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We see ICT spillovers everywhere but in the  

econometric evidence: a reassessment 

 

 

Abstract 

Using company-level data for the US we study the productivity effects of knowledge 

spillovers, induced by the diffusion of ICT in the markets where companies operate. 

We adopt multiple spillover proxies and account for firms' absorptive capacity and 

lagged effects. Our results show that intra-industry ICT spillovers have a 

contemporaneous negative effect while the impact of inter-industry spillovers is 

positive. The overall productivity effect of ICT is negative, except for those 

companies with a strong absorptive capacity. However, after a 5-year lag the overall 

spillover effect turns positive while the role of absorptive capacity diminishes as a 

consequence of decreasing learning costs and more accessible technology.  
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1. Introduction 

The diffusion of Information and Communication Technologies (ICT) has 

revolutionised production processes, moving some of the sources of firms' 

competitiveness from inside to outside companies' boundaries.  At the same time it 

has initiated a phase of experimentation and collaboration, both within and outside the 

firm, accompanied by the creation of new knowledge that needs to be correctly 

assimilated and managed. It is widely acknowledged that both internal and external 

sources of knowledge (spillovers) are important to improve performance and need to 

be carefully assessed (Matusik and Heeley 2005, Jansen et al. 2005, Fabrizio 2009).  

So far there is substantial evidence on the positive impact of Information and 

Communication Technology (ICT) on productivity via the internal channel, especially 

when the new technology is coupled with investments in other intangible assets such 

as R&D, or organizational and human capital (Brynjolfsson and Hitt 2000, 2003, 

Kretschmer 2012). However, there is less clear support on the presence of ICT 

spillovers, i.e. on the contribution of ICT to the creation of external knowledge. For 

example, there is no evidence of ICT spillovers in Stiroh (2002) or Acharya (2016) 

despite the fact that these studies consider data for the US from the 1990s, a period of 

rapid ICT accumulation and a resurgence of productivity growth.  

This paper investigates the presence of spillover effects associated with ICT in 

the US economy, re-examining this critical period and providing a new contribution 

to a controversy that has characterized the ICT and productivity literature over the 

past fifteen years. The focus on the 1990s allows us to look at the uptake of the digital 

economy, when firm heterogeneity is large and first-movers enjoy benefits which may 

cumulate over time. The 1990s also mark a period of acceleration of US productivity 

growth compared to regions such as Europe and we assess the extent to which the 
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presence of ICT spillovers has contributed to this trend (Jorgenson et al. 2008, Inklaar 

et al. 2008). 

Our main contribution is in the identification of four key elements that, taken 

together, play a major role in the estimation of the spillover effect. First, we allow for 

different types of ICT spillover pools, namely those that originate among the firm’s 

competitors and those which originate outside the industry. In doing so, we account 

for different types of external knowledge, which can have a different impact on 

companies' performance (Vega-Jurado et al. 2008). Second, we recognise that the 

ability of a firm to benefit from spillovers is determined by its capacity to assimilate 

the technological knowledge created outside the firm and to apply it within its 

production process. This absorptive capacity, or knowledge integration (Tell 2011), is 

a function of the firm's prior innovation effort, which is often proxied by the firm's 

investments in research and development and in workers' skills (Cohen and Levinthal 

1989, 1990). A third element that we incorporate in our analysis is the assessment of 

the time at which ICT spillovers materialize. We recognise that there may be a lag 

between the assimilation of external knowledge and its effect on firm productivity 

performance (Brynjolfsson and Hitt 2003), i.e. the learning process is non-linear. 

Finally, we argue that industry data, commonly used in this literature, might be too 

aggregate to reveal the presence of spillovers.  

The main difference between our analysis and previous contribution on ICT 

spillovers is that, by including these four elements (spillover proxies, absorptive 

capacity, delayed effects and aggregation effects) within the same modelling 

framework, we provide a clearer understanding of how the effect of ICT spillovers 

propagates throughout the economy, the timing of the effect and the resources needed 

to internalize its benefits. Our work captures the different channels of transmission of 
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ICT spillovers by constructing two proxies for ICT-related external knowledge. We 

first evaluate whether companies' productivity performance is affected by the total 

stock of ICT capital within each industry. This is a valid measure to assess the 

presence of intra-industry spillover effects whereby, for example, the activity of a 

microelectronics company benefits from the adoption of ICT within the whole 

electrical and optical equipment industry. However, such intra-industry effect might 

only provide a partial assessment of the role of aggregate ICT as it does not account 

for the possibility of spillovers across industries. In fact, companies can benefit from 

the adoption of ICT by upstream and downstream industries, via, for example, 

improved service provisions (financial and shipping services). This inter-industry 

effect is assessed by means of a weighted ICT industry variable, where the weights 

capture the degree of companies' proximity, measured either in terms of intensity of 

transactions (using input-output coefficients of intermediate transactions) or 

technological proximity (using patent citation flows). The impact of weighted ICT 

spillover measures has been studied at the industry level in the US (Mun and Nadiri 

2002) but little is known about the transmission of different ICT spillover pools at the 

firm level. 

Throughout the analysis we assess the role of absorptive capacity using 

the cumulative value of R&D expenses and the interaction of this variable with 

the ICT spillover proxies. Our work also accounts for contemporaneous and 

lagged impacts of ICT spillovers on productivity by including various lags of both 

ICT and the interaction terms, hence providing a test of the 'delayed hypothesis', 

which underlies the GPT framework (Brynjolfsson and Saunders 2009). This 

approach allows the  investigation of how the productivity effects of absorptive 

capacity may change through time, an aspect that has often been overlooked in 
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existing work  (Matusik and Heely 2005, Tell 2011). Our study provides two novel 

pieces of evidence to the literature on the drivers of productivity and on knowledge 

spillovers. First, we document that the external knowledge associated with the 

industry-level diffusion of ICT yields important productivity gains at the company 

level. Although the contemporaneous intra-industry spillover effect is negative, due to 

the costs of assimilating the new knowledge, the impact turns positive some years 

after investment. Our estimates show that it takes approximately 5 years for intra-

industry spillovers to positively affect productivity performance. By contrast, the 

effect of inter-industry spillovers is always positive and significant.  Second, our 

results show that a company's absorptive capacity is crucial in the early stage of 

technological diffusion. In fact, a company's R&D is complementary to ICT 

spillovers and only in the most innovative firms does the positive inter-industry 

spillover offset the negative intra-industry effect. However, such complementarity 

disappears over time, with the more pervasive adoption and diffusion of the 

technology.  

Our findings are important because assessing the presence and the timing of 

such spillovers provides economists, managers and policy makers with the right 

measures to foster competitiveness and long-run growth (Bresnahan 1986). The lack 

of evidence on the existence of ICT spillovers has lead researchers to doubt the 

importance of General Purpose Technology (GPT) effects related to ICT (Draca et al. 

2007) and might have prevented or slowed down the adoption of policies aimed to 

facilitate the absorption and diffusion of new technologies. In regions like Europe, 

which are still experiencing stagnant productivity growth, understanding the forces 

that have contributed to the productivity revival in the US is necessary to improve 
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productivity performance and resume the catching up process of the early 1990s 

(Daveri 2004, Miller and Atkinson 2014). 

The following section discusses the main sources of ICT spillovers and presents 

an overview of the existing empirical evidence (Section 2). Section 3 presents the 

model used in the empirical analysis and provides examples of the spillover effect 

captured by our two proxies. Section 4 presents the data and summary statistics. Our 

econometric findings are shown and discussed in Section 5. Section 6 concludes the 

paper. 

II. RELATED LITERATURE 

Despite some skeptical views on the importance of the new technological revolution it 

is undeniable that computers and their countless applications have changed the 

organization of the firm, the structure of the industry and many aspects of economic 

and social interactions. For these reasons ICT has been recognized as a General 

Purpose Technology (GPT).  

The relationship between ICT and productivity has spurred particular interest 

and a review of a wide range of studies, based on different analytical techniques, 

suggests that a 10% increase in ICT increases labour productivity growth by 

approximately 0.5% (Kretschmer 2012).1 Several studies have also tried to assess 

whether ICT is a ‘special’ type of asset, and as such able to generate important 

productivity spillovers, i.e. increases in productivity in addition to the contribution of 

capital deepening (O'Mahony and Vecchi 2005, Venturini 2015). As a General 

Purpose Technology (GPT) ICT reconciles different explanations of knowledge 

spillovers. It is undisputable that the adoption and diffusion of ICT has generated a 

vast increase in knowledge transfers across individuals and such transfer of ideas 
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contributes to knowledge exploitation and can be a main contributor to organizational 

changes, innovations and growth.   

Within firms, the use of computers and software has increased over time, 

leading to changes in production techniques and organizational structure, a process 

that can be considered an example of learning-by-doing type of externalities (Arrow 

1962). ICT has also greatly facilitated the 'learning from others' process, by opening 

up opportunities for gathering and sharing information, both within and outside the 

firm (Aghion 2002). For example, the use of electronic data interchange, internet-

based procurement systems and other inter-organizational information systems has led 

to a reduction in administrative and search costs, and better supply chain management 

(Rowlatt 2001, Criscuolo and Waldron 2003).  

