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A B S T R A C T

The beginning of the 21
st century saw a widely publicized lawsuit

against Napster. This was the first Peer-to-Peer software that allowed

its users to search for and share digital music with other users. At the

height of its popularity, Napster boasted 80 million registered users.

This marked the beginning of a Peer-to-Peer paradigm and the end of

older methods of distributing cultural possessions. But Napster was

not entirely rooted in a Peer-to-Peer paradigm. Only the download of

a file was based on Peer-to-Peer interactions; the search process was

still based on a central server. It was thus easy to shutdown Napster.

Shortly after the shutdown, Bram Cohen developed a new Peer-to-Peer

protocol called BitTorrent.

The main principle behind BitTorrent is an incentive mechanism,

called a choking algorithm, which rewards peers that share. Currently,

BitTorrent is one of the most widely used protocols on the Internet.

Therefore, it is important to investigate the security of this protocol.

While significant progress has been made in understanding the Bit-

Torrent choking mechanism, its security vulnerabilities have not yet

been thoroughly investigated. This dissertation provides a security

analysis of the Peer-to-Peer protocol BitTorrent on the application and

transport layer.

The dissertation begins with an experimental analysis of band-

width attacks against different choking algorithms in the BitTorrent

seed state. I reveal a simple exploit that allows malicious peers to

receive a considerably higher download rate than contributing leech-

ers, thereby causing a significant loss of efficiency for benign peers.

I show the damage caused by the proposed attack in two different

environments—a lab testbed comprised of 32 peers and a global

testbed called PlanetLab with 300 peers. Our results show that three

malicious peers can degrade the download rate by up to 414.99 %

for all peers. Combined with a Sybil attack with as many attackers
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as leechers, it is possible to degrade the download rate by more than

1000 %. I propose a novel choking algorithm which is immune against

bandwidth attacks and a countermeasure against the revealed attack.

This thesis includes a security analysis of the transport layer. To

make BitTorrent more Internet Service Provider friendly, BitTorrent

Inc. invented the Micro Transport Protocol. It is based on User Data-

gram Protocol with a novel congestion control called Low Extra Delay

Background Transport. This protocol assumes that the receiver always

provides correct feedback, otherwise this deteriorates throughput or

yields to corrupted data. I show through experimental evaluation,

that a misbehaving Micro Transport Protocol receiver which is not

interested in data integrity, can increase the bandwidth of the sender

by up to five times. This can cause a congestion collapse and steal

a large share of a victim’s bandwidth. I present three attacks, which

increase bandwidth usage significantly. I have tested these attacks in

real world environments and demonstrate their severity both in terms

of the number of packets and total traffic generated. I also present a

countermeasure for protecting against these attacks and evaluate the

performance of this defensive strategy.

In the last section, I demonstrate that the BitTorrent protocol fam-

ily is vulnerable to Distributed Reflective Denial-of-Service attacks.

Specifically, I show that an attacker can exploit BitTorrent protocols

(Micro Transport Protocol, Distributed Hash Table, Message Stream

Encryption and BitTorrent Sync to reflect and amplify traffic from Bit-

Torrent peers to any target on the Internet. I validate the efficiency,

robustness, and the difficulty of defence of the exposed BitTorrent

vulnerabilities in a Peer-to-Peer lab testbed. I further substantiate lab

results by crawling more than 2.1 million IP addresses over Mainline

Distributed Hash Table and analyzing more than 10,000 BitTorrent

handshakes. The experiments suggest that an attacker is able to ex-

ploit BitTorrent peers to amplify traffic by a factor of 50, and in the

case of BitTorrent Sync 120. Additionally, I observe that the most pop-

ular BitTorrent clients are the most vulnerable ones.
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We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [Knu74]
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Part I

I N T R O D U C T I O N

“The true delight is in the finding out rather than in the

knowing.”

—Issac Asimov
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I N T R O D U C T I O N T O S E C U R I T Y O F B I T T O R R E N T

At the beginning of the 21
st century, there was a widely publicized

lawsuit against Shawn Fanning, which shaped public misunderstand-

ing of the Peer-to-Peer (P2P) paradigm. Fanning, a computer hacker,

programmed the first P2P software called Napster. This software al-

lowed its users to search and share digital music, mostly MPEG-1/2

Audio Layer III (MP3) files, with other participants. Napster, at the

height of its popularity, had 80 million users registered [Gre02]. The

Recording Industry Association of America (RIAA) made with a law-

suit against Napster an example of Fanning. This was the beginning

of the P2P paradigm and the end of old modes of distributing cultural

possessions.

Public understanding of P2P is often connected to illegal file shar-

ing. Even when file sharers make use of P2P technology, it is not re-

stricted to illegal file sharing. Behind the term P2P hides a network

paradigm that can be used for a variety of actions, such as video and

audio streaming, Voice over IP (VoIP), instant and chat messaging, and

file sharing, among others. File sharing can also be legal: nearly all

GNU’s Not Unix (GNU) Linux distributions provide their Operating

System (OS) via BitTorrent123. Artist, musicians and film makers use

this technology to distribute their work to gain popularity. Moreover,

companies such as Facebook [Van11a] and Twitter use P2P technol-

ogy to update thousands of their servers. Twitter has even noted that

their server deployment with BitTorrent is 75 times faster compared

to their previous central solution [Van10]. The game manufacturer

Blizzard Entertainment uses BitTorrent via a proprietary client called

Blizzard Downloader4 to distribute games like World of Warcraft (WoW),

1 http://www.ubuntu.com/download/alternative-downloads
2 http://www.slackware.com/torrents/
3 https://www.debian.org/CD/torrent-cd/
4 http://www.wowpedia.org/Blizzard_Downloader

3

http://www.ubuntu.com/download/alternative-downloads
http://www.slackware.com/torrents/
https://www.debian.org/CD/torrent-cd/
http://www.wowpedia.org/Blizzard_Downloader
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Diablo 3, and StarCraft 2. Such examples demonstrate that P2P tech-

nology is often deployed in situations which require a large amounts

of data and/or receivers.

This technology can also be used to distribute politically sensitive

material. On April 5
th

2010, the platform Wikileaks released the video

Collateral Murder, depicting the killing of over a dozen people in New

Baghdad. Wikileaks distributed this video via Hypertext Transfer Pro-

tocol (HTTP), and with BitTorrent5. Even though legal measures were

used to shut down Wikileaks, the prevention of content distribution in

P2P distribution is difficult. Peer-to-Peer tools are able to contribute

in a number of ways to the promotion of the freedom of speech.

According to the report Enemies of the Internet [11, p. 5] from the

non-governmental organization Reporter without Borders, the number

of countries that censor information on the Internet has risen rapidly

in recent years. Over 60 countries filter the content of the Internet

to some degree. Moreover, this is a growing trend. Countries which

filter the Internet include not only repressive regimes, but also places

such as the United Kingdom and Australia. Peer-to-Peer technology

like The Onion Router (TOR) can help citizens and journalists bypass

censorship infrastructure to access filtered information.

By far, the most successful P2P protocol is BitTorrent. According to a

Sandvine Report [Van12] from 2012, BitTorrent is responsible for 36.8 %

of all upstream traffic in North America and 31.8 % of upstream traf-

fic in Europe during peak hours. This makes it the third most popular

protocol in Europe and the fourth in North America. Nevertheless, I

view these statistics skeptically, as they come from Deep Packet In-

spection (DPI) companies who are interested in selling hardware. In

the scientific community, it is indisputable that BitTorrent is currently

one of the most popular protocols. Consequently, BitTorrent is the

target of many attacks from anti-P2P companies, which work closely

with the music, television and film industries [Med11]. Active mea-

surement based studies on real-world torrents have demonstrated the

existence of such attacks [Dhu+08b; DHW11]. A question that arises

in a light of such attacks: What are ways to secure a P2P network with-

5 http://collateralmurder.com/en/download.html

http://collateralmurder.com/en/download.html
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out a central entity? Before I discuss this question in depth, I would

like to discuss my motivations for completing this research project.

1.1 motivation

My motivation to work on this research project originated from my

fascination on P2P systems. Considering the history of the Internet, I

think the P2P paradigm which lacks a central entity is a more natural

way of communicating over the Internet. Especially the P2P protocol

BitTorrent kept my fascination, because it is the first protocol with

an incentive mechanism that rewards good behavior and punishes

bad behavior. In the next paragraphs, I would like to address the

following questions: Why is it worthwhile to investigate the security

of a P2P protocol? Additionally, who would benefit from more secure

P2P protocols?

The security of P2P protocols remains an open problem. Security is

not a state, rather it is a process comparable to a never ending game

of cat and mouse. On the one hand, there are adversaries, who are

searching for vulnerabilities and developing new attack strategies. On

the other hand, there are programmers, administrators and security

architects, who are trying to defend against such attacks. Researchers

sit on both sides developing new countermeasures and mitigation

strategies and investigating attack strategies to prevent future dam-

age. This is especially important for P2P applications, because of their

widespread use.

Peer-to-Peer applications are more vulnerable to remote exploits

than applications that make use of client-server architecture. Those

applications have vulnerabilities much like other software. These vul-

nerabilities are, however, particularly dangerous in P2P applications

because of their ‘ideology of openness and sharing’ [VLO10, p. 8].

Every participant in a P2P network, known as a peer, acts as a server

and client simultaneously. Consequently, every peer has to open a net-

work socket and accept connections to participate in a given network.

Therefore, a fully participating peer has an exception in its firewall to

allow P2P traffic in its Local Area Network (LAN). This makes a peer
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more vulnerable to attacks, in particular compared to a client-server

model where a client opens a network socket but does not accept

incoming connections.

Furthermore, P2P applications are interesting targets for attackers

because of their distributed nature. For example, the P2P network

Mainline Distributed Hash Table (MLDHT) is one of the largest overlay

networks with around 15–27 millions users per day [WK13]. BitTor-

rent is still responsible for most of the Internet’s upstream traffic. If an

attacker finds a vulnerability in the network protocol or software, the

attacker would have an enormous number of targets to choose from.

In the worst case scenario, an attacker finds a vulnerability to redi-

rect traffic from a P2P application to an arbitrary victim. That would

result in a Distributed Denial-of-Service (DDoS) attack. In such cases,

the entire Internet community would benefit from more secure P2P

protocols.

Specifically: all P2P application users would benefit from more se-

cure P2P protocols. In the previous example, users would unknow-

ingly participate in an attack. Moreover, companies using this proto-

col would benefit from more secure P2P protocols. Lastly, the mistakes

that have been made with current P2P protocols should be avoided

when designing future P2P protocols. It is a challenging task to secure

a P2P application. Approaches drawn from the previous client-server

paradigm do not work in a P2P environment. The next section de-

scribes the problems encountered in making a P2P application more

secure.

1.2 challenges in p2p security

A typical client-server environment fits the following rubric: one

or multiple servers provide specific services (e. g. a web page or a

video), and clients consume these services. To make this service se-

cure against attacks, the server is crucial. Because, the server is under

the full control of the service provider, it is easier to secure services. A

service provider can apply the following security strategies to make

a server more secure:
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• Keep the OS including the services software, up-to-date to pro-

tect against the latest threats.

• Install a Stateful Packet Inspection (SPI) or DPI firewall in front

of the server to filter malicious traffic.

• Install an Intrusion Detection System (IDS) on the server to mon-

itor suspicious activity and warn the system administrators as

soon as possible about potential attacks.

• Patch a software vulnerability on the software which runs on a

server.

These countermeasures and mitigation strategies are only success-

ful if there is a central entity or multiple entities that are under the

control of the service provider. It remains a challenging task to make

P2P networks secure without a central entity. Every participating peer

is both a server and client. Such a framework means the formerly em-

ployed measures to secure a network service no longer apply to a P2P

environment.

One approach to securing P2P systems is to define rules which pun-

ish improper behavior and reward proper behavior. Steinmetz and

Wehrle [SW05, p.12] describe P2P as a ‘paradigm shift from coordina-

tion to cooperation, from centralization to decentralization, and from

control to incentives’. BitTorrent was the first protocol that includes

an incentive mechanism, called a choking mechanism, to reward shar-

ing peers who acted properly and those who did not. This thesis

shows that BitTorrent’s incentive mechanism is not continuously de-

signed. This flaw leaves room for exploitation. This thesis also shows

that is important to use a secure transport protocol. Before examining

these matters, I state my research questions and hypothesis.

1.3 research hypothesis and objectives

In this section, I would like to state my research hypothesis and the

objectives of this thesis. Within 5 years, this thesis aims the following

objectives:
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• Investigate the impact of bandwidth attacks against application

and transport layer of the P2P protocol BitTorrent.

• Understand the aspects of bandwidth attacks related to security

in a BitTorrent swarm.

• Propose systematic improvements to the found vulnerabilities.

This is archived by analyzing the protocols and running experi-

ments in real-world environments to contribute to a more secure P2P

protocol. The following main hypothesis is made:

Hypothesis 1 Securing the bandwidth consumption of P2P protocols

improves the security of the P2P swarm.

This hypothesis can be split up into two sub-hypotheses:

Hypothesis 1.1 Peer-to-Peer protocols that do not have bandwidth

security policies pose a security threat to both the swarm and the Inter-

net.

Hypothesis 1.2 The P2P protocol BitTorrent does not have sufficient

bandwidth security.

The thesis makes several contributions to the field of P2P security.

1.4 contribution of this thesis

This thesis investigates bandwidth attacks in a BitTorrent swarm and

provides insights into impact of such attacks. Key contributions are

detailed in the following sections:

1.4.1 Vulnerability Analysis of the BitTorrent protocol

Analyzing the vulnerabilities of the BitTorrent protocol is a challeng-

ing task. BitTorrent has a variety of parameters and is highly depen-

dent on the bandwidth capabilities of participating peers. Addition-

ally, BitTorrent integrates a reciprocal mode of sharing—which makes
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it more difficult to test. Simulations and mathematical models do not

properly reflect the impact of bandwidth attacks in real-world scenar-

ios.

I solved this problem by building a real P2P testbed system and de-

veloping a software framework. This framework made it possible to

test the hypotheses presented in this thesis. Based on this framework,

I analyzed BitTorrent protocol according to different threat models

and found substantial vulnerabilities.

1.4.2 Sybil Attack in a BitTorrent Swarm

Botnets, a large distributed system of malware-infected hosts, are cur-

rently inexpensive and therefore their use is increasing. To better un-

derstand the impact of a Sybil attack against a BitTorrent swarm, I

created an experiment based on PlanetLab to investigate this scenario.

The resulting experiments provide a number of insights into the prob-

lem. I tested all the seeding algorithms used by BitTorrent clients

and came to the conclusion that no algorithm sufficiently addresses

the security problems that I found. Consequently, I developed a new

seeding algorithm.

1.4.3 Novel Seeding Algorithm

In the current study’s experiments, I show that an attacker who car-

ries out a Sybil attack with a botnet can drastically decrease the per-

formance of the BitTorrent swarm. To prevent such attacks, I devel-

oped a novel seeding algorithm which mitigates bandwidth attacks

against seeders. This algorithm implements the incentive mechanism

in BitTorrent continuously through all peers.

1.5 thesis structure

The remainder of this thesis is organized as follows. Chapter 2 in-

troduces the P2P paradigm and BitTorrent in particular. I provide an
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overview of the associated literature and related work in this field

in Chapter 3. For this research, it was necessary to build an experi-

mental setup. I describe the construction of this setup in Chapter 4.

I then describe, in Chapter 5, how an attacker can exploit BitTorrent

extensions and seeding algorithms to slow download speed for all

other peers. In Chapter 6, I show how the congestion control Low

Extra Delay Background Transport (LEDBAT) from the P2P transport

protocol Micro Transport Protocol (uTP) can be exploited to create

congestion on a specific path. Chapter 7 examines ways an attacker

can exploit the two-way handshake of uTP to create a DDoS attack.

Chapter 8 concludes this thesis with a summary of its achievements

and a discussion of open research problems.



2
B A C K G R O U N D O N P E E R - T O - P E E R A N D

B I T T O R R E N T

This chapter defines the terminology which will be used throughout

this thesis and describes the P2P paradigm and BitTorrent protocol.

Before I describe the BitTorrent protocol in depth, I provide a brief

overview of a P2P paradigm and how it differs from a client-server

paradigm.

2.1 terminology

This section defines the terminology used through-out the thesis. No

standardized, terminology currently exists.

active peer set : The active peer set for a peer is the subset of its

peer set that it can send data to.

choked : Peer P is choked by peer Q when Q does not send data to

P.

free rider : A peer which only downloads data and denies upload-

ing to other peers.

infohash : A 20-byte Secure Hash Algorithm 1 (SHA-1) hash that

uniquely identifies a torrent.

interested : A peer has data that another peer wishes to acquire.

leecher : A peer is a leecher when it is downloading the content of

a torrent and uploading previously acquired content for other

peers.

machine : A physical or virtual computer with an Internet Protocol

(IP) stack.

11
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node : A machine that runs a Distributed Hash Table (DHT) imple-

mentation.

peer id : A 20-byte SHA-1 hash that uniquely identifies a peer.

peer set : Each peer maintains a list of peers it knows about within

a swarm. This list is known as peer set.

peer : A machine that runs a BitTorrent client with a torrent.

piece : The equally sized parts called a download is divided into.

seeder : A peer is a seeder when it has downloaded the content

completely and shares it with other leechers.

sub-piece : The section of a Piece is further equally divided into.

swarm : All peers sharing a torrent.

torrent : A file that contains metadata about the swarm and dis-

tributed files.

2.2 peer-to-peer paradigm

Peer-to-Peer systems have received increased attention in the past

years, and are primarily known for illegal file sharing. However, the

term denotes a network paradigm.

The term peer is defined by [Dic13] as follows:

peer (pI@) 3. a. a person who is an equal in social standing,

rank, age, etc (from Old French per, from Latin pār equal)

According to this definition, Peer-to-Peer suggests a conversation

or a connection between equals. No one has more rights than, or

stands above, others. Essentially, P2P is one of the oldest forms of

communication. Our telephone system was designed as a P2P system.

Moreover, decentralization was built into the core of the Advanced

Research Projects Agency Network (ARPANET), the original Internet.

It was designed as a P2P system where all universities were handled
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as ‘equal players’ and not ‘in a master/slave or client/server relation-

ship’ [MH01, p. 4]. Additionally, two long-established Internet pro-

tocols namely Usenet and Domain Name System (DNS), can be seen

as predecessors of the P2P paradigm. Consequently, the Internet was

built on P2P communication patterns. A graphical distinction between

client-server and P2P paradigms is shown in Figure 2.1.

Differentiation between client-server and P2P

S1

C1 C2

C3

C4C5

C6

(a) Client-Server Paradigm

P1 P2

P3

P4P5

P6

(b) Peer-to-Peer Paradigm

Figure 2.1: Graphical differentiation between client-server and Peer-to-Peer
(P2P) paradigm. Circles with a C are clients, S is a server, and
P are peers. There is no central entity in (b) compared to (a).
Source: own representation.

Figure 2.1 (a) depicts a central server denoted with S1. This server

provides a service that clients {C1, . . . ,C6} want to acquire. This ser-

vice could be an HTTP website, a File Transfer Protocol (FTP)-server, or

a video stream. When S1 is offline, clients are no longer able to reach

the service. This is called a Single Point of Failure (SPOF). In contrast,

Figure 2.1 (b) has no such SPOF. There is also no distinction between

a server and a client, because peer is a server and client at the same

time.

A technical definition is, however, more difficult to define, as there

are protocols and applications that make use of both paradigms. A

first attempt to define P2P is in [Sch01]. The study defines P2P as

a system where all participants share a part of their hardware re-

sources (e. g. processing power, network link, etc.) and they communi-

cate directly without intermediary entities. Another definition, from
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[Rou+04], states that a P2P system has to be self organizing and should

have decentralized control.

These definitions are given in the context of a single service and are

therefore insufficiently accurate. Request for Comments (RFC) 5694 de-

fines P2P as a system where participants are involved in transactions

that are related to a service. These transactions, however, do not di-

rectly benefit participants [Cam09]. For instance, in BitTorrent, a peer

uploads pieces of a file to other peers. In SETI@home1, volunteers

provide idle time from their computers to search for extraterrestrial

intelligence. Therefore, P2P is most generally about sharing resources.

These intensive goals require ‘a well-designed network infrastruc-

ture at the application level’ [YuK12, p. 29]. For this reason, designers

of a P2P application need to address questions such as how peers find

each other to share resources? The answer to this question impacts

the structure of the P2P application, and can in part be understood in

two extremes as follows. On one side is a complete unstructured over-

lay, where there is no maintenance overhead but there is no guarantee

that users find what they searching for. On the other side is a struc-

tured overlay, which guarantees that users find what they are looking

for but at the expense of additional maintenance work. In between

the two extremes lay the hybrid overlays. The next chapters provide a

brief overview of these typologies.

2.2.1 Unstructured Overlays

If the structure of a P2P network is generated at random, it is classified

as an unstructured overlay [BYL09, p. 46]. The first P2P applications

were simple and used unstructured overlays to communicate between

peers. For instance, the P2P application Gnutella used a simple flooding

mechanism to build an overlay network. The following sections details

this algorithm.

1 http://setiathome.ssl.berkeley.edu/

http://setiathome.ssl.berkeley.edu/
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2.2.1.1 Flooding and Expanding Ring Algorithms

Let us assume that every peer maintains a list of peers called neighbors

or a peer set. Once a peer is connected and has peers in its peers

set, it can start sending queries to the network. A query may be a

search request for a file or a ping message to find other peers. The

flooding algorithm works as follows. A peer sends a request to all of

its neighbors. The neighbors who receive the request forward it to all

of their own neighbors except to the peer from which the query came.

This continues until a peer drops this query. An example can be seen

in Figure 2.2.

Example of an Unstructured Overlay based on Flooding Algorithm
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Figure 2.2: Unstructured overlay that routes all queries according to the
flooding algorithm. Every query q contains a Time To Live (TTL)
value to limit its lifespan. In this example, Peer P1 sends a
query q with a TTL value of 2 to all of its neighbors. Source: own
representation based on [BYL09, p. 47].

The peer P1 in Figure 2.2 sends a query q to all of its neighbors.

To avoid endless forwarding of queries, every query contains a Time

To Live (TTL) value. If a peer receives a query it decreases the TTL

value by one and forwards it to all of its neighbors. For instance,

P2 receives query q from peer P1 and reduces the TTL value from

two to one and forwards it to peer P3 and P5. When a TTL value

reaches the value zero, peers stop forwarding the query. The P2P ap-

plication Gnutella, which makes use of the flooding algorithm, sets

the TTL value to seven [KM02].

There are, however, some disadvantages to this approach. First, the

query will not reach every peer [MS07, p. 62]. This can be seen in Fig-
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ure 2.2, in which peer P7 and P8 do not receive the query, because the

TTL is too low. Second, as the name suggests, the network is flooded

with queries. This is inefficient because it reduces the speed of down-

loads. The Internet connection of a peer in Gnutella, for example, is

quickly congested because of the large number of queries it needs to

forward [Cli00; BA05]. Peer P3 in Figure 2.2, for example, receives the

query q three times, from P1, P2, and P3.

To overcome this problem, a successive variation called an expand-

ing ring exists [BYL09, p. 48]. A peer begins with a query that is

flagged with a low TTL value. If this query is successful, the process

stops. If this query is unsuccessful, the peer increases the TTL value

and sends it to all of its neighbors. This variation is especially helpful

if a query is successful quickly. Another approach to avoid flooding

a network is the random walk algorithm.

2.2.1.2 Random Walk Algorithm

One alternative to the flooding algorithm is the random walk algorithm.

In random walk, the querying peer selects one peer of its peer set

at random and sends a query to this peer only. The selected peer

receives the query, again selects a peer at random, and forwards the

query to this peer. Figure 2.3 provides an example of the algorithm.

Example of an Unstructured Overlay based on Random Walk Algorithm

P1

P2

P3

P4

P5

P6

P7

P8

q
tt
l
=
3

q

ttl = 2

qttl
=
1

Figure 2.3: Unstructured overlay that routes all queries according to the ran-
dom walk algorithm. Every query q contains a Time To Live (TTL)
value to limit its lifespan. In this example, Peer P1 sends a
query q with a TTL value of 3 to a random peer from its peer
set. Source: own representation based on [BYL09, p. 49].
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The peer set from P1 in Figure 2.3 contains {P2,P3,P4}. Peer P1 se-

lects one peer at random, in this case P2, and sends it the query q.

