed to fail independently of one another. So, for a 1-
out-of-2 architecture (such as a protection system), even if
it is known that each version has a probability of failure on
demand (pfd) of 10−3, it is not possible to claim a pfd of 10−6

for the system. In fact the true system pfd will generally be
greater (ie. worse) than this – and often very much greater.

The evidence for these observations is now extensive. It
comes from several carefully controlled experiments, most
notably those of Knight and Leveson [21] and others (e.g.
[15]), and from work on probability models that represent the
joint failure processes of multiple versions [16], [22].

These observations should not be taken as a criticism of
the use of multi-version diverse software as a good way
of achieving high dependability. There is quite extensive
evidence that high reliability can be achieved this way (albeit
falling short of what could be achieved if the versions failed
independently), and some evidence that it is superior to other
means of doing so (e.g. heroic debugging). For example, even
the Knight and Leveson experiment – which comprehensively
rejected the hypothesis of failure independence – showed that
on average the benefits from diversity (in their case 2-out-of-3
architectures) were considerable. There is also some evidence
of efficacy from industrial applications where systems have
been proven to be very reliable in extensive operation, e.g.
some aircraft flight control systems, railway signaling systems.
See Littlewood et al [23] for a more extensive discussion of
the issues here.

As a design approach, then, the use of multiple diverse
software versions as a means to achieve high reliability has
strong attraction. The difficulty lies in the evaluation of what
exactly has been achieved in a particular instance - i.e. in
evaluating the achieved reliability in order to decide whether
the system’s operational behaviour will be acceptable. Being
unable to claim independence poses a serious problem here.
If the simple mathematics based on independence (informally,
multiplying two small numbers together in order to arrive at
a very small number) cannot be used, the assessor has to take
account of how dependent failures of the diverse versions are.
This problem is, essentially, as difficult as assessing the total
system as if it were a black box.

The LR approach to this problem considers a special
architecture: one in which there is a highly functional (and
thus complex) channel A and a channel B of only basic
functionality (and thus simple). The informal idea here is
that a claim of reliability will be made about A (say as a
probability of failure on demand), as above. But for channel
B its simplicity means that it may be ‘perfect’ (i.e. will never
fail), and so the claim about this channel will be in terms of
its probability of imperfection. The main LR result is that the
system pfd is (conservatively) just the product of these two
probabilities - which contrasts with the situation above when
the two pfds could not simply be multiplied.

In what follows we show how this idea can be applied to a
situation in which multiple versions are used to protect against
timing failures, where ‘failure’ means failure to complete a
task in the time available.

The account here follows that in LR, in particular in treat-
ing separately aleatory and epistemic uncertainty. Aleatory
uncertainty can be thought of as “uncertainty in the world”,
and epistemic uncertainty as “uncertainty about the world”. In
much scientific modeling, the aleatory uncertainty concerns the
unpredictability of systems, e.g. when they will fail. Epistemic
uncertainty then often centres upon the parameters of the
aleatory models, e.g. their failure rates.

A. Aleatory Uncertainty

We begin with aleatory uncertainty. We shall assume that
channel A is the more complex channel, about which only
reliability claims with respect to timing are feasible (i.e. it
will eventually fail if it operates for a sufficiently long time);
channel B is the simpler channel about which a claim of
possible perfection can be made (i.e. there is a chance that it
will never fail). Specifically, we shall assume that the failures
of channel A occur in a Poisson process of rate

frA = lim
δt→0

P (A fails in time interval (t, t + δt))
δt

(1)

The treatment here reflects the fact that the failure process
of such a system exists in a higher timeband (see Section II-C)
than that of the successive execution/control cycles. So failures
might be expected to occur only every few thousand hours, but
the execution cycles might each be of the order of a few tens

of milliseconds in duration. So whilst the process at the lower
time-band is inherently discrete – comprising the successive
execution cycles – an observer at the higher timeband sees
failures occurring in what is effectively continuous time. The
reliability of the system is therefore naturally expressed as a
failure rate, e.g. 0.0001 (10−4) failures per hour, rather than a
probability of failure per execution cycle.

