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Lenka Zboňáková†, Wolfgang Karl Härdle ‡ and Weining Wang §
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Abstract

In the present paper we study the dynamics of penalization parameter λ of the least
absolute shrinkage and selection operator (Lasso) method proposed by Tibshirani (1996)
and extended into quantile regression context by Li and Zhu (2008). The dynamic be-
haviour of the parameter λ can be observed when the model is assumed to vary over
time and therefore the fitting is performed with the use of moving windows. The pro-
posal of investigating time series of λ and its dependency on model characteristics was
brought into focus by Härdle et al. (2016), which was a foundation of FinancialRiskMeter
(http://frm.wiwi.hu-berlin.de). Following the ideas behind the two aforementioned
projects, we use the derivation of the formula for the penalization parameter λ as a result
of the optimization problem. This reveals three possible effects driving λ; variance of
the error term, correlation structure of the covariates and number of nonzero coefficients
of the model. Our aim is to disentangle these three effect and investigate their relationship
with the tuning parameter λ, which is conducted by a simulation study. After dealing
with the theoretical impact of the three model characteristics on λ, empirical application
is performed and the idea of implementing the parameter λ into a systemic risk measure
is presented. The codes used to obtain the results included in this work are available on
http://quantlet.de/d3/ia/.
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1 Introduction

The least absolute shrinkage and selection operator (Lasso) method as proposed by Tibshi-

rani (1996) has been widely used and extended during recent years. The literature presents

a method which simultaneously completes the task of model selection and parameter esti-

mation, while studying its consistency. A key factor for the estimation precision is choosing

a tuning parameter which controls the degree of penalization. Although there is much liter-

ature on Lasso, including a time series context, the time variation of the tuning parameter

remains unexplored.

Here we explain dynamics of the penalization parameter λ and how it can be used in finan-

cial practice, particularly when dealing with systemic risk. Let us assume for the moment

a linear model with a vector of responses Y = (Y1, Y2, . . . , Yn)>, a vector of parameters

β = (β1, . . . , βp)
>, an (n× p) design matrix X, which might be either fixed or random, and

a vector of independent identically distributed errors ε with zero mean and variance σ2. Then

the objective function of Lasso is

min
β

1

2

n∑
i=1

(
Yi −X>i β

)2
+ λ

p∑
j=1

|βj |

 , (1)

with tuning parameter λ ≥ 0 and Xi, 0 ≤ i ≤ n, denoting row vectors of X. In (1) one

assumes that the columns of the matrix X = (xij)i=1,...,n,j=1,...,p have been standardized, i.e.

n−1
∑n

i=1 xij = 0 and n−1
∑n

i=1 x
2
ij = 1. Solving this type of penalized least squares problem

with L1-penalization allows some of the coefficients of the model to shrink to 0. This is

a highly advantageous property when dealing with high-dimensional data, since variable

selection and shrinkage of coefficients are performed simultaneously. Shrinking some of the

coefficients to exactly 0 also improves the interpretability of the fitted model.

Modification of Lasso in quantile regression (Koenker and Basset (1978)) studied by Li and

Zhu (2008) and Belloni and Chernozhukov (2011) solves the optimization problem with

min
β

1

2

n∑
i=1

ρτ

(
Yi −X>i β

)
+ λ

p∑
j=1

|βj |

 , (2)

where τ ∈ (0, 1) and ρτ (·) is the check function

ρτ (x) =

{
τ · x if x > 0;

−(1− τ) · x otherwise.
(3)

The Lasso models described above account for independent observations. However, there is

much literature on the Lasso in time series context as well. For the univariate case we refer

to Wang et al. (2007), Nardi and Rinaldo (2011) and Chen and Chan (2011). The case of

multivariate time series, particularly vector autoregression, was covered by e.g. Hsu et al.

(2008).

Lasso in quantile regression has been used by Härdle et al. (2016) to model tail event de-

pendencies among U.S. financial companies. Based on the penalization parameters the Fi-

nancialRiskMeter (FRM), http://frm.wiwi.hu-berlin.de, was developed, see Figure 1.
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The value of the averaged penalization parameter λ was elevated during the financial crises.

This fact led us to the question we indicated above; what drives the penalization parameter

λ and what are the dynamics of λ? We investigate this by simulation study and empirical

application.

Figure 1: Time series of λ taken from FinancialRiskMeter (http://frm.wiwi.hu-berlin.
de), normalized to interval (0,1).

The computations included in this paper were performed in the environment of R software

developed by R Core Team (2014) and the codes are available on http://quantlet.de/d3/

ia/.