Another type of externality generally associated with ICT is network 

externality, which arises when the value of a product or service increases as it is 

adopted by more users (Brynjolfsson and Kremerer 1996) 2 . An early theoretical 

discussion of network externalities can be found in Katz and Shapiro (1985), in 

relation to consumption externalities, whereby consumers derive more utility from 

participating in a network depending on the number of people using the same 

network, the variety of products that a network provides and the quality of the post-

purchase service network. Several empirical contributions support the presence of 

network externalities linked to ICT, for example in relation to the computer 

spreadsheet market (Gandal 1994), the diffusion of home computers (Goolsbee and 

Klenow 2002) and electronic payment (Gowrisankaran and Stavins 2002).   

Although the possibilities for ICT spillovers are numerous, the impact of such 

spillovers on productivity is more dubious and so far the empirical analysis has 

provided weak support (Cardona et al. 2013). For example, Stiroh (2002), using a 
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TFP growth regression, finds no evidence of positive spillovers from ICT capital, nor 

evidence of positive spillovers from individual components (computer capital and 

telecommunication capital) in the US economy. Results for European countries in 

Inklaar et al. (2008) also reveal the absence of ICT spillovers. Haskel and Wallis 

(2010) reach similar conclusions in the UK and Acharya (2016) fails to find positive 

ICT spillovers in an industry-level analysis for 16 OECD countries. A common 

feature of these studies is that they are based on industry-level data, hence their results 

could be affected by an aggregation bias, as discussed in Brynjolfsson and Hitt (2000) 

and Haskel and Wallis (2010)3. However, even at the firm level, the econometric 

evidence is inconclusive. For example, Van Leeuwen and van der Wiel (2003) show 

that ICT spillovers positively affect labour productivity in Dutch companies operating 

in market services, while Moshiri and Simpson (2011) reject the presence of ICT 

spillovers among Canadian firms. More recently, Moshiri (2016) finds that the 

manufacturing and service sectors in Canada benefit from ICT spillovers from the US, 

while there is no effect in the primary sector.  Firm level evidence for the US is quite 

scarce and does not always assess the importance spillovers. For example, 

Brynjolfsson and Hitt (2003) find that firms’ investments in computer hardware yield 

excess returns when considering long lags. This suggests that within firms spillovers 

are present in the US economy but it does not provide any insights of how companies 

can benefit from external sources of knowledge. More recently, Tambe and Hitt 

(2014) provide some evidence of an ICT spillover effect in US companies but only 

consider a possible channel of knowledge diffusion (IT workers' flows on local labour 

markets). 

A central issue for the identification of the spillover effect is the proxy used to 

capture the external knowledge. Most of the evidence to date only considers that 
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spillovers might operate within industries (Stiroh 2002, Basu and Fernald 2007). 

However, this implicitly assumes that there is a single source of knowledge that can 

impact on companies' performance. This assumption is opposed to the view that 

knowledge can be characterized by different levels of complexity (Lane et al. 2006) 

and can originate from different sources, both within and outside the industry. Indeed 

companies can benefit from the adoption of ICT by their suppliers or clients as well as 

competitors (Cohen and Levinthal 1990). The nature of this knowledge is likely to 

differ depending on the source. Competitors are more likely to be the font of more 

technical industry-specific knowledge, related for example to the re-structuring of the 

production process; conversely, actors along the supply chain can be the source of the 

increased efficiency of transactions. Measuring the effect of such a complex network 

of interactions requires the construction of suitable spillover pools. The literature on 

R&D spillovers has frequently used weighted measures of aggregate R&D that 

capture industries/firms' technological distance (Jaffe 1986). However, this approach 

has been less popular in constructing ICT spillover pools (Mun and Nadiri 2002, 

Wolff 2011, Moshiri and Simpson 2011).   

Identifying different types of external knowledge is important for the 

evaluation of the role of companies' absorptive capacity, i.e. their ability to identify 

the relevant knowledge generated outside the firm, assimilate it and turn it into 

competitive advantage (Cohen and Levinthal 1989). This is an aspect of the 

relationship between ICT spillovers and productivity that has been discussed at length 

in several contributions but where the econometric analysis is still lagging. Spillovers 

from ICT, like other types of spillovers, are likely to require firms' prior effort in 

innovative activities; however, the empirical analysis has mainly analyzed the 

importance of absorptive capacity in relation to R&D spillovers (Cohen and Levinthal 
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1989, 1990, Griffith et al. 2004). Conversely, it is possible that there is a 

complementary relationship between firm's R&D and ICT spillovers, which goes 

beyond the fact that ICT has originated from research effort (Guellec and van 

Pottelsberghe 2004). 4  Recent evidence at the industry level further extends this 

concept by showing the complementarity of ICT not only with R&D but with a whole 

set of other intangible assets (Corrado et al. 2014). Despite the apparent relevance of 

absorptive capacity, only a handful of firm-level studies address this issue in relation 

to ICT spillovers and the results so far do not support the complementary relationship 

between R&D and ICT (see for instance Hall et al. 2013 and Polder et al. 2010). 

Another relevant issue for the identification of ICT spillovers is the 

specification of an empirical model that can capture the lagged impact of spillovers on 

productivity. A large empirical literature has shown that ICT adoption imposes long 

periods of experimentation, during which companies undertake investments in 

organization and human capital (Brynjolfsson and Hitt 2003). This implies a 

substantial delay in the ICT impact on productivity performance, which also justifies 

the presence of lagged ICT spillovers. Some evidence on this effect can be found in 

Basu et al. (2004), Basu and Fernald (2007) and Brynjolfsson and Hitt (2003). 

However, the majority of firm level studies focus on contemporaneous spillover 

effects,5 which may well be negative or non-statistically significant because of the 

presence of adjustment costs.  

 Related to this, existing studies have not provided any insights on how 

absorptive capacity may affect performance over time. Following the argument of the 

cumulative process of knowledge and the importance of long-term complementarities 

between skills and new technologies, we expect the effect of absorptive capacity to 

increase over time. However two factors can affect this trend. The first one is external 
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to the firm and relates to the possibility that further technological developments lead 

to a more codified technology that is easier to access and implement (Chun 2003, 

Mason et al. 2008). The second factor is a direct consequence of the firm's learning 

process, which implies high costs (in terms of absorptive capacity) in the initial 

adoption phase and lower costs as the learning improves6. In both situations, further 

increases in absorptive capacity might no longer be necessary to assimilate the ICT 

spillover (Cohen and Levinthal 1990); hence a test of the 'delay hypothesis' is 

necessary to fully assess the importance of ICT spillovers and absorptive capacity.  

 

III. MODELLING THE IMPACT OF ICT SPILLOVERS ON PRODUCTIVITY 

We model the output of a single firm as a function of its own inputs and an index of 

aggregate activity. Similarly to Jones (1968), we assume that spillovers are related to 

the scale of the industry ICT and are external to the decisions taken by any firm, so as 

to retain the perfectly competitive nature of the model. The starting point of our 

analysis is a Cobb-Douglas production function, where output (Yijt) is expressed as a 

function of labour (Lijt), physical capital (Kijt), and R&D capital (Rijt): 

   𝑌𝑖𝑗𝑡 = 𝐴(𝐼𝐶𝑇𝑗𝑡)𝐿𝑖𝑗𝑡
𝛼 𝐾𝑖𝑗𝑡

𝛽
𝑅𝑖𝑗𝑡

𝛾
     (1) 

where i denotes firm, j industry and t time. The term A is the firm’s total factor 

productivity and it is determined by an industry measure of ICT capital. The 

coefficients α, β and γ denote the elasticities of output with respect to labour, 

physical capital and R&D respectively. Constant returns to scale occur when   

α +β+γ = 1, a hypothesis that we will test in our analysis. Expressing equation (1) in 

per-worker terms and denoting logarithms with lower case variables, we can re-write 

the production function as follows7: 

(
𝑦

𝑙
)

𝑖𝑗𝑡
= 𝛼𝑖 + (𝐼𝐶𝑇𝐿)𝑗𝑡 + 𝛽 (

𝑘

𝑙
)

𝑖𝑗𝑡
+ 𝛾 (

𝑟

𝑙
)

𝑖𝑗𝑡
+ 𝜀𝑖𝑗𝑡                  (2)                                                             
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As discussed in the previous section, ICT facilitates knowledge transfers 

across firms and this can lead to important productivity spillovers. For example, a 

firm i operating in industry j can easily access information about its competitors, their 

range of products, prices and additional services, via an Internet search engine and use 

such information for its own production and/or marketing strategy. Also, firms may 

easily imitate best practices from first-move adopters in the same industry, reaping 

important productivity benefits. This within or intra-industry spillover captures the 

idea that firms learn in areas closely related to their experience (Kogut and Zander 

1993, Nelson and Winter 1982). In our analysis this is measured by the total stock of 

ICT at the industry level (defined as ICTLjt). However, spillovers can also originate 

from the knowledge created in companies/industries which are located in industries 

other than its own (Schmidt 2010). In fact, ICT facilitates knowledge acquisition 

about firms' suppliers (prices, type of products and services, innovative practices) as 

well as firms' clients (personalized offers based on client's previous purchases), which 

can feed into the firm's production function and lead to productivity gains. Hence, 

ICT may also be a source of between or inter-industry spillovers, which are likely to 

be stronger the larger the number of firms adopting the new technology. Hence the 

inter-industry variable is also capturing the effect of network spillovers. 