As in the flooding algorithm in Section 2.2.1.1, every query contains

a TTL value that is decreased with every transmission to limit its life-

time. P2 again selects a peer from its peer set at random and sends

it the query q. The querying peer can send multiple queries at once

to improve response time. On the one hand, this approach does not

flood the network. On the other hand, it may take some time to find a

specific object in the P2P network. Additionally, it largely depends on

the correct value of TTL. Early P2P application used an unstructured

topology to build an overlay network.

2.2.1.3 Early P2P applications

Two of the first P2P applications are Napster and Gnutella.

napster Shawn Fanning published a beta version of Napster in

June 1999, in a few short months, it was the most downloaded pro-

gram that year [MS07, p. 55]. Napster is considered to be the first

P2P application, although strictly speaking, it is not based on a P2P

network. It was nevertheless an inspiration for other applications to

build a real P2P network with the same functionality. The purpose of

Napster was to provide a file sharing platform through which users

could download files from other users unknown to them. Figure 2.4

shows an example of a file transfer.

When a client joins the network, it first tells the server S1, as shown

in Figure 2.4, what files the client provides. The Napster server S1

adds these files to a database. Subsequently, the client can send search

queries. For example, client C2 sends a search query to S1. As a re-

sult, server S1 replies with a list of peers that provide this file. Then,

client C2 is able to contact other peers to download the file directly.

Because server S1 is still the central node in this application, it is built

on the client-server paradigm rather than on P2P paradigm. Gnutella

was inspired by Napster and is in contrast to Napster, a true P2P ap-

plication.
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Example of a basic File Transfer with Napster

S1

C1 C2

C3

C4C5

C6

qu
er

y

re
pl

y

direct
download

Figure 2.4: Circles with a C are clients and S is a server. The client C2 sends
a search query q to the server S1 and receives in return a list of
clients that provides the searched file. Then, client C2 can down-
load the file directly from client C4. Source: own representation
based on [MS07, p. 56].

gnutella Justin Frankel and Tom Pepper developed the first

version of Gnutella in March 2000 [Kan01]. In contrast to Napster

it is a real P2P application without a central entity. Gnutella is built

on the flooding algorithm described in Section 2.2.1.1. Gnutella con-

sists of five message types: ping, pong, query, queryhit, and

push [KM02]. A peer uses the ping message to find other peers in

the network. If a peer receives a ping message, it replies with a pong

message. The query message contains a search string to find files in

Gnutella. If a peer receives a query message and holds the files that

have been requested, it replies with a queryhit message. If a peer

which holds the file is behind a firewall, the requesting peer sends a

push message along the original chain to ask the peer to push the

file.

In addition to the disadvantages described in Section 2.2.1.1, Gnu-

tella has an additional disadvantage. Adar and Huberman found that

nearly 70 % of participating peers were not sharing any files with

other peers [AH00]. They call this phenomenon free-riding. This prob-

lem undermines the basic notion of resource sharing in P2P networks.

Furthermore, it demonstrates that participating peers do not share re-

sources voluntarily and that an incentive mechanism is necessary. The

P2P application BitTorrent provides such mechanism. To overcome the
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limits of unstructured overlays researchers have begun to work on a

new category of P2P applications called structured overlays.

2.2.2 Structured Overlays

The limitations of unstructured overlays, such as their inefficiency

and the inability to find rare objects, necessitates more efficient and

deterministic topologies, including structured overlays. According to

[BYL09, p. 75] a structured overlay combines a ‘specific geometrical

structure with appropriate routing and maintenance mechanisms’. In

the following subsections, I provide a brief overview of the most im-

portant structured overlays.

2.2.2.1 Kademlia

Maymounkov and Mazières have proposed Kademlia, a ‘peer-to-peer

<key, value> storage and lookup system’ based on an Exclusive-or

(XOR) metric topology [MM02]. The essential idea is that a node

should have more accurate information about closer nodes (neigh-

bors) than nodes that are further away. Additionally, when keys and

values from the hash table belong to same key space, nodes that are

close to a key are responsible for storing the values for that. Accord-

ing to these rules, a node which is looking for values to a specific key,

needs to ask close nodes about the values. If a node does not have

these values, it at least provides closer nodes which may have more

information.

Initially, each participating node generates a N-bit random ID, a

unique identifier for each peer. Kademlia sets N = 160. To know

which nodes are close, it is necessary to have a distance metric.

Kademlia uses an XOR metric as a distance function, seen in Equa-

tion (2.1).

d(x,y) = x⊕ y, (2.1)

where: x = N-bit node ID from a participating node;

y = another N-bit node ID.
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The XOR metric is a non-euclidean distance metric. This means that

a node from Germany and a node from the United Kingdom can

be considered closest because they choose a similar node ID even

when Round-trip Time (RTT) is high. Additionally, the XOR metric has

interesting properties. The closest node to x is x itself, which means

d(x, x) = 0. Exclusive-or is symmetric, meaning that ∀ y, x : d(x,y) =

d(y, x). This guarantees that close nodes save similar details about

the address space. This metric also provides the triangle inequality

d(x, z) 6 d(y, z) + d(x,y).

Each node maintains a routing table that contains N buckets, each

bucket contains k nodes. The routing table organizes these nodes in a

binary tree. Figure 2.5 shows a simplified routing table where N = 3.

Example of a Routing Table in Kademlia

0

0

0 1

1

0 1

1

0

0 1

1

0 1

000 001 010 011 100 101 110 111

Bucket0 Bucket1 Bucket2

Figure 2.5: Routing table from node 110 for a Distributed Hash Table net-
work with an address space of 23. Source: own representation
based on [Use14].

The node in Figure 2.5 has the node ID 110. Every new node that it

discovers is added to this routing table. The closer nodes are to them-

selves, the more buckets a node contains. A node decides in which

buckets another node will be saved according to the most common

bit-prefix, the number of sequentially shared bits beginning from

Most Significant Bit (MSB). Because node 001 and node 110 share 0

bits together, node 001 is saved in Bucket0. Node 111 shares 2 bits

with node 110, therefore it is added to Bucket2. Two popular Bit-
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Torrent implementations, Mainline and Vuze, make use of a modified

Kademlia implementation to avoid a central tracker.

2.3 bittorrent overview

BitTorrent was developed by Bram Cohen in 2001 and was designed

for the community of etree2 [Pet05]. In this section, I describe a down-

load of a single file with the original BitTorrent specification, defined

in BitTorrent Enhancement Proposals (BEP) 3 [Coh08b].

The main tenant of BitTorrent is to split a large file into many fixed

size pieces and these pieces into sub-pieces. BitTorrent clients that im-

plement versions of the protocol specifications prior to 3.2 use 1 MiB

as fixed-size while newer versions use 256 KiB. Sub-pieces typically

have a size of 16 KiB. This makes it easier to transfer a large file

among others because different pieces can be shared with different

peers. BitTorrent also makes use of pipelining. This means that it typ-

ically has several requests pending simultaneously. This ensures a

steady download rate. The initial client calculates a SHA-1 hash for

each piece seen in Figure 2.6. This information is saved together with

a Uniform Resource Locator (URL) of trackers in a meta-info file called

*.torrent. This file contains the information necessary to down-

load a file. This file is typically uploaded to a torrent discovery web-

site where, other people can download the file via HTTP/Hypertext

Transfer Protocol Secure (HTTPS).

The example in Figure 2.7 contains 4 peers. The group of peers

who are sharing a file is called a swarm and are denoted as: N =

{P1, . . . ,Pn}, where all participating peers are denoted as P. The

complete file F is divided into 4 pieces which are denoted as F =

{p1, . . . ,pn}, where each piece is denoted as p. To ease the explana-

tion, I have not divided the pieces into sub-pieces. I denote the set of

downloaded pieces from P1 as F(P1) = {p1,p3} and the set of missing

pieces as F ′(P1) = {p2,p4}. The peer P2 has all the pieces, meaning

F ′(P2) = {} and as such is called a seeder. Let us assume that P2 is the

2 etree is a community of music lovers which shares live recordings from concerts
(bootlegs): http://www.etree.org/

http://www.etree.org/
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Example of the File Splitting Feature of BitTorrent

p1 p2 p3 . . . pn

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

415ab40ae9b7cc4e66d6769cb2c08106e8293b48

ca725d7259ce5b6f7d04cfecff87b93b1b9768bd

8843d7f92416211de9ebb963ff4ce28125932878

Complete File F

Figure 2.6: A file F which is split into pieces with its Secure Hash Algorithm
1 (SHA-1) hashes. Source: own representation.

initial seeder and uploaded the *.torrent file to a popular BitTor-

rent portal. All other peers are called leechers. The *.torrent file also

contains a URL of a tracker, a central software which maintains which

peers are involved in the swarm. A number of extensions to avoid a

central software, e. g. DHT [Loe08], Peer Exchange (PEX) [Use08] and

Local Peer Discovery (LPD) [Nor09], exist. Assume that peers P1,P3,

and P4 have downloaded the *.torrent file and want to download

its content. The first step of these peers is to contact the tracker.

The tracker returns a list of random peers (IP address and port num-

bers) to the requested peer. This list is known as the initial peer set. The

requested peer iterates through this list and attempts to connect to

these peers. Once peer P2 has uploaded the file .torrent file to a

BitTorrent portal, it must be the initial seed. This means it must join the

swarm and participate as a seeder for some time. A torrent is called

alive if at least one copy of every piece in the swarm exists. It follows,

that the swarm in shown in Figure 2.7 is alive. However, if the seeder

P2 goes offline the swarm would no longer be alive, because piece p2

would be missing.

A BitTorrent client is automatically a seeder when a client recognizes

that a file is complete. Let us assume that peer P3 is a new peer and

wants to join the swarm. P3 first contacts the tracker and receives the

initial peer set which includes P2 and P4. Peer P3 connects P2 and P4

and begins a session with the BitTorrent handshake. The handshake
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Simplified Example of a BitTorrent Swarm

Tracker

P1p1
p2
p3
p4

P2 p1
p2
p3
p4

P3p1
p2
p3
p4

P4 p1
p2
p3
p4

Figure 2.7: Peer P1–P4 represent participating peers and p1–p4 represent
a piece of the file. Pieces with a blue background color are
pieces which actual peers have and pieces with the a white back-
ground are missing pieces. Source: own representation based on
[Cho+12].

also contains information as to which extension the client supports.

The next step is peer selection and piece exchange which are com-

pleted in BitTorrent by the choking algorithm and the rarest piece first

algorithm. These algorithms are detailed in Section 2.3.1 and 2.3.2.

2.3.1 Choking Algorithm

The heart of BitTorrent is the choking algorithm. This decides which

peers may download and which may not. Choking is done for the

following reasons. First, it prevents free-riders. Second, it ensures

a consistent download rate. Third, the Transmission Control Proto-

col (TCP) congestion control behaves poorly when sent across many

connections simultaneously [Coh08b].

The algorithm works in a reciprocal fashion and favors peers who

upload. There are two states at either end: uninterested/interested

and unchoked/choked. A peer is interested when another side has

data which the peer would like to acquire. For example, in Figure 2.7,
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the set of interested pieces for P1 is F ′(P1). On the other hand, a

peer is uninterested when the opposite peer has no interesting data.

Choking means that a peer does not send data until unchoking occurs.

Data will only be sent when one side is interested and the other side

is unchoked.

The choking algorithm behaves differently in leecher and seeder

states. I begin by discussing the leecher state. By default, every peer

has 4 unchoked slots and decides, according to the following policy,

which peer is unchoked.

1. Every 10 seconds, all peers are ordered by their download rate.

The three highest peers are unchoked.

2. Every 30 seconds, one peer is randomly chosen to be unchoked.

This is called optimistic unchoking.

Optimistic unchoking is completed for the following reasons. A

new peer, for example, P3 in Figure 2.7, joins a swarm but has noth-

ing to share. If reciprocity is taken literally then P3 would be unable

to receive any pieces as it has nothing to share. However, optimistic

unchoking prevents this problem. Peer P3 must wait until P1, P2, or

P3 optimistically unchokes it and allows it to download pieces, even

when P3 has nothing to share. This bootstrapping process takes sev-

eral minutes to deploy. In Section 5.2.1, I describe an extension of the

BitTorrent protocol which increases the speed of this process. Further-

more, optimistic unchoking provides peers with the opportunity to

interact with new peers. This has advantages and produces a change

in that a new peer has a higher download capacity. If the peer in the

optimistic slot has a better download rate than a peer which allocates

a regular unchoked slot, then this peer is replaced with the optimistic

peer.

According to the original specification [Coh08b], the choking mech-

anism behaves slightly differently for a seeder. The seeder compares

the upload rate, instead of the download rate, of the peers. However,

this behavior has changed without announcement from BitTorrent Inc.

Since mainline client version 4.0.0, the seeder compares time a peer
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was last unchoked [LUM06]. The authors of [LUM06] provide exper-

imental evidence that this change improves the fairness of BitTorrent

compared with the original specifications. The next section highlights

the piece selection algorithm of BitTorrent.

2.3.2 Rarest Piece First Algorithm

A good piece selection algorithm is crucial for the performance of a

P2P application. This is because the underlying problem in distribut-

ing pieces randomly is the Coupon Collector’ problem. Let us imagine

the following situation. A file is divided into m pieces, distributed

randomly, and each peer only receives one piece. To have a con-

stant probability that each piece exists at least once, there must be

Ω(m lnm) peers in the swarm [MS07, p. 234]. To improve this situa-

tion, BitTorrent uses an algorithm that includes four policies that are

gathered together under the name rarest piece first.

The underlying assumption of these policies is that a peer is aware

of pieces from its neighbors. If a peer has downloaded a piece suc-

cessfully and checked its SHA-1 hash, it will send a have message to

all peers which are in its peer set. All other peers do the same. Conse-

quently, a peer knows which pieces the peers in the activate peer list

have and can calculate the availability of each piece. It is worthwhile

to note that no peer has a global view of the complete swarm. Every

peer has only an approximation from among their neighbors. In the

following section, I describe the four policies according to the original

paper [Coh03].

random first : If a peer has less than four pieces |F(Pi)| < 4, then

the peer follows the random first policy. The peer chooses a ran-

dom piece and requests it. The idea behind this policy is to get

pieces as quickly as possible at the beginning. After download-

ing four random pieces, the peer switches to the rarest piece first

policy.

rarest piece first : Because a peer knows which pieces the neigh-

borhood has, it can calculate the availability of each piece. As



26 background on peer-to-peer and bittorrent

the name suggests, in the rarest piece first policy, the peer down-

loads the pieces which have the lowest availability first. In the

example from Figure 2.7, peer P1 would first request piece p2

from F ′(P1), because only P2 has a copy of it. The other missing

piece p4, has a higher availability because two copies of it exist.

This technique has two advantages. First, it reduces the proba-

bility that a rare piece becomes unavailable if a peer goes offline.

Second, it ensures that a peer receives interesting pieces which

other peers want to acquire. Each new have message that ar-

rives, updates the availability of a piece.

strict priority : As discussed in Section 2.3, a piece is divided

into sub-pieces. If a peer requests a sub-piece, this policy dic-

tates that the following requests belong to the same piece. This

helps to finish a piece before other pieces are requested and to

complete pieces as soon as possible.

end game mode : A peer follows this policy once it has requested

all pieces. To avoid waiting for a piece from a slow peer, the

peer sends requests for the remaining piece to all peers in its

peer set which hold a copy. This could otherwise delay a peer

from finishing the last piece. When it has received the requested

piece, it sends a cancel message to the other peers.

Before December 2008, all pieces and requests were transmitted

over TCP. BitTorrent Inc. announced at the time, however, that uTor-

rent, BitTorrent’s free client, will replace its default transport protocol

TCP with a novel User Datagram Protocol (UDP)-based protocol called

uTP [Haz08].

2.3.3 Micro Transport Protocol (uTP)

To better understand why BitTorrent has switched to uTP, it is im-

portant to understand the problems with TCP. Transmission Control

Protocol makes use of the congestion avoidance algorithm Additive-

Increase/Multiplicative-Decrease (AIMD) which combines linear growth
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(additive increase) and exponential reduction (multiplicative decrease).

Multiple TCP flows that use AIMD eventually converge to use an equal

amount of bandwidth [CJ89]. Because BitTorrent is a P2P application,

it has multiple TCP connections in its peer sets. Consequently, Bit-

Torrent receives more bandwidth than applications that use a single

TCP connection. As a result, BitTorrent affects foreground traffic like

web browsing and email.

Previously, to solve this problem, nearly every BitTorrent client had

the option to set a fixed bandwidth limit, meaning BitTorrent use a

fixed amount of bandwidth. Let us suppose that µ is the bandwidth

capability of an Internet connection, t is the bandwidth consumption

of concurrent TCP flows, and b is the static bandwidth limit of the

BitTorrent client. If

(1) b > (µ− t), then BitTorrent uses too much bandwidth and in-

terrupts the other TCP connections;

(2) b < (µ− t), then BitTorrent uses too little bandwidth and there

will be µ− t− b unused bandwidth;

(3) b = (µ− t), the ideal amount of is used. But t is not constant

and will soon become (1) or (2).

This is an inflexible solution. Additionally, it requires knowledge

about bandwidth capabilities which may not be available to inexpe-

rienced users. To solve these problems, BitTorrent has developed a

new transport protocol based on UDP with a new congestion control,

LEDBAT. This algorithm detects unused head room with the one-way

delay measurement and automatically adjusts the bandwidth limit b.

An ideal traffic flow is depicted in Figure 2.8.

If the foreground traffic—in Figure 2.8 (blue)—increases, the back-

ground traffic (red) should automatically throttle back. Conversely, if

the foreground traffic decreases, the background traffic should take

the unused head room (remaining bandwidth). This novel transport

protocol is specified in BEP 29 [Nor10]. The uTP header of every packet

is shown in Figure 2.9.

Micro Transport Protocol has much in common with TCP. The pro-

tocol controls the connection flow with a sliding window and verifies
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Optimal Bandwidth Usage of uTP

Time
Ba

nd
w

id
th

uTP traffic All Traffic (except uTP)

Figure 2.8: Ideal traffic flow with foreground traffic (blue) and Micro Trans-
port Protocol background traffic (red). Source: own representa-
tion.

Header of a uTP Packet
0 4 8 16 32

type version extensions connection ID

timestamp tsnd (in microseconds)

timestamp difference ∆t (in microseconds)

window size

sequence number acknowledgment number

Figure 2.9: Version 1 header of a Micro Transport Protocol (uTP) packet.
Source: own representation based on [Nor10].

data integrity with the help of sequence numbers. Sequence num-

bers, however, refer to packets instead of bytes. Micro Transport Proto-

col also supports Selective Acknowledgment (SACK) via an extension

which is enabled by default in the reference implementation libutp3.

In contrast to TCP, SACK is implemented using a bitmask where each

bit represents a packet in the send window. When a bit is set, the re-

ceiver received this packet, and vice versa. Micro Transport Protocol

initiates a connection with a two-way handshake instead the three-

way handshake used by TCP. The message flow of this handshake is

shown in Figure 2.10.

The initiator in Figure 2.10 sends a st_syn packet (similar to a

TCP packet with a set syn flag) to the receiver. The receiver acknowl-

3 https://github.com/bittorrent/libutp

https://github.com/bittorrent/libutp
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Two-way Handshake of uTP

connection established

Initiator Receiver

SYN_SENT

CONNECTED

st_syn

CONNECTED

st_state

Figure 2.10: Two-way handshake to initiate a connection between two uTP
nodes. The text on the outer edges reflects the state of the pro-
tocol. Source: own representation based on BEP 29 [Nor10].

edges the st_syn packet with a st_state packet (similar to a TCP

packet with a set ack flag). A connection between the two machines

is then established. The main difference between TCP and uTP is the

novel congestion control algorithm LEDBAT.

2.3.3.1 Low Extra Delay Background Transport

The congestion control LEDBAT was defined in RFC 6817 in December

2012 [Sha+12]. The novel congestion algorithm uses a one-way delay

measurement as the principal congestion control. This measurement

works in part because the sender includes a 32-bit timestamp value

in the header field of a data packet. The receiver calculates the one-

way delay measurement and includes a 32-bit timestamp difference

in the acknowledgment. An example of the network flow of LEDBAT

is shown in Figure 2.11.

Example of the One-way Delay Measurement

Sender Receiver

tsnd

∆t = trcv − tsnd

st_data, tsnd

st_state, ∆t

Figure 2.11: One-way delay measurement as a congestion control with
two uTP nodes. Source: own representation based on
RFC 6817 [Sha+12].
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The sender, as shown in Figure 2.11, includes the time, tsnd in mi-

croseconds, in the data packet upon sending the packet. The receiver

can then calculate the one-way delay ∆t by subtracting the tsnd from

the time the data packet is received, trcv. The receiver returns an ac-

knowledgment that contains ∆t in the header field timestamp dif-

ferences. The sender saves a history of 100 ∆t values in a vector ~h.

The uTP stack does not interpret the time difference ∆t as an absolute

value, rather as an relative value compared to previous data points.

In LEDBAT, Equation (2.2) is used to determine whether to increase or

decrease the send window.

off_target =


+ if min(~h) < 100 ms

= if min(~h) = 100 ms

− if min(~h) > 100 ms

(2.2)

where: ~h = history of 100 ∆t values.

If the lowest value in vector ~h is less than 100 ms, LEDBAT increases

the send window, and if it is more than 100 ms, LEDBAT decreases the

send window. If the lowest value in vector ~h is 100 ms then LEDBAT

does not change the send window.
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L I T E R AT U R E S U RV E Y A N D R E L AT E D W O R K

In this chapter, I provide an overview of related work in the field of

P2P security with a focus on BitTorrent. The classification of related

work is according to the security requirements discussed in Section 1.

According to [MS07, p. 199], there are three security requirements

which must be considered in every P2P network: service availability,

document authentication, and peer anonymity.

3.1 service availability

The main task of a P2P network is to provide a certain service. In

case of BitTorrent, this service is the distribution of files. Attacks that

disturb this service are grouped under the term service availability.

BitTorrent’s ecosystem consists of the following components: leecher,

seeder, peer discovery, and torrent discovery. Vulnerabilities in each

of these components can disturb the availability or efficiency of Bit-

Torrent.

3.1.1 Sybil and Eclipse Attacks

The name Sybil comes from book, written in 1973 and of the same

name, by Flora Rheta Schreiber. The book concerns a woman with mul-

tiple personality disorder and is based on a true story. In large scale

P2P networks, a variation of personality disorder can be an effective

attack against service availability. This is a well-known type of attack

and was originally introduced by [Dou02]. An attacker injects mul-

tiple fake peers into a network which are all under the control of

the attacker. Douceur argues that it is nearly impossible to present a

distinct identity to an unknown peer without using a central trusted

authority. This creates the foundation for a number of attacks.

31
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Douceur also presents a number of defensive tactics in [Dou02]. He

notes that storage, communication, and computation resources are

limited. His approach takes advantage of this and posits the follow-

ing ideas. In terms of communication resources, a peer can broadcast

a request to another peer and only accepts replies within a given in-

terval of time. In terms of storage resources, a peer can challenge

another peer to store large amounts of unique data. And in terms of

computational resources, a peer can challenge another peer to solve a

unique computational puzzle. An obvious disadvantage of these de-

fenses is the expenditure of resources in the form of time, energy, and

computational power. Moreover, this only makes it difficult to create

multiple Sybils on one machine. These approaches do not prevent an

attacker from renting botnet time from which to use the Sybil attack.

An attack related to a Sybil attack is an eclipse attack.

In an eclipse attack, an attacker attempts to inject nodes into the vic-

tim’s routing table which are under the control of the attacker. This

attack is also known as routing table poisoning. This causes the victim

to only communicate with these malicious nodes instead of legitimate

nodes [Loc+10; Cas+02, p. 200]. It is named an eclipse attack because

the victim is eclipsed by the attacker. A simple example is demon-

strated in Figure 3.1.

Example of an Eclipse Attack

P1 P2

P3

P4P5

P6

Figure 3.1: Example of an eclipse attack against peer P4. Red circles are at-
tackers and blue circles are benign peers. Source: own represen-
tation.