Returning to the issue of system reliability, there is a system
timing failure if and only if both A and B have timing failures:

P (System has a failure in (t, t + δt) | frA, pnpB)
= P (A and B both fail in (t, t + δt) | frA, pnpB)

(2)

Note these statements about probabilities are conditional on
knowing the values of frA and pnpB . Now

P (A fails in (t, t + δt) and

B not perfect | frA, pnpB)
= P (A fails in (t, t + δt) and B not perfect and

fails in (t, t + δt) | frA, pnpB)
+ P (A fails in (t, t + δt) and B not perfect and

succeeds in (t, t + δt) | frA, pnpB)
≥ P (A fails in (t, t + δt) and B not perfect and

fails in (t, t + δt) | frA, pnpB)
= P (A and B both fail in (t, t + δt) | frA, pnpB)

Substituting in Eqn(2):

P (System has a failure in (t, t + δt) | frA, pnpB)
= P (A and B both fail in (t, t + δt) | frA, pnpB)
≤ P (A fails in (t, t + δt) and

B not perfect | frA, pnpB)
= P (A fails in (t, t + δt) |

B not perfect, frA, pnpB)
× P (B not perfect | frA, pnpB)

Now, knowing that B is not perfect tells us nothing about
whether or not A will fail in a particular time interval (we
know the failure rate of A and thus its chance of failure
in that time interval). That is, “A fails in (t, t + δt)” and
“B is not perfect” are independent. So we have

P (A fails in (t, t + δt) | B not perfect, frA, pnpB)
= P (A fails in (t, t + δt) | frA, pnpB)
= P (A fails in (t, t + δt) | frA) (3)

and

P (B not perfect | frA, pnpB) =
P (B not perfect | pnpB) = pnpB (4)

thus

P (System has a failure in (t, t + δt) | frA, pnpB)
≤ P (A fails in (t, t + δt) | frA)

× pnpB (5)

Dividing by δt, taking limits and using the definition of
frA from Eqn(1), we get the conditional, conservative system
failure rate for the two channel system, frAB , to be bounded
as follows:

frAB ≤ frA × pnpB (6)

Eqn(6) shows the minimal improvement in the failure rate
that comes from the inclusion of the perfect channel:

frA/frAB ≥ 1/pnpB (7)

So if pnpB is 10−3 then the improvement in the failure rate
is at least 1000.

The result above is conditional because it assumes the
two parameters representing the failure rate of A and the
probability of imperfection of B are known. It is conservative
because it assumes that if B is imperfect, it always fails
whenever A does: B brings no benefit if it is not perfect.

The value of this result, compared with the analysis sketched
out above for the case where both channels have to be assumed
to be fallible, is that the two parameters are sufficient to obtain
the conditional conservative system failure rate. In the earlier
case, because there is no independence result comparable
to Eqn(3) above, the individual channel reliabilities are not
sufficient alone to determine system reliability (we also need
to understand the nature of the failure dependence).

The approach we have used here avoids the difficulties
of modelling the dependence between failures at the lower
timeband level, where time is discrete and each system has
a reliability defined in terms of a probability of failure per
demand (i.e. execution cycle). It also avoids the hard problems
of conducting the modelling entirely at the higher timeband
level, in terms of failure rates of channels operating in contin-
uous time. Such an approach would treat the channel A and
channel B failures as points on the time axis of zero duration.
If these processes were independent stochastic point processes,
for example, (such as Poisson processes) then simultaneous
failures of A and B would be impossible without some further
modelling assumptions.

The price paid in avoiding these difficulties, of course, is
that our result is conservative, perhaps severely so.

This completes the aleatory modeling.