 To trace inter-industry flows of spillovers we use industry series on ICT, 

weighted by input-output intermediate transactions’ coefficients, denoted by wICTLjt 

and constructed as follows:8 

𝑤𝐼𝐶𝑇𝐿𝑗𝑡 = ∑ 𝑤𝑗𝑓𝑡 × 𝐼𝐶𝑇𝐿𝑓𝑡
16
𝑗=1 = ∑

𝑀𝑗𝑓𝑡

𝑌𝑓𝑡
× 𝐼𝐶𝑇𝐿𝑓𝑡

16
𝑗=1    (3) 

with f ≠ j and t=1991, ..., 2001. ICTLj is the ICT capital stock per worker in the 

industry j where company i is located. ICTLf  is the value of the surrounding industries 

(f ≠ j). wjft is the inter-industry coefficient of intermediate transactions between 
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industry j and industry f, defined as ratio between the flow of intermediate inputs sold 

by industry f to industry j and the gross output of the selling sector, respectively 

denoted by Mjft and Yft. This procedure eliminates the bias associated with the 

different scale between the ‘selling’ and the ‘purchasing’ industry, as discussed in 

Lichtenberg and van Pottelsberghe (1998) in relation to international technology 

spillovers.  Introducing the effect of the two spillover channels, our empirical 

specification can be written as (benchmark model):  

(
𝑦

𝑙
)

𝑖𝑗𝑡
= 𝑎𝑖 + 𝛽 (

𝑘

𝑙
)

𝑖𝑗𝑡
+ 𝛾 (

𝑟

𝑙
)

𝑖𝑗𝑡
+ 𝜒1𝑖𝑐𝑡𝑙𝑗𝑡 + 𝜒2𝑤𝑖𝑐𝑡𝑙𝑗𝑡 + ∑ 𝛿𝑑𝑡

10
𝑡=1 + 𝜀𝑖𝑗𝑡        (4) 

where the dependent variable is labour productivity, ai is a company specific intercept 

(fixed effect) which, among others, captures the time-invariant effect of other 

intangible factors (organizational inputs, management practices, etc.) that are not 

available from company accounts. The coefficients β is the elasticity of labour 

productivity to capital per worker (capital deepening), γ identifies the R&D elasticity, 

𝜒1 captures externalities directly associated with intra-industry spillovers and 𝜒2 

captures the effect of inter-industry knowledge transfers. Both ICT variables are 

normalized by industry employment in order to neutralize possible scale effects on 

firm performance and identify the average value of ICT capital available to each 

worker in the sector (ICTLjt). dt are common time dummies, which allows the 

identification of any spillover effect net of other cyclical and/or exogenous 

components (Oulton 1996).  

 Due to data constraints, we are not able to distinguish between ICT and non-

ICT capital at the company level, and therefore we cannot separately identify 

industry-wide spillovers from the productivity effect of a firm's own ICT capital. 

Existing company level studies have attempted to assess the ICT capital elasticity 

using crude proxies for firm ICT. Given the shortcomings of these measures, which 
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are well known in the related literature, their use does not fully address the possible 

mis-specification issue. 9   In addition, new vintages of capital have increasingly 

included computer equipment and have become more dependent on computer 

software. Therefore, part of the ICT impact will be captured by our fixed capital 

measure.  

 

III.b Spillovers and absorptive capacity 

The introduction of R&D in our modelling framework allows us to assess the 

presence of complementarities between R&D and ICT, and to test directly whether 

the impact of ICT spillovers depends on companies' absorptive capacity. Measuring 

absorptive capacity is complex because of the intangible and multi-dimensional 

nature of the phenomenon (Zahra and George 2002, Matusik and Heeley 2005, 

Camisón and Forés 2008, Schmidt 2010)10. Here we refer to Cohen and Levinthal 

(1989, 1990) who consider R&D as a determinant of new knowledge and as a factor 

that enhances a firm’s ability to exploit knowledge generated elsewhere, hence 

defining R&D as the main conduit of the spillover effect. Subsequent work has 

considered other determinants such as workers' skills, organizational structure and 

management practices (Vinding 2006, Schmidt 2010, Lane et al. 2006). These 

additional measures, although conceptually relevant, are likely to be highly correlated 

with R&D and this would make the empirical identification of separate effects 

particularly challenging (Goedhuys et a. 2013). For example, Vega-Jurado et al. 

(2008) point out that technological competences, generally measured by R&D, are not 

independent of human resources competences, organizational competences and skills. 

Indeed, a large proportion of a firm's R&D expenditure is directed towards the wage 
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of highly skilled employees, namely R&D scientists and engineers (Shankerman 

1981, Guellec and van Pottelsberghe 2004).  

To model the mechanisms for the assimilation of the spillover effect we 

follow Griffith et al. (2004) and we expand equation (4) to include the interaction 

between company’s R&D capital and our measures of ICT spillovers: 

(
𝑦

𝑙
)

𝑖𝑗𝑡
= 𝑎𝑖 + 𝛽 (

𝑘

𝑙
)

𝑖𝑗𝑡
+ 𝛾 (

𝑟

𝑙
)

𝑖𝑗𝑡
+ 𝜒1𝑖𝑐𝑡𝑙𝑗𝑡 + 𝜂𝑟𝑖𝑗𝑡 ∗ 𝑖𝑐𝑡𝑙𝑗𝑡 +                               

                                        𝜒2𝑤𝑖𝑐𝑡𝑙𝑗𝑡 + 𝜌𝑟𝑖𝑗𝑡 ∗ 𝑤𝑖𝑐𝑡𝑙𝑗𝑡 + ∑ 𝛿𝑑𝑡
10
𝑡=1 + 𝜀𝑖𝑗𝑡  (5) 

where η and ρ are the portion of ICT spillovers acquired by the firm through its 

knowledge base (i.e. its absorptive capacity). The total impact of intra-industry ICT 

spillovers is therefore given by χ1 + ηrijt, evaluated at different points of the R&D 

distribution. Equation (5) models the possibility that firms may benefit from ICT 

spillovers by means of their absorptive capacity (η>0, χ1=0), directly without any 

R&D investments (η=0, χ1>0), or more widely through both channels (η>0, χ1>0). In 

the same way, we can calculate the total impact of inter-industry spillovers. As a 

result, the overall spillover effect from ICT will be given by the sum of the two types 

of spillovers. 

IV. DATA SOURCES AND DESCRIPTIVE STATISTICS 

Our analysis makes use of US company accounts from the Compustat database for the 

period 1991-2001. Our study therefore covers the entire cycle of the New Economy 

growth, from the earlier phases of ICT uptake to the collapse of the ICT bubble in the 

stock market. Focusing on this period allows us to analyze the presence of spillovers 

during the uptake of a new technology, as well as making our results comparable with 

the existing evidence. We extract information on net sales, employment, net physical 

capital, defined as equipment and structures (PPE), and R&D expenditures. Full 

details on data sources and methods can be found in the working paper version of the 
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manuscript. 11  Net physical capital at historic cost is converted into capital at 

replacement cost (Arellano and Bond 1991). R&D expenditure is converted into a 

stock measure using a perpetual inventory method, together with the assumption of a 

pre-sample growth rate of 5% and a depreciation rate of 15% (see Hall 1990 for 

details). The use of R&D capital stocks accounts for the accumulation of knowledge 

and makes current R&D efforts dependent on past endeavors. This should better 

capture the cumulative nature of absorptive capacity, frequently discussed in the 

literature (Cohen and Levinthal 1990, Zahra and George 2002, Matusik and Heeley 

2005, Vega-Jurado et al. 2008).  

 The Compustat database classifies companies into industries according to the 

1987 US Standard Industrial Classification (SIC). This classification is then converted 

into ISIC Rev. 3 base, which is the one followed by the industry-level variables. We 

merge company- and industry-level sources, obtaining a consistent data set for 

seventeen industries (twelve manufacturing plus five service industries). 

Industry accounts data (ICT, employees, etc.) come from EU KLEMS 2011, 

while R&D expenditure is from OECD ANBERD 2009. Input-output intermediate 

transactions’ coefficients are taken from the OECD I-O output table at benchmark 

years and are interpolated for intermediate observations. Both ICT and R&D variables 

are normalized on industry employment in order to neutralize possible scale effects on 

firm performance and identify the average value of ICT per capital available to each 

worker in the sector. 
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TABLE 1 

Descriptive Statistics (1991-2001) 

 

 

 

Obs Mean SD Min Max 

Company characteristics 

Y/Lijt Output  9,293 0.261 0.565 0.0001 24.2 

K/Lijt Physical capital  9,417 0.263 3.982 0.0001 193.7 

R/Lijt R&D capital 9,330 0.088 0.156 0.0001 2.85 

 

      Industry characteristics  

ICTLjt Intra-industry ICT capital  9,480 0.048 0.051 0.0001 0.367 

wICTLjt Inter-industry ICT capital  9,480 0.039 0.033 0.0049 0.182 

RDLjt Intra-industry R&D capital  9,480 0.395 0.431 0.0006 1.125 

wRDLjt Inter-industry R&D capital  9,480 0.106 0.133 0.0012 0.529 

Notes: All variables are expressed in millions of 1995 USD per worker. 

 

Table 1 presents descriptive statistics for the variables used in the regression 

analysis. We work with an unbalanced panel of 968 firms. Average net sales 

amounted to $0.261 million per worker (at 1995 prices), physical capital stock to 

$0.263 million, while firm R&D capital was $0.088. At industry level, the stock of 

ICT per worker, ICTL, is considerably smaller than R&D ($0.048 against $0.395 

million per worker). Whereas for ICT assets intra- and inter-industry capital values 

are comparable in size (ICTL vs wICTL), the cumulative value of intra-industry R&D 

sizably exceeds the inter-industry variable (RDL vs wRDL). This shows that R&D 

investment was largely concentrated across sectors while ICT was adopted more 

pervasively after the digital revolution.  