2 Lasso method

2.1 Lasso as an optimization problem

In this section we firstly follow Osborne et al. (2000) to derive formula for the penalization

parameter λ of the Lasso method when applied in linear regression problems. Then we aim

our focus on the representation of λ in penalized quantile regression.

If we treat λ as a fixed value in the objective function of the penalized regression

f(β, λ) =

1

2

n∑
i=1

(
Yi −X>i β

)2
+ λ

p∑
j=1

|βj |

 , (4)

then the function f(β, λ) is convex in parameter β. Moreover, with diverging β we observe

that f(β, λ)→∞. Hence there exists at least one minimum of the function f(·, λ). According

to Osborne (1985) this minimum is attained in β̂(λ) if and only if the null-vector 0 ∈ Rp is

an element of the subdifferential

∂f(β, λ)

∂β
= −X>(Y −Xβ) + λu(β), (5)
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where u(β) = (u1(β), . . . , up(β))> is defined as uj(β) = 1 if βj > 0, uj(β) = −1 if βj < 0 and

uj(β) ∈ [−1, 1] if βj = 0. Then, for β̂(λ) as a minimizer of f(β, λ) the following has to be

satisfied

0 = −X>{Y −Xβ̂(λ)}+ λu(β̂(λ)), (6)

Here we denote the estimator of a parameter vector β as a function of the penalization

parameter λ. This dependency follows from the formulation of the penalized regression

method and its objective function (4), where we first select λ and then search for β̂(λ) which

minimizes (4). Using the fact that u(β)>β =
∑p

j=1 |βj | = ||β||1, where || · ||1 denotes L1-norm

of a p-dimensional vector, (6) can be further rewritten in the formula

λ =
{Y −Xβ̂(λ)}>Xβ̂(λ)

||β̂(λ)||1
. (7)

The identity (7) leads us to consider possible constituents which influence the value of pa-

rameter λ and therein its dynamics when treated in a time-dependent framework. Here we

propose to study three effects which are related to the size of λ:

1. size of residuals of the model;

2. absolute size of the coefficients of the model, ||β||1;

3. singularity of a matrix X>X.

The second effect can also be translated into the effect of a number of nonzero parameters

the so-called active set of the model, q = ||β||0 =
∑p

j=1 I(βj 6= 0), where || · ||0 stands for

L0-norm on Rp and I(·) is an indicator function. As a measure of the third structure, the

condition number κ(X>X) defined as the ratio φmax(X>X)/φmin(X>X), the maximum and

the minimum eigenvalue of the matrix X>X, can be used.

Similarly, one can derive formulae for the penalization parameter λ in a quantile regression

problem (2) and (3). Following Li and Zhu (2008)

λ =
θ>Xβ̂(λ)

||β̂(λ)||1
, (8)

where θ = (θ1, . . . , θn)> satisfies the following

θi =


τ if Yi −X>i β̂(λ) > 0;

−(1− τ) if Yi −X>i β̂(λ) < 0;

∈ (−(1− τ), τ) if Yi −X>i β̂(λ) = 0.

(9)

Hence, we observe that λ depends on cardinality of the active set q, which is again influenced

by the correlation structure of the design matrix. Direct impact of the variance of residuals

disappears and only the sign of the residuals stays in effect. However, when looking at Figure 2

one can see similarities between the time series of λ and historic values of the implied volatility

index (VIX) reported by the Chicago Board Options Exchange. This fact leads us to believe

that the dynamics of λ is also influenced by the changes in the variance of model residuals.
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Figure 2: Normalized implied volatility index (blue) and λ from FinancialRiskMeter (red).

XFGTVP LambdaVIX

2.2 Choosing the penalization parameter

In theory the equalities (7) and (8) hold for every solution of the Lasso optimization problems

(1) and (2) respectively, since first λ is chosen and afterwards the model is fitted according to

the given value of the penalization parameter. One of the commonly used methods of choosing

estimator of λ is cross-validation in its three forms; k-fold, leave-one-out and generalized

cross-validation method, see e.g. Tibshirani (1996). As pointed out in Hastie et al. (2009),

cross-validation is a widely used method for estimation of prediction error. This feature is used

when estimating λ in Lasso method, where, on a grid of penalization parameters λ, the one

which minimizes estimated prediction error is chosen. However, as Leng et al. (2006) argued

in their work, methods of choosing penalization parameter based on prediction accuracy are

in general not consistent when variable selection is considered. The same argument was used

by Wang et al. (2009) where they compared the asymptotic behaviour of the generalized

cross-validation to the one of Akaike’s information criterion (AIC); it is efficient if one is

interested in the model error, but inconsistent in selecting the true model.