B. Epistemic Uncertainty

Estimates of the frA and pnpB parameters must be made
by those responsible for certifying or “signing off” on the
system prior to its deployment – we used the term assessor for
this role. In practice, of course, an assessor will not know for
certain the values of the two parameters of this model. This is

where epistemic uncertainty comes in. Adopting a Bayesian
approach, we can represent the assessor’s beliefs about the
two unknown parameters (frA, pnpB) by the (subjective)
probability distribution:

G(fA, pB) = P (frA ≤ fA, pnpB ≤ pB)

This simply represents the assessor’s posterior joint prob-
ability (i.e. based on all the evidence to hand) that the rate
of A failures is smaller than fA and the probability that
B is not perfect is less than pB . Using this distribution
to take expectations over Eqn(6), we obtain the assessor’s
(conservative) posterior rate of system failures, FRAB

2.

FRAB = E(frAB) ≤ E(frA × pnpB) =∫
(fA × pB)dG(fA, pB) (8)

where E is the expectation operator. This is the conservative
value that the assessor will respond with when asked “what is
the failure rate of the system?”.

IV. ESTIMATING ALEATORY AND EPISTEMIC
UNCERTAINTY

Eliciting from an expert their subjective beliefs, in terms of
a distribution such as G(fA, pB), is not an easy task, but there
have been considerable advances in recent years in providing
tools to assist this exercise (see O’Hagan et al [28] for a good
introduction). Informally the assessor here needs to give values
to their assessment of (belief about) frA and pnpB , and must
also judge if there is a dependency between these two beliefs.
Here we will first address this dependency issue, and argue
for independence (thus greatly simplifying the problem); then
it just remains to assess the individual parameters.

A. Dependency between beliefs about frA and pnpB

Dependency between beliefs about frA and pnpB comes
from commonalities in their derivation. Whether or not there
is dependency between the assessor’s beliefs about frA and
pnpB can be established, in principle, by asking the following
(formally equivalent) questions:
• If the assessor knew the aleatory probability that channel

B was not perfect, pnpB , would it affect their belief about
the value of frA?

• If channel A failure rate was known to have a particular
value, would it affect their belief about the value of
pnpB?

It is reasonable to argue that the answer to both of these
questions will be no for timing faults, the rationale being:

1) The common requirements (in terms of deadlines and
periods) are assumed to be correct in this formulation –
see system model in Section II.

2We are using Riemann-Stieltjes notation here because this allows the
possibility of non-zero mass at points in the (fA, pB)-plane. This contrasts
with the more usual notation involving probability density functions.

2) The forms of timing analysis (measurement and static
analysis) are diverse and share no common assumptions.

3) The forms of scheduling analysis are again diverse and
share no common assumptions (other than those that
derive from conservative assumptions for both channels,
eg. tasks released at the critical instant).

4) Functional errors in the application software (causing
for example the execution of an infinite loop) would
manifest themselves in failures in the functional domain
(considered separately, but assumed to be adequately
rare).

5) Failures introduced by the compiler and associated tools
(eg. linkers) would also manifest themselves in failures
in the functional domain.

Together these strongly imply that the assessor’s beliefs
about the failure rate of channel A and the probability of
(im)perfection of channel B are independent. In other words
the assessor’s (posterior) belief distribution G(fA, pB) fac-
torises into the product of the marginal distributions, G(fA)
and G(pB).

Both of these distributions allow the assessor to state their
beliefs about the parameter as confidence bounds. So, for
example, G(fA) might imply that a failure rate of 10−5

corresponds to the (upper) 90% confidence level, 10−4 to the
(upper) 99% confidence level, and so on. Often it will suffice
to obtain the mean of the assessor’s conservative posterior
distribution of system failure, Eqn(8). Because of indepen-
dence this is just the product of the means of G(fA) and
G(pB), which we shall call FRA and PNPB , respectively.
These parameters could be obtained via (partial) knowledge of
their parent distributions, or they could simply be the expert
assessor’s direct estimates of failure rate and probability of
imperfection.

The following sections look at the evidence that an assessor
could use to come to separate judgements as to the values of
FRA and PNPB . Obviously an assessment of a real system
would involve significant amounts of evidence from the system
itself. Here we consider, in general, what this evidence could
provide and hence the type of claim that could be made about
overall system reliability.