 Table 2 displays industry distributions of firm R&D stock and industry-level 

variables. Communication services and transport equipment have the highest levels of 

company knowledge capital, followed by chemicals and business services. Service 

industries denote the highest levels of intra-industry ICT per worker (ICTLjk), while 

inter-industry ICT (wICTLjk) is higher in manufacturing industries due to their more 

intensive inter-industry linkages.   
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TABLE 2 

 

Average Company R&D and Spillover Proxies by Industry (1991-2001) 

millions USD at 1995 prices 

 

 

 

R/Lijk ICTLjk wICTLjk RDLjk wRDLjk 

15t16 Food& Beverage 0.025 0.020 0.045 0.048 0.080 

17t19 Textile, Clothing & Footwear 0.013 0.006 0.070 0.014 0.442 

20 Wood 0.013 0.006 0.016 0.002 0.061 

21t22 Pulp, Paper & Publishing 0.024 0.025 0.022 0.042 0.062 

24 Chemicals 0.207 0.086 0.023 0.910 0.028 

25 Rubber&Plastics 0.201 0.010 0.031 0.088 0.243 

26 Non-metallic minerals 0.012 0.022 0.013 0.068 0.050 

27t28 Basic metals, etc. 0.009 0.016 0.013 0.050 0.050 

29 Machinery 0.044 0.037 0.048 0.170 0.209 

30t33 Electrical equipment 0.086 0.052 0.042 0.877 0.0.2 

34t35 Transport equipment 0.019 0.032 0.092 0.924 0.488 

36t37 Manufacturing, nec 0.018 0.012 0.047 0.085 0.176 

50t52 Wholesale, Retail 0.024 0.014 0.042 0.016 0.072 

55 Hotels, Restaurant 0.0004 0.002 0.061 0.004 0.067 

64 Communications 0.069 0.207 0.013 0.023 0.043 

65t67 Financial services 0.182 0.104 0.041 0.009 0.023 

71t74 Business services 0.110 0.038 0.018 NA 0.026 

15t74 TOTAL ECONOMY* 0.088 0.048 0.039 0.395 0.106 

Notes: *excludes real estate activities. 

 

 

V.  RESULTS 

5.1 Benchmark specification 

We start our empirical analysis by estimating equation (4) under the assumption that 

our spillover proxies are uncorrelated with other external sources of companies’ 

productivity performance. We will relax this assumption in Section 5.2. Obtaining 

consistent estimates of the input elasticities in equations (3) requires us to deal with 

two key econometric issues: cross sectional heterogeneity and endogeneity.12 The 

former is addressed with the use of panel data methods (Fixed Effect estimator). To 

address the endogeneity problem we use the Generalised Method of Moments 

(GMM) estimator, where lagged values of the endogenous regressors are used as 

instruments for firm-level variables, under the assumption that productivity shocks at 
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time t are uncorrelated with input choices in previous periods. We limit the number 

of lags to three to avoid instrument proliferation and the associated upward bias in 

estimated coefficients (Roodman 2009). The validity of the instruments is assessed 

by the Kleibergen and Paap (2006) test of under-identification and the Hansen-J 

(1982) test of over-identifying restrictions. We also correct the covariance matrix for 

arbitrary heteroskedasticity and for the presence of first-order serial correlation.  

TABLE 3 

ICT Spillover and Absorptive Capacity 

 

 (1) (2) (3) (4) 

Company level variables     

Physical capital per worker (β) 0.122*** 

(0.026) 

0.114*** 

(0.026) 

0.115*** 

(0.026) 

0.114*** 

(0.026) 

R&D capital per worker (γ) 0.116*** 

(0.021) 

0.105*** 

(0.021) 

0.0983*** 

(0.023) 

0.0986*** 

(0.022) 

Industry level variables and interactions    

Intra-industry ICT p.w.  (χ1)  -0.322*** 

(0.038) 

-0.403*** 

(0.046) 

-0.390*** 

(0.044) 

Firm R&D*intra-industry ICT 

p.w. (η1) 

 0.211*** 

(0.034) 

0.016*** 

(0.006) 

0.013*** 

(0.004) 

Inter-industry ICT p.w. (χ2)   0.211*** 

(0.035) 

0.203*** 

(0.034) 

Firm R&D*inter-industry ICT 

p.w. (η2) 

  -0.002 

(0.003) 

 

     

Obs. 6,876 6,704 6,704 6,704 

R-squared 0.220 0.240 0.241 0.241 

No. of Firms 968 938 938 938 

Kleibergen-Paap LM statistic 

P-value 

<0.001 <0.001 <0.001 <0.001 

Hansen J test P-value 0.191 0.170 0.212 0.264 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all 

specifications. All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and 

first-order serial correlation are reported in parentheses. The dependent variable is labour productivity. All 

company level variables have been instrumented with their own values up to two-year lags. In the presence of 

heteroscedasticity, the Hansen J statistic is the appropriate test of the null hypothesis of instrument validity. The 

Kleibergen-Paap LM statistic tests the null hypothesis that the matrix of reduced-form coefficients in the first-

stage regression is under-identified. ***, **, * significant at 1, 5 and 10%.  
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 Table 3 reports the results of the estimation of equation (4). The first column 

does not include any spillover effects. Column (2) includes intra and inter-industry 

spillovers while columns (3) and (4) introduce the impact of absorptive capacity. In 

column (1) our estimates for the coefficients on physical and R&D capital per worker 

are consistent with prior knowledge of factor shares. Existing evidence on the R&D 

elasticity provides a range of values, from 0.04 (Griliches 1979, Bloom et al. 2013) to 

0.18 (Griliches and Mairesse 1984), and our point estimate of 0.116 lies within this 

interval. We also tested the hypothesis of constant returns to scale (CRS) and we 

could not reject the null hypothesis of constant returns at the 5% significance level.13 

Importantly, these estimates are robust to the introduction of the spillover proxies.  

Column (2) reveals that intra-industry spillovers have a negative and 

significant impact on productivity. These results are consistent with Stiroh (2002), for 

example, who finds that industry ICT capital is negatively related to TFP growth in 

US manufacturing industries. On the other hand, the coefficient estimate for the inter-

industry effect is positive and statistically significant; this suggests that a 1% increase 

in ICT investment across all industries raises companies’ productivity by 

approximately 0.2%.  This effect is not trivial but it does not offset the negative 

impact from ICT investments within the company’s own industry.  

 The pattern of results does not change if we consider each spillover variable 

individually. This implies that the two measures pick up different types of 

externalities, which affect productivity in opposite directions. The negative 

productivity effect from intra-industry ICT may be due to the fact that this variable is 

capturing a type of knowledge which is of a highly technical nature and whose 

adoption and implementation within the firm can be particularly costly (Cantner and 

Pyka 1998). In fact, related studies have shown that the new technology requires a re-
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organization of the production process, which implies large adjustment costs for 

companies, particularly in the initial stage of diffusion (Bresnahan 2003, Kiley, 

2001). The positive inter-industry effect, on the other hand, is likely to capture a type 

of knowledge that is of less technical nature and which requires fewer adjustments 

and/or investments in complementary capital. This could include, for example, 

improved interactions across firms, as discussed in Brynjolfsson et al. (2002). This is 

also consistent with evidence provided by Mun and Nadiri (2002) on the ability of 

information technology to enable productivity spillovers across US industries through 

supplier-customer transactions14.  

Columns (3) and (4) present the estimation of our extended model, which 

accounts for the role of firms' absorptive capacity. This phenomenon is captured by 

the introduction of an interaction term between companies’ R&D and the two 

spillover proxies, as described in Equation (5). In column (3) the coefficient estimate 

of the interaction between R&D and intra-industry ICT is positive and significant, 

confirming the mutually self-enforcing effect of firm's innovative effort and intra-

industry ICT capital. However, when considering the inter-industry spillover we do 

not find any significant role for absorptive capacity as the interaction term is not 

statistically significant. Inter-industry knowledge has a positive impact on 

productivity without requiring the firm's specific effort. This supports our previous 

interpretation related to the more easy implementation and adoption of knowledge 

associated with the inter-industry spillover. As Cohen and Levinthal (1990) point out, 

when learning is less demanding "a firm's own R&D has little impact on its 

absorptive capacity. In the extreme case in which external knowledge can be 

assimilated without any specialized expertise, a firm's own R&D would have no effect 

on its absorptive capacity".  In the reminder of our analysis we will only include the 
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interaction between own-company R&D and intra-industry ICT spillovers, i.e. we will 

carry on with the specification presented in column 4.   

Our results show that firms' investments in R&D promote the absorption of 

knowledge more directly related to firm production. However, given the negative sign 

of the intra industry spillover coefficient, it is still unclear whether this external 

knowledge has an overall positive effect on productivity, i.e. to what extent absorptive 

capacity is turning external knowledge into productivity gains. Table 4 provides the 

answer this question. Following the discussion in Section 3, we compute the total 

intra-industry spillover evaluating the interaction effect (absorptive capacity) at 

different points of the companies' R&D distribution. Despite the positive coefficient 

of the interaction term, the total intra-industry spillover effect remains negative, 

although decreasing with the size of the firm’s knowledge base. The total spillover 

effect from ICT, given by the sum of total intra- and inter-industry effects is negative 

for all companies. 