The second widely used method of estimating λ is the Bayesian information criterion (BIC).

By β0 = (β01, . . . , β0p)
> we denote the true vector of coefficients of the regression model and

q0 defines the number of its nonzero elements, i.e. β0j 6= 0 for 1 ≤ j ≤ q0 and β0j = 0 for

j > q0. The permutation of the elements of β0 is performed without loss of generality, so the

previous notation holds. Secondly, by S = {j1, . . . , jq} we denote an arbitrary model with

XS = (Xj1 , . . . , Xjq) ∈ Rn×q as a design matrix associated with it. Vector of coefficients of

a model S is βS = (βj1 , . . . , βjq)> and the model size is |S| = q. The true model is referred

to by S0.
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Using the notation from above, the BIC is written in the following form

BICS = log(σ̂2
S) + |S| log(n)

n
Cn, (10)

with σ̂2
S = n−1 SSES = infβS (n−1||Y − XSβS ||22) where || · ||2 denotes L2-norm of a vector

and Cn is some positive constant. Wang and Leng (2007) prove the consistency of (10) in

selecting a true model also for a diverging parameter vector dimension p and a true number

of nonzero coefficients q0. This is shown in unpenalized as well as in penalized regression

models.

Modification of (10) in terms of a tuning parameter leads to

BICλ = log(σ̂2
λ) + |Sλ|

log(n)

n
Cn, (11)

where σ̂2
λ = n−1 SSEλ = n−1||Y −Xβ̂(λ)||22 and Sλ = {j : β̂(λ)j 6= 0}. The estimation of the

tuning parameter λ̂ is then chosen by minimizing (11) with Cn = log{log(p)} or Cn =
√
n/p,

see Chand (2012).

Consistency of the BICλ selector holds for the penalized regression methods such as smoothly

clipped absolute deviation (SCAD) method defined by Fan and Li (2001) and adaptive Lasso

introduced by Zou (2006). For the regular Lasso method by Tibshirani (1996) the additional

assumption on a design matrix X called irrepresentable condition has to be fulfilled.

The aforementioned condition was presented by Zhao and Yu (2006). Firstly they assumed

that n−1X>X
p→ C, with C a positive definite matrix

C =

(
C11 C12

C21 C22

)
. (12)

Here C11 is a (q0× q0) matrix that corresponds to the q0 active predictors and is assumed to

be invertible. Then the formulation of the irrepresentable condition is∣∣[C21C
−1
11 sgn(βS0)

]
k

∣∣ ≤ 1, k = 1, . . . , p− q0. (13)

Adopting the notation from above, q0 is a number of nonzero parameters in the true model

S0 and sgn(βS0) = (sgn(β01), . . . , sgn(β0q0))> with sign function sgn(βj) = 1 if βj > 0,

sgn(βj) = −1 if βj < 0 and sgn(βj) = 0 if βj = 0.

Modified selection criteria for penalized quantile regression which were used by Li and Zhu

(2008) are BIC for quantile regression presented by Koenker et al. (1994) and generalized

approximate cross-validation criterion (GACV) introduced by Yuan (2006)

BIC(λ) = log

[
n−1

n∑
i=1

ρτ{Yi −X>i β̂(λ)}

]
+

log(n)

2n
d̂f(λ), (14)

GACV(λ) =

n∑
i=1

ρτ{Yi −X>i β̂(λ)}

n− d̂f(λ)
, (15)

where d̂f(λ) stands for the estimated effective dimension of the fitted model. Li and Zhu

(2008) argued that number of interpolated observations Yi denoted by E is a plausible measure

for this quantity, i.e. d̂f(λ) = |E|.

6



2.3 Algorithms to solve Lasso

Finding a feasible solution of the optimization problems (1) and (2) can be computationally

demanding, since one has to check all of the combinations of values of the tuning parameter λ

and its respective model parameter estimates β̂(λ). Only after all of the possible combinations

are found, the particular method of choosing λ̂ can be applied.

The first algorithm for finding solution of Lasso was presented by Tibshirani (1996) in his work

introducing the Lasso method itself. Then Osborne et al. (2000) developed an algorithm which

works not only for the case where p < n but also n > p. In order to make the computation

more efficient, Efron et al. (2004) proposed the use of the least angle regression algorithm

(LARS). The latter procedure is as efficient as a single least squares fit and can also be used in

cases where number of parameters of the investigated model is much larger than the number

of observations. As a selection criterion of λ̂ for LARS, Efron et al. (2004) suggested to use

Cp-type selection criterion. Zou et al. (2007) then defined model selection criteria such as

Cp, Akaike information criterion (AIC) and BIC suitable for the Lasso framework.