Figure 3.1 shows a simple P2P network with overall six peers. Peers

P1–P3 are malicious peers which eclipse the victim Peer P4. As a con-
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sequence, the victim is cut off from the P2P network and the attacker

determines the messages the victim receives. This attack is a general

problem in overlay networks. This observation is made in [Sin+06].

Overlay networks are the basis of a P2P network. A problem arises in

that the membership of overlay networks is generally open or only

loosely restricted. An attacker who controls a large number of neigh-

bors from legitimate nodes can disrupt the overlay communication of

these nodes. Singh et al. propose in [Sin+06] a countermeasure based

on anonymous auditing with moderate churn. BitTorrent makes use

of a structured overlay network MLDHT to find new peers.

Wang and Kangasharju demonstrate in [WK12] a real-world Sybil

attack combined with MLDHT index poisoning attack. The study dif-

ferentiates between vertical and horizontal attacks. A horizontal attack

attempts to pollute the routing table from as many peers as possible

whereas a vertical attack attempts to place as many Sybils as possi-

ble in the routing table of a specific peer. A vertical attack is similar

to an eclipse attack. Interestingly, the study found that both types of

attacks are already widely used currently.

In a recent paper, [Hei+15] show that the underlying P2P network in

the electronic cash system Bitcoin [Nak09] is vulnerable to eclipse at-

tacks. This allows attackers to filter victims’s view of the block chain1.

This results in the victim wasting computing power when mining

blocks. Furthermore, if an attacker has eclipsed a number of nodes,

the attacker can launch N-confirmation double-spending attack on a

merchant. Typically, a merchant only ships goods if the bitcoin trans-

action is confirmed. If an attacker sends a transaction to an eclipsed

merchant, it confirms the transaction with fake nodes in the mer-

chant’s routing table. By doing so, the attacker can receive goods

without payment. Sybil and Eclipse attacks are typical attacks against

overlay networks. The next attacks detailed targets client-server in-

frastructure but can be initiated from a P2P network.

1 A database that contains all Bitcoin transactions.
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3.1.2 Distributed Denial of Service Attacks

The goal of denial-of-service (DoS) attacks is to disrupt a specific ser-

vice, e. g. an HTTP server, by sending a large amount of traffic to the

service. If a DoS attack is initiated by a single machine, it is called

a single-source DoS (SDoS) attack. However, it is difficult for a single

machine to generate the sufficient number of packets and amount of

bandwidth to disrupt a service. However, an attacker can gain con-

trol of many machines and from each of these generate requests to

the targeted service. Such an attack is a DDoS attack [Mir+05] and is

more dangerous than SDoS attacks.

There are two methods to find peers which share the same file,

tracker and trackerless. A peer has to send a get request to a tracker to

receive a list of peers in return. The get request contains the IP ad-

dress and port number of an active peer. [Sia07] show that both val-

ues can be forged to inject the victim’s IP address and port into the

tracker’s peer list. The tracker can then broadcast this information to

other peers, who are trying to connect to the victim. If the swarm is

large enough this can be exploited to initiate a DDoS attack. This can

be easily fixed by only using the source IP address of a peer.

Another method to exploit BitTorrent’s tracker for a DDoS attack is

shown in [HKZ07]. This study discovered that BitTorrent peers ‘trust

the tracker without implementing any authentication or verification

procedures’ [HKZ07, p. 1]. An attacker can deploy a modified tracker

and include victim’s IP addresses in the peer list. Legitimate users

trust the response from the tracker and try to make a connection to

the victim. This does not generate much traffic, however, the victim

must hold these connections until a timeout occurs. As a result, the

attacker exhaust the connection resources from the victim and legiti-

mate peers cannot connect to the victim.

[EGM] detail another form of a DDoS attack. In this form, the at-

tacker reports the victim as one of the trackers. This attack exploits

the lack of a BitTorrent handshake between a peer and the tracker as

there is between peers. This can be exploited by creating a new tor-

rent file, putting the victim’s IP address in the torrent, and publishing
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this torrent on a popular torrent discovery site. The authors note that

this would be ineffective because statistics from the torrent discov-

ery website would show that there is no valid tracker available. More

effective is the exploitation of the multi-tracker feature, described in

BEP 12 [Hof08b]. This attack uses a modified tracker to announce the

victim as an additional tracker, publishing fake statistics to a torrent

discovery website. The authors note that the victim can be any ma-

chine on the Internet.

In [STR07], researchers found vulnerabilities in the membership

management of P2P systems which could be exploited to launch a

DDoS attack. They investigated the Kad Network, a P2P protocol based

on a modified version of Kademlia (see Section 2.2.2.1). The first vul-

nerability arises in the search mechanism of Kademlia. An attacker

who receives a lookup query will return a list of peers that contains

the victim. The peer who receives this list contacts the victim who

does not need to be a member of the P2P network. Another vulner-

ability the researchers found is in the gossip-based video broadcast

system ESM [Chu+04]. Each member periodically picks a random

neighbor to send a subset of neighbors. A malicious peer can send

a gossip message to legitimate members that contains the victim as

a valid contact. Later, these members send a gossip message to the

victim which can result in a DDoS attack.

3.1.3 Bandwidth and Connection Attacks

Bandwidth attacks are first mentioned by [Dhu+08b]. This attack is

detailed as follows. A BitTorrent peer maintains n peers in its peer

set. From these n peers, a peer chooses u peers for an unchoke slot

and o peers for an optimistic unchoke slots. The intention of a band-

width attack is to occupy most of the u unchoke slots with the ef-

fect that another peer which would like to download from the victim

does not get an unchoke slot. As a consequence, the attacker steals

bandwidth from the victim and reduces the victim’s efficiency. An

attacker can occupy unchoke slots by exploiting weakness from the

choking algorithm. To exploit the chocking algorithm mentioned in
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BEP 03 [Coh08b], an attacker needs a higher download speed as other

peers. In Section 5.3.1, I describe different choking algorithms and

how to exploit these algorithms.

[Dhu+08b] were the first to investigate bandwidth attacks and con-

nection attacks regarding BitTorrent. They define bandwidth attacks

as peers who try to allocate a upload slot from the seeder as soon

as possible to stop the seeder. They study’s measurements show that

bandwidth attacks are mostly ineffective and it is only possible to

increase download time by up to 10 %.

Another paper by the same authors, [Dhu+08a], investigates a

bandwidth and a connection attack against the initial seeder to de-

termine the possibility of stopping the seeder. The idea behind this

bandwidth attack was to occupy most of the seeder’s unchoke slots by

downloading at a faster rate than other peers. The connection attack

has aimed to consume the majority of the seed’s connection slots in

its early stages. These measurements showed that bandwidth attacks

are ineffective and that it is only possible to increase the download

time by up to 10 % and never by more than a factor of five. How-

ever, this research also shows that BitTorrent seeds are vulnerable to

connection attacks and that it is possible to prevent a seeder with an

Azureus client2 from distributing files.

3.2 document authentication

Document authentication refers to the authentication of files that are

distributed via BitTorrent. According to [Cue+10], 30 % of all torrents

include fake content. Fake content includes unintended files such as

malware or scam websites. According to [Kry+11], more than 99 % of

fake content is malware or scam websites. The question arises, how

can a peer ensure that a file is not fake?

[Kry+11] present a countermeasure called Fake Detector. Fake con-

tent is often detected by users who download the content and then

report its lack of validity in the comments of the torrent file. It is then

the responsibility of the portal administrator to remove the torrent file

2 Azureus is a BitTorrent client which is now known as Vuze.
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from the website. Such a solution requires human intervention and a

file is only removed from a single portal. However, Fake Detector de-

tects fake content after its creation by the IP address of the publisher.

This is possible because, as the authors discovered, 90 % of fake con-

tent is published by a few users. However, this simple solution does

not work if publishers of fake content switch to dynamic IP addresses

rather than static IP addresses.

3.2.1 Content Pollution Attacks

If a malicious user publishes a large number of decoys (same or sim-

ilar metadata) to a torrent discovery site, this is called a content pollu-

tion attack. The consequence of such an attack is that if user queries for

specific content, the predominant content pulled is fake. In [San+11],

researchers propose a novel countermeasure against content pollu-

tion attacks called Funnel. Funnel counts positive (non-polluted) and

negative votes (polluted) and computes content’s reputation using

subjective logic.

3.2.2 Metadata Pollution Attacks

Metadata pollution is similar to content pollution except that changes

are made to the metadata of a torrent, such as the filename, type, and

title [BYL09, p.339]. The content may be fake content or an irrelevant

file. Such an attack causes users to download incorrect content.

3.2.3 Index Poisoning

Index poisoning is an attack that exploits the search capabilities of P2P

networks. Nearly all P2P systems have an index which is used to ei-

ther find content or peers. In an index poisoning attack, an attacker

introduces a large number of fake entries into the index. BitTorrent

itself has no search functionality. However, BitTorrent makes use of

DHT which has a search functionality. [LNR06] investigated this at-
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tack in structured and unstructured P2P networks. The study found

that both networks are highly vulnerable to this type of attack. As

a countermeasure, they introduced a distributed blacklisting scheme

but noted that more work is necessary. Another security requirement

of P2P networks is anonymity.

3.3 anonymity of the peers

Anonymity helps peers not only avoid prosecution but also prevents

censorship or oppressive measures. The BitTorrent protocol itself

does not provide mechanisms to hide the identity of peers and re-

searchers found that it is easy to invade the privacy of BitTorrent

users.

A study by [Le +10], published a set of simple techniques to under-

mine the privacy of BitTorrent users. Most trackers support a scrape-

all request to provide detailed statistics on torrents. This request re-

turns infohashes of all torrents for whom the tracker is responsible,

the number of peers that have downloaded the full content, and the

number of currently subscribed peers, among other information. By

exploiting this request, an attacker can quickly gain a list of all iden-

tifiers from the tracker. This is the foundation of spying techniques

which exploit the announce request of the tracker to acquire a list

of IP addresses from peers. The authors demonstrated that with these

two simple techniques they were able to determine at least 90 % of

the peers distributing each content. They concluded that it is easy to

spy on most BitTorrent users and that the protection of IP to content

mapping of P2P file sharing users remains an open question.

The same applies to DHT implementations based on Kademlia.

There is no privacy feature in both MLDHT and Vuze DHT (VDHT). The

latter supports an additional message called replicate-on-join.

With this message it is possible to ask a peer for the infohashes it

is currently downloading. The study [WH10] showed that this fea-

ture can be exploited for both fun and profit. It is possible to profit

from this because the authors were able to monitor nearly eight mil-

lion IP addresses downloading 1.5 million torrents. This could also be
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used for fun because the authors showed that with this feature it is

possible to bootstrap a BitTorrent search engine. In the moment, Vuze

has removed this feature to provide better security [Cha+09].

However, in general techniques exist for P2P applications that pro-

vide privacy and anonymity. The following sections examine anonymity

in P2P networks.

3.3.1 Friend-to-Friend Network

As trust is a pervasive issue on the Internet, private P2P systems called

Friend-to-Friend (F2F) networks exist. A peer in a P2P system that

makes use of F2F has connections only to communication partners

that are trustworthy, such as friends. This means a peer connects to

a small number of known peers [CC05]. The IP address of a peer

is known only by its direct neighbors. For example, in Figure 3.2,

the real identity of the receiver R is known only to peers F6–F8. To

enable world-wide communication, it is necessary for every peer to

have a pseudo address. Suppose the sender S with the pseudo ad-

dress c3d wants the send a message m to the receiver R with the

pseudo address f23. Sender S uses flooding (see Section 2.2.1.1) to

send the message m to its friends F1–F3. These friends then send

the message to their friends until the TTL is zero or the message

has reached receiver R. The communication channel between friends

must be encrypted, otherwise an attacker who monitors the commu-

nication channel can read the content of messages which may reveal

the identity of the sender or receiver.

An attacker cannot map pseudo address to a real IP address ex-

cept if the attacker is a friend of the victim. This suggests that an

attacker can only reveal the identity of a peer through social de-

ception. Additionally, peers can change pseudo addresses with each

login to the network. The majority of P2P networks that provide

anonymity make use of F2F networks, e. g. Freenet[Cla+01], GNUnet3,

OneSwarm4 [Isd+10].

3 GNU’s Framework for Secure Peer-to-Peer Networking: https://gnunet.org/
4 https://www.oneswarm.org/

https://gnunet.org/
https://www.oneswarm.org/
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Example of a Friend-to-friend Network

S

c3d
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F4
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R

f23

m
m

m

Figure 3.2: Friend-to-friend network where each peer is connected to a small
number of friends. Source: own representation.

3.3.2 Dining Cryptographers

Dining cryptographers is an easy method to hide an author’s identity

and was first proposed by [Cha81]. Peer-to-Peer networks based on

this method are called Dining Cryptographers (DC) networks. Sup-

pose that one of n peers, where n > 2, would like to publish a mes-

sage m. Each peer i should be able to read this message but should

be unaware of its publisher. Figure 3.3 shows an example where n is

three. Every cryptographer or peer Ci creates a random number xi and

sends this number to its right neighbor Ci−1. Each peer can then XOR

this random number from its own, hi = xi⊕ xi−1. Only the peer who

would likes to publish the message makes an additional XOR calcula-

tion, hi = hi ⊕m. Then, all peers publish their hi. The sum of all hi

is equal to the message m. If no peer has sent a message, the result

would be 0.

This technique ensures that a passive attacker cannot reveal the

author’s identity. An active attacker can only learn the hi of a spe-

cific peer. However, an active attacker can anonymously disrupt the

service by sending random bits instead of the real hi. In such case

nobody is able to read the message m. An additional problem of DC

is the complexity of its computation and communication. This makes

it difficult to use in large P2P swarms.
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Example of Dining Cryptographers

h1 = x1 ⊕ x3
C1

C2

h2 = x2 ⊕ x1 ⊕m

C3

h3 = x3 ⊕ x2

h1 ⊕ h2 ⊕ h3 = m

x 1

x2

x
3

h
1

h2 h3

Figure 3.3: With Dining Cryptographers, an author can publish an docu-
ment or a message m without revealing its identity. Source: own
representation based on [MS07, p. 213].

3.3.3 Onion/Garling Routing

Goldschlag, Reed, and Syverson in [GRS99] propose onion routing to

provide low-latency anonymous communication for TCP applications.

It references mix-networks or mix-cascades in [Cha81]. The most promi-

nent project based on onion routing is the TOR project5. The project

does not see itself as a P2P network though it is a P2P network ac-

cording to the definition by [MS07, p. 215]. Many years of research

were necessary for this project and it includes around 3 million users

currently.

If sender S wants to send a message m to receiver R with TOR,

sender S first randomly selects n onion router from the network.

Sender S needs all the public keys of the selected router. Suppose

n = 3, then sender S uses the public key from On and encrypts the

message m, and adds the address from receiver R. This message m is

then encrypted with the public key from onion router On−1 and the

address of onion router On is added. Sender S iterates this process

until it reaches the onion router O1, then sender S sends this layered

encrypted message to O1, as depicted in Figure 3.4.

Each router On removes a layer by decrypting the received mes-

sage. This message contains a readable header with routing instruc-

tions and an encrypted body. A router sends the encrypted message

5 https://www.torproject.org/

https://www.torproject.org/
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Example of TOR Message Route
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Figure 3.4: Onion Router (O1–O3) receives a message and decrypts its con-
tent. The content consists of a readable header and an encrypted
payload. A router sends the encrypted payload to the next router
according to the header. Source: own representation based on
[MS07, p. 215].

to the next router, according to the routing instructions. This process

iterates until the message reaches its destination. If receiver R wants

to answer sender S the process is reverses.

Suppose an attacker monitors the communication between O1 and

O2. The attacker can only see an encrypted message not the origi-

nal sender, the destination, nor its payload. There are two types of

onion routers, also known as relays: middle relays and exit relays.

Middle relays receive encrypted traffic and forward it to another re-

lay, like O2 in Figure 3.4. If an attacker introduces itself as a middle

relay, the attacker can only see routers in-between. An exit relay is

the final router before the message reaches its destination, like O3 in

Figure 3.4. Attacker presenting themselves as exit relays are able to

read the message but cannot figure out who was the original sender.

Garlic routing is an extension of onion routing and was first coined

by Michael J. Freedman in Roger Dingledine’s Free Haven master’s

thesis. The Invisible Internet Project (I2P)6 is an anonymous P2P net-

work that makes use of garlic routing. It supports a feature which

joins several messages with independent routing instructions on each

level into a new onion. This reduces the load between routers and

makes traffic analysis difficult. It also differs from onion routing

in that the path is unidirectional. This is advantageous because the

path for the return route must be chosen anew, improving anonymity.

6 https://geti2p.net/en/

https://geti2p.net/en/
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However, Niedermayer notes that bidirectional connections are often

used to establish a symmetric session key [Nie10, p. 126].

One P2P file sharing program that makes use of this onion-like rout-

ing is OneSwarm [Isd+10]. It is used by hundreds of thousands of

users and combines onion routing-like privacy with BitTorrent-like

performance. In OneSwarm, users have control over the amount of

trust they place in other peers by making use of F2F networks. How-

ever, Prusty, Levine, and Liberatore in [PLL11] show that OneSwarm

is vulnerable to a novel timing attack. This attack requires two at-

tackers and can distinguish whether a peer is the source of queried

content.

In terms of privacy, it may seem that TOR can be used for pro-

tection with BitTorrent. However, Manils et al. in [Man+10] demon-

strate three attacks that reveal the real identity of BitTorrent users,

even when they are using TOR to protect their privacy. The first at-

tack presented is a simple inspection of BitTorrent control messages,

namely announce message to the tracker and the extension proto-

col handshake [NSH08] which both may contain the real IP address of

BitTorrent users. Unlike this attack, the second attack guarantees the

revelation of IP address. This is a typical man-in-the-middle (MITM) at-

tack, where an attacker adds itself to the list of peers, that the tracker

returns to a peer. The last attacks affects DHT. Because TOR does not

support UDP and DHT makes use of UDP, the client is unable to send

a DHT message over the TOR interface, using the public interface in-

stead. An attacker could subsequently use DHT to find a peer with

the same port number.





Part II

A N A LY S I S O F T H E AT TA C K S

“The more sophisticated the technology,

the more vulnerable it is to primitive attack.

People often overlook the obvious.”

— Doctor Who [JW12]





4
M E T H O D O L O G Y

This chapter describes the current study’s methodology which I use

to confirm and refute hypotheses concerning the security of BitTor-

rent. The next sections provide information about the testbed systems

which were used.

4.1 local p2p testbed system

An initial idea was to create a complete virtual testbed system on a

high-performance server. After creating such a testbed system, the

hard disc was not efficient enough to allow for more than 10 peers

to read and write simultaneously without a large delay. Thus, it was

necessary to build a distributed testbed with real hardware. The new

testbed system consist of 32 machines, one controller, one monitor

machine, and a switch. A network diagram of the testbed system is

shown in Figure 4.1.

Network Diagram of the Testbed System

P1

P2

P3

...

P32

Switch ctrl Internet

Figure 4.1: A network diagram of the testbed system. The testbed system
consists of peer P1 − P32 and a controller (ctrl). Source: own rep-
resentation.

All machines are connected to a network switch. The controller ma-

chine is the only machine with access to the Internet. In the next two

47
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sections, I describe and analyze the hardware and software compo-

nents of this testbed system.

4.1.1 Hardware

The testbed system consist of 33 computers and one switch. All com-

puters are Lenovo IdeaCentre Q180 Mini-PC with the hardware spec-

ification listed in Table 4.1. The principal requirement for the comput-

ers is hardware that is comparable to a normal desktop computer. Sec-

ond, the computers must be cheap and stackable. Third, there must

be at least a Gigabit Ethernet interface.

hardware specification

Model: Lenovo IdeaCentre Q180-VC71-HGE

CPU: Intel R© AtomTM D2700 (2 × 2.13 GHz, 1 MB cache)

RAM: 2048 MB, PC3-10600 1333MHz DDR3

Hard disk: 320 GB

Ethernet: Gigabit Ethernet on planar, Realtek RTL8111E-V

Wireless: 11 b/g/n Wireless 4, Realtek RTL8188CE

Table 4.1: Hardware specification of every machine in the testbed system.
Source: [Len11].

Moreover, the switch must have at least 33 ports and support Gi-

gabit Ethernet. Another requirement is that the switch is able to gen-

erate statistics about network traffic such as Remote Network Mon-

itoring (RMON) and Simple Network Management Protocol (SNMP).

Figure 4.2 shows a photograph of the testbed system. The Ethernet

cable connectors have different color to identify categories with ease.

Blue connectors are peers 1–8, red connectors 9–16, yellow connectors

17–24, and green connectors 25–32. The next section explains the OS

and software run on these peers.

4.1.2 Software

This section examines both system-software and the distributed ex-

perimentation framework.
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Photograph of the Testbed System

Figure 4.2: Photograph of the testbed with 32 peers, 1 controller peer, and a
separate switch. Source: own representation.

4.1.2.1 System-Software

It is important that every machine has the same OS with the same

software and the same configuration. Otherwise it gets hard to au-

tomatize the experimental process. This means to waste a lot of time

to setup the experimental environment, instead of thinking about the

experiment itself and the results. A automatized experimental pro-

cess is also the basis of reproducible results. Therefore, I installed

Ubuntu 12.04.1 Long Term Support (LTS) and configured one mas-

ter machine and cloned this installation to all other machines. For

the cloning process I used Clonezilla1 which makes use of Trivial File

Transfer Protocol (TFTP), Network File System (NFS), and Preboot Ex-

ecution Environment (PXE).

I installed a Secure Shell (SSH) server on the master machine to

control every machine remotely. The /home directory was mounted

via NFS from the controller peer. This facilitated the distribution of

files to all machines. Additionally, I configured the Network Infor-

1 http://clonezilla.org/

http://clonezilla.org
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mation System (NIS) to have a central user and group administration.

This ensured that all machines had the same user accounts. To add

new users, it was only necessary to create accounts on the controller

machine. I also installed software and libraries in advance (e. g. in-

terpreter, compiler, debugger, etc.) to save time in the future. I also

wrote an experimentation framework to automate the process of a

distributed experiment.

4.1.2.2 Distributed Experimention Framework

Peer-to-Peer networks by nature necessitate several machines for an

experiment. A BitTorrent security experiment can be used as an ex-

ample. Such an experiment requires at least one tracker, one seeder,

and several leechers and attackers. In this context, attackers means to

attack the swarm. To coordinate such an experiment, one controller

machine and several executive machines are needed. The controller

machine delegates tasks to different executive machines, monitors the

progress of each machine, and collects data after the experiment. The

executive machine receives functions and evaluates them, returning

the result to the controller. Additionally, some experiments require

additional aspects, including background traffic or logging. These as-

pects should be easy to activate if necessary. These factors fostered

the development of a distributed experiment framework, called Thay-

eria2. Thayeria is written as a module for the programming language

Perl 5
3.

Thayeria is inspired by the distribution capabilities of the program-

ming language Erlang4. Erlang makes it easy to call a function on

multiple remote machines even when the module is not present on

the machines. Therefore, I developed the following design criteria for

a distributed experimentation framework:

• Distributed;

• Peers grouping;

2 The name Thayeria is derived from a swarm fish species.
3 http://www.perl.org/
4 http://www.erlang.org/

http://www.perl.org/
http://www.erlang.org/
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• Easy to begin on multiple machines;

• Serialized modules or functions if not present;

• Blocking and non-blocking function calls;

• Extensible via plug-ins.

All criteria are included in the current version of Thayeria. Fig-

ure 4.3 depicts the architecture of this framework. The experiment

script runs on the controller machine C1 and uses the Thayeria client

to connect to executive machines S1 . . . Sn which make use of the

Thayeria server. The criteria distributed means that a Thayeria machine

always starts a server and a client at the same time. This makes it easy

to replace one machine with another.

Diagram of the Architecture of Thayeria

Experiment

Thayeria C1 Controller Machine

Thayeria S2Thayeria S1 . . . Thayeria Sn

Executive Machines

Figure 4.3: A diagram of the architecture of Thayeria. Source: own represen-
tation.

Thayeria is easy to initiate. If Thayeria is installed, the following shell

one-liner is necessary to begin it:

Listing 4.1: Shell one-liner to start a Thayeria instance.