Table 4 

 

Total ICT Spillover Effect  

 

 
Percentile 1% 5% 10% 25% 50% 75% 90% 95% 99% 

 
Ln(R&D) 0.59 1.51 2.09 3.24 4.32 5.42 6.80 7.85 9.27 

a AC-  η1*ln(R&D) 0.01 0.02 0.03 0.04 0.06 0.07 0.09 0.10 0.12 

b Intra-industry (χ1) -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 

c=a+b Total Intra industry -0.38 -0.37 -0.36 -0.35 -0.33 -0.32 -0.30 -0.29 -0.27 

d Inter industry (χ2) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

c+d Total spill -0.18 -0.17 -0.16 -0.15 -0.13 -0.12 -0.1 -0.09 -0.07 

H0: c+d=0 P-value [0.00] [0.00] [0.00] [0.00] [0.01] [0.02] [0.04] [0.08] [0.17] 

Notes: computations based on the results in Table 3, column 4. AC: absorptive capacity term 

 

 

In the last row of table 4 we report the probability value for the test of the null 

hypothesis that the sum of the total intra and inter-industry spillover equals zero, 

under the alternative that the sum of the two effects is negative. We reject the null 
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hypothesis for all companies up to the 90th percentile of the R&D distribution. For 

the five percent of firms with the most R&D stocks the point estimate of total 

spillovers is negative but not significantly different from zero. In other words, at the 

outset of the information age, the negative effects of ICT associated with restructuring 

appear to prevail for a typical US company. Only those companies with higher 

absorptive capacity are able to off-set this negative effect. 

 

5.2. Identification of the spillover effect 

The identification of ICT spillover effects is particularly challenging as industry-level 

variables may pick up other factors not included in our model. In particular, the 

possible relationship between ICT at the industry level and companies’ productivity 

could be the result of exogenous industry-specific technical change rather than a pure 

spillover effect. For example, when a new technology is introduced in a particular 

industry, a firm adopting this technology can experience an increase in productivity. 

This effect could be captured by our ICT proxies and erroneously interpreted as a 

spillover. 

 To avoid this problem and to correctly identify the spillover effect, we follow 

a dual strategy. First, we introduce measures of R&D at the industry level so any 

spillover effect will be net of other industry-specific endogenous technological 

innovation 15 . Additionally, this variable will control for R&D-based knowledge 

spillovers, whose effect could also be confounded with spillovers from ICT (Acharya 

2016). Results are presented in Table 5. In column 1, we find a positive effect of 

intra-industry R&D capital, while the ICT spillover impact on productivity is still 

strong and significant. In column 2 we conduct a further robustness check for the ICT 

spillover effect by including the total number of hours worked in our specification. 

This variable controls for changes in labour utilization over the business cycle, whose 
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effect could be picked up by our spillover proxies. For example, Oliner et al. (2008) 

suggest that the resurgence in labour productivity in the 1990s could have been 

caused by normal cyclical dynamics.16 The coefficient on the total number of hours 

worked is positive and statistically significant, confirming the cyclicality of 

productivity movements; however, its inclusion does not alter the pattern of our 

results.17 

Second, we follow Bloom et al. (2013) in implementing a two-stage 

instrumental variable approach. The first-stage consists in regressing ICT capital per 

worker on the OECD index of regulation of the telecom service industry (regtel), and 

a set of industry and time dummies (aj and dt), as follows: 

                                             𝑖𝑐𝑡𝑙𝑗𝑡 = 𝑎𝑗 + 𝑟𝑒𝑔𝑡𝑒𝑙𝑡+∑ 𝛿𝑑𝑡
10
𝑡=1 + 𝜀𝑗𝑡   (6) 

where regtel is the OECD index of regulation on telecom services (in logs), which 

measures the strictness of regulation in the US telecom service industry 18 . Our 

instrument choice relies on the fact that lower administrative barriers in the telecom 

sector would contribute to a larger supply of digital service inputs and therefore to an 

increasing demand for complementary assets, such as computers and other 

communication devices. The faster liberalization of the US telecom market during the 

1990s may have favored the adoption of new digital technologies as these assets have 

been increasingly dependent on the provision of Internet services. This implies a 

strong correlation between our instrument and the stock of ICT at the industry level. 

At the same time, the regulation indicator results from a long-lasting political decision 

making process, which can be considered as predetermined with respect to firms’ 

investment choices. Hence, we rule out the possibility that the ICT spillover variables 

capture the endogenous adoption of the new technology. In the second stage, we 



 

26 

 

replace actual ICT in equation (5) with its fitted values, re-constructing both the un-

weighted and the weighted ICT spillover measures.  

TABLE 5 

  Identification of the ICT Spillover 
 (1) (2) (3) (4) 

 Exogenous ICT spillovers Endogenous ICT spillovers 

Company level variables 
Physical capital per worker (β) 0.115*** 

(0.029) 

0.116*** 

(0.026) 

0.119*** 

(0.034) 

0.123*** 

(0.030) 

R&D capital per worker (γ) 0.092*** 

(0.024) 

0.100*** 

(0.022) 

0.111*** 

(0.027) 

0.116*** 

(0.025) 

Industry level variables and interactions 

Intra-industry ICT p.w. (χ1) -0.497*** 

(0.057) 

-0.428*** 

(0.045) 

-0.423*** 

(0.010) 

-0.514*** 

(0.107) 

Firm R&D*intra-industry ICT   p.w. (η1) 0.014*** 
(0.004) 

0.012*** 
(0.004) 

0.012** 
(0.005) 

0.009** 
(0.005) 

Inter-industry ICT p.w. (χ2) 0.209*** 

(0.037) 

0.221*** 

(0.035) 

0.197*** 

(0.042) 

0.216*** 

(0.041) 

Intra-industry R&D p. w. (ϕ1) 0.046** 

(0.018) 

 -0.001 

(0.021) 
 

Hours worked   (ρ)  0.214** 
(0.088) 

 -0.121 
(0.100) 

First-stage IV     

Coefficient (regtel)   -0.94 

F-test   755.2 

     

Obs. 5,814 6,704 4,982 5,689 

R-squared 0.257 0.243 0.228 0.208 

No. of Firms 785 938 755 886 

Kleibergen-Paap LM test P-value <0.001 <0.001 <0.001 <0.001 

Hansen J test P-value 0.395 0.285 0.475 0.369 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all specifications. 

All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and first-order serial 

correlation are reported in parentheses. The dependent variable is labour productivity. All company level variables 

have been instrumented with their own values up to two-year lags. In the presence of heteroscedasticity, the Hansen 

J statistic is the appropriate test of the null hypothesis of instrument validity. The Kleibergen-Paap LM statistic tests 

the null hypothesis that the matrix of reduced-form coefficients in the first-stage regression is under-identified. ***, 

**, * significant at 1, 5 and 10%. 

 

The second stage coefficients are presented in columns (3) and (4).  Results 

regarding the ICT spillover effects are consistent with previous estimates. This means 

that our ICT industry variables are indeed capturing a true spillover effect and not, for 

example, the impact of other un-observed technological factors.19 Table 5 also shows 

the first stage coefficient on our instrumental variable (regtel). This coefficient is 

statistically significant at the 1% significance level and the F test confirms the validity 

of our instrument.20  

In the rest of the paper we will relax the assumption of endogenous ICT 

spillovers while investigating the 'delayed effects' hypothesis for industry ICT. To test 
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this hypothesis we rely on the use of lagged values of the ICT proxies, which should 

mitigate any remaining endogeneity issues in the light of the fact that, at the industry 

level, past ICT investments are not influenced by firms' expectations of future sales. 

 

5.3 The lagged effect of ICT spillovers 

So far we have only considered the contemporaneous influence of both ICT spillovers 

and absorptive capacity. This does not account for the presence of lagged effects, an 

issue that has been discussed in the literature but not often tested. As mentioned in 

Section 2, the GPT view stresses how the impact of ICT, or any other major 

technological innovation, can be delayed while the necessary complementary 

investments are put in place (Brynjolfsson and Hitt 2003). Extending this argument to 

ICT spillovers, lagged rather than contemporaneous spillovers should have a stronger 

impact on productivity performance. On the other hand, Moshiri and Simpson (2011) 

discuss the possibility that network effects related to ICT may decrease over time or 

even disappear when the majority of firms have joined the network. As for absorptive 

capacity the literature has discussed the possibility that its impact might change over 

time but the direction of this change is not known.  

 To investigate these issues, we re-estimate equation (5) considering the impact 

of spillovers and absorptive capacity with 1, 3 and 5 year lags. Results are presented 

in the first three columns of Table 6. In columns 4-6, we control for the impact of 

R&D at the industry level, following the same lag structure. Results change 

dramatically when we consider different lags of the spillover variables. At time t-1 we 

still have a negative intra-industry ICT spillover and a positive inter-industry effect. 