B. Judgement about frA

The obvious source of evidence upon which an expert could
base his beliefs about frA, in order to arrive at his posterior
mean FRA, is the outcome of operational testing. Operational
testing is a testing regime in which the test cases are generated
in a way that exactly captures the statistical properties of real
operation. That is, the probabilities of test cases, and sequences
of test cases, are exactly the same in the test environment
as they are in the real operational environment. Very simple
statistical analysis then allows claims – e.g. confidence bounds
– to be placed on parameters such as failure rate (for a
continuously operating system), or probability of failure on
demand (for a demand-based system).

In most timing applications of the kind considered here it
will usually be more convenient to treat time as continuous,

as we have done. Then, if a certain number, n, of failures
is observed in an operational test of duration T, an assessor
can compute his confidence, C, that the failure rate is smaller
than 10−x. In some safety critical applications (e.g. the UK
nuclear industry) it is required that no failures are seen in
operational testing. If a failure occurs, the software must
be fixed whereupon it becomes a new program for which
assessment must begin afresh. Clearly, in such a case, the
longer the software survives its testing without failure, the
greater the confidence an assessor will have that it has achieved
a particular reliability.

For example, an assessor can be 99% confident that the
failure rate is smaller than 10−3 per hour if 4605 hours of
operational testing has produced no failures; the same claim
(99% confidence in 10−3) can be made if they had seen only
1 failure in 6638 hours of operational testing; and so on [26].

This kind of statistical analysis, of course, makes two
important assumptions: that the operational environment is
truly captured by the test environment, and the test oracle (that
decides whether the output is successful or not) is correct.
Any doubts here will contribute to epistemic uncertainty, and
should be taken account of by the assessor’s beliefs about
frA. This can be difficult in some applications when the
failures concern incorrect functionality, but we believe they
might be less serious in the case of timing failures considered
here. For example, measurement approaches to execution time
estimation tend to be pessimistic in that paths through the
program are explored that are not in practise feasible. For
timing properties the testing environment is therefore likely to
be a superset of the operational environment. Also the oracle
here simply has to decide whether the execution has completed
on time: this is typically much easier than deciding whether
it is correct. It may be reasonable to assume that the oracle is
perfect in such cases.

C. Judgement about pnpB

In the real-time literature it is common to encounter the
phrase “this analysis is pessimistic”, ie. safe. Proofs are
provided and simulation results used to evaluate the level of
pessimism. It is far less common, however, to see any attempt
to judge the probability that a specific system, when shown to
be schedulable by a particular form of analysis, will indeed
be safe.

Safety cases often make claims that all hazards and vul-
nerabilities have been identified and each of these has been
mitigated so that the risks are ALARP (as low as reasonable
practicable) [6], [5]. Completeness (ie. all threats have been
identified) can never be formally proven but it is possible to
provide a thorough evaluation. For channel B the claim for
perfection (eg. all deadlines are always met) has the following
vulnerabilities.

1) The model of the hardware, including its many param-
eters, is not accurate.

2) There are flaws in the theory on which the analysis is
based.

3) There are bugs in the analysis tools.

4) Engineers apply the analysis/tool incorrectly (or indeed
fail to apply it at all).

For timing analysis, if a simple model is sufficient to deliver
schedulability, the behaviour of channel B can be reasonably
straightforward to validate. But there may still be errors in the
parameters that must feed into the analysis tool. For example,
a system developed in 1993 was shown to have an error in the
number of wait states defined in the processor handbook for
a particular instruction [11].

In general, the ‘theory’ on which an analysis tool is based,
once it has migrated to actual industrial use, will have been
subject to considerable review and evaluation. As a result
high levels of confidence can justifiably be assigned to its
veracity. But again there are counter-examples. The theory
used to analyze the non-preemptive behaviour of the CAN
bus (a priority based arbitration bus employed initially in
the automobile industry) was ‘proven’ correct in 1994 [29],
[30] and then used extensively (at least 20 million cars have
systems verified using this analysis). In 2007 a flaw in the
analysis was identified that could lead to optimistic (ie. unsafe)
results [7], [13].