1 user@peer$ perl -MThayeria -e ’Thayeria->new()->run’

This one-liner can be executed on multiple machines with the pro-

gram parallel-ssh5. If a controller machine calls a function on an ex-

ecutive machine, it automatically serializes the module and sends it

5 https://code.google.com/p/parallel-ssh

https://code.google.com/p/parallel-ssh
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to the executive machine. This means, the executive machine does

not need to have the module installed. Currently, this functionality is

limited to modules without dependencies. The next requirement was

that it would be possible to call a function in synchronized and asyn-

chronized ways. The first mode is necessary for immediate results

and will block the program until the results has arrive. Asynchro-

nized function calls can be used when the program does not need the

results immediately and will not block the program. An example for

the source code of a controller peer can be found in Listing 4.2. Lines

1–2 import the Thayeria module in the current script. Lines 4–5 create

a new Thayeria object. Lines 12–19 show a synchronous function call

and lines 24-33 show an asynchronous function call with a callback

specified. The event loop is entered in line 36.

Listing 4.2: Example of the source code of a controller peer with Thayeria.

1 use Thayeria;
2 use Thayeria::RPC;
3

4 my $machine = Thayeria->new()
5 or croak "Couldn’t create a Thayeria machine: $ERRNO";
6

7 $machine->connect_to(’deepthought’)
8 or croak "Couldn’t connect to deepthought: $ERRNO";
9

10 print "Successfully connected to deepthought\n";
11

12 ## synchronous call
13 my $ret = RPC::call({
14 machine => $machine->machines->{’deepthought’},
15 module => ’TestPackage’,
16 function => ’meaning_of_life’,
17 args => [’str’, 23, {name => ’test’}],
18 });
19

20 print "The meaning of life is: = $ret\n"; ## 42
21

22 $machine->connect_to(’hactar’)
23 or croak "Couldn’t connect to hactar: $ERRNO";
24

25 ## asynchronous call
26 my $ret = RPC::call({
27 machine => $machine->machines->{’hactar’},
28 module => ’Ultimate::Weapon’,
29 function => ’build_bomb’,
30 cb => sub {
31 my ($event_handler, $rpc_href) = @_;
32
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33 print "$rpc_href->{value} bomb makes BOOOOOOOM\n";
34 }});
35

36 ## enter event loop
37 $machine->run;

This framework has no security considerations because the testbed

system is only available in a separate network with controlled access.

4.2 planetlab – global research network

For a short period of time, I acquired access to the PlanetLab6 testbed

system. PlanetLab [Pet+06a] is a research overlay network with more

than 1000 machines in more than 700 locations which are geograph-

ically distributed. All machines are connected to the Internet and

therefore experience the problems of unreliable networks including

latency, packet loss, and packet corruption, among others. However,

it provides an environment to test hypotheses in a large-scale envi-

ronment. To use the PlanetLab testbed system, a potent server must

be provided for the PlanetLab infrastructure.

4.2.1 Architecture

The architecture of PlanetLab is built on a special OS which needs

to be installed on the server provided to the testbed system. This OS

creates Virtual Machines (VMs) on demand to isolate different envi-

ronments from each other. A researcher can create a slice, a set of

allocated VMs across PlanetLab. These VMs are accessible via SSH. I

refer interested reader to [Pet+06b] for an detailed evaluation of Plan-

etLab in terms of CPU, memory, bandwidth, jitter, and disk space

consumption.

6 https://www.planet-lab.org

https://www.planet-lab.org
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4.3 discussion and related testbed systems

In this Section, I would like to discuss why I used testbed systems and

compare it with related ones. There are three evaluation methodology

which can be used to confirm and refute hypotheses concerning the

security of BitTorrent: analytical, simulation and experimental.

BitTorrent is a complex protocol that uses a reciprocal mode of shar-

ing which depends on a number of parameters including the num-

ber of leechers, number of seeders, bandwidth capabilities of peers,

download and upload speed, used BitTorrent implementation, and

the number of pieces, among other factors. The numerous parameters

make it unsuitable for simulations and mathematical models. With

this in mind, and considering the number of publications that using

testbed systems [Wu+10; LUM06; Leg+07; Che+08; EGM; DHW11;

Pia+07; Lio+06], I employed real testbed systems as well.

Barcellos, Mansilha, and Brasileiro in [BMB08] present TorrentLab,

an evaluation platform to investigate BitTorrent by simulations and

experiments on live networks. The biggest difference compared to the

testbed system from Section 4.1 is that they combined simulations

and experimentation on one platform. The advantage of this method

is that they can easily compare the results of the simulations with

the result of the experiments. In their work, they used 30 machines, a

similar number of machines I have used in Section 4.1.

Rao, Legout, and Dabbous investigate in [RLD10] whether it is pos-

sible to perform realistic BitTorrent experiments on a cluster. For their

experiments they used a single machine with 100 BitTorrent peers

and compared it with results from PlanetLab. They came to the con-

clusion that network latency and packet loss have marginal impact on

the download completion time. Therefore, they suggest that a cluster

can be used to perform realistic BitTorrent experiments. In compari-

son, they used a single machine instead of multiple machines. This

has the advantage that they can increase the number of BitTorrent

peers dynamically.



5
S T E A L I N G B A N D W I D T H F R O M B I T T O R R E N T

P E E R S

5.1 introduction

An attacker who would like to attack BitTorrent has four components

as attack vectors: leechers, seeders, peers and torrent discovery. Peer

discovery techniques have evolved with the introduction of DHT, PEX

and LPD. Additionally, major torrent discovery websites such as Pi-

rateBay have switched to magnet links [Pir12]. A magnet link is SHA-1

hash which identifies metadata of a torrent. A peer uses this link to

download metadata from other participating peers. Therefore, mag-

net links are more resilient against attacks than *.torrent files. This

leaves leechers and seeders as the most vulnerable components of this

ecosystem. One attack that targets leechers and seeders is a bandwidth

attack. While significant progress has been made in understanding

the BitTorrent choking mechanism, its security vulnerabilities have

not been thoroughly investigated.

This chapter provides an analysis of different extensions and chok-

ing algorithms in seed state and reveals vulnerabilities that an at-

tacker can exploit. Additionally, I propose a countermeasure against

these vulnerabilities and propose a novel seeding algorithm which

is more resilient against bandwidth attacks than previous algorithms.

I first provide an overview of different seeding algorithms and the

BitTorrent Fast Extension.

5.2 background

In this section, I give a brief overview of the BitTorrent Fast Extension

and a variety of seeding algorithms.

55
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5.2.1 Allowed Fast Extension

Harrison and Cohen published BEP 6 [HC08] in 2008, in which they

describe the allowed fast extension. This extension introduces four

components: state machine reworking, have-all, suggest-piece, and

allowed-fast [Coh08a]. I focus only on the allowed fast extension.

The BitTorrent choking algorithm has one disadvantage. If a new

peer joins a swarm, it lacks pieces to offer other peers. This means

the peer must wait until another peer optimistically unchokes it (see

Section 2.3.1). This process can take, at worst, several minutes. The

allowed fast extension increases the speed of this process, enabling

the download of a set of pieces even when a peer is choked. This

allows a peer to quickly acquire pieces and to engage in BitTorrent’s

reciprocal system.

If a peer asks for a piece but is choked, the requested peer sends

an allowed fast message to this peer which contains a list of pieces

it can download. This list of pieces is called the allowed fast set and is

unique for every peer. This set is generated according to the pseudo

code given in Algorithm 5.1.

Algorithm 5.1: Algorithm that generates the allowed fast set according to
BEP 6 [HC08].

1 x←− 0xFFFFFF00 & ip
2 x.append(infohash)
3 while |x| < k do
4 x←− SHA-1(x)
5 for i← 0 to 4 do
6 break if(|a| == k)
7 piece←− partition first 4 Bytes from x
8 add piece to a if it’s not already there
9 end

10 end

Lines 1 and 2 in Algorithm 5.1 removes the last octet of the IP

version 4 (IPv4) address of the requesting peer, concatenate it with the

infohash of the torrent, and save it to variable x. The algorithm (line 4)

then calculates the SHA-1 hash of the content of variable x and saves

it again in x. Lines 5–9 slice 4 bytes from the beginning of the SHA-1

hash and convert this to an integer. This integer is interpreted as a
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piece number and a new candidate for the allowed fast set. Line 8

checks if the piece number is not already included in the set. If this is

not the case, it is added to the set. This process is repeated until the

set contains k pieces (BEP 06 sets k = 10).

5.2.2 Seeding Algorithms

This section provides details about seeding algorithms that are used

by different BitTorrent clients. The seeding algorithm described in

BEP 03 [Coh08b] is Fastest Upload (FU).

5.2.2.1 Fastest Upload

The FU algorithm is similar to the choking mechanism in leech state

(Section 2.3.1), but in this case a seeder considers the download rate

instead of the upload rate. Consequently, this algorithm favors the

fastest downloaders and does not provide an incentive mechanism.

This algorithm was designed based on premise that fast downloaders

are also fast uploaders, though it has been shown that this is a false

assumption. Asynchronous Internet connections which provide more

download capacity and a smaller upload capacity are widely used in

home and office networks.

5.2.2.2 Round Robin

Round Robin (RR) is a well-known OS scheduling algorithm that al-

lots each process equal processing time. In the case of BitTorrent, RR

provides each peer the same number of pieces. This means an upload

slot rotates every n pieces.

5.2.2.3 Anti Leech

Chow, Golubchik, and Misra in [CGM08] found that a BitTorrent

download from a leecher is slower at the beginning and end of the

download. They argue that initially a leecher only has a few pieces

and that at the end of the process, it is harder to find a peer with

missing pieces. The authors solve this problem by introducing a novel
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seeding algorithm that prefers peers with only a few pieces or nearly

all pieces. I am not currently aware of its implementation apart from

libtorrent (version 0.16 or higher) where the algorithm is called Anti

Leech (AL). The seeder calculates, for every peer p in the peer list, a

score a(p) according to Equation (5.1):

a(p) =


f− f(p) if f(p) < f

2

f(p)× 1000
f otherwise,

(5.1)

where: p = participating peer;

f = number of pieces from the complete file;

f(p) = number of downloaded pieces from a peer p.

The seeder then sorts all peers according to a(p) value and the first

three peers are unchoked.

5.2.2.4 Longest Waiter

Legout, Urvoy-Keller, and Michiardi in [LUM06] found that, starting

with version 4.0.0, the mainline client introduced a new seeding algo-

rithm, which I call Longest Waiter (LW). This algorithm sorts all peers

in ascending order according to their waiting time. The three peers

that have waited the longest are unchoked.

5.3 bandwidth attacks in detail

Section 3.1.3 describes bandwidth attacks and summarizes related

work. In a bandwidth attack that focuses on seeding algorithms, a

malicious peer steals bandwidth by occupying the unchoke slot of

a victim. Consequently, the download speed of benign leechers is

reduced. If the seeder has set a seeding ratio1, the seeder will stop

seeding earlier. These attacks are hard to detect because the attacker

needs only a misbehaving client, a client that does not follow the

BitTorrent specification.

1 A seeding ratio is a limit that can be set in BitTorrent clients. If this limit is reached,
the client stops seeding.
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A seeder maintains n peers in its peer set. From these n peers,

the seeder chooses u peers for an unchoke slot and o peers for an

optimistic unchoke slot. BEP 03 [Coh08b] sets u = 3 and o = 1. If

an attacker is able to occupy these u slots, other peers may starve.

This is because other peers can then only receive pieces through the

o optimistic unchoke slots. This slot is hard to attack, because it is

composed of randomly choosen peers. Transmission Control Proto-

col distributes the available bandwidth evenly across all connections.

Thus, the bandwidth consumption b from a malicious peer is:

bA = u× b

u+ o
, (5.2)

where: u = number of peers which occupy an unchoke slot;

o = number of peers which occupy an optimistc unchoke slot;

b = overall bandwidth capabilities of a peer.

The bandwidth consumption of the other peers who receive pieces

through optimistic unchoking is then:

bL = o× b

u+ o
, (5.3)

where: u = number of peers which occupy an unchoke slot;

o = number of peers which occupy an optimistc unchoke slot;

b = overall bandwidth capabilities of a peer.

Because u > o, a bandwidth attack can generate significant damage

to a BitTorrent swarm. An attacker can generate even more damage

when this attack is combined with a Sybil attack. It is easy to detect

seeders in a swarm, because they send a complete bitfield mes-

sage within the first data packet. As there are a variety of seeding

algorithms, attackers require different strategies to exploit different

algorithms. I examined the default seeding algorithms of prominent

BitTorrent clients and list these in Table 5.1.
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# Client Version Market Share Seeding Algorithm

1 uTorrent 3.2.2 47.97 % Longest Wait
2 Vuze 4.8.1.2 22.49 % Fastest Upload
3 Mainline 7.7.2 13.01 % Longest Wait
4 Transmission 2.61 7.00 % Fastest Upload
5 Unknown 5.22 % n/a
6 Libtorrent 0.16.10 1.02 % Round Robin

Table 5.1: BitTorrent clients in combination with the seeding algorithm used
ordered by market share. Source: own representation based on
[Van11b].

5.3.1 Seeding Algorithms

In this section, I describe how an attacker can exploit different seeding

algorithms to occupy an unfair number of unchoke slots.

5.3.1.1 Fastest Upload

This FU algorithm, described in BEP 03, is used by 29.49 % BitTor-

rent clients. It can be easily attacked if an attacker has a high down-

load capacity [Pia+07]. Because, the seeder sorts all peers according

to download rate, an attacker can introduce high bandwidth peers

which would occupy the u unchoke slots.

5.3.1.2 Round Robin

A single attacker cannot attack RR, because every peer receive the

same number of pieces. This makes it impossible for an attacker to

gain a permanent slot. If there are multiple attackers, benign peers

can be forced to wait longer to acquire pieces.

5.3.1.3 Anti Leech

The authors of [CGM08] note that AL could be exploited by pretend-

ing to have none or nearly all pieces. However, they argue that this

would be difficult because it requires a source code modification. This

statement presupposes security as a result of difficulty. I disagree

with this notion because source code modification in a BitTorrent

client is trivial for an attacker. To avoid such an attack the authors
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proposes a simple countermeasure in which the seeder keeps track of

uploaded pieces. If a peer has reached the limit, the seeder places this

peer on a blacklist. However, this countermeasure is not implemented

in libtorrent.

5.3.1.4 Longest Waiter

The seeding algorithm LW is mostly used by clients from BitTor-

rent Inc. An attacker cannot gain advantages over benign peers

through this algorithm. Every additional attacker who is connected

to a seeder increases waiting time for benign peers.

5.3.2 Programming Errors in Clients

Programming errors such as heap or buffer overflows, can cause sig-

nificant damage to a remote host. An attacker may exploit these pro-

gramming errors to execute malicious code on a host. Programming

errors increase the attack vector for P2P applications. If there is a pro-

gramming error in the seeding algorithm, an attacker can exploit this

error, resulting in free riding.

During my research, I found such a programming error in libtor-

rent. The experimental work in Section 5.4 shows that the seeding

algorithm RR is the most vulnerable. Because RR cannot be influenced

by an attacker, it was clear that this artifact stemmed from a pro-

gramming error. Together with the author of libtorrent, I found that a

faulty counter variable was responsible for the behavior. This counter

counted the number of bytes during the last unchoke round and was

reset for every unchoke round (typically every 15 seconds), instead

of every unchoke. After I informed the author of this problem, he

quickly wrote a patch which solved the issue for future versions. In

the following sections, I refer to the fixed RR implementation as RR

(fixed) (RF).
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5.3.3 Allowed Fast Extension Attack

The allowed fast extension has one security property integrated into

the algorithm. It prevents multiple IP addresses from the same net-

work from receiving a greater number of pieces than defined in the

allowed piece set. This is enforced by Line 1 in Algorithm 5.1. This

line removes the last octet from the IP address. This means a piece set

is valid for a whole /24 network (254 IP addresses).

Another security consideration is that an attacker repeatedly re-

quires pieces from the allowed piece set. This is possible because, as

BEP 06 states, ‘A peer MAY reject requests for already Allowed Fast

pieces if the local peer lacks sufficient resources, if the requested piece

has already been sent to the requesting peer, or if the requesting peer

is not a starting peer’. According to RFC 2119 [Bra97] ‘MAY’ means

optional, implying that it is possible to ask for the same pieces repeat-

edly and only depends on the implementation.

To test this attack, I wrote a simple attack script that exploits the

allowed fast attack to steal bandwidth from a peer. The pseudo code

of this attack script is shown in Algorithm 5.2.

Algorithm 5.2: Pseudocode of the Fast Extension Attack.

1 foreach incoming message M do
2 switch M do
3 case HAVE_ALL or HAVE do
4 Reply with HAVE_NONE
5 Send INTERESTED
6 case ALLOWED_FAST or CHOKE do
7 add piece to S1
8 begin thread with endless loop
9 forall pieces of S1 do

10 Send REQUEST for piece
11 Wait n seconds
12 end
13 end
14 end
15 end

The attack script begins with a BitTorrent handshake to the target,

to which the target responds with its own BitTorrent handshake. At

this point, the target indicates if the client supports the allowed fast
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extension. After the handshake, the client sends an allowed_fast

message which includes a piece number. The exploit presented in Al-

gorithm 5.2 starts a new thread (lines 9–14) for every allowed_fast

message that arrives. The thread contains an endless loop that re-

quires all pieces the victim indicates by the allowed_fast mes-

sages. This allows an attacker to consistently acquire bandwidth from

a BitTorrent peer.

Table 5.2 lists prominent BitTorrent clients that I have tested for

the allowed fast attack. The uTorrent and Mainline client support al-

lowed fast extension, but only half of the semantics. This is because

BitTorrent Inc. has asked academics, e. g. [Har08a], to study the conse-

quences of this extension. When more experimental results are avail-

able, this extension will be activated by default. To the best of my

knowledge, this is the first security investigation into this extension.

# Client Version Market Share Vulnerable

1 uTorrent 3.2.2 47.97 % No
2 Vuze 4.8.1.2 22.49 % Yes
3 Mainline 7.7.2 13.01 % No2

4 Transmission 2.61 7.00 % No
5 Unknown 5.22 % n/a
6 Libtorrent 0.16.10 1.02 % Yes

Table 5.2: BitTorrent clients ordered by market share according to [Van11b].
Column Vulnerable shows if the client supports the allowed fast
semantics and if it is vulnerable to the proposed attack. Source:
own representation based on own survey.

Vuze is partially vulnerable to the allowed fast attack. This is be-

cause after a client has downloaded a piece from the allowed fast

set 64 times, the client rejects all further requests. Still, I listed Vuze

as vulnerable in Table 5.2 because an attacker can easily restart an

attack with the request counter returning to zero. Transmission has

the extension included in the source code but only as a comment. It

is likely that it will be commented out in future releases. The next

section examines this attack in an actual network to understand how

the protocol reacts.

2 At the moment, but code is in mainline so will be vulnerable soon.
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5.4 experimental evaluation

I performed experiments using private torrents in a local testbed (Sec-

tion 4.1) and with the global testbed Planetlab (Section 4.2). All exper-

iments simulated a flash crowd3 scenario. Every leecher disconnected

after receiving a complete copy of the file and only the initial seeder

stayed connected for the complete duration of the experiment. This is

because BitTorrent does not reward active seeders. To create a more re-

alistic scenario, every node generated random HTTP background traf-

fic, as researchers such as [VV08] hypothesize that background traffic

impacts performance of distributed applications. Similar to [Dhu+08c;

DHW11], I use a delay ratio (d) metric to quantify the effectiveness of

an attack:

d =
t
′
d(x) − td(x)

td(x)
, (5.4)

where: x = arbitrary piece;

td = average download time of x without attack;

t
′
d = average download time of an ongoing attack.

In the following experimental evaluation, the Figures show the aver-

age download time which I have measured and the paragraphs use

the delay ratio metric to put the results into perspective.

5.4.1 Experimentation on Local Cluster Testbed

In this experiment, I attacked the initial seeder with 1, 2, 3 and 4 at-

tackers and compared the results to an experiment without an at-

tacker. I repeated this experiment for every seeding algorithm dis-

cussed in Section 5.2.2. The upload limit from the seeder was set to

1, 5 and 10 Mbps. Leechers did not have upload or download limits.

All results are the average values of ten iterations.
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Results of the Experiment with a Seeder with 1 Mbps
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Figure 5.1: File transfer of a 100 MiB file with a piece size of 64 KiB via Bit-
Torrent with a seeder that has a 1 Mbps upload limit. (a) A nor-
mal bandwidth attack. (b) A bandwidth attack combined with
the Allowed Fast Attack. The error bars show 95 % confidence
intervals. Source: own representation based on own survey.

5.4.1.1 Seeder with 1 Mbps Upload Limit

Figure 5.1 shows the average download time with an increasing num-

ber of attackers. My initial observations of Figure 5.1 (a) note that

RR is the most vulnerable algorithm. With one attacker, the delay ra-

tio d of RR increased by 42.17 %, with two attackers by 105.60 %, with

three attackers by 328.76 %, and with four attackers by 414.80 %. This

is the highest increase and can be explained by the fact that the RR

implementation in libtorrent was incorrect and favored attackers, as

explained in Section 5.3.2. The allowed fast attack did not significantly

increases in RR, compared to the normal bandwidth attack.

5.4.1.2 Seeder with 5 Mbps Upload Limit

Figure 5.2 depicts an attack against a seeder with a 5 Mbps upload

limit. Contrary to the attack against the seeder with a 1 Mbps upload

limit, the most vulnerable algorithm is not RR, rather it is FU. This

indicates that the programming error is only visible when the seeder

3 An experimental setup where all peers begin simultaneously.
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Results of the Experiment with a Seeder with 5 Mbps

0 1 2 3 4

100

200

300

Number of Attacker

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e

(s
)

(a) Bandwidth Attack

0 1 2 3 4

100

200

300

Number of Attacker
(b) Allowed Fast Attack

Seeding Algorithms: RR FU AL LW RF

Figure 5.2: File transfer of a 100 MiB file with a piece size of 64 KiB via Bit-
Torrent with a seeder that has 5 Mbps upload limit. (a) A normal
bandwidth attack. (b) A bandwidth attack combined with the al-
lowed fast attack. The error bars show 95 % confidence intervals.
Source: own representation based on own survey.

has low bandwidth capabilities. The d of FU increased by 60.64 %

with one bandwidth attacker and by 385.41 % with four attackers. As

written in Section 5.4.1, leechers and attackers have the same band-

width capabilities. Nevertheless, the attacker is able to request more

pieces than competitive leechers using the simple attack script in Al-

gorithm 5.2.

The next most adversely impacted algorithm is AL. The d of AL

during a bandwidth attack with one attacker is not significantly dif-

ferent from the experiment without attacker. However, d with two

attackers reaches 25.52 %, three attackers 62.21 %, and four attackers

182.99 %. Similar to the experiment with a 1 Mbps limit against AL,

the allowed fast attack increases the impact. The allowed fast attack

achieves, against AL, the following d values respectively to the num-

ber of attackers: 19.45 %, 68.05 %, 197.44 % and 212.31 %. As in the

previous experiment, the seeding algorithms RF and LW are affected

the least. The d of LW increases 33.93 % during a normal bandwidth

attack with four attacker and 72.19 % during an allowed fast attack.
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The d of RF also increases by 50.74 % during a normal bandwidth

attack and by 98.44 % with an allowed fast attack with four attackers.

5.4.1.3 Seeder with 10 Mbps Upload Limit

Results of the Experiment with a Seeder with 10 Mbps
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Figure 5.3: File transfer of a 100 MiB file with a piece size of 64 KiB via Bit-
Torrent with a seeder that has 10 Mbps upload limit. (a) A nor-
mal bandwidth attack. (b) A bandwidth attack combined with
the allowed fast attack. The error bars shows 95 % confidence
intervals. Source: own representation based on own survey.