The former is still negative, but of smaller magnitude, at time t-3. As a result, the 

overall spillover effect is positive. However, when we consider the 5-year lag 

specification both intra- and inter-industry effects of information technology are 
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positive and significant. These results are robust to the introduction of R&D at the 

industry level (columns 4-6), although the inter-industry variable has a weaker effect 

in the 5-year lag specification (column 6).21  

TABLE 6 

 Lagged ICT Spillovers and Companies’ Productivity Performance 
 (1) (2) (3) (4) (5) (6) 

 1-year lag 3-year lag 5-year lag 1-year lag 3-year lag 5-year lag 

Company level variables 

 
 

 
  

 
 Physical capital per worker (β) 0.119*** 

(0.026) 

0.111*** 

(0.030) 

0.048 

(0.048) 

0.117*** 

(0.029) 

0.105*** 

(0.034) 

0.040 

(0.053) 

R&D capital per worker (γ) 0.097*** 
(0.022) 

0.112*** 
(0.025) 

0.113*** 
(0.038) 

0.090*** 
(0.024) 

0.106*** 
(0.027) 

0.119*** 
(0.041) 

Industry level variables and interactions 

 
 

 
  

 
 Intra-industry ICT  p.w. (χ1) -0.416*** 

(0.046) 

-0.198*** 

(0.060) 

0.266*** 

(0.095) 

-0.475*** 

(0.059) 

-0.155** 

(0.069) 

0.244** 

(0.104) 

Firm R&D*intra-industry ICT   p.w. 
(η1) 

0.015*** 
(0.004) 

0.013*** 
(0.005) 

-0.007 
(0.009) 

0.017*** 
(0.004) 

0.016*** 
(0.005) 

-0.005 
(0.009) 

Inter-industry ICT  p.w. (χ2) 0.194*** 

(0.033) 

0.236*** 

(0.036) 

0.174*** 

(0.044) 

0.176*** 

(0.035) 

0.161*** 

(0.041) 

0.0844* 

(0.047) 
Intra-industry R&D p.w.  (ϕ1)    0.036** 

(0.018) 

-0.014 

(0.021) 

-0.052 

(0.034) 

Obs. 6,704 5,893 4,049 5,814 5,128 3,616 
R-squared 0.241 0.205 0.155 0.256 0.217 0.170 

No. of Firms  938 915 816 785 770 708 

Kleibergen-Paap LM test P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Hansen J test P-value 0.274 0.254 0.515 0.374 0.375 0.652 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all specifications. 

All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and first-order serial 

correlation are reported in parentheses. The dependent variable is labour productivity. All company level variables 

have been instrumented with their own values up to two-year lags. In the presence of heteroscedasticity, the Hansen 

J statistic is the appropriate test of the null hypothesis of instrument validity. The Kleibergen-Paap LM statistic tests 

the null hypothesis that the matrix of reduced-form coefficients in the first-stage regression is under-identified. ***, 

**, * significant at 1, 5 and 10%. 

 

The pattern that emerges from our estimation is consistent with the GPT 

analysis, which shows that learning costs are particularly steep in the initial phase 

because the adoption and implementation of a new technology requires high levels of 

skills and other complementary resources (Greenwood and Yorukoglu 1997). A drop 

in productivity and an increase in the skill premium are common in this initial phase 

(Jovanovich and Rousseau 2005). However, over time, as the technology becomes 

more accessible, the skill premium declines and the learning curve tapers off, 

allowing companies to reap the benefits from the initial investment. Similarly, our 

estimates indicate that returns to ICT spillovers increase more than proportionally at 
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later stages of the ICT diffusion, as the learning costs decline and the technology 

approaches maturity.22 

Consistent with this argument, we find that, in the 5-year lag specification, 

spillovers are not affected by companies' knowledge base and absorptive capacity23. 

In fact the absorptive capacity term is no longer statistically significant. This implies 

that, over time, the increasing investments in R&D are no longer necessary to benefit 

from the ICT-related external knowledge, either because the company has already 

accumulated a substantial amount of internal competencies, or because the technology 

has become more established and less costly to assimilate and to turn into productivity 

gains24. Hence, our results suggest that while the adoption phase of a new technology 

requires substantial absorptive capacity, over time the role of absorptive capacity 

diminishes.25   

Results in table 6 also show that the coefficient on the R&D spillover variable 

is statistically significant only at time t-1. This suggests that the effects of R&D and 

ICT spillovers on companies’ productivity materialize at different points in time. This 

excludes the possibility that the effect of ICT somehow captures un-measured 

complementary factors such as intangible or organizational assets, contradicting the 

argument put forward by Acharya (2016)26.  

Overall, our analysis shows that all companies gain positive and significant 

productivity spillovers from industry ICT with a 3 to 5-year lag. The total impact is 

not trivial: a 1% increase in industry ICT increases companies’ productivity by 

approximately 0.2-0.3%. This is a sizeable effect compared to what has been found in 

the literature so far. For example, in Brynjolfsson and Hitt (2003) the within firm ICT 

spillover effect ranges between 0.06 and 0.10, while Hitt and Tambe (2014) stimate 

an ICT spillover effect of 0.01-0.02  
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Our estimated spillover effect, associated with the diffusion of ICT at the 

industry level, is comparable in size with spillovers from R&D found in several 

earlier studies (Frantzen 2002, Guellec and Van Potterlsberghe 2004, Franco et al. 

2016). This may indicate that industry R&D spillovers might have been overstated in 

earlier contributions as they do not account for the externalities induced by the 

diffusion of ICT (Venturini 2015). 

Finally, one may question whether our industry variables capture returns to 

firm's own investment in ICT, given that our dataset does not allow us to distinguish 

firm ICT assets from its total capital.  Cordona et al. (2013) review several empirical 

papers on ICT and productivity and they show that the estimated internal returns to 

ICT in the US range between 0.021 and 0.098. This means that the size of our 

spillover effect is too high to capture exclusively internal returns.  

Our results are also robust to an array of sensitivity checks. First, we 

investigate whether alternative weighting schemes for the inter-industry ICT 

spillovers could affect our coefficient estimates. We construct inter-industry measures 

based on the relative trade size of the recipient sector, as in Coe and Helpman (1995), 

and using information on inter-industry patent citations to trace potential spillover 

flows. The latter control for the technology distance between pairs of industries and 

therefore may better capture the ability of the firm in the receiving industry to 

assimilate technological externalities associated with the ICT usage in surrounding 

sectors. Details on variable constructions and table of results are presented in 

Appendix B, Table B.1.  Results based on these alternative weighting schemes are 

still characterized by the same pattern discussed above.  

As additional sensitivity tests, we check whether our coefficient estimates 

might be affected by company characteristics. We remove large firms in terms of 
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sales and R&D expenses (the top 5% performing companies) from the sample to 

check whether their presence might drive our spillover and absorptive capacity 

effects. Results, presented in Appendix Table B.2 show that our conclusions remains, 

indicating that the spillover effect associated with the arrival of the new technology is 

not specific to larger companies but is a distinguishing characteristic of those tasks 

building the base of absorptive capacity (represented in our case by R&D activities). 

We also investigated whether our findings are due to the sample composition and 

hence we re-estimated our model using a balanced sample, but this did not change our 

main conclusions regarding the spillover effect. Finally, we examine whether our 

results are driven by some specific industry patterns. We therefore run our key 

specifications distinguishing between ICT-producing and ICT-using industries - see 

appendix table B.3.  In this case, the contemporaneous effect of both types of ICT 

spillover is confirmed though their lagged impacts are not statistically significant, 

probably due to the reduced sample size.  

 

VII. CONCLUSIONS 

Earlier work has often questioned the presence of ICT spillover in the US and, more 

generally, in all industrialized economies (Kretschmer 2012). Results of these studies 

are often ambiguous and inconclusive.  In this paper we have broadened the scope of 

the analysis, highlighting the importance of external knowledge that the company 

acquires through market transactions and that is captured by the ICT spillover effect. 

Our findings show that whilst ICT investment in upstream or downstream industries 

lead to a contemporaneous positive effect on productivity, the ICT diffusion in the 

market where the firm operates is initially detrimental for its productivity levels. 

Hence, at the beginning of the 1990s the negative spillover effects prevails, with the 
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exception of those companies at the top end of the R&D distribution, i.e. those 

companies with a higher absorptive capacity. This is the first paper to assess the 

importance of absorptive capacity in the US, in relation to ICT spillovers. 

 When we account for a delayed impact, we find that all companies benefit 

from ICT spillovers. After a three-year lag, the intra-industry spillover is still negative 

but the increase in the inter-industry effect means that the overall spillover positively 

affects productivity. After five years, both intra and inter-industry effects are positive. 

This is consistent with studies who find increasing returns to firms' investment in ICT 

over time (Bresnahan, Bryinjolfsson and Hitt 2002) and, to our knowledge, our paper 

is the first to provide an empirical estimate of the length of time necessary for ICT 

spillovers to increase productivity levels.  

 Another new result, which differs from previous work, is that the 

complementarity between firm-level R&D and industry ICT decreases over time and 

becomes  insignificant after five years. A possible reason is that the learning process 

associated with ICT is complex and, at the beginning, only firms beyond a given 

threshold of technological capabilities (skills, R&D, etc.) are able to handle the 

complex changes induced by the new technology. Once learning about the 

implementation of the new technology improves, absorptive capacity is no longer 

relevant to assimilate external knowledge and a large number of firms gain from these 

spillovers. An alternative but not competitive explanation is that over time the 

technology has become more codified and easier to use and less demanding in terms 

of additional investments in absorptive capacity (Bartel and Lichtemberg, 1987, 

Chun, 2003 and Robinson et al. 2008).  

 Overall our study provides strong support for the presence of spillover effects 

in the US economy and suggests that ICT spillovers  have been one of the driving 
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factors behind the 1990s US productivity revival. It is perhaps the lack of such 

spillovers in Europe one of the reasons behind the US-EU productivity gap, i.e. one of 

the main objects of research on ICT in the latest years (Nicoletti and Scarpetta, 2003, 

Inklaar et al. 2008).  