The tools for timing and scheduling analysis are not com-
plex. Certainly they compare favorably with the use of theorem
provers for the analysis of the functional models of the
software. Indeed they will often be less complex that the
application software they are being applied to. Errors in tools
of course do occur, but the theory on which these tools are
based have nothing that would lead to particular problems.

The final threat comes from human error. There is nothing
specific in the timing domain that would imply that any special
problems are manifest here.

Mitigation comes from the very low (though admittedly not
zero) likelihood of the above threats actually materialising.
Also important is the natural robustness of channel B. If one
task does indeed execute for longer than estimated there is a
strong possibility that other components will be executing for
less than their worst-case estimates. As a result local errors do
not result in deadline failures. In both of the flaws identified
above (error in processor timing table and error in the theory)
it was possible to deduce that deadline misses would not result.

The threats due to tool bugs and human error can be
mitigated by extensive testing (of the tool and the application)
and by the use of redundancy. Here redundancy can be of
the tool (there are a number of schedulability tools available)
and of the humans involved using normal cross-checking and
supervision procedures.

These mitigations are not absolute and hence some residual
doubt on behalf of the assessor is to be expected. But for
a simple model, quality tools and testing that reveals that
all observed response times are considerably less than the
predicted analytical value it is reasonable to argue that PNPB

is less than 10−3 and possible better than 10−4.
It is inevitable that there is a substantial element of sub-

jectivity in the derivation of these estimates. But at least
we know here exactly what the various parameters are that
need estimating within this formal model. The only practical

alternative is to let the experts simply say what they think
about the overall system failure rate. The model presented
here allows a third party to see what are the components of
belief that went into the experts’ bottom line system figure.

D. Final Estimation

From the above discussions and the independence of the
assessor’s beliefs about failure rates and potential perfection, it
is possible to come to a final conservative numerical estimate
of the reliability of the replicated real-time systems. With a
real system the formulae FRA×PNPB can quite reasonably
deliver a failure rate of less than 10−7 per hour of operation.

V. ALTERNATIVE MODELS

In any particular application context, if the model presented
in this paper is to be adopted, technology must be chosen for
channel B for which an argument for perfection is sustainable.
In Section II possible technology was identified. In particular
fixed priority, non-preemptive, time-triggered dispatching on
a minimal RTOS was advocated. In some contexts engineers
may feel preemptive and event-triggered scheduling is accept-
ably safe; in others, perhaps only cyclic executives and table
driven dispatching can be deemed acceptably safe. The choices
are important but do not effect the basic model developed here.

Similarly, as hardware platforms become more complicated
the use of static timing analysis becomes more problematic
and complex models of behaviour cannot sustain an argument
of perfection. In these cases simpler forms of analysis (with
resulting pessimism) or conservative forms of measurement
must be used for Channel B.

If diverse hardware is part of the system model then it might
be possible to argue that Channel B should be constructed
from more deterministic components, for example FPGAs for
which effective timing analysis is much simpler - and therefore
notionally perfect.

The system model used in this paper has the property that
both channels have the same deadline for the corresponding
jobs. But in many application contexts the deadline for safe
operation may be significantly longer than the deadline for ef-
fective or efficient functional behaviour. In these circumstances
Channel B’s claim for perfection is strengthened by the use of
an extended deadline. This can also be used to compensate for
the need to use simple pessimistic static timing analysis. At
run-time, Channel B will normally still produce output before
Channel A’s deadline (and indeed before the equivalent job in
Channel A has finished), but the argument for perfection for
Channel B is based on its extended deadline.

VI. RELATED WORK

The use of multiple channels to improve reliability is a
common architectural approach in high integrity applications.
As indicated in the introduction to this paper, the majority of
the methods used to assess the overall system reliability for
these architectures involves combining the reliability measure
of each individual channel and then compensating for any
dependencies between the channels. These approaches are

therefore not directly comparable with the scheme described
here.