Finally, I repeated the experiment with a seeder with a 10 Mbps up-

load limit (Figure 5.3). In general, the more bandwidth seeder has, the

more resilient it is against bandwidth attacks. In this experiment, the

most vulnerable algorithm was again FU. The d of FU with one, two,

three, and four bandwidth attackers increased by 23.29 %, 86.36 %,

242.97 %, and 229.54 %, respectively. In and allowed fast extension

attack with three attackers, the d was degraded by 349.94 %. The sec-

ond most vulnerable algorithm was the AL seeding algorithm, similar

to the experiment using a 5 Mbps limit. An attack with one attacker

increased the d by 97.66 % and by 409.15 % with four attackers. With

four attackers, the d of the broken RR implementation increases by

163.94 %, of LW by 52.00 %, and of RF by 77.51 %.
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5.4.1.4 Launching Bandwidth Attacks in Sybil Mode

In a Sybil attack, an attacker injects multiple fake peers, all of which

are under the control of the attacker, into a network (see Section 3.1.1)

[Dou02]. This section evaluates the efficacy of the proposed allowed

fast attack in Sybil mode.4 In this experiment, I increased the number

of attackers and reduced the number of leechers with every iteration

until I had the same number of attackers and leechers. Figure 5.4

depicts the results with a seeder with 5 Mbps upload capacity.

Results of a Sybil Attack with a Seeder with 5 Mbps
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Figure 5.4: File transfer of a 100 MiB file with a piece size of 64 KiB via Bit-
Torrent with a seeder that has a 5 Mbps upload limit. A Sybil
attack in which I increased the number of attackers and reduced
the number of leechers with every iteration. Source: own repre-
sentation based on own survey.

The Sybil attack shows that as more attackers are injected into the

swarm, the impact of the attack becomes progressively severe. When

25 % from the swarm are attackers, it is possible to increase the av-

erage download time for all peers by up to more than 500 % if the

seeder uses FU, AL or RR. The seeding algorithms LW or RF also con-

cede a d of more than 250 %. If there are half as many attackers as

leechers, the d of the leechers increases by up to 700 % if a seeder

4 This is a realistic scenario as botnets are available for hire for as little as $0.50 per
bot [Nam09].
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makes use of FU, AL, or RR. However, if a seeder uses LW or RF then

this value is more than 300 %. If an attacker introduces the same num-

ber of attackers as leechers, then the most vulnerable algorithms FU,

AL and RR increase the average download time by up to 1000 %. The

effect on RR is the worst with a d increase of 1561.18 %. In LW and RF,

the d increases by more than 500 %.

5.4.2 Experimentation with PlanetLab Testbed

The following experiments were performed on the PlanetLab plat-

form, I described in detail in Section 4.2, to test the large scale effects

of bandwidth attacks. The current study’s large scale experimental

structure consisted of one seeder, one tracker, and 300 leechers. This

scale of this setup is inspired by similar experiments in previous stud-

ies, e. g. [Sir+07], [Pia+07] and [Che+08]. All experiments simulated a

flash crowd scenario and all peers had an upload and download rate

of 1 Mbps. This is a judicious bandwidth number, because much of

the developing world still operates within a range of 1 Mbps [Cot13].

I introduced four attackers (1.33 % of the leechers) without band-

width limits. Figure 5.5 (a) shows the results of a bandwidth attack

and Figure 5.5 (b) outlines the results of an allowed fast attack. All

experimental results were averaged over ten runs.

The results show that AL is the most vulnerable seeding algorithm

with a d of 247.68 %, as a result of its missing security feature. Note

that this value is close to the cluster result presented earlier with a

d of 275.80 %. Similar to previous experiments, the second most vul-

nerable algorithm is FU where a bandwidth attacker can increase the

average download time of 300 leechers by up to 47.78 % and with

an allowed fast attack by up to 92.32 %. Both RF and LW are rela-

tively robust against bandwidth attacks with an increase of 15.92 %

and 14.50 % respectively. However, the allowed fast attack is able to

increase the average download times of RR and LW by up to 87.23 %

and 69.41 %, respectively. I also repeated the experiment with less

then 300 leechers and obtained similar results.
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Results of the Experiment with PlanetLab
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Figure 5.5: File transfer on PlanetLab of a 100 MiB file with a piece size of 64

KiB via BitTorrent. The data was produced with 1 seeder with a
1 Mbps upload limit, 300 leechers with 1 Mbps download limits,
and 4 malicious peers. All values are the average values of ten
iterations. The error bars show 95 % confidence intervals. Source:
own representation based on own survey.

5.4.3 Discussion

The current study presents an in-depth security analysis of different

seeding algorithms with BitTorrent. The results show that the seeding

algorithms RR, FU and AL are vulnerable, while RF and LW are more

resilient. A malicious peer that exploits these algorithms can increase

its seeding score and in return receive more download time. It was

not possible to cripple the network completely because of the opti-

mistic unchoke slot. However, with unlimited resources, an attacker

can slow down BitTorrent downloads for all peers to an unusable

level.

I also conducted large-scale experiments on PlanetLab to examine

real-world effects of bandwidth attacks. While the attack’s impact on

PlanetLab was more contained than in the cluster experiment, attack

trends observed in the cluster testbed were validated by the PlanetLab

experiments. Though, these experiments contained only one seeder

and in a real-world swarm there are typically more seeders. However,

a malicious peer can attack multiple seeders simultaneously. It is easy

to find all seeders in a swarm. To do so, one must connect to the
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tracker frequently and wait for a peer that sends a complete bitfield

or a have_all message. An exception in this instance is a seeder

that uses the super-seed feature [Hof08a].

5.5 countermeasures

In this section, I propose a countermeasure against the allowed fast

attack and a novel seeding algorithm which is highly resilient against

bandwidth attacks.

5.5.1 Allowed Fast Attack

There are two possible countermeasures against the allowed fast at-

tack. The first is to change the word ‘MAY’ to ‘MUST’ in the following

sentence from BEP 6: ‘A peer MAY reject requests for already allowed fast

pieces (. . . )’. However, this countermeasure prevents retransmission

of a damaged piece. Another countermeasure is to upper bound the

number of pieces that can be downloaded, for example, the client

Vuze has a limit of 64. While this strategy reduces the effectiveness

of this attack, it is still possible to restart an attack after the limit is

reached.

In light of such factors, an effective countermeasure must restrict

the IP address of the peer who has reached the limit to avoid restart-

ing the attack. I implemented this countermeasure in libtorrent and

repeated the experiment with a seeder with a 1 Mbps upload limit.

Figure 5.6 shows the experimental results of implementing a coun-

termeasure that limits the number of allowed fast pieces. Figure 5.6 (a)

shows the results from the allowed fast attack and Figure 5.6 (b)

shows the results with a patched libtorrent version. With the coun-

termeasure in place, the attack has nearly no effect on the seeder.

However, the seeding algorithm FU is an exception. In this case, the

attacker is not choked from the seeder because it is the fastest down-
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Figure 5.6: File transfer of a 100 MiB file with a piece size of 64 KiB via
BitTorrent with a seeder with a 1 Mbps upload limit. (a) Allowed
fast attack. (b) Allowed fast attack with a patched seeder. Source:
own representation based on own survey.

loader. My countermeasure strategy against the allowed fast attack

has been contributed to the community in libtorrent 0.16.11
5.

5.6 novel seeding algorithm : peer idol

As seen in the experimental evaluation, the seeding algorithm LW

and RF are the most resilient against bandwidth attacks. However,

if an attacker simply waits for some time, both algorithms will give

the attacker an unchoke slot. Therefore, a working countermeasure

would require a seeder to unchoke peers who have shared the most.

For this, a seeder needs secure proof that a peer has shared pieces

with others which is difficult to fake.

5 http://sourceforge.net/p/libtorrent/mailman/message/31298868/

http://sourceforge.net/p/libtorrent/mailman/message/31298868/
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5.6.1 Algorithm Details

In this subsection, I introduce a novel seeding algorithm that is dif-

ficult to exploit and ensures that only peers who have shared pieces

are unchoked. I call this algorithm Peer Idol (PI). This algorithm re-

quires leechers who would like to receive pieces from seeders to send

a new message called vote to all seeders. This vote contains a list

of v peers. I set v = 3 because this is the number of unchoke slots

set by BEP 03 [Coh08b]. The leecher who sends this message provides

other leechers for the seeder according to their download rate. The

notation A � B indicates that the requesting peer has downloaded

more from peer A than from peer B. Therefore a vote with v = 3

looks like (A � B � C).

The seeder who collects the vote messages, awards each peer in-

cluded in this message with points. Peer A receives 3 points, peer B

receives 2 points, and lastly peer C receives 1 point. Every unchoke

round, the seeder sorts all nominated candidates by score and un-

chokes the three candidate with the highest scores. Similar to the

other seeding algorithms, the unchoked peers have two consecutive

rounds to download pieces from the seeder. This avoids quick chock-

ing and unchoking, known as fibrillation [Coh08b]. In mathematical

terms, if N = {1, 2, . . . , v} is the peer set of the seeder, then I ⊆ N

contains the peers which are interested. For every peer p ∈ I, the PI

score is calculated as follows:

PI(p) =

|I|∑
i=1

Vi(p). (5.5)

where: I = list of interested peers;

Vi(p) = returns 1 if peer i voted for peer p and 0 if not.

If two peers, p1 and p2, have the same score, PI(p1) = PI(p2), the peer

who has waited the longest receives the higher priority. After each

unchoke round, PI resets the score of each peer. Suppose, the vote

contains peers to which the seeder does not have a connection. In this

case, the seeder can add these peers to a candidate list. This list con-
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tains potential peers from LPD, PEX and DHT. If a BitTorrent client ex-

hausts of peers, meaning it has fewer peers than max_connection,

it randomly chooses a peer from this list and attempts to create a con-

nection.

The scoring mechanism used in PI is a well-known election method

used to count votes called Borda Count (BC). It is named after Jean-

Charles de Borda [SJ06, p. 97], although has been developed indepen-

dently multiple times. While developing PI, I also tried the scoring

mechanism Condorcet Method (CM). This method gave rise to two

difficulties:

• The complexity of CM is O(N2), because all peers need to be

compared with each other. In BC, however, the complexity is

O(1), because the seeder simply adds votes together.

• The score of the last peer would be CM(p) = 0, because it would

lose all comparisons.

To make PI more secure, I defined additional security properties.

To incentivise the participation of leechers in PI, leechers are required

to send vote messages to a seeder to be unchoked. This ensures

that leechers send votes to a seeder. A seeder can make an exception

if there are not enough peers for uploading. A misbehaving peer is

disconnected and blacklisted if the vote meets one of the following

conditions:

• more than v peers;

• the IP address of the requesting peer;

• repeated peers.

5.6.2 Implementation Details

I implemented PI as an BitTorrent extension that uses the Libtorrent

Extension Protocol (LTEP) described in BEP 10 [NSH08]. The source

code of this extension is provided in Listing A.1 in the Appendix. By
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implementing it as an extension, PI does not interfere with the stan-

dard protocol and a peer can easily send votes only to seeders who

support this extension. I set the number of votes in a single vote

message to three for all experiments because this is the number of un-

choke slots that BEP 03 [Coh08b] assigns. Nevertheless, PI introduces

an extra message overhead which I evaluate in Section 5.6.3.1.

The LTEP headers begins with a 4 byte length field, followed by a

1 byte type field and a 1 byte Extended Message Type (EMT) field. The

length field contains the length of the entire message. The type field

is set to 20 because this indicates that the message is an LTEP message.

The EMT field distinguishes the different extensions. I set the EMT field

to 23, because this number is not currently used by another extension.

This investigation does not consider IP version 6 (IPv6). However, the

current implementation could be extended with ease. Instead of a

vote message, a leecher could send a vote6 message which con-

tains 18-octet IPv6 addresses.

5.6.3 Experimental Evaluation

In this section, I detail experiments with PI using the testbed system

described in Section 4.1. These experiments analyze the performance

of PI in different environments. I will also detail experiments which

examine the stability of PI, including scenarios in which peers go of-

fline. This last experiment provides insights into the security features

of PI.

5.6.3.1 Performance

Performance is the unique selling point of BitTorrent. A new seeding

algorithm should not make BitTorrent slower. Therefore, I designed

two performance experiments to test the speed of PI in various en-

vironments. The hypotheses is that PI will not be slower than other

seeding algorithms even with the message overhead described in Sec-

tion 5.6.1. This is based on the observation that PI favors sharing peers.

In the first experiment, I compared the performance of the seeding

algorithms in an optimal environment where leechers do not have
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Results of the Performance Experiment
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(a) Leechers have no upload or download limit
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(b) Leechers have different download limits and no upload limit

Figure 5.7: Effects of seeding algorithms on the average download speed
in different environments. The upload speed of the seeder was
gradually increased. The error bars show 99 % confidence inter-
vals. Source: own representation based on own survey.

download or upload limits. The seeder had an upload speed limit

that was gradually increased. Figure 5.7 (a) shows the average down-

load speed of all peers as it relates to the upload speed of the seeder.

Figure 5.7 (a) shows the results of the first experiment. I limited the

domain of all results to 5–20 Mbps, as there is no significant difference

between the algorithms in the domain between 1–4 Mbps. At 5 Mbps

RR and AL differentiate themselves from FU, LW and PI. Simply stated,

RR represents the slower group and PI the faster group. The upload

speed of the seeding algorithm RR ranges from 55.7–567 s and has

a mean value of 120.5 s. Compared with the faster group, the range
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is 45.9–566 s and the mean value is 111.5 s. The median difference

between the slower and faster groups is 10 s.

5.6.3.2 Stability

I interpret the notion of stability for BitTorrent as a condition in which

the service operates as expected even if some peers go offline. Sup-

pose several peers go offline in a swarm with a low peer set cardinal-

ity. Consequently, peers either starve without enough peers to finish

the download or peers have to request more peers from the tracker,

increasing download time. Both scenarios disrupt the stability of the

service. Thus, I conducted an experiment in which I counted the num-

ber of peers connected to the seeder. Table 5.8 shows the number

peers connected to the seeder.

Results of the Stability Experiment
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Figure 5.8: The number of peers connected to the seeder in a swarm of
32 peers. All values are average values of ten iterations. The er-
ror bars show 99 % confidence intervals. Notice that it can be ob-
served that a seeder that makes use of Peer Idol (PI) has more con-
nections to other peers than the other seeding algorithms. This
improves the stability and robustness of BitTorrent. Source: own
representation based on own survey.

All seeding algorithms with the exception of PI use only the tracker

for new peers. The results of this experiment show these these algo-

rithms request the tracker once or twice for new peers. The seeder

that makes use of PI had a connection to nearly all peers. This is

because with every vote that contains unknown peers, the seeder

saves these peers to a list of potential candidates for connection. If a

seeder has fewer peers, it randomly chooses a peer from this list and
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attempts to form a connection. This mechansim lowers dependency

on central tracker and increases the stability and robustness of BitTor-

rent. Wu et al. in [Wu+10] studied peer exchange in BitTorrent and

concluded that peer exchange significantly reduces download time.

5.6.3.3 Security

In the next experiment, I investigate how vulnerable the PI algorithm

is to bandwidth attacks and compare the results with the other algo-

rithms. For that purpose, I included 3 malicious peers in the exper-

iment that attack each algorithm in its own way. The attackers con-

nect to the seeder 5 seconds before the leechers. This ensures that the

attackers are getting the unchoke slots first. I measured how many

attackers and leechers were unchoked. The comparison can be seen

in Figure 5.9.
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Figure 5.9: The unchoke ratio of attackers and leechers in different seeding
algorithms without an optimistic unchoke slot. The data was pro-
duced with 1 seeder with a 5 Mbps upload limit, 29 leechers with
900 kbit/s download limits and 3 malicious peers. All values are
averages of ten iterations. The 99 % confidence intervals of all
values is < 0.05. Source: own representation based on own sur-
vey.

To exploit FU, malicious peers simply have to download faster their

competitors. Thus, I equipped attackers with more bandwidth their

competitors. The attack script requests random blocks and attempts

to download as much as possible. The results in Figure 5.9 show that
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FU is vulnerable against these types of attacks. Only 3.3 % of leech-

ers were unchoked, whereas 96.7 % of attackers were unchoked. This

confirms that FU unchokes the fastest downloaders and shows that,

because attackers were faster and connected to the seeder before be-

nign peers, FU almost exclusively unchoked attackers.

To attack RR, I used the same attack script against FU, because there

is no vulnerability to be exploited except the introduction of more

attackers. In comparison to FU, RR unchokes 88.5 % of leechers and

only 11.5 % of attackers. The probability that RR chooses an attacker

is given in Equation (5.6).

(P(A) =
na

np
), (5.6)

where: na = number of attackers;

np = number of peers the seeder has in its peer set.

Therefore, the probability that a leecher is chosen by RR is P(L) =

P(A) =
np−na

np
. RR is quite robust against bandwidth attacks and

provides each peer with the same number of pieces.

In AL, peers that have nearly all or barely any pieces are favored.

To exploit this algorithm, the attacker does not send have messages

to the seeder. As a result, F(p) from Equation (5.1) is always 0 and

therefore AL(p) = F, the highest score for a peer. Benign leechers

have to be content with an optimistic unchoke slot. The AL score of

benign peers upon receiving a single piece is lower than malicious

peers. This security weakness is described in the discussion section

of the paper [CGM08]. The authors also present a solution to prevent

such an attack, however it is not implemented in the current libtorrent

version.

To exploit PI, the attack script sends a vote to the seeder every

10 seconds, which contains other attackers. Attackers can only vote

for (n − 1) attackers, because the requesting peer is not allowed to

include itself to the vote. This means, the vote from attackers con-

tains only two valid peers. The results indicate that the PI algorithm is

the most robust algorithm against bandwidth attacks. It can be seen
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in Figure 5.9 that PI unchokes 10.1 % of attackers and 89.9 % of the

leechers.

What impact does the unchoke ratio have on the average download

time of leechers? In another experiment, I included 3 malicious peers

with no upload or download limits and 29 leechers with upload limits

of 20 Mbps. As in the previous experiment, I attacked each seeding

algorithm differently and gradually increased the upload limit of the

seeder. The results are shown in Figure 5.10.
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Figure 5.10: Average download speed of the different seeding algorithm
with 3 attackers with no upload or download limit and 29 leech-
ers with an upload limit of 20 Mbps. The error bars show 99 %
confidence intervals. Source: own representation based on own
survey.

In this case, leechers who use AL as a seeding algorithm suffered

the most from attacks against the seeder. Their average download

time ranged from 105.6–2398.8 s which results in a mean of 397.1 s.

The next most vulnerable algorithm was FU. The average download

time of leechers with FU from the seeder ranged from 58.5–742.4 s

with a mean of 216.6 s. I observed higher deviations when the seeder

has a low upload capacity. A low upload capacity suggests that at-

tackers and leechers download at nearly with the same speed. This

means, the download speed of FU depends on the efficiency of the

attackers and leechers.

The download time of leechers using RR ranged from 76.2–665.7 s

with a mean of 148.5 s. After 12 Mbps, RR becomes slower than LW.
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The download time of leechers using LW ranged from 53.5–671.8 s

with mean of 140.9 s. The seeding algorithm PI is the fastest. The

average download time of leechers using PI ranged from 52.5–602.2 s

with a mean of 122.2 s.

5.7 comparison with related work

Dhungel et al. in [Dhu+08a] provides the first investigation of band-

width and connection attacks on BitTorrent. The study defines band-

width attacks as situations in which peers try to allocate an upload

slot from the seeder as soon as possible to stop the seeder. Their mea-

surements show that bandwidth attacks are ineffective and that is

only possible to increase download time by up to 10 %. In [DHW11],

the authors came to the conclusion that it is not possible to stop the

seeder. However, the current study shows that bandwidth attacks can

be effectively launched against seeders. The same authors also stud-

ied connection and piece attacks against leechers in detail [DWR09].

In [Lio+06], Liogkas et al. designed and implemented three selfish-

peer exploits to obtain bandwidth without sharing pieces with other

peers. In the first exploit, the client only downloads pieces from the

seeder. Seeders can be easily identified as they advertise themselves

by sending a have_all message or a complete bitfield. The second

exploit attempts to download only from the fastest peers. This exploit

observes the frequency of have messages from the victim. This infor-

mation is exploited to roughly calculate the download rate of a peer.

The last exploit introduces fake but seemingly rare pieces to attract

high bandwidth leechers. This attack exploits a vulnerability in which

a peer can announce pieces which it does not own. They concluded

that their exploits delivered significant benefits but also that BitTor-

rent proved to be quite robust against such attacks. Extending this

work, Locher et al. in [Loc+06] developed a selfish BitTorrent client

called BitThief which never delivers content to other peers. This client

exploits optimistic unchoking, does not perform chokes or unchokes,

and never announces any pieces. The results the study show that Bit-

Thief can succeed in downloading a complete file in all situations. In
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rare cases, their client even outperformed the mainline client. In both

of these studies, the focus of the attack was the download of a com-

plete file without sharing upload bandwidth. While prior work in this

domain focusses on downloading complete files, I instead investigate

the effectiveness of attackers who are only interested in degrading

system efficiency and not interested in data integrity.

El Defrawy, Gjoka, and Markopoulou in [EGM] show that it is pos-

sible to launch a DDoS attack on BitTorrent. A DDoS attack is consid-

ered a bandwidth attacks. In this attack, the attacker makes a victim

as a trackers. Consequently, all future peers who attempt to contact

the victim flood the victim with BitTorrent packets.

Piatek et al. in [Pia+07] measured millions of BitTorrent users and

showed that the performance and availability of BitTorrent is quite

poor. These measurements motivated the authors to design and im-

plement a new one-hop reputation protocol for P2P networks. In prin-

ciple, this protocol encourages persistent contribution incentives and

rewards contributions. Every client maintains a history of interac-

tions which serve as intermediaries attesting to the behavior of others.

While this protocol limits free-riding, it is hard to compare this pro-

tocol with the seeding algorithm proposed in this thesis (Section 5.6)

because one-hop reciprocation changes standard BitTorrent protocol

behaviors. There is, however, a BEP in development to provide an in-

centive mechanism to users to remain a seeder [Sil15].

5.8 summary

I considered an important threat against seeding algorithms in BitTor-

rent and proposed a countermeasure against bandwidth attacks. This

novel seeding algorithm for BitTorrent that I call Peer Idol introduces

a new message type which contains votes for other peers. I evaluated

this algorithm experimentally in terms of performance, security, and

stability. The results support the hypotheses that PI is more robust

against bandwidth attacks and does decrease in performance in com-

parison with other algorithms. In the current study’s experiment, PI

was faster than RR and AL. I have shown that it is not a disadvantage
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if votes contain peers which a seeder does not have in its peer set.

These peers, however, are saved to a candidate list and can be used

for later contact. This reduces dependence on a central tracker and

increases the stability and robustness of BitTorrent. In summary, the

proposed choking algorithm in seed state implements an incentive

mechanism in BitTorrent consecutively through all peers. The news

site torrentfreak has written an article about this research [Van15a].





6
E X P L O I T B A N D W I D T H T O C R E AT E C O N G E S T I O N

6.1 introduction

In the previous section, I employed attacks against BitTorrent pro-

tocol in terms of protocol. In this section, I present an attack on the

BitTorrent protocol in terms of transport. As discussed, BitTorrent Inc.

has changed their transport protocol from TCP to uTP to become more

Internet Service Provider (ISP) friendly. This protocol introduces the

new congestion control algorithm LEDBAT. This algorithm assumes

that a receiver always provides correct feedback as this otherwise

deteriorates throughput. A misbehaving receiver can exploit this be-

havior to cause congestion and steal large amounts of a victim’s band-

width. In this section, I introduce three attacks which significantly in-

crease the bandwidth use of a victim and countermeasures for against

these attacks.

6.2 attack scenarios

The congestion control LEDBAT from uTP assumes a receiver provides

correct feedback, as this would otherwise deteriorate the throughput

or yield corrupted data. An attacker who is not interested in data

integrity can exploit this behavior to induce a sender to increasingly

send packets into a network. The next section examines two possible

attack scenarios.

6.2.1 Congestion Collapse

A machine which cannot handle the rate of traffic that is arriving

must discard incoming packets. This state is called congested. The state

85
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in which a network is so heavily congested that is nearly unusable is

called congestion collapse. These states make it necessary for a trans-

fer protocol which carries mainly bulk data, to have congestion con-

trol mechanisms to avoid or react effectively to such situations [FS12,

p. 727–728].

Congestion is possible if a victim with high bandwidth capabil-

ities has a machine on its network path which does not have the

same bandwidth capacity. The effects of congestion are well-known

and include packet loss, queuing delay, and the blocking of new con-

nections. Congestion control in the transport protocol often manages

such problems. If a malicious peer can trick the congestion control

then it is possible to purposefully create congestion on purpose on a

given path. A possible scenario is depicted in Figure 6.1.