Our work also opens new avenues for future research. We have focused on 

firms that actively engage in R&D; however, firms that do not invest in formal R&D 

could still take advantage of ICT spillovers. Testing this hypothesis requires the 

construction of different measures of absorptive capacity that rely, for example, on 

managerial and organizational efforts, rather than research effort. Additional 

questions to address are whether the spillover effect persists in more recent years, and 

to what extent other countries have been able to enjoy the benefit of ICT-related 

external knowledge. 
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Appendix A 

 

Table A.1 

 

Test for cross sectional dependence in the firm-level data (Pesaran 2004) 

 

Variable CD- test p-value 

Labor productivity 310.36 <0.001 

Physical capital per worker  93.9 <0.001 

R&D capital per worker 165.25 <0.001 

Notes: the test is based on the null hypothesis of cross-section independence 

 

Appendix B: robustness checks 

This section reports some additional robustness checks for the key results of Table 6, 

based on alternative weighting schemes for the inter-industry ICT spillover variable. 

In our main set of results the weighting factor was given by the ratio between 

intermediate transactions among industries j and f (Mjft) and total intermediates’ sales 

of the selling industry (Yft) - see equation (2). Alternatively, we can construct a 

weighting factor by dividing inter-industry intermediate transactions by the total 

intermediate purchases of the buying industry (Pjt). We call this measure 𝑤𝐼𝐶𝑇𝑗𝑡
𝑏 , 

where ‘b’ stands for ‘buyer’:  

                              𝑤𝐼𝐶𝑇𝐿𝑗𝑡
𝑏 = ∑ 𝑤𝑗𝑓𝑡

𝑏 ×  𝐼𝐶𝑇𝐿𝑓𝑡
17
𝑗=1 = ∑

𝑀𝑗𝑓𝑡

𝑃𝑗𝑡
×  𝐼𝐶𝑇𝐿𝑓𝑡         

17
𝑗=1      (B.1)             

Results based on this measure are presented in cols. (1) and (2) of Table B.2. These 

estimates broadly confirm our baseline findings, even though the inter-industry ICT 

spillover appears somewhat higher.  

We also test the robustness of our results to the use of a weighting scheme 

based on inter-industry patent citations. Indeed, one may question that the ability to 

exploit technology improvements of the surrounding industries may depend on 

technological proximity of sectors, rather than the intensity of their trade transactions. 

For this reason, we build inter-industry patent citation matrix flows using NBER 
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USPTO patent data files 2006 (see Hall et al. 2001 for details). We consider two 

versions of this patent based ICT spillover measure (denoted by ‘p’), following the 

two alternative weighting methodologies shown above. In equation (B.2), the 

weighting factor (𝑤𝑗𝑓𝑡
𝑝

) is the ratio between the citations made by patent assignees 

operating in industry j to patents applied for firms operating in industry f (Cjft) and 

total (backward) citations made by industry j (Cjt): 

  𝑤𝐼𝐶𝑇𝐿𝑗𝑡
𝑝 = ∑ 𝑤𝑗𝑓𝑡

𝑝 ×  𝐼𝐶𝑇𝐿𝑓𝑡
12
𝑗=1 = ∑

𝐶𝑗𝑓𝑡

𝐶𝑓𝑡
×  𝐼𝐶𝑇𝐿𝑓𝑡

12
𝑗=1 .    (B.2) 

   

In equation (B.3) the weighting factor is scaled by the total (forward) citations 

received by industry f (Cft):  

  𝑤𝐼𝐶𝐿𝑇𝑗𝑡
𝑝,𝑏 = ∑ 𝑤𝑗𝑓𝑡

𝑝,𝑏 ×  𝐼𝐶𝑇𝐿𝑓𝑡
12
𝑗=1 = ∑

𝐶𝑗𝑓𝑡

𝐶𝑗𝑡
× 𝐼𝐶𝑇𝐿𝑓𝑡.12

𝑗=1     (B.3) 

 Equation (B.2) defines the inter-industry ICT spillover variable using weights 

reflecting the total amount of knowledge “released” by contiguous industries 

(𝑤𝐼𝐶𝑇𝑗𝑡
𝑏). Equation (B.3) considers as a scale factor the total amount of knowledge 

“acquired” by the recipient industry 𝑤𝐼𝐶𝑇𝑗𝑡
𝑝,𝑏

. Results based on these patent-weighted 

measures of spillovers are presented in columns 3-6 of Table A.1. These only refer to 

the manufacturing sector as there is no information on patents for services.   
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TABLE B.1 

Robustness Checks for the Extended Production 

Function Based on Alternative Weighting Schemes 
 All Manufacturing Manufacturing 

Weighting scheme I-O transactions  

on total intermediate purchases 

(A.1) 

Total backward  

patent citations scaled on cited 

industry 

(A.2) 

Total backward  

patent citations scaled on citing 

industry 

 (A.3) 

 (1) (2) (3) (4) (5)   (6) 

 Contempo-

raneous 

 

5-year lag Contempo- 

raneous 

 

5-year lag  Contempo- 

raneous 

 

5-year 

lag 

Company level variables     

Physical capital p.w. 0.111*** 0.0365 0.119*** 0.0381 0.117*** 0.0399 

 (0.0291) (0.0540) (0.0297) (0.0548) (0.0297) (0.0547) 

R&D capital  p.w. 0.105*** 0.122*** 0.0992*** 0.122*** 0.0928*** 0.121*** 

 (0.0236) (0.0403) (0.0242) (0.0406) (0.0241) (0.0407) 

Industry level variables and interactions     

Intra-industry ICT  

(χ1) -0.409*** 0.262** -0.388*** 0.263** -0.244*** 0.267** 

 (0.0575) (0.105) (0.0636) (0.106) (0.0623) (0.106) 

Firm R&D*intra-

industry ICT   (η1) 0.0126*** -0.00581 0.0145*** -0.00423 0.0147*** -0.00495 

 (0.00440) (0.00915) (0.00436) (0.00917) (0.00425) (0.00916) 

Inter-industry ICT  

(χ2) 0.509*** 0.0536 0.432*** 0.366*** 0.387*** 0.199*** 

 (0.105) (0.109) (0.123) (0.117) (0.0525) (0.0451) 

Intra-industry R&D  

(ϕ1) 0.0340 -0.0631* 0.0777** -0.0601 0.0717** -0.0936** 

 (0.0222) (0.0343) (0.0327) (0.0432) (0.0323) (0.0466) 

       

Obs. 5,814 3,616 5,680 3,545 5,680 3,545 

R-squared 0.258 0.169 0.253 0.174 0.259 0.176 

No. of Firms  785 708 761 692 761 692 

Kleibergen-Paap LM 

test P-value 

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Hansen J test P-value 0.392 0.620 0.460 0.580 0.511 0.625 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all 

specifications. All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and 

first-order serial correlation are reported in parentheses. The dependent variable is labour productivity. All 

company level variables have been instrumented with their own values up to two-year lags. In the presence of 

heteroscedasticity, the Hansen J statistic is the appropriate test of the null hypothesis of instrument validity. The 

Kleibergen-Paap LM statistic tests the null hypothesis that the matrix of reduced-form coefficients in the first-

stage regression is under-identified. ***, **, * significant at 1, 5 and 10%. 
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Tables B.2 and B.3 presents results for the additional sensitivity tests, 

discussed in section 5.2. As additional sensitivity tests, we remove large firms in 

terms of sales and R&D expenses (the top 5% performing companies) from the 

sample to check whether their presence might drive our results. Our main conclusions 

remain unchallenged (see Table B.2). Finally, we investigate whether our results are 

driven by some specific industry patterns. We therefore run our key specifications 

distinguishing between ICT-producing and ICT-using industries. In this case, the 

contemporaneous effect of both types of ICT spillover is confirmed while their lagged 

impacts are not statistically significant, probably due to the very small sample size 

(see Table B.3).  
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TABLE B.2  

Excluding large firms 

 
 Top 5% performers 

R&D capital 

Top 5% performers 

Total Sales 

 (1) (2) (3) (4) 

 Contempo- 

raneous 

 

5-year lag Contempo- 

raneous 

 

5-year lag  

Company level variables     

Physical capital p.w. 0.108*** 0.0286 0.109*** 0.0259 

 (0.0300) (0.0567) (0.0300) (0.0570) 

R&D capital  p.w. 0.0920*** 0.113*** 0.0932*** 0.114*** 

 (0.0246) (0.0420) (0.0249) (0.0426) 

Industry level variables and interactions   

Intra-industry ICT  (χ1) -0.484*** 0.287** -0.496*** 0.292** 

 (0.0593) (0.117) (0.0605) (0.119) 

Firm R&D*intra-industry ICT   (η1) 0.0133** -0.00828 0.0103** -0.0127 

 (0.00550) (0.0127) (0.00517) (0.0120) 

Inter-industry ICT  (χ2) 0.212*** 0.0813* 0.210*** 0.0774 

 (0.0397) (0.0491) (0.0413) (0.0503) 

Intra-industry R&D  (ϕ1) 0.0464** -0.0374 0.0536** -0.0428 

 (0.0186) (0.0347) (0.0228) (0.0399) 

     

Obs. 5,478 3,373 5,479 3,366 

R-squared 0.247 0.162 0.248 0.161 

No. of Firms  752 672 758 671 

Kleibergen-Paap LM test P-value <0.001 <0.001 <0.001 <0.001 

Hansen J test P-value 0.564 0.600 0.466 0.534 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all 

specifications. All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and 

first-order serial correlation are reported in parentheses. The dependent variable is labour productivity. All 

company level variables have been instrumented with their own values up to two-year lags. In the presence of 

heteroscedasticity, the Hansen J statistic is the appropriate test of the null hypothesis of instrument validity. The 

Kleibergen-Paap LM statistic tests the null hypothesis that the matrix of reduced-form coefficients in the first-

stage regression is under-identified. ***, **, * significant at 1, 5 and 10%. 
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TABLE B.3  