Another approaches to find a path of Lasso solutions, particularly for the quantile regression,

were proposed by Belloni and Chernozhukov (2011) and Li and Zhu (2008). The second one

comes into focus in this paper, since one is interested in modeling tail event dependencies

when dealing with systemic risk evaluations.

3 Simulation study

As derived in the previous section, the penalization parameter λ of the Lasso regression

depends on three effects. The factors driving its dynamics are variance of the error term

of the model, conditionality of the matrix X>X and absolute size of the coefficients of the

model, ||β||1. In this section we conduct simulations which describe the relationships between

these three effects and the parameter λ focusing mainly on a quantile regression case. Our

aim is to disentangle these effects and find the way to explain behaviour of λ in dependency

of the three aforementioned elements.

3.1 Penalty λ dependent on variance σ2

Firstly we investigate the effect of the size of variance σ2 of the error term ε on the penalty

parameter λ. According to the identity (7) λ is supposed to rise with higher σ2 and vice

versa. This holds for the linear regression problem, and as discussed previously for the

quantile regression as well. The evidence is visible from Figure 2, whereas when considering

the formula (8) this dependency is not straightforward to follow.

In our simulation study we use quantile regression model Y = Xβ + ε with a vector of

responses Y = (Y1, . . . , Yn)>, a vector of parameters β = (β1, . . . , βp)
>, an (n × p) design

matrix X and iid error term ε = (ε1, . . . , εn)> such that P(εi ≤ 0|Xi = x) = τ for almost

every x ∈ Rp with τ ∈ (0, 1) denoting conditional quantile of Y .
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The design matrix X is simulated from the p-dimensional normal distribution

{Xi}ni=1 ∼ Np(0,Σ), (16)

where the elements of (p× p) covariance matrix Σ = (σij)
p
i,j=1 are defined as follows

σij = ρ|i−j| for i, j = 1, . . . , p, (17)

with ρ = 0.5 as in Tibshirani (1996). Here we select n = 600 and p = 100. In order to study

the effect of increased dispersion (in the error term ε) on λ, the vector of parameters is set

to

β0(100×1) = (1, 1, 1, 1, 1, 0, . . . , 0)>. (18)

The error term is simulated such that its variance changes after the observation i0 = 300.

We assume εi for i = 1, . . . , n to be independently distributed with asymmetric Laplace

distribution

εi ∼

ALD(0, 1, 0.05), if i ≤ i0

ALD(0, 2, 0.05), i > i0

. (19)

The density of asymmetric Laplace distribution is

f(x|µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ (x− µ)

σ

}
, (20)

with location parameter µ, scale parameter σ > 0, skewness parameter τ ∈ (0, 1) and

the check function ρτ (·) as defined in (3). The idea to use this type of distribution comes

from Lee et al. (2014).

We simulate 50 scenarios using the algorithm designed by Li and Zhu (2008) and select λ̂

according to BIC (14). For model fitting we apply moving windows technique to capture the

dynamics of the tuning parameter λ. The size of the moving window is set to be w = 80.

Resulting values of λ̂ obtained by simulation settings above are, together with other model

characteristics of interest, captured in Figure 3.

As can be seen from Figure 3, the values of the estimated tuning parameter λ̂ are indeed

increasing with higher variation σ2 of the error term. Number of nonzero parameters q0 =

||β0||0 was set to be constant over all n = 600 observations and also the level around which

the condition number κ(X>X) fluctuates stays constant. However, the L1-norm of estimated

model coefficients ||β̂(λ̂)||1 changes with higher values of λ̂. Since that is an idea of the Lasso

method itself, this can be seen as a natural effect.

In order to study the size of impact of σ2 on λ we conducted a set of simulations, where

different values of scale parameter σ were used after the change point i0. The starting value

was defined as in the previous case, σ = 1, and the relative and absolute change of average λ̂

were examined. Observed changes are noted in Table 1.

From Table 1 one can see that the penalization parameter λ̂ increases in dependency of

the change in the scale parameter σ of the distribution of the error term in the assumed

model. This conclusion of course corresponds to what we see from Figure 2. Again we use

BIC as a selection criterion. However, as discussed before, theoretically other methods yield

the same dependency structure.
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Figure 3: Time series of λ̂ (blue), other model characteristics and their respective averages
(red) drawn from the 50 simulations with change of σi after i0 = 300, moving windows of
length 80.