Possible Attack Scenario

InternetPA Router

PV

PS

1 MBit
1
0
0
0

MBit

Figure 6.1: A possible scenario where an attacker exploits the congestion
control to create congestion on a slow path. The blue lines repre-
sent the traffic from an attacker and the red lines represent traffic
generated by a victim. Source: own representation.

Figure 6.1 shows an attacker PA and a victim Pv with a server Ps

that are both behind a router. This router is connected to a 1 Mbit

Internet connection. If the attacker PA exploits the congestion control

of PV , PV floods its own Internet connection which may create con-

gestion. Consequently, other clients may have trouble to reach PV and

PS as they both share the same Internet connection. A slow machine

is not necessary on a given network path, it may be enough if the

victim simply uses a Digitial Subscriber Line (DSL) or cable modem.

Normally, DSL and cable modems have send buffer which is dispro-

portional to their maximum send rate [Nor10]. However, even if there
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is no DSL or cable modem, or a slow machine on a given path, it is

still possible to steal bandwidth from a peer.

6.2.2 Steal Bandwidth

Because bandwidth is a limited resource, it is important to share fairly.

If an attacker can exploit congestion controls to gain bandwidth, other

peers will receive less bandwidth. If a P2P network uses bandwidth

consumption as an incentive mechanism, this becomes a serious prob-

lem, as shown in Section 5. In the next section, I discuss attacks which

can exploit the congestion control of uTP.

6.3 details and evaluation of attacks

I modified the open-source library libutp 1 for this evaluation. This

library is written by the developer of BitTorrent and it is used by the

following BitTorrent clients: uTorrent, Vuze, Mainline and Transmis-

sion. Libutp comes with a test program for receiving utp_recv and

sending files utp_send.

In the next sections, I describe three attacks against uTP together

with the results of the experiments which were run under the follow-

ing conditions. I used a client-server environment. One computer was

a sender with an unmodified version of libutp. The client represents

a malicious peer with a modified version of libtup. Both computers

were running GNU/Linux and connected via a 100 Mbps switch. Ad-

ditionally, I introduced a 25 ms delay with a 10 ms variance which

was distributed normally with NetEm [Hem05]. I chose these values

to simulate a connection between two peers with high speed Internet

access who are communicating.

1 https://github.com/bittorrent/libutp

https://github.com/bittorrent/libutp
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6.3.1 Lying about the One-way Delay

According to RFC 6817 [Sha+12], the one-way delay measurement only

works with the help of the receiver: ‘LEDBAT requires that each data

segment carries a "timestamp" from the sender, based on which the

receiver computes the one-way delay from the sender and sends this

computed value back to the sender.’ This one-way delay, which I de-

note as ∆t, is calculated by the receiver by subtracting the timestamp

tsnd from the current time of the receiver trcv. The receiver returns

∆t back to the sender, as shown in Figure 2.11.

The value ∆t is only meaningful as a relative value compared to

previous values. This is because the clocks are not synchronized at

both endpoints. The sender saves all ∆t values from the last two min-

utes in a vector ~h. Before these values are included in ~h, ∆t is nor-

malized with delay_base, the lowest value from ~h. Normalization is

completed to measure the buffering delay on the socket [Nor10]. In

LEDBAT, Equation (2.2) is used to decide whether to increase or de-

crease the send window. The send window is increased by LEDBAT

when the lowest value in vector ~h is smaller than 100 ms. Otherwise,

the send window remains constant or is decreased.

Exploiting the One-way Delay Measurement

Sender AttackerA

tsnd [data]
∆t = 1 ms

∆t [ack]

Figure 6.2: One-way delay measurement with a normal receiver and an at-
tacker. Source: own representation.

A malicious receiver can lie about the delay measurement. Fig-

ure 6.2 demonstrates how an attacker can pretend that a one-way

delay measurement is always ∆t = 1 ms. It is only important that

∆t is < 100 ms and constant because the measurements are not in-

terpreted as absolute values. This can create the following situation.

Shortly after an attack begins, the delay_base is at 1 ms as this is the
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lowest value from the last two minutes. All following ∆t values are

normalized with delay_base. Therefore, the vector ~h is filled entirely

with zeros. The delay_factor makes use of the vector ~h which

is partially responsible for the adjustment of the maximal window.

Equation (6.1) shows how the variable delay_factor is calculated.

delay_factor =
100 ms−min(~h)

100 ms
(6.1)

where: ~h = history of the last 100 ∆t values.

Because all values in ~h are zero, the delay_factor is always 1,

the highest value. A positive delay_factor always increases the

window from the sender. The sender receives ∆t and increases or

decreases its window size max_window according to the pseudo

code in Listing 6.1.

Listing 6.1: Source code of the maximal window calculation according to
BEP 29 [Nor10].

1 scaled_gain = MAX_CWND_INCREASE_PACKETS_PER_RTT * delay_factor *
window_factor;

2 max_window += scaled_gain;

The results of the attack experiment is shown in Figure 6.3 which

shows packets per second as dependent on time in seconds. All

curves show the bandwidth usage of a file transfer over time. A

file transfer with an unmodified receiver has an average value of

632.503 packets/sec. A modified receiver which lies about the one

way delay measurement has an average value of 916.507 packets/sec.

This shows that the attack just described can increase the bandwidth

by approximately 300 packets/sec. This attack is limited, because

its increase in bandwidth leads to an increase in packet loss. Every

packet loss decreases the send window of the sender. Such a limita-

tion leads to the next possible attack.
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Figure 6.3: File transfer of a 100 MiB file via uTP under the following network
conditions: 100 Mbps bandwidth, 25 ms delay, 10 ms variance,
and normal distribution. Source: own representation based on
own survey.

6.3.2 Lazy Optimistic Acknowledgment

Like TCP, uTP also uses packet loss as a sign of congestion and de-

creases its sending rate. In TCP, when a packet is lost, the sending

rate is multiplied by a factor of 0.5. Because this event is less likely

in uTP, the sending rate is multiplied by a factor of 0.78 [Nor10].

Again, the sender requires the help of a receiver to understand that

a packet is lost. Normally, the receiver sends an SACK with the bit-

mask of which packets are lost or sends a packet with a duplicated

Acknowledgment (ACK) to notify the sender.

The receiver sorts all packets by their sequence number to main-

tain the integrity of the data. However, a malicious peer can save the

packets it receives sequentially. This prevents a gap in the input buffer

which is an indicator of a packet loss. Figure 6.4 (a) shows the nor-

mal behavior of a receiver. All packets are saved in the input buffer

according to their sequence number. The packet with the sequence

number 2 is lost which creates a gap between packet 1 and 3. I de-

note this attack as lazy optimistic ACK (Opt-ACK) attack. Figure 6.4 (b)

shows a misbehaving receiver which saves all packets sequentially.
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This technique does not create a gap and destroys the order of the

file.

Packet Input Buffer of uTP
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Packet Loss
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(a) Normal

0

0

1
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3
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(b) Lazy Opt-ACK Attack

Figure 6.4: Comparison of the input buffer of a normal receiver and an at-
tacker. Source: own representation.

A SACK packet is only sent if there is something wrong with the in-

put buffer. Because the input buffer of the modified receiver is always

fine, there is no need to send a SACK packet. To inform a sender about

the successful acknowledgment of packets, I always send the sender

a SACK message with the information that I received all packets. The

sender never decreases the sending rate, as a result of misinforma-

tion from the receiver. This significantly increases the sending rate of

the sender. The experimental results from Figure 6.3 show that the

normal file transfer took about 187 seconds. With this attack, the file

transfer is complete in ∼ 60 seconds. I also increased the average value

by 3414.4 packets/sec. This corresponds to an increase of a factor of

three. The lazy Opt-ACK attack provides the foundation for the next

attack I examine.

6.3.3 Optimistic Acknowledgment

At the core of an Opt-ACK attack is the acknowledgment of in-flight

packets. When a sender receives an ACK which fits the window, it

decreases the cur_window by the size of the payload from the ac-

knowledgment packet. The lower the value of the cur_window,

the more packets a sender is able to send. To acknowledge as many

packets as possible, I initiated the bitmask of a SACK packet with
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uint_max
2 instead of 0. All bits are set to 1, meaning an attacker pre-

tends to have received all the packets, even those the sender has not

yet sent. However, until the acknowledgment arrives to the sender, the

sender sends new packets which are automatically acknowledged.

The effect is illustrated in Figure 6.3. The curve of the Opt-ACK at-

tack takes an average value of 37.6 s. This is one-fifth of the down-

load time compared with a file transfer with a normal receiver. The

Opt-ACK attack produces an average value of 5073.7 packets per

second. Consequently, the Opt-ACK attack increased bandwidth con-

sumption by up to a factor of five.

6.4 discussion of the proposed attacks

The following sections discuss the attacks which were presented.

6.4.1 Impact of Attacks

As discussed in Section 6.2, there were two scenarios for an attack, the

theft of bandwidth or the creation of congestion collapse. Which of

the described attacks can create which forms of damage? To respond

to this question, I began a file transfer of a 300 MiB file via uTP without

any delay in the current study’s 100 Mbps network. Shortly after this,

I began a constant UDP stream of 50 Mbps with iPerf 3 for 50 seconds.

I first used the unmodified receiver, then modified receiver, from the

attacks.

Figure A.1 shows packets per second as dependent on the time.

Figure A.1 (a) shows that, when the UDP stream starts, the uTP stream

immediately reduces its sending rate to prevent congestion and to

prioritize the foreground traffic. Because the delay attack only works

when there is a delay and the additional bandwidth consumption

is low, a hypothetical Figure would look similar to Figure A.1 (a).

Figure A.1 (b) shows the same experiment with a lazy Opt-ACK attack.

The sender does not recognize the packet loss and this creates a short

2 Constant which defines the maximum value for an object of type unsigned int.
3 http://sourceforge.net/projects/iperf/

http://sourceforge.net/projects/iperf/
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congestion of between 45–55 s. This corresponds to a packet loss from

the constant UDP stream of 7 %.

Figure A.1 (c) shows the results from the experiment with the an

Opt-ACK attack. Between 12–37 seconds there is no data from both

streams. This corresponds to a packet loss from the UDP stream of

42 %. The constant UDP stream can again send data packets to its

destination only when there is a connection timeout from uTP. The

experiments show that a delay attack can steal additional bandwidth

from a sender. Therefore, with a lazy Opt-ACK and Opt-ACK attack it is

possible to create congestion. Such a result necessitates an examina-

tion of the limitations of these attacks.

6.4.2 Comparison of the Attacks

Figure 6.5 shows all attacks based on bandwidth in Mbps. All values

are the average of ten iterations. The first attack increases the band-

width by up to 1 Mbps. This attack can steal additional bandwidth.

The lazy opt-ack attack yields a three fold increase in bandwidth.

Without a notification of the packet loss, the sender cannot reduce the

window size. The Opt-ACK attack is even more successful and yields

a fivefold increase in bandwidth. Both the lazy Opt-ACK and Opt-ACK

attack can create congestion.

The limit of these attacks are dependent on the send buffer of the

sender. For the test program utp_send, the limit of the send buffer is

set to 30.000 bytes, the maximum window size of bytes in flight. The

average window size of a normal file transfer is up to 17315.7 bytes.

If this value is compared with the window size from the delay attack,

the delay attack can apparently increase the average window size by

up to 1000 bytes. Both, the lazy Opt-ACK and Opt-ACK attack nearly

exhaust the limit of the test program completely. The main differ-

ence between the two attacks is that the Opt-ACK attack acknowledges

packets faster than the lazy Opt-ACK attack.
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Bandwidth Usage of all Attacks

5

10

15

20

25

5.43 6.2

15.39

23.84

A
ve

ra
ge

Ba
nd

w
id

th
U

sa
ge

in
M

bp
s

W/o Attack Delay Lazy Opt-ACK Opt-ACK

Figure 6.5: Comparison of attacks based on the bandwidth produced. All
values are the averages of 10 iterations. The error bars show
95 % confidence intervals. Source: own representation based on
own survey.

6.5 countermeasures

The attacks that have been presented in this section are often hard to

detect because they only differ slightly from behaviors of a normal

receiver. Therefore, it is important to have a countermeasure which

is efficient and robust against such attacks. In this section, I present

a countermeasure against the proposed lazy Opt-ACK and Opt-ACK at-

tack. I evaluate the countermeasure and examine its performance.

6.5.1 Randomly Skipped Packets

A sender randomly skips packets and remembers the packets that

have been skipped. A normal receiver recognizes a gap in the input

buffer and notifies the sender of the missing packet. A receiver does

so by either not acknowledging the missing packet or in the form of

a SACK packet. The sender then retransmits this packet. An attacker

who makes use of the lazy Opt-ACK or Opt-ACK attack does not have

this gap, meaning an attacker will nevertheless acknowledge the ran-

domly skipped packet. An attacker betrays itself with this acknowl-
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Figure 6.6: All values are averages of 10 iterations. The error bars show
95 % confidence intervals. Source: own representation based on
own survey.

edgment. The sender checks if an ACK which has not been sent has

been received. A countermeasure of this form is first mentioned by

Sherwood, Bhattacharjee, and Braud in [SBB05].

My implementation of this patch used a random value beginning

with 500–700 ms. These times were determined in the experiment

from Figure 6.7. If the value was smaller it resulted in a lower down-

load speed, if the value was higher it took longer to detect the attack.

After the sender recognizes an attack the sender immediately resets

the connections.

The next section demonstrates the performance of this countermea-

sure.

6.5.1.1 Security Evaluation

The essence of a countermeasure is the prevention of an attack. To

this end, I repeated the experiment from Section 6.3 with both a

lazy Opt-ACK and Opt-ACK attack to determine how long it takes a

the sender to detect an attack. In the lazy Opt-ACK attack it took ap-

proximately 5 s for a sender to detect an attack. In the case of the

Opt-ACK attack, it took around 3 s for a sender to detect an attack. The

lazy Opt-ACK took longer because the Opt-ACK attack pretends from



96 exploit bandwidth to create congestion

the start that it always receives all the packets. There is a close re-

lation between the time in which these attacks are detected and the

performance lost. Figure 6.7 illustrates the countermeasure for both

attacks.

Security Evaluation of the Countermeasure
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Figure 6.7: File Transfer of a 100 MiB File via uTP under the following net-
work conditions: 100 Mbps bandwidth, 25 ms delay, 10 ms vari-
ance and a normal Distribution. It takes approximately 3–5 s to
detect both attacks and terminate the connection. Source: own
representation based on own survey.

6.5.1.2 Performance Evaluation

To evaluate performance loss from the countermeasure wherein the

sender randomly skips packet, I setup the following experiment. I

wrote a Perl script which automatized the file transfer of a 100 MiB

file over uTP. The script increases delay for every iteration by one with

a variance of 10 ms and a normal distribution. Every delay value was

tested 10 times and the average value was taken. I repeated the exper-

iment for a sender without and a sender with the countermeasures.

Figure 6.8 shows that the difference between a typical sender and

patched sender is minimal. To further this, I took the difference

of all values and calculated the average value. The average perfor-

mance loss from the randomly skipped packets countermeasure is

0.448 Mbps. This suggests that the longer the delay is, the smaller the

difference between the performance of a normal sender and a patched
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Performance Evaluation of the Countermeasure
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Figure 6.8: File Transfer of a 100 MiB File via uTP under the following net-
work conditions: 100 Mbps bandwidth, 25 ms delay, 10 ms vari-
ance and a normal distribution. Source: own representation
based on own survey.

sender. The biggest difference is 2.002 Mbps with a 1 ms delay and

the smallest difference is 0.015 Mbps with a 24 ms delay.

6.5.2 Delay Attack

A countermeasure against the delay attack is more difficult. An at-

tacker can always lie about the one-way delay measurement to induce

a sender to send more packets into a network. Congestion control

with a one-way delay only works with the help of the receiver and

there is no guarantee that a receiver will tell the truth. A potential

countermeasure is to make the window calculation less dependent

on the one-way delay and include the RTT into the calculation from

Listing 6.1. This requires that the countermeasure from Section 6.5.1

is included because the Opt-ACK attack also reduces the RTT. There-

fore, a good countermeasure against the delay attack necessitates a

complete redesign of LEDBAT congestion control. For this reason, I do

not propose a countermeasure against this attack at this point and

instead turn to existing research.
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6.6 comparison with related work

In this section, I discuss work related current discussion which pro-

vides its foundation. I divide the related work into subsections which

examine the exploitation of congestion avoidance algorithms and per-

formance evaluations of LEDBAT.

6.6.1 Exploitation Congestion Avoidance Control

Savage et al. in [Sav+99] use a misbehaving TCP receiver to create bet-

ter end-to-end performance. They named one of their techniques Op-

timistic ACKing. This technique works in the following manner. The

receiver sends ACKs which the sender has not yet been sent. This in-

creases the RTT of the sender and in turn increases the send rate. Sav-

age et al. show that these techniques can increase end-to-end perfor-

mance. They note that these techniques can also be used to generate

a SDoS attack.

Sherwood, Bhattacharjee, and Braud in [SBB05] were the first to in-

vestigate these techniques from a SDoS perspective. They showed that

Opt-ACK attack can cause widespread damage and destabilize a net-

work. The main difference between this Opt-ACK attack against TCP

and an Opt-ACK attack against uTP is that uTP does not use RTT to ad-

just the send rate. However, every valid ACK increases the window

size of the sender. As a result of this increase, the sender can send

new data which increases the bandwidth. They also engineered a de-

fense strategy which does not require modification in the TCP/IP stan-

dard. Unfortunately, this patch has not found its way into the Linux

kernel [Hem07]. In contrast, my work provides a performance eval-

uation of this defense strategy to understand the real performance

loss.
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6.6.2 LEDBAT Performance

Rossi et al. in [Ros+10; RTV10] were the first to evaluate LEDBAT sci-

entifically. They tested LEDBAT in the terms of fairness against com-

peting TCP flows and protocol efficiency in particular. They showed

through experimental evidence that LEDBAT reaches some of its de-

sign goals such as protocol efficiency, but they also found some issues

regarding the fairness of resources.

Abu and Gordon show the impact of delay variability on LEDBAT

performance caused by router changes in [AG11]. They came to the

conclusion that delay variability can give rise to negative impacts on

the throughput.

6.7 summary

This section proposed the following three attacks for the uTP, a delay

attack, a lazy Opt-ACK attack, and an Opt-ACK attack. I provided a de-

tailed evaluation of severity of these attacks in terms of bandwidth

consumption and the number of packets and showed the delay attack

can steal additional bandwidth and the lazy Opt-ACK and Opt-ACK

attack can cause serious congestion. Additionally, I implemented a

countermeasure that drops packets randomly to identify misbehav-

ing receivers.
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R E D I R E C T B A N D W I D T H F R O M P E E R S T O

A R B I T R A RY V I C T I M S

7.1 introduction

The objective of a DoS attack in general is to make a service unavail-

able for legitimate users. Most of these attacks are executed against

network connectivity by sending a large amount of network traffic

to a given service. These attacks pose a large threat to the Internet.

According to a recent global DDoS attack report [Pre14], an average

of 28 DDoS attacks occur every hour. The world is facing the next

evolution of DDoS attacks.

The company CloudFlare [Pri12] registered a new bandwidth record

in 2013 from a DDoS attack. This attack reached 300 Gbps. On aver-

age, a DDoS attack can reach around 50 Gbps [13]. A year later, the

company reported a new record. This time the impact was around

400 Gbps [Pri14]. In both cases, a new type of DDoS called Distributed

Reflective Denial-of-Service (DRDoS) was used.

In the following sections, I first provide background information on

this new attack type. I then investigate how the BitTorrent protocol

family can be exploited to run such an attack. I then evaluate the

impact of this attack and demonstrate countermeasure for BitTorrent

against these attacks. Finally, I summarize the contributions of this

section.

7.2 background

This section provides a brief overview of DRDoS attacks. Moreover,

I highlight vulnerabilities in the BitTorrent protocol that can be ex-

ploited.

101
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7.2.1 Distributed Reflective Denial-of-Service Attacks

The attacker in a DRDoS attack does not send the traffic directly to

the victim. Instead the attacker sends small queries to reflectors with

a spoofed source IP address of the victim. The reflectors respond to

these queries and send these responses to the victim. It is necessary

for the exploited protocol to be vulnerable to IP spoofing. If the size

of the request packets is smaller than the response packet, this attack

amplifies the traffic that goes to the victim. Figure 7.1 provides a model

of a hypothetical DRDoS attack.

Schematic Diagram of the Threat Model of a DRDoS Attack
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Figure 7.1: Schematic diagram of the threat model of a DRDoS attack. Source:
own representation based on [Ros14, p. 2].

The attacker PA in Figure 7.1 sends forged request packets to the

amplifier PA. This packet is forged, as it does not contain the real

source address from the attacker, rather it contains the source address

of the victim Pv. An attacker can build its own request packets in user

space by making use of raw sockets1. The amplifier that receives the

forged packets responds with BV to the victim PV . This attack has

several advantages:

• the attacker hides its identity;

• the attack can be initiated by a single attacker but results in a

distributed attack;

1 A raw socket is a socket that allows direct sending and receiving of IP packets that
the kernel does not support.



7.3 methodology 103

• if BV is larger than BA, then this attack increases in impact.

To quantify the impact of such an attack, the ratio of BV and BA

is necessary and is known as the Bandwidth Amplification Factor

(BAF) [Ros14, p. 4]:

BAF =
|Bv|

|Ba|
, (7.1)

where: |Bv| = size of the amplified payload to the victim,

|Ba| = size of the payload from the attacker.

Both size values do not include Ethernet, IP, or UDP header. This guar-

antees that BAF values remain valid even if an upper protocol header

changes, like in the migration from IPv4 to IPv6. To better understand

the impact of a BAF value, consider the following example. A BAF

value of 5 means that an attacker with 1 Gbps upload capacity can

generate a DRDoS attack that produces 5 Gbps of traffic. Similar to

BAF, the Packet Amplification Factor (PAF) is the ratio between the

number of packets that are sent from the amplifiers to the victim and

the number of packets sent from the attacker to the amplifiers.

7.3 methodology

In this section, I provide a brief overview of the details of the current

study’s analysis of the BitTorrent protocol family.

7.3.1 Testbed System

I used the testbed system described in Section 5.4.1 for experimenta-

tion as well as smaller testbed system with 3 machines. One machine

held the attacker script, one contained the BitTorrent client, and the

last machine was a Raspberry PI2 with an open UDP port to analyze

network traffic with Wireshark.

2 Is a single-board computer in a size of credit-card.
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7.3.2 uTP Wireshark Dissector Plugin

Wireshark3 is an open-source network analyses tool used to capture

network traffic and inspect packets. It is, however, not capable of in-

specting uTP packets because uTP is a relatively new protocol. Despite

this, Wireshark provides a plugin interface for the programming lan-

guage Lua4. With this interface it is possible to extend Wireshark and

add new protocols. To understand and experiment with uTP it was

necessary to write a dissector plugin myself.

7.3.3 Analyse Script

To test different BitTorrent clients, I implemented the uTP protocol in

a Perl module.

Listing 7.1: Example of the generation of an uTP packet with Perl.

1 my $rawip = Net::RawIP->new({
2 ip => {
3 saddr => $SRC,
4 daddr => $dst,
5 },
6 udp => {
7 source => $SRC_PORT,
8 dest => $dst_port,
9 data => gen_utp_packet({

10 type => ’st_data’,
11 vers => 1,
12 extension => 0,
13 conn_id => $conn_id_send,
14 seq_nr => ++$seq_nr,
15 ack_nr => 0,
16 wnd_size => $wnd_size,
17 payload => diffie_hellmann(),
18 }),
19 },
20 });
21

22 send_packet($rawip1);

3 https://www.wireshark.org/
4 http://www.lua.org/

https://www.wireshark.org/
http://www.lua.org/


7.4 details of the attack 105

7.4 details of the attack

In this section, I reveal amplification vulnerabilities introduced by

the BitTorrent protocol family, including BitTorrent, BitTorrent Sync

(BTSync) and uTP.

7.4.1 Two-way Handshake in uTP

As described in Section 2.3.3, uTP establishes a connection with a two-

way handshake. This allows an attacker to establish a connection with

an amplifier using a spoofed IP address. This is possible because the

receiver does not verify whether the sender has received the last ac-

knowledgment. To test this attack, I used ucat attached to libutp.