Distinguishing between ICT producers/users 

 
 ICT producers 

(ISIC 30t33, 64) 

ICT users 

(ISIC 17t19, 21t22,  

29, 34t35, 36t37,  

50t52, 65t67, 71t74) 

 (1) (2) (3) (4) 

 Contempo- 

raneous 

 

5-year lag Contempo- 

raneous 

 

5-year lag  

Company level variables     

Physical capital   p.w. 0.130*** 0.019 0.105** 0.132 

 (0.038) (0.072) (0.042) (0.097) 

R&D capital    p.w. 0.149*** 0.201*** 0.053* 0.001 

 (0.036) (0.065) (0.032) (0.0592) 

Industry level variables and interactions   

Intra-industry ICT  (χ1) -1.814* -4.997* -0.230*** -0.130 

 (1.015) (2.806) (0.072) (0.130) 

Firm R&D*intra-industry ICT   (η1) 0.031*** -0.002 0.003 0.014 

 (0.008) (0.016) (0.005) (0.011) 

Inter-industry ICT  (χ2) 0.493 4.816* -0.087 -0.073 

 (0.953) (2.841) (0.055) (0.058) 

Intra-industry R&D  (ϕ1) -0.424 -0.653*** 0.019 -0.027 

 (0.290) (0.201) (0.027) (0.043) 

     

Obs. 2,683 1,664 1,847 1,144 

R-squared 0.381 0.255 0.210 0.120 

No. of Firms  366 333 247 219 

Kleibergen-Paap LM test P-value <0.001 <0.001 <0.001 <0.001 

Hansen J test P-value 0.926 0.872 0.0327 0.00553 

All equations are estimated using a GMM Fixed effects estimator.  Time dummies are included in all 

specifications. All variables are expressed in per worker terms. Standard errors robust to heteroskedasticity and 

first-order serial correlation are reported in parentheses. The dependent variable is labour productivity. All 

company level variables have been instrumented with their own values up to two-year lags. In the presence of 

heteroscedasticity, the Hansen J statistic is the appropriate test of the null hypothesis of instrument validity. The 

Kleibergen-Paap LM statistic tests the null hypothesis that the matrix of reduced-form coefficients in the first-

stage regression is under-identified. ***, **, * significant at 1, 5 and 10%. 
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1 Biagi (2013) provides another recent survey of the literature. 
2One form of spillovers is related to the rapid decline in quality adjusted ICT prices, which has 

contributed to productivity growth. However, this 'pecuniary externality' cannot be considered as pure 

spillovers because it does not capture a transfer of knowledge but it results from an incorrect measure 

of capital equipment, materials and their prices (Stiroh 2002). The substantial productivity gains that 

firms would enjoy following a cost reduction are short lived with no implications for long-run growth. 
3 Basu and Fernald (2007) is to our knowledge the only study that finds some positive ICT spillovers in 

the US economy using industry level data. The positive effect is estimated only for lagged ICT, while 

the contemporaneous effect is negative.  
4The hypothesis that the effect of spillovers depends on facilitating factors in the receiving firms or 

industries have already been investigated in relation to R&D and human capital (Griffith et al. 2004, 

Vandenbussche et al.2006). There is also an extensive literature investigating the role of absorptive 

capacity in knowledge or technology transfers. See also Cohen and Levinthal (1989) and Yasar (2010). 
5 See, for example, Atrostic and Nguyen (2005), Moshiri and Simpson (2011). 
6 For example, Greenwood and Yorokoglu (1997) discuss the macroeconomic implications of the 

learning process associated with ICT during the US productivity slowdown in the early 1970s.  They 

argue that skills, which are a component of absorptive capacity, are particularly important in early 

phases of the diffusion of the new technology. Over time, the skill impact diminishes as learning 

becomes easier.. 
7 Note that ICT is an industry level variable and it is divided by industry employment.   
8Several contributions claim that weighted measures of the pool of external knowledge are better 

spillover proxies as the weights capture the degree of ‘closeness’ between firms, expressed as 

‘technological’ distance (Jaffe 1986), the extent of product market proximity (Bloom et al. 2013) or 

geographical distance (Lychagin et al. 2010). The weighting technique adopted here accounts for 

linkages between suppliers and customers, as in Mun and Nadiri (2002). Alternative weighting 

schemes, based on inter-industry patent citations, are considered in Appendix B. 
9  For example, Brynjolfsson et al. (2002) compute ICT capital using CII (Computer Intelligence 

Infocorp) data on computer hardware inventories and they state that 'The CII data provides a relatively 

narrow definition of computers that omits software, information system staff and telecommunication 

equipment'. Similar shortcomings of this data set are discussed in Draca et al. (2007).  
10 Zahra and George (2002) distinguish between potential and realized absorptive capacity. The first 

has to do with the two dimensions of acquisition and assimilation of knowledge. Realized absorptive 

capacity is related to the transformation and the exploitation of knowledge to commercial purposes. 

This is the aspect that has attracted several empirical contributions. We believe that the accumulation 

of R&D serves both purposes. In fact, not all investments in R&D lead to innovations but they increase 

the potentials to recognize and assimilate new knowledge, i.e. increase potential absorptive capacity. 
11 http://niesr.ac.uk/sites/default/files/publications/dp416_0.pdf 
12Cross-sectional dependence (CSD) is another source of bias. In fact, the Pesaran (2004) test for CSD 

rejects the null hypothesis of cross-sectional independence, as documented in Appendix table A.1. We 

control for CSD with the inclusion of time dummies, assuming homogenous factor loading across 

firms (Eberhardt et al. 2013). Other solutions for this problem are the use of the Driscroll-Kraay (1998) 

estimation methods or the implementation of the Common Correlated Effect (CCE) estimator (Pesaran 

2006). These techniques rely on panels with long time series and relatively small cross section 

dimensions. Our panel, however, is characterized by a large number of cross-sectional units and a 

relatively short time dimension, which prevents us from applying these techniques.  
13 To test for the presence of constant returns to scale (CRS) we estimated the specification presented in 

column 1 adding employment as an additional regressor.  Under the hypothesis of CRS the 

employment coefficient should not be statistically significant. We could not reject the hypothesis of 

CRS at the 5% significance level.  
14 A possible alternative explanation is that the negative sign of own-industry ICT investment is due to 

a product market rivalry (or business stealing) effect, whereby companies that find new and more 

efficient applications by ICT usage will negatively affect the productivity of their competitors (Bloom 

et al. 2013). Product market rivalry is likely to be more common among competitors than among 

companies operating in different industries. 
15 We constructed an intra-industry and an inter-industry measure of R&D capital per worker. The 

latter used the same weighting scheme adopted to build the inter-industry ICT variable. However we 

find that this variable created problems due to collinearity issues. For example, while the correlation 

between inter-industry ICT and inter-industry R&D for the whole sample is around 0.6, in some 
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industries it goes up to 0.9. Hence collinearity is an issue when trying to control for too many industry 

factors, particularly when the inter-industry spillover variables use the same weights. Therefore all 

robustness checks use intra-industry R&D. 
16 See also Hall (1988) and Vecchi (2000). 
17Similar results are obtained using real industry output as a control variable. This check aimed to 

verify whether possible measurement errors associated with the use of industry deflators (in place of 

firm-specific prices) were driving our results (Klette and Griliches 1996). 
18Equation (6) is estimated with the Newey-West estimator in order to control for serial correlation and 

arbitrary heteroskedasticity.  
19 We also computed the total spillover  effect using the coefficients in column (3). Similar to the 

results in Table 5 we found that only companies at the higher end of the R&D distribution can offset 

the negative ICT intra industry spillover.  
20 More specifically, the F statistics refers to the weak instrument test by Stock and Yogo (2005). The 

rule of thumb is that an F statistics above 16 indicates that the instruments are valid. 
21We also considered a specification which includes inter-industry R&D instead of intra-industry. In 

this case the results are closer to those presented in columns (1) - (3), with a positive inter-industry ICT 

spillover at time t-5. Therefore, parameters reported on the right-hand side of the table have to be 

considered as lower bound values. 
22We are particularly grateful to one reviewer for raising this point.  
23 In the five-year lag specification the capital per worker variable is no longer statistically significant. 

This suggests that there might be some miss-specification when considering longer lags. To investigate 

this issue we run the specification without imposing constant returns to scale (i.e. without expressing 

variables in per worker terms). In this case the capital coefficient is statistically significant and results 

for the other coefficients are consistent with those presented in Table 6. Results are available upon 

request. 
24 The literature has generally found complementarity between ICT and skilled labour (Bresnahan, 

Brynjolfsson and Hitt 2002), while the complementarity between R&D and ICT is more dubious (Hall 

et al. 2013). This means that we cannot rule out the fact that the declining role of absorptive capacity is 

a consequence of the proxy we use. Expanding on this issue is beyond the scope of this paper but 

further analysis on the changes of absorptive capacity over time warrant future research effort.  
25We also tried to assess the lagged impact of ICT using a dynamic specification, i.e. including the 

lagged dependent variable on the right hand side of the equation. The main results on the ICT spillover 

effect were confirmed. However, coefficient estimates of the company-level variables were unstable; 

therefore we decided to use a static specification.  
26 These results also rule out the presence of business stealing effect as one of the two alternative 

explanations of the negative intra-industry spillover effect discussed in Section 5.1, footnote 14. In fact, 

it would be difficult to argue that market rivalry decreases over time. 