One aspect of the proposed scheme is however used in
the analysis of mixed criticality systems [31], [3], [1], [14],
[2]. In this work the worst-case execution time (WCET)
for each single component (thread) is obtained in two (or
more) different ways. The different verification techniques
produce different levels of accuracy and confidence. If the
component is part of a high criticality computation then the
larger (more reliable) WCET value is used, if lower criticality
then the smaller (less reliable) value is employed. Although
this element of the approach is similar, the overall objective
of this work is to support different levels of criticality on the
same platform. By comparison the approach developed in this
paper is concerned with just the highest level of criticality and
the evidence that can be used in a safety case to argue that all
the deadlines with be satisfied by the implementation.

VII. DISCUSSION AND CONCLUSIONS

High integrity (e.g. safety-critical) systems require diverse
replication to survive faults. Typically this replication takes
the form of two or more channels, all of which undertake the
crucial computations. In the absence of faults only one of these
channels would be required to meet the requirements of the
system. For real-time systems one aspect of these requirements
is the meeting of deadlines for all the hard periodic and
sporadic tasks running on the computing resources.

A key need for these safety critical systems is not only to
be highly reliable but also for this high level of reliability
to be demonstrable. These systems are usually certified, and
this certification is evidence-based. Judging the reliability of
a replicated system as a single artifact is hard/impossible,
and hence it is necessary to come to a judgement about each
channel and then compute the overall system reliability. The
difficulty with this approach is that the level of dependency
between the channels is difficult to judge.

The main contribution of the original work by Littlewood
and Rushby, lies in the fact that there is conditional indepen-
dence at the aleatory level between failure of one channel
(A), and (non-)perfection of the other channel (B). This
considerably simplifies the analysis in obtaining the bound for
the system failure rate. In this paper we have built upon this
analysis and present the following distinct contributions:
• The adaptation of the analysis to timing failures.
• The use of an argument of perfection to relate proven

timing and scheduling analysis to actual safe run-time
operation.

• The extension to failure rates (as apposed to failures on
demand).

• The use of the Timebands framework to move between
discrete and continuous phenomena.

• The argument that an assessor’s (epistemic) beliefs about
probability of failure of channel A and the probability of
imperfection of channel B may also be independent.

Although the model considered in this work delivers inde-
pendence, it does so at the price of considerable conservatism

– specifically in the assumption that if B is imperfect it fails
whenever A does. In reality, any imperfection in B is unlikely
to affect many cycles per hour, and these in turn are unlikely
to involve A failures.

We do not deny that the assessor still faces a difficult task in
expressing their beliefs quantitatively about the two parameters
of the model. But it is considerably easier than the task faced
by an assessor in the conventional situation in which they
must reason about two fallible channels, and the dependence
between these channels.

REFERENCES

[1] J. Anderson, S. Baruah, and B. Brandenburg. Multicore operating-
system support for mixed criticality. In Proceedings of the Workshop
on Mixed Criticality: Roadmap to Evolving UAV Certification, San
Francisco, CA, April 2009.

[2] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Proceedings of the IEEE Real-Time
Technology and Applications Symposium (RTAS). IEEE, April 2010.

[3] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In Proceedings of the EuroMicro
Conference on Real-Time Systems, Prague, Czech Republic, July 2008.
IEEE Computer Society Press.

[4] I. Bate and T. Kelly. Architectural considerations in the certification of
modular systems. Reliability Engineering and System Safety, 81:303–
324, 2003.

[5] R.E. Bloomfield and P.G. Bishop. Safety and assurance cases: past,
present and possible future. In C. Dale, editor, Proceedings of Safety-
critical Systems Symposium. Springer – to appear, 2010.

[6] R.E. Bloomfield, P.G. Bishop, C.C.M. Jones, and P.K.D. Froome.
Ascadadelard safety case development manual. Technical Report ISBN
0-9533771-0-5, Adelard, 1998.

[7] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption revisited. In ECRTS ’07: Proceedings of the 19th Euromicro
Conference on Real-Time Systems, pages 269–279. IEEE Computer
Society, 2007.