This program is similar to the infamous netcat program, except

that it uses uTP as its transport protocol.

I setup a receiver (amplifier) that provides an arbitrary file when

a connection comes is made and a victim with a tcpdump5 instance.

To simulate an attacker, I wrote a Perl script that uses raw sockets.

The script sends a forged st_syn packet to the amplifier. The am-

plifier believes this packet to have come from the victim and sends

a response (st_data) packet to the spoofed address. Because the

forged address does not expect the packet, it does not return an ac-

knowledgment. The receiver runs into timeout and retransmits the

lost st_data packet. If four consecutive transmissions have timed

out, uTP kills the connection. In this experiment, the receiver sent

five packets with a payload size of 1402 bytes, resulting in 7030 sent

bytes. According to Equation (7.1), this results in a BAF of 351.5, be-

cause the initiator sends only a single st_syn packet with a size of

20 bytes.

This gives rise to the following question. Why does the uTP receiver

sends only single packet and not more? Micro Transport Protocol

does not send more packets, because it implements a slow-start mech-

anism. The max_window variable in libutp begins with 1382 bytes

and increases for every acknowledgment it receives. If the sender

5 A program to capture network traffic exclusively designed for the command line.
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does not receive an acknowledgment, it remains to the previous value.

To the best of my knowledge, BitTorrent is the only protocol that

makes use of uTP. The TOR project, however, evaluated a replace-

ment [LMJ13] but came to the conclusion that is far from trivial to

replace TCP with uTP. In the next section, I describe how BitTorrent in

connection with uTP can be exploited to run a DRDoS attack.

7.4.2 Exploiting BitTorrent Handshake via uTP

After a connection is established, BitTorrent requires a handshake as

its first message. This handshake contains the following fields.

pstrlen (1 byte): Length of the string identifier.

pstr (19 bytes): String identifier which is defined in version 1.0 as

BitTorrent protocol.

reserved (8 bytes): These bytes are reserved to signal the support

of different extensions to peers. Each bit can change the behav-

ior of the protocol.

infohash (20 bytes): Secure Hash Algorithm 1 hash that identi-

fies the torrent file.

peer id (20 bytes): Unique ID that identifies a peer.

If a peer receives a handshake with an infohash with which it does

not participate, the peer drops the connection. This means an attacker

has to know a valid infohash to exploit the BitTorrent handshake for

a DRDoS attack. However, this is a small obstacle, because there are a

variety of ways to find peers with valid infohashes, including track-

ers, DHT, PEX, etc. An attacker can use the BitTorrent handshake to

initiate an amplification attack based on the uTP two-way handshake.

Figure 7.2 outlines such an attack scenario.

The attacker in Figure 7.2 sends a spoofed st_syn packet to the

amplifier in a). The amplifier responds to this request with an ac-

knowledgment st_state in b), but to the victim. A connection is es-

tablished because of the two-way handshake of uTP. The attacker then
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DRDoS Attack Scenario with BitTorrent

Attacker Amplifier Victim
st_syna)

st_data (bt handshake)
c) st_state

b)
st_data (bt handshake)

d)st_data (bt handshake)st_data (bt handshake)

Figure 7.2: In uTP the initiator sends a st_syn packet to the receiver. The
receiver acknowledges this with a st_state packet. The connec-
tion is established (two-way handshake). Source: own represen-
tation

sends a BitTorrent handshake message in the first st_data packet

in c). Again, the packet contains the source address of the victim.

As discussed, the handshake then requires the infohash of an ac-

tive torrent from the amplifier. The minimum size of a BitTorrent

handshake message is 88 bytes. If the amplifier participates in the

torrent, it will respond in d) with its own handshake message. Be-

cause the handshake in d) is un-acknowledged, the amplifier believes

the packet is lost and retransmits the handshake 3–4 times until the

connection is terminated.

The handshake in d) is bigger than the packets from attacker a)

and c) together because of retransmission and packet stuffing. Most

BitTorrent clients try to put as many BitTorrent messages in one data

packet to save additional packets and to be more efficient. In the cur-

rent study’s test, nearly all clients either sent a bitfield or multiple

HAVE messages within the first uTP data packet. Equation (7.2) can be

used to measure the impact of an attack that exploits the BitTorrent

handshake, abbreviated as BTH.

BAFBTH(p,n) =
20+ 20+ p× (n+ 1)

20+ 88
, (7.2)

where: p = payload size in bytes,

n = number of retransmissions.

All numbers in Equation (7.2) are in bytes. The 40 bytes in the nu-
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merator are acknowledgements of two sent packets. The number of

retransmissions n is increased by one, because the first regular packet

does not belong to the retransmissions. The 20 bytes in the denomi-

nator belongs to the st_syn packet and the 88 bytes belongs to the

st_data packet that contains the BitTorrent handshake.

In the following subsections, I investigate the impact of a possible

attack and outline differences between the most commonly used Bit-

Torrent clients listed in Table 5.2.

7.4.2.1 Mainline and uTorrent clients

Because mainline BitTorrent6 version 6.0 is simply uTorrent7 with

a rebranded GUI, I handled both clients together. I tested uTor-

rent 3.4.2 (built 35702) and mainline BitTorrent 7.9.2 (built 35144).

Both clients support packet stuffing and place additional BitTorrent

messages in the first uTP data packet. In this test, both clients sent

one bitfield, multiple have messages, and one port message. The

number of have messages that a client sends depends on the state

of the client and the number of pieces the client has downloaded. If a

peer is in leech state, it sends the number of pieces that it has already

has downloaded, but no more than 24. In seed state, the client always

sends 24 have messages, resulting in a BAF of 27.5.

As seen in Section 7.4.2, the BitTorrent handshake includes re-

served bytes to indicate different protocol extensions. One disadvan-

tage of this approach is that every time a new extension is developed,

the BitTorrent protocol needs to be changed. To solve this, BitTorrent

provides LTEP to add new extensions without interfering with the de-

fault protocol. If an attacker signals that it supports LTEP, specified

in BEP 10 [NSH08], it can further amplify an attack without increas-

ing the size of the handshake. To signal that a peer supports LTEP, a

simple bit is set in the extension byte. I observed that in both clients

the LTEP handshake is larger than in other clients. This is because

uTorrent and Mainline support extensions that are not public, such

as ut_holepunch and ut_comment. This additional message in

6 http://www.bittorrent.com/downloads/
7 https://www.utorrent.com/

http://www.bittorrent.com/downloads/
https://www.utorrent.com/
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the BitTorrent handshake increases the BAF by up to 39.6. Vuze8 is the

most commonly-used BitTorrent client besides uTorrent and Main-

line.

7.4.2.2 Vuze

I tested Vuze 5.4.0.0/4 on Windows 7. Without signaling any exten-

sions, Vuze responds with a BitTorrent handshake and a bitfield

message, that indicates which pieces a peer has downloaded. Vuze

retransmits a lost uTP packet four times. This results in a BAF of 13.9.

Vuze also supports LTEP, has also designed its own extension protocol

called Azureus Message Protocol (AMP) [10a].

If an amplifier runs Vuze with LTEP enabled and an attacker sig-

nals that it supports LTEP, the amplifier puts the extension handshake

in the first uTP data packet. Compared with uTorrent and Mainline,

the handshake is smaller because Vuze does not support the private

extensions, which I discussed in Section 7.4.2.1. The BAF increases

through LTEP up to 18.7 times.

Vuze uses AMP to transmit a variety of information including nor-

mal BitTorrent messages, messages from the chat plugin, or PEX

messages. A Vuze client can indicate that it supports AMP by set-

ting the MSB in the first byte from the reserved field in the hand-

shake message. If the attacker sets this bit and a Vuze amplifier sup-

ports AMP, then the amplifier adds the following messages to the

first uTP packet: az_handshake, az_have, az_peer_exchange,

az_request_hit, and az_stat_req. This increases the handshake

by up to 1165 bytes, in turn increasing the BAFBTH by up to 54.3.

This value may be even higher if the amplifier shares a large file, be-

cause the bitfield message depends on the size of the shared file.

In our current study’s analysis, I used the Ubuntu 14.10 image which

is 1.2 GiBs.

8 https://www.vuze.com/

https://www.vuze.com/
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7.4.2.3 Transmission and LibTorrent

I tested Transmission9
2.84 on Ubuntu 14.04.1. Transmission supports

both LTEP and AMP but not packet stuffing. This means, that Transmis-

sion only sends the handshake message, no matter which extensions

are activated. Transmission sends an 88 byte uTP packet to a victim

and retransmits a lost packet three times. According to this, an at-

tacker can only achieve a BAF value of 4.0 if the amplifier uses the

Transmission client.

Libtorrent10 is a library written in C++ which is used by over 25

different BitTorrent clients. I tested libtorrent 1.0.2 on Ubuntu 12.04.

Like Transmission, libtorrent does not support packet stuffing and

only sends a handshake message in the first uTP data packet. How-

ever, libtorrent is different from Transmission in terms of the number

of retransmissions. Libtorrent resends a lost packet six times, which

increases the BAF up to 5.2.

7.4.3 Exploiting Message Stream Encryption Handshake

An increasing number of ISPs violate the end-to-end principle of the

Internet and discriminate against network applications [Dis+11]. Dis-

criminating means that the ISP limits the traffic of a network appli-

cation or blocks it completely. Especially bandwidth-hungry P2P ap-

plications are shaped, because this traffic creates transit costs11 for an

ISP.

To avoid traffic shaping, the BitTorrent community developed Mes-

sage Stream Encryption (MSE) [14]. The main objective of MSE is to pro-

vide payload obfuscation rather than securely encrypt traffic. Brum-

ley and Valkonen showed in [BV08] that MSE has a number of signif-

icant weaknesses. It is implemented by most of the BitTorrent clients

including uTorrent, BitTorrent mainline, Vuze, Transmission, libtor-

9 http://www.transmissionbt.com/
10 http://www.libtorrent.org/
11 Costs that incurred when network traffic needs to be routed through another net-

work from an ISP.

http://www.transmissionbt.com/
http://www.libtorrent.org/
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rent, and BitComet. Figure 7.3 shows a network flow diagram of the

Diffie-Hellman handshake of MSE.

Diffie-Hellman Handshake of two BitTorrent Peers

Initiator Receiver
PA = ga (mod p)

RA = 0 6 RA 6 512
PA ,RA

PB = ga (mod p)

RB = 0 6 RB 6 512PB,RB

Figure 7.3: Diffie-Hellman handshake of two BitTorrent peers that make use
of Message Stream Encryption to avoid traffic shaping. Source:
own representation.

The protocol in Figure 7.3 begins with Diffie-Hellman key exchange

handshake wherein each peer generates a 768 bit public key, PI and

PR. To avoid a fixed packet size in each packet, each peer generates

random data rI and rR with a random length of 0–512 bytes and

attaches it to the public key. After the key exchange, the packets are

encrypted with RC4. The transport protocol of MSE can either be TCP

or uTP. One advantage of this method is that an attacker does not

have to know a valid infohash from the amplifier. An attacker can

send a spoofed MSE handshake to an amplifier that includes a valid

768 bit public key without random data. Hence, BAF for a client with

MSE is:

BAFMSE(r,n) =
(116+ r)× (n+ 1)

116
, (7.3)

where: r = length of the random data (0 bytes 6 r 6 512 bytes),

n = number of retransmissions where n = {4, 5, 6}.

According to Equation (7.3), BAFMSE ranges from 4, where the am-

plifier has chosen rR = 0 bytes, to 32.5, where rR = 512 bytes. The

payload of the MSE handshake has a high entropy and is therefore

hard to detect with an SPI or DPI firewall. However, statistical mea-

surements show good results in detecting MSE [Köh+10; HJ09] but

are not widely used. The use of MSE helps to make an attack diffi-
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cult to detect and circumvent. To avoid a central tracker, BitTorrent

uses a modified DHT protocol based on Kademlia, described in Sec-

tion 2.2.2.1.

7.4.4 Exploiting Distributed Hash Table Messages

The DHT implementation in BitTorrent is divided into two protocols,

MLDHT [Loe08] and VDHT [12]. The largest overlay network with users

of around 15–27 million [WK13] users per day is MLDHT. Both proto-

cols are not compatible with each other. The BitTorrent protocol uses

DHT to find peers that share the same torrent without using a tracker.

The following sections examine these two protocols.

7.4.4.1 Mainline Distributed Hash Table

The MLDHT protocol supports the following queries: find_node,

ping, get_peers and announce_peer. All queries and replies

are bencoded12. The ping query attempts to discover if another peer

is available. The ping query consists of the peer ID (20 bytes) from

the queried peer. Together with the RPC protocol, a ping query has a

size of 56 bytes. The response of a ping query has a size of 47 bytes.

As such, the ping query does not amplify the bandwidth.

The find_node query requests the k closest nodes for a specific

target. This query is used to find closer nodes to fill buckets without

many nodes. The request contains the node ID of both the requesting

peer and the target. Together with the Remote Procedure Call (RPC)

overhead, the payload of a request packet has a size of 95 bytes. The

response contains k of the closest nodes. Because BEP 05 [Loe08] sets

k = 8, the response varies from 284–332 bytes depending on the

implementation. In the study’s tests, I found two peers13 which set

k = 16. These peers are the bootstrapping peers for most BitTorrent

clients. This result in a BAF of 5.2.

12 Is a binary format from BitTorrent to encode structured data (similar to JSON or
YAML).

13 router .utorrent.com and router .bittorrent.com
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The get_peers request is more interesting for an amplification

attack as it returns a list of peers for a given infohash. If a peer does

not have peers for a specific infohash, it will employ find_node

and return the k closest peers. Therefore, only peers that participate

in a swarm are able to send a list of peers in return. According to

BEP 05 [Loe08], there is no limitation on the number of peers. In the

current study’s tests, I found a peer which sends a list of 100 peers in

return, resulting in a potential BAF of 11.9. The get_peers request

has a want option which the requester can set to n4 to request only

IPv4 addresses or to n6 to request only IPv6 addresses. If an attacker

requests only IPv6 address, the BAF would increase by up to 24.5. With

an additional extension, it is possible to further increase this value.

The authors from BEP 33 [10b] describe an extension to MLDHT

called DHT scrapes. Scrapes are statistics of a swarm such as the num-

ber of seeders, leechers, and complete downloads. These statistics are

important for decisions to join a swarm without participating in it.

These statistics are based on bloom filters14. To request scrapes, a peer

has to send a get_peer request that contains the dictionary entry

scrape. If the responding peer has database entries for a particular

infohash, it returns the statistics in the get_peers response. An at-

tacker that exploits this extension can increase the BAF by up to 13.4

times.

7.4.4.2 Vuze Distributed Hash Table

The BAF value of Vuze ping query without any flag is similar to the

ping from MLDHT. Vuze, however, supports the Internet coordinate

system Vivaldi [SB09; Dab+04] which aims to estimate the RTT of other

peers without the requirement to send packets to this peer. If the

protocol version is > 10, then the amplifier adds Vivaldi network

coordinates to the ping reply packet. This increases the BAF by up to

14.8.

14 Bloom filter is a probabilistic data structure to test if an element is part of a set.
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7.4.5 Exploiting BitTorrent Sync

BitTorrent Sync15 is a proprietary P2P protocol from BitTorrent Inc.

to synchronize files between different machines. According to a blog

post from 2013 [Hon13], BTSync has 1 million users and has synchro-

nized over 30 petabytes of data. This makes it an interesting target for

an amplification attack. BTSync uses uTP as its main transport protocol.

I investigated three BTSync messages which can be exploited: tracker

request, BTSync handshake, and a ping message. For all messages, an

attacker needs a valid BTSync secret. There are, however, a number of

websites16 where users publish secrets to share their content. An at-

tacker can use these secrets to run an amplification attack.

When a user wants to synchronize a file or directory with BTSync,

it generates a unique ID called a BTSync secret. It then contacts a

tracker to request peers for this secret. The tracker is run by BitTor-

rent Inc. and uses the domain t.usyncapp.com which is hosted by the

Amazon EC2 cloud. The tracker request begins with a uTP st_syn

packet followed by an st_data packet that contains a bencoded pay-

load which includes peer ID, secret, local address and local port. The

tracker responds with a list of peers that also share this secret. The

response is larger than the request, however, it highly depends on the

number of peers the tracker returns.

The BTSync handshake resembles the BitTorrent handshake. The

first data packet contains the secret and a 16 byte nonce value which

may be random. The peer responds with a 160 byte public key and a

16 byte salt value. This creates to a BAF of 10.8.

The BTSync ping starts with the string bsync followed by a zero

byte and a bencoded dictionary. The dictionary contains the com-

mand ping, 20 byte long secret, and 20 byte long peer ID. The UDP

payload of this packet is altogether with the overhead of the dictio-

nary 76 bytes. The other side also responds with a ping message, but

not just one. It sends 117 ping messages and 12 uTP st_syn pack-

15 https://www.getsync.com/
16 http://www.reddit.com/r/btsecrets/ and http://btsynckeys.com/

https://www.getsync.com/
http://www.reddit.com/r/btsecrets/
http://btsynckeys.com/
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ets to the requester. A screenshot of this is shown in Figure 7.4. This

occurs with BTSync versions 1.4 and 2.0.105 on all platforms.

Response from a BitTorrent Sync Node to single Request

Filter: Expression... Clear Apply Save

1 0.000000000 192.168.1.160 192.168.1.6 UDP 118 Source port: 38234  Destination port: 12727
2 0.015658000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
3 0.041765000 192.168.1.6 192.168.1.160 UDP 62 Source port: 12727  Destination port: 38234
4 0.541982000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
5 1.418816000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
6 2.429720000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
7 3.448350000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
8 3.853770000 192.168.1.6 192.168.1.160 UDP 62 Source port: 12727  Destination port: 38234
9 4.544117000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234

10 5.588522000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
11 6.604589000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
12 7.624651000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
13 8.662411000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
14 9.676750000 192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
15 10.178487000192.168.1.6 192.168.1.160 UDP 62 Source port: 12727  Destination port: 38234
16 10.712897000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
17 11.280684000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
18 12.280747000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
19 13.300493000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
20 14.333336000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
21 15.333355000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
22 16.346730000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
23 17.357738000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
24 18.373692000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
25 19.404240000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
26 20.404574000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
27 21.425848000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
28 22.513962000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
29 23.531307000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
30 24.496540000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
31 25.584388000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
32 26.596788000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
33 27.609688000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
34 28.622637000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
35 29.540325000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234
36 30.718062000192.168.1.6 192.168.1.160 UDP 118 Source port: 12727  Destination port: 38234

No. Time Source Destination Protocol Length Info

 File: "/home/cit/Forschung/Proj…  Packets: 132 · Displayed: 132 (100.0%)  · Load time: 0:00.001 …

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

Figure 7.4: Screenshot of the network analyses tool Wireshark that displays
the responses from a BitTorrent Sync node to a single ping re-
quest. Source: own representation.

7.4.6 Discussion

To summarize this discussion, I provide a list of all BAF and PAF val-

ues in Table A.1. The protocol analysis shows that BitTorrent is highly

vulnerable to DRDoS attacks. An attacker is able to amplify BitTorrent

traffic by 4–54.3 times. If an attacker knows the peer ID from the am-

plifier, the attacker is able to predict the BitTorrent client and begin a

target-oriented attack. This is possible through the peer ID convention

which is defined in BEP 20 [Har08b]. Even if a client does not support

uTP, an attacker can still exploit DHT or MSE with a lower BAF value.

This means that nearly every client can be exploited, making such

an attack efficient and robust against peer churn, independent arrival
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and departure of peers. The next section examines the experimental

evaluation of these exploits.

7.5 experimental evaluation

In this section, I show that the attacks which I have presented here

are efficient, robust, and difficult to circumvent.

7.5.1 Efficiency

To test the efficiency of these attacks, I performed an experiments in

the testbed system described in Section 4.1 with one attacker, one vic-

tim, and 31 amplifiers. All amplifiers were uTorrent server version 3.3

with a private torrent of 1 GiB in seed mode.

The attacker in the first experiment runs a scapy17 script which

sends forged uTP packets to the amplifier. The script first sends 31 uTP

st_syn packets to the amplifier, waits 1 second and then sends 31 uTP

data packets which contains the BitTorrent handshake. The script

then waits for 120 seconds and repeats this process. It is important

to wait attacks, because the amplifiers would otherwise terminate the

connection with a st_fin packet. I determined the 120 seconds wait-

ing time experimentally. The attacker script does not need to save the

state of each peer, making it quite efficient. An I/O graph is shown

in Figure 7.5.

Figure 7.5 shows that after the attacker has sent the forged packet,

the amplifier sends traffic to the victim. The first peak of the attack

is the highest, because both the acknowledgments for the st_syn

packets and the handshake arrive the victim. The following peaks

are the retransmissions of the handshake and the acknowledgments.

During this experiment, I noticed that uTorrent for Linux behaves

differently than in a Windows client. In Linux, the BAF was lower

than with a Windows client. The amplification factor of this attack

was 14.6.

17 http://www.secdev.org/projects/scapy/

http://www.secdev.org/projects/scapy/
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Results of an Amplification Attack in the Local Testbed System
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Figure 7.5: Amplification attack with one attacker, 31 amplifiers and one vic-
tim. The blue line shows the payload size that the attacker sends
to the amplifier. The red line shows the payload size that the am-
plifier sends to the victim. Source: own representation based on
own survey.

7.5.2 Robustness

To evaluate the amplifier churn and robustness of the detected vul-

nerabilities in a real-world attack, I wrote a BitTorrent crawler which

consists of two modules. The first module used the MLDHT network to

find new peers and the second module established a connection via

uTP to the find peers and exchange the BitTorrent handshake message.

Overall, I found 9.6 million possible amplifiers when 2.1 million peers

responded to the MLDHT requests. The next subsection describes the

architecture of the BitTorrent crawler and presents the results from

the use of this crawler.

7.5.2.1 Architecture of a BitTorrent Crawler

I programmed the BitTorrent crawler in the programming language

Elixir18, which is a functional, fault-tolerant and concurrent language

18 http://elixir-lang.org/

http://elixir-lang.org/
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built on top of the Erlang Virtual Machine (EVM). Figure 7.6 shows

the architecture of this crawler.

Architecture of the BitTorrent Crawler

SuperVisor

SuperVisor SuperVisorDB Worker

DHT
Harvester

Peer
RequesterDB

Internet

1:1

1
:1 1

:1

1
:1

1
:n

1
:n

Figure 7.6: Architecture and supervision tree of the BitTorrent Crawler. Ev-
ery rectangle is a process. DB denotes the database. Source: own
representation.

The green rectangles in Figure 7.6 are supervisors. Supervisors are

processes that observe other processes. If an observed process crashes

unexpectedly, the supervisor automatically restarts the process. The

blue rectangles are workers. These perform the actual work. The

DB (database) worker is a process which is connected to the study’s

PostgreSQL database. The supervisors of the DHT harvester and the

peer requester start n process each. I set n = 5 to completely fill the

async-threads of EVM.

Before I began the crawler, I filled a database table ‘torrents’ with

the complete magnet database from Piratebay from 13
th February

2012. This database comprised 1.6 million unique infohashes. Each

MLDHT harvester process selects an un-requested infohash and sends

a get_peers request with the infohash to a bootstrapping node. This

node returns a list of nodes that are closer to the infohash which

the harvester saves in the database. The requester then selects an un-

requested node and sends it a get_peers request. Additionally, the

harvester process saves meta information from the responses, includ-

ing payload size, version of the BitTorrent client, and the number
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of nodes. The harvester takes another infohash if it has requested

1000 peers.

The peer requester selects peer information from the MLDHT har-

vester and sends a st_syn packet to a peer. If this peer responds

within 10 seconds with a st_state packet, the crawler sends a Bit-

Torrent handshake with all extensions enabled to that peer. This pro-

cess then waits for a reply and saves all responses to the database.

7.5.2.2 Mainline Distributed Hash Table network

The BitTorrent crawler collected over 9.6 million peers via MLDHT

beginning from January 1
st, 2015 and continuing until February 1

st,

2015. Of these peers, 2.1 million responded to the get_peers re-

quest. This corresponds 21.9 % of peers. Of these responsive peers,

67.8 thousand peers included participating peers, or 3.2 %. The rest

returned only k neighbors. Figure 7.7 shows a histogram of payload

sizes from MLDHT responses.

Histogram of the Payload Size from the MLDHT Responses
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Figure 7.7: Histogram of the payload size from the Distributed Hash Table
responses which are caused by get_peers requests. The num-
bers above the bars are the average Bandwidth Amplification
Factor values. Source: own representation based on own survey.

The mean of all received values is 665.6 bytes which results in a BAF

of 7. The biggest response had a size of 3344 bytes providing a BAF

of 35.2 and the smallest responds had a size of 82 bytes providing a
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BAF of 0.9. With such observations, the conclusion can be made, that

MLDHT can be exploited but most responses do not produce a high

BAF value. Therefore, I used the peer information gathered from the

MLDHT network to request a BitTorrent handshake to test the efficacy.

7.5.2.3 Micro Transport Protocol Distribution

In this section, I analyze responses from BitTorrent handshake mes-

sages. The BitTorrent crawler sent a st_syn packet to every partici-

pating peer in the database. If a peer responded within 10 seconds,

the crawler sent a BitTorrent handshake to this peer. I collected 10,417

handshakes via uTP. I first address the question of the distribution of

the payload size of the first data packet because this is crucial for

the impact of the amplification attack. Figure 7.8 shows the distribu-

tion of the payload size from all BitTorrent handshakes which were

received.

Histogram of the BitTorrent Handshake Size from uTP Responses
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Figure 7.8: Numbers above the peaks are Bandwidth Amplification Factor
(BAF) values; the numbers in brackets are the relative frequency.
It can be observed that three packet sizes stand out: 665 bytes,
1000 bytes, and 1438 bytes. These three packet sizes would be
the most often response in an amplification attack. Source: own
representation based on own survey.

The histogram in Figure 7.8 shows three peaks in the distribution.

The first peak comprises 15.7 % of all handshakes and would result in

a 665 bytes and a 5 times retransmission with a BAF of 31.2. The next
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peak is around 1000 bytes with a frequency of 2.2 %. This results in a

BAF of 46.7. The third peak has the highest payload size of 1438 bytes

and comprises 3.9 % of all handshakes. Retransmitted five times, this

would result in a BAF of 66.9.

The mean of all received packets is 810.8 bytes. The maximum

value is 1438 bytes and the min value is 313 bytes. All BAF values are

calculated with retransmission of 4 packets (total of 5 packets), be-

cause this is the default for uTP. I also analyzed all LTEP message that

were in the first uTP data packet. A LTEP message contains a dictionary

entry with the client version. Table 7.1 evaluates these messages.

version count percentage

uTorrent 3.4.2 8616 82.7

BitTorrent 7.9.2 1641 15.8

uTorrent 3.4.1 107 1.0

uTorrent 3.4 27 0.3

BitTorrent 7.9.1 14 0.1

Unknown 9 0.1

BitTorrent 7.9 2 0.0

Table 7.1: Client software and version number of the inspected Libtorrent
Extension Protocol messages. Source: own representation based
on own survey.

It can be seen that the latest uTorrent and BitTorrent version where

on top of the list in Table 7.1. Only 0.1 % of the BitTorrent clients

were unknown, because they were not transmitting an LTEP message.

Because I crawled only the MLDHT network, Vuze is not in the list. In

the next subsection, I discuss the difficulty of circumventing a DRDoS

attack that exploits BitTorrent.

7.5.3 Evadability

The attacker which I discussed in Section 7.1 exploits DNS and

Network Time Protocol (NTP) for an amplification attack. Both pro-

tocols use well-known ports for their services. Therefore, it is easy

to block the reflected traffic with an SPI firewall. BitTorrent, however,
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uses dynamic ports which make it harder to block. The payload of

the BitTorrent handshake contains the string ‘BitTorrent protocol’, and

in the case of BTSync the string ‘BTSYNC’. In both cases, the victim

needs DPI hardware to block an attack from these protocols.

If an attacker exploits MSE, the victim cannot defend itself neither

with an SPI firewall, nor a DPI firewall. Message Stream Encryption

does not have a static port number because it is part of BitTorrent

and does not have static values in the payload. Table 7.2 compares

the defense mechanism of different BitTorrent protocols. In the next

section, I discuss how the impacts of the proposed attacks can be

reduced or avoided.

dns ntp bth mldht vdht btsync mse

spi X X

dpi X X X X

Table 7.2: Comparison of amplification vulnerabilities where an X denotes
the firewall technology with which it can be defended. Source:
own representation based on own survey.

7.6 countermeasures and mitigation strategies

In this section, I discuss countermeasures against the vulnerabilities

which have been presented. The root problem of these vulnerabili-

ties is IP source address spoofing. The Spoofer19 project measures the

the susceptibility of IP spoofing around the world from 2005 to the

present [Bev+13; Bev+09]. According to the latest measurements from

2015, 26.1 % of all autonomous systems allow spoofing and 15.5 %

allow partial spoofing. Anti-spoofing filtering techniques like Ingress

address filtering and unicast reverse path are effective against IP spoofing

but are not used everywhere. The lack of these mitigation strategies

can also be seen in the impacts of the amplification attacks discussed

in Section 7.1. A solution must follow two parallel paths: global ISP

coordination to prevent further IP spoofing, and protocol defense and

mitigation mechanisms to avoid protocol exploitation.

19 http://spoofer.cmand.org/

http://spoofer.cmand.org/
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7.6.1 Three-way Handshake over uTP

The proposed attacks in this study are possible because uTP establish

a connection with a two-way handshake. This design failure yields to

the discussed vulnerabilities which an attacker can exploit by send-

ing spoofed BitTorrent or uTP handshakes. The ideal countermeasure

would be to introduce a three-way handshake to uTP, as in TCP. This

would prevent the attacks because the receiver would not accept a

data packet without the last acknowledgment from the three-way

handshake. The disadvantage of this approach is that it is a signif-

icant change in the protocol and would require global coordination

with all BitTorrent developers.

7.6.2 Disable Packet Stuffing for the First Data Packet

Nearly all BitTorrent client support packet stuffing wherein the clients

put BitTorrent messages in the first uTP packet. To mitigate attacks, it

is possible to disable packet stuffing and only accept the BitTorrent

handshake in the first data packet. This would not prevent the at-

tack but would reduce the impact to a BAF value that is equal to the

number of retransmission.

7.6.3 Enforcing a Valid ACK as a Third Packet

Another mitigation strategy is to enforce acknowledgment in the first

uTP data packet of the first st_state packet. This is similar to a three-

way handshake except that the last acknowledgment is also the first

data packet. This prevents the attacks for all BitTorrent protocols and

does not require a protocol change. Protocols, however, which do not

require a first data packet like ucat, as discussed in Section 7.4.1,

would still be vulnerable.
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7.6.4 Distributed Hash Table

User Datagram Protocol tracker, MLDHT, and VDHT already have coun-

termeasure against index poisoning attacks [NR06]. This prevents

an attacker from adding other peers except from themselves to the

DHT network with the announce_peer or store call. It does this,

by requiring a token that a peer requests from a previous get_peers

or find_node query. This token is valid for 10 minutes and prevents

spoofing attacks but only for the announce_peer or store query.

To prevent amplification attacks it would be necessary to request the

token in the ping query because it has the smallest BAF value. All

other queries would need to require this token. This would prevent

spoofing attacks against DHT. The disadvantage of this mechanism is

that it always requires two DHT queries to request new peers which

slows down bootstrapping time.

7.7 comparison with related work

The ancestor of amplification attacks is the smurf attack discussed

in [CA98] in 1998. In a smurf attack, attackers send forged Internet

Control Message Protocol (ICMP) echo requests to an amplifier using

an IP broadcast address. A network packet with a broadcast address

in its destination field is addressed to all hosts in a network. For

instance, the broadcast address 192.168.1.255 can reach 254 hosts (in

Classless Inter-Domain Routing (CIDR) notation 192.168.1.0/24) in the

network. All hosts which have received the forged message will send

an ICMP echo reply message to the victim. The amplification takes

place because the attacker sends a single packet to a host and the

whole network replies with a responds. This generates a DDoS attack.

As a countermeasure, the amplifier blocks packets that are addressed

to an IP broadcast address.

Rossow in [Ros14] provides the first broad investigation of UDP

based protocols. The study found 14 protocols that are vulnerable,

including MLDHT. I reproduced these results and completed a more

thorough investigation of the BitTorrent family which includes uTP,
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MSE, BTSync, MLDHT and Vuze DHT with different queries and different

clients.

Kührer et al. in [Küh+14a] analyzed the amplifier magnitude for

DNS, SNMP, Simple Service Discovery Protocol (SSDP), Character Gen-

erator Protocol (CharGen), Quote of the Day (QOTD), NTP and NetBIOS

with an Internet-wide scan. Additionally, they developed a remote

spoofer test to check if a network allows IP spoofing. They found that

more than 2,000 networks that lacked egress filtering. In a follow-up,

Kührer et al. in [Küh+14b] investigated the vulnerability of TCP is. De-

spite its three-way handshake, there are TCP/IP implementations that

do not strictly follow the standard practice in which the implementa-

tion sends data before the three-way handshake is complete.

7.8 summary

In this chapter, I have shown that BitTorrent and BTSync are vulner-

able to DRDoS attacks. With peer-discovery techniques like trackers,

DHT or PEX, an attacker can collect millions of amplifiers. An attacker

needs only a valid infohash or secret, which can be easily obtained by

torrent search engines to exploit vulnerabilities. I have shown that the

most used BitTorrent clients, uTorrent, Mainline and Vuze, are highly

vulnerable and the traffic of these clients can be amplified by up to

a factor of 50. In the case of BTSync, amplification by a factors of up

to 120 is possible with only a single packet. An easier amplification

target is a MSE handshake because the attacker does not require a

valid infohash. The BAF value of this attack ranges from 4–32.5. Such

attacks are not only easy for an attacker, they are also hard to detect

because the payload of the handshake has a high entropy value.

I followed a responsible disclosure process and contacted the secu-

rity team at BitTorrent Inc. one month before a research paper about

this chapter was published. They decided to enforce a valid ACK as

third packet as countermeasure against the presented attacks [De 15;

Ave15]. They noted that they also want to include a countermeasure

for MLDHT, however, at the time of writing this thesis, this counter-
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measure is still in progress. A couple of news sites covered the pre-

sented vulnerabilities [Van15b; Goo15].



Part III

C O N C L U S I O N

“Education has nothing to do with filling a pail,

rather it has everything to do with igniting a flame”

—Heraclitus
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C O N C L U S I O N

8.1 research hypothesis and objectives

This thesis presents an analysis of bandwidth attacks for the incentive

driven P2P protocol BitTorrent. In this section, I reflect on both my

research hypothesis and objectives.

8.1.1 Research Hypothesis

In the introduction, Section 1.3, I presented the hypothesis that se-

curing the bandwidth consumption of P2P applications improves

the security of the P2P swarm. I divided this hypotheses into two

sub-hypotheses. I will evaluate the sub-hypotheses in the next para-

graphs.

The first sub-hypotheses 1.2 stats that P2P protocols that do not have

bandwidth security policies pose a security threat to both the swarm and the

Internet. All attacks presented in this thesis can create tangible dam-

age. The damage begins with a significantly slower download speed

for participating peers, the opposite of the intentions of the BitTor-

rent protocol. This damage arises if malicious peers exploit vulnera-

bilities on an application level. The damage continues with possible

congestion in a specific network path which results in a DoS attack in

which other peers cannot reach the victim (seeder or leecher). Finally,

damage occurs because an attacker can redirect bandwidth from any

BitTorrent client that is using uTP to an arbitrary victim (DRDoS). This

shows that BitTorrent pose a security threat to the swarm and to the

Internet.

The second sub-hypotheses 1.1 states that one of the most used P2P

protocols BitTorrent has not secured bandwidth enough. I found vulner-

abilities on both an application and transport level. In terms of the

129
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application level, I showed that the default seeding algorithm FU is

easily exploitable by malicious peers. The allowed fast extension al-

lows malicious peers to request pieces repeatedly and therefore steal

bandwidth. For these attacks, I presented a new seeding algorithm

PI for the allowed fast extension, a specification change is needed. In

terms of transport, however, I have shown that malicious peers can

exploit uTP and its congestion control algorithm LEDBAT to create con-

gestion on a specific network path. The countermeasure against uTP

and LEDBAT attacks requires the occasional dropping of a random

packet to identify malicious peers. Because uTP uses a two-way hand-

shake, I have shown in Section 7 that a malicious peer can redirect

traffic from a BitTorrent client to an arbitrary victim. These vulnera-

bilities strongly suggest that BitTorrent has not done enough to secure

bandwidth. The two sub-hypothesis together build the main hypoth-

esis of this thesis: Securing the bandwidth consumption of P2P protocols

improves the security of the P2P swarm.

8.1.2 Thesis Objectives

In the introduction, Section 1.3, I presented three objectives of this

thesis. The first objective was to investigate the impact of bandwidth

attacks against application and transport layer of the P2P protocol

BitTorrent. I investigated bandwidth attacks against application and

transport layer in a small testbed system with 32 peers and a global

testbed system with 300 peers and presented my results in Section 5.4.

The second objective was to understand the aspects of bandwidth

attacks related to security in a BitTorrent swarm. I showed in Sec-

tion 5.4, that the chocking algorithm is mainly responsible of how

vulnerable BitTorrent is to bandwidth attacks.

The last objective was to propose systematic improvements to the

found vulnerabilities. I proposed effective countermeasures which

mitigate or prevent the attacks to all found vulnerabilities. Therefore,

all objectives were archived. I conclude this section with a summary

of the achievements of this thesis and recommendations for future

research.



8.2 summary of the achievements 131

8.2 summary of the achievements

I began this analysis with an investigation of the BitTorrent protocol

itself, in particular different choking algorithms in the seed state and

the allowed fast extension. I evaluated seeding algorithms experimen-

tally in terms of performance, security and stability, and found out

that the default seeding algorithm FU and AL are highly vulnerable to

bandwidth attacks. During this investigation, I found a programming

error in the RR implementation of libtorrent which could be exploited

by malicious peers. Together with the maintainer of libtorrent I fixed

the programming error in RR. I also found that RR and LW are harder

to exploit, but still exploitable with a sybil attack. These results moti-

vated me to propose a novel seeding algorithm PI that is more robust

against bandwidth attacks without the loss of performance. In the

case of the allowed fast extension, I found that it has a logical is-

sue, because an attacker can request the allowed fast set repeatedly. I

proposed two countermeasures against this attack, one of which was

included in libtorrent. From this point, I continued analysis on the

transport protocol.

I investigated BitTorrent’s new transport protocol uTP and its con-

gestion control algorithm LEDBAT. Congestion is an important issue,

especially for transferring bulk data as with the BitTorrent protocol.

I proposed three attacks against uTP, namely, delay attack, lazy opt-

ack attack and opt-ack attack and evaluated their impact in terms of

bandwidth consumption and number of packets. I have shown that

an attacker that is using a delay attack can steal additional band-

width and therefore has an advantage because of the reciprocal na-

ture of BitTorrent. An attacker, however, that is not interested in data

integrity can create significant congestion with a lazy opt-ack and an

opt-ack attack. I implemented a countermeasure which drops packets

randomly to check if the receiver is lying in the acknowledgment. I

continued in my analysis of the uTP with a detailed examination of

the two-way handshake.

Finally, I investigated if and how the BitTorrent protocol family is

vulnerable to DRDoS attacks. In comparison to TCP, uTP uses a two-
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way handshake instead of a traditional three-way handshake. An at-

tacker that makes use of IP spoofing can exploit this handshake to in-

ject a first data packet into any BitTorrent peer. An attacker can craft

a special BitTorrent handshake to redirect traffic from an amplifier to

any victim on the Internet. I have shown in the case of BitTorrent that

an attacker can amplify the traffic by up to a factor of 50. With the

extension MSE, an attacker does not need a valid infohash and can

amplify the traffic by up a factor of 4–32.5. I have shown that even

the P2P file synchronization protocol BTSync which also uses uTP as

its main transport protocol is vulnerable to these attacks. An attacker

can amplify BTSync traffic up to 120 times. I proposed countermea-

sures which are included in all BitTorrent clients that were vulnerable

to our attacks.

8.3 future directions

This thesis presented an analysis of bandwidth attacks in the main-

line BitTorrent protocol. There are, however, a variety of extensions

that may be exploitable but were not covered in this thesis, includ-

ing PEX [The15] an extension for peers to send metadata files [HN12].

Both extensions provide the possibility for additional information via

messages. There are also extensions in uTorrent that are undisclosed

as of yet, including ut_holepunch and ut_comment. The Bit-

Torrent client Vuze also has its own extensions. Because all of these

extensions are widely used, a security analysis would be an impor-

tant contribution.

This thesis also presented a novel seeding algorithm PI as a counter-

measure against bandwidth attacks. There is a proof-of-concept called

joystream1 that combines BitTorrent with the P2P crypto currency Bit-

coin. It would be relevant to examine how well BitCoin could work

as an incentive mechanism in a situation wherein a user could re-

ceive bitcoins by being a seeder and provide bitcoins to other peers

to download files.

1 http://joystream.co/

http://joystream.co/
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category description baf paf

ucat 351.5 6

BitTorrent uTorrent w/o extensions 27.6 3.5
Mainline w/o extensions 27.8 3.5
uTorrent with LTEP 39.6 3

Mainline with LTEP 39.6 3

Vuze w/o extensions 13.9 2

Vuze with LTEP 18.7 2

Vuze with AMP 54.3 3.5
Transmission w/o extensions 4.0 3.5
Transmission with LTEP 4.0 3.5
Transmission with AMP 4.0 3.5
Libtorrent w/o extensions 5.2 4

Libtorrent with LTEP 5.2 4

MLDHT ping 0.8 1

find_node with K = 8 3.1 1

get_peers with 100 peers (IPv4) 11.9 1

get_peers with 100 peers (IPv6) 24.5 1

get_peers with scrapes 13.4 1

VDHT ping 0.8 1

ping with Vivaldi coordinates 14.9 1

BTSync ping 120.2 129

Table A.1: Summary of all BAF and PAF values of the inspected BitTorrent
messages. Source: own representation based on own survey.

Listing A.1: Source code of PI implemented as a libtorrent extension.

1 #include "libtorrent/pch.hpp"
2

3 #ifndef TORRENT_DISABLE_EXTENSIONS
4

5 #ifdef _MSC_VER
6 #pragma warning(push, 1)
7 #endif

135
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8

9 #include <boost/shared_ptr.hpp>
10 #include <boost/bind.hpp>
11

12 #ifdef _MSC_VER
13 #pragma warning(pop)
14 #endif
15

16 #include "libtorrent/peer_connection.hpp"
17 #include "libtorrent/bt_peer_connection.hpp"
18 #include "libtorrent/bencode.hpp"
19 #include "libtorrent/torrent.hpp"
20 #include "libtorrent/extensions.hpp"
21 #include "libtorrent/broadcast_socket.hpp"
22 #include "libtorrent/socket_io.hpp"
23 #include "libtorrent/peer_info.hpp"
24 #include "libtorrent/random.hpp"
25

26 #include "libtorrent/extensions/peer_idol.hpp"
27

28 #ifdef TORRENT_VERBOSE_LOGGING
29 #include "libtorrent/lazy_entry.hpp"
30 #endif
31

32 namespace libtorrent {
33

34 class torrent;
35

36 namespace {
37 const char extension_name[] = "peer_idol";
38

39 struct peer_idol_plugin: torrent_plugin {
40

41 torrent& m_torrent;
42

43 peer_idol_plugin(torrent& t) : m_torrent(t) {}
44

45 ~peer_idol_plugin() {}
46

47 virtual boost::shared_ptr<peer_plugin> new_connection
(peer_connection* pc);

48 };
49

50

51 struct peer_idol_peer_plugin : peer_plugin {
52 peer_idol_peer_plugin(torrent& t, bt_peer_connection&

pc)
53 : m_peer_idol_extension_id(23)
54 , m_torrent(t)
55 , m_pc(pc)
56 , m_10_second(0)
57 , m_full_list(true) {
58 }
59

60 virtual void tick() {
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61 if (++m_10_second <= 10)
62 return;
63

64 // only send the votes to the seeder
65 if (m_pc.is_seed()) {
66 send_best_peers();
67 }
68

69 m_10_second = 0;
70 }
71

72 // can add entries to the extension handshake
73 virtual void add_handshake(entry& h) {}
74

75 void send_best_peers() {
76 // copy peers from the torrrent in a

peer_connection
77 // vector in order to sort it in the next step
78 std::vector<peer_connection*> peers;
79 for (torrent::peer_iterator i = m_torrent.begin()

,
80 end(m_torrent.end()); i != end; ++i) {
81 peer_connection* peer = *i;
82 peers.push_back(peer);
83 }
84

85 // sort all peers according to their upload rate
86 std::sort(peers.begin(), peers.end()
87 , boost::bind(&peer_connection::

payload_download_compare, _1, _2));
88

89 entry pid;
90 std::string& pla = pid["added"].string();
91 std::back_insert_iterator<std::string> pla_out(

pla);
92

93 // check if enough peers are available
94 if (peers.size() >= 3) {
95

96 for (int i = 0; i < 3; ++i) {
97 tcp::endpoint remote = peers.at(i)->

remote();
98

99 if (remote.address().is_v4()) {
100 detail::write_endpoint(remote,

pla_out);
101 }
102

103 }
104

105 }
106

107 std::vector<char> pid_msg;
108 bencode(std::back_inserter(pid_msg), pid);
109
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110 char msg[6];
111 char* ptr = msg;
112

113 detail::write_uint32(1 + 1 + pid_msg.size(), ptr)
;

114 detail::write_uint8(bt_peer_connection::
msg_extended, ptr);

115 detail::write_uint8(m_peer_idol_extension_id, ptr
);

116

117 m_pc.send_buffer(msg, sizeof(msg));
118 m_pc.send_buffer(&pid_msg[0], pid_msg.size());
119

120 }
121

122 virtual bool on_extended(int length, int msg, buffer
::const_interval body) {

123 if (msg != m_peer_idol_extension_id) return false
;

124

125 lazy_entry pid_msg;
126 error_code ec;
127 int ret = lazy_bdecode(body.begin, body.end,

pid_msg, ec);
128 if (ret != 0 || pid_msg.type() != lazy_entry::

dict_t) {
129 return true;
130 }
131

132 lazy_entry const* p = pid_msg.dict_find_string("
added");

133 char const* in = p->string_ptr();
134

135 for (int i = 0; i < 3; ++i) {
136 tcp::endpoint adr = detail::read_v4_endpoint<

tcp::endpoint>(in);
137

138 for (torrent::peer_iterator i = m_torrent.
begin(),

139 end(m_torrent.end()); i != end; ++i)
{

140 peer_connection* peer = *i;
141 if (peer->remote() == adr) {
142 peer->votes++;
143 }
144 }
145

146 }
147 }
148

149 int m_peer_idol_extension_id;
150

151 typedef std::vector<std::pair<address_v4::bytes_type,
boost::uint16_t> > peers4_t;

152 peers4_t m_peers;
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153

154 torrent& m_torrent;
155 bt_peer_connection& m_pc;
156

157 int m_10_second;
158 bool m_full_list;
159 };
160

161 boost::shared_ptr<peer_plugin> peer_idol_plugin::
new_connection(peer_connection* pc)

162 {
163 if (pc->type() != peer_connection::

bittorrent_connection)
164 return boost::shared_ptr<peer_plugin>();
165

166 bt_peer_connection* c = static_cast<
bt_peer_connection*>(pc);

167 return boost::shared_ptr<peer_plugin>(new
peer_idol_peer_plugin(m_torrent, *c));

168 }
169

170 }
171 }
172

173 namespace libtorrent
174 {
175 boost::shared_ptr<torrent_plugin> create_peer_idol_plugin(

torrent* t, void*)
176 {
177

178 return boost::shared_ptr<torrent_plugin>(new
peer_idol_plugin(*t));

179 }
180 }
181

182

183 #endif
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UDP Stream Experiment
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(b) With the Lazy Opt-ACK Attack
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Figure A.1: File transfer of a 300 MiB File via uTP and parallel to that, a
constant UDP stream of 50 Mbps under the following network
conditions: Bandwidth: 100 Mbps half duplex and Delay: 0 ms.
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