[8] A. Burns and I.J. Hayes. A timeband framework for modelling real-time
systems. Real-Time Systems Journal, 45(1–2):106–142, June 2010.

[9] A. Burns, I.J. Hayes, G. Baxter, and C.J. Fidge. Modelling temporal
behaviour in complex socio-technical systems. techreport YCS 390,
University of York, 2005.

[10] A. Burns and A. J. Wellings. Real-Time Systems and Programming
Languages. Addison Wesley Longman, 4th edition, 2009.

[11] A. Burns, A. J. Wellings, C.M. Bailey, and E. Fyfe. The olympus attitude
and orbital control system: A case study in hard real-time system design
and implementation. In Ada sans frontieres Proceedings of the 12th
Ada-Europe Conference, Lecture Notes in Computer Science 688, pages
19–35. Springer-Verlag, 1993.

[12] G.C. Buttazzo. Hard Real-Time Computing Systems. Springer, 2005.
[13] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 35(3):239–272, 2007.

[14] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Real-Time Systems Symposium,
pages 291–300. IEEE Computer Society, 2009.

[15] D.E. Eckhardt, A.K. Caglayan, J.C. Knight, J.D. Lee, D.F. McAllister,
M.A. Vouk, and J.P.J. Kelly. An experimental evaluation of software
redundancy as a strategy for improving reliability. IEEE Transactions
on Software Engineering, 17(7):692–702, 1991.

[16] D.E. Eckhardt and J.D. Lee. A theoretical basis of multiversion
software subject to coincident errors. IEEE Transactions on Software
Engineering, 11:1511–1517, 1985.

[17] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In
Proceedings 22nd IEEE Real-Time Systems Symposium, 2001.

[18] E. J. Gumbel. Statistics of Extremes. Columbia University Press, 1958.
[19] J. Hansen, S. Hissam, and G.A. Moreno. Statistical-based WCET

estimation and validation. Technical report, SEI, Carnegie Mellon, 2009.
[20] ISO/IEC. Information technology - programming languages - guide for

the use of the Ada Ravenscar Profile in high integrity systems. Technical
Report TR 24718, ISO/IEC, 2005.

[21] J.C. Knight and N.G. Leveson. Experimental evaluation of the assump-
tion of independence in multiversion software. IEEE Transactions on
Software Engineering, 12:96–109, 1986.

[22] B. Littlewood and D. R. Miller. Conceptual modelling of coincident
failures in multi-version software. IEEE Transactions on Software
Engineering, 15:1596–1614, 1989.

[23] B. Littlewood, P. Popov, and L. Strigini. Modelling software design
diversity - a review. ACM Computing Surveys, 33:177–208, 2002.

[24] B. Littlewood and J. Rushby. Reasoning about the reliability of diverse
two-channel systems in which one of the channels is “perfect”. Provi-
sionally accepted for publication in IEEE Trans. Software Engineering,
2010.

[25] B. Littlewood and L. Strigini. Validation of ultrahigh dependability for
software-based systems. Communications of the ACM, 36(11):69–80,
1993.

[26] B. Littlewood and D. Wright. Some conservative stopping rules for
the operational testing of safety-critical software. IEEE Transactions
Software Engineering, 23:673–683, 1997.

[27] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.
[28] A. O’Hagan, C.E. Buck, A. Daneshkhah, J.R. Eiser, P.H. Garthwaite,

D.J. Jenkinson, J.E. Oakley, and T. Rakow. Uncertain Judgements:
Eliciting Experts’ Probabilities. Wiley, 2006.

[29] K. Tindell and A. Burns. Guaranteeing message latencies on controller
area network (CAN). In Proceedings 1st International CAN Conference,
pages 2–11, 1994.

[30] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area
network (CAN) message response times. Control Engineering Practice,
3(8):1163–1169, 1995.

[31] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of the
Real-Time Systems Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[32] J. Woodcock, M. Oliveira, A. Burns, and K. Wei. Modelling and im-
plementing complex systems with timebands. Secure System Integration
and Reliability Improvement, pages 1–13, 2010.