XFGTVP LambdaSim

σi ¯̂
λend
¯̂
λstart

¯̂
λend −

¯̂
λstarti > i0

1.1 1.061 0.027
1.2 1.084 0.037
1.3 1.112 0.050
1.4 1.135 0.060
1.5 1.144 0.064
1.6 1.162 0.072
1.7 1.169 0.075
1.8 1.177 0.079
1.9 1.187 0.083
2.0 1.199 0.089

Table 1: Relative and absolute change in averaged values of λ̂ before and after the change
point i0 = 300 with starting value of the scale parameter σi = 1 for i ≤ i0.
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3.2 Penalty λ dependent on model size q

The second effect driving the size of the penalization parameter λ is the number of nonzero

parameters q. In order to study this case, the design matrix X was again set as in (16) and

(17) with ρ = 0.5. The error term εi was simulated to have scale σ = 1 for all 1 ≤ i ≤ n

and the change in vector of model parameters β came into focus. The number of nonzero

parameters of the model was defined by setting β0 to have the form

β0i =


(1, 1, 1, 1, 1, 0, . . . , 0)>, i ≤ i0
(1, 1, . . . , 1︸ ︷︷ ︸

10×

, 0, . . . , 0)>, i > i0. (21)

Thus, the first i0 simulated observations have five active parameters and the rest has ten of

them.

The paths of the values of λ̂ obtained from the aforementioned simulation settings are plotted

in Figure 4. Visible are also other characteristics of the model which we are interested in to

examine.

(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Figure 4: Time series of λ̂ (blue), other model characteristics and their respective averages
(red) drawn from the 50 simulations with change of q0 after i0 = 300, moving windows of
length 80.

XFGTVP LambdaSim

As expected from (8) defining λ, an increasing value of ||β̂(λ)||1 or q results in a decreasing

10
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value of the tuning parameter λ. In this specific case ||β0||1 = q0. From Figure 4 one can see

that the value of λ̂ decreased with higher q̂.

To study the reaction of λ on the cardinality of the active set q, we performed simulations

with different changes of q after the observation i0, the starting value was always q0 = 5. The

results are summarized in Table 2. From equation (8) the relationship between λ and ||β̂(λ)||0
as well as q is inversely proportional and values in Table 2 correspond to this statement.

q0i ¯̂
λend
¯̂
λstart

¯̂
λend −

¯̂
λstarti > i0

6 0.952 -0.021
7 0.922 -0.035
8 0.905 -0.043
9 0.862 -0.062
10 0.837 -0.073
15 0.736 -0.118

Table 2: Relative and absolute change in averaged values of λ̂ before and after the change
point i0 = 300 with starting number of nonzero parameters q0i = 5 for i ≤ i0.

We may conclude that the cardinality of the active set q has a real impact on change in

value of λ. Since in (8) the effect of q is captured by the effect of ||β̂(λ)||1, this is also of our

interest. Another simulation was conducted to investigate the impact of the L1-norm of the

model coefficients. Previously the coefficients were hard thresholded, i.e. cut off abruptly

and set to be zero. Now the parameters are allowed to decrease to zero more smoothly

β0i =


(1, 1, . . . , 1︸ ︷︷ ︸

10×

, 0, . . . , 0)>, i ≤ i0

(1, 0.9, 0.8, . . . , 0.2, 0.1, 0, . . . , 0)>, i > i0,

(22)

i.e. ||β0i||1 = 10 for i ≤ i0 and ||β0i||1 = 5.5 for i > i0.

We put this simulation setting forward, because it seems more natural that the effect of

particular covariates fades away rather than disappears. Time series of model characteristics

of this case are to be found in Figure 5. The relative and absolute change of average λ̂ after

the point i0 = 300 is 1.245 and 0.091 respectively.

3.3 Penalty λ dependent on design

We examine the dependency of the parameter λ on the design matrix X of the given model

through the characteristics called condition number of a matrix:

κ(X>X) =
φmax(X>X)

φmin(X>X)
,

where φmax(·) and φmin(·) are the largest and the smallest eigenvalues of a matrix. If the

condition number κ is low the problem is called well-conditioned, matrices with higher κ

values are referred to as ill-conditioned. The condition number can help to diagnose a mul-

ticollinearity issue. With the presence of multicollinearity, one can expect more coefficients

to be incorrectly defined as significant and therefore values of q and ||β||1 to rise. This is in
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Figure 5: Time series of λ̂ (blue), other model characteristics and their respective averages
(red) drawn from the 50 simulations with change of ||β0i||1 after i0 = 300, moving windows
of length 80.

XFGTVP BetaChange

analogy to the situation described in the previous subsection and regarding the formula (8)

we expect the tuning parameter λ to decrease with higher condition number of the matrix

X>X.

The simulation settings are as follows; parameter β0 as in (18) and the error term is iid with

εi ∼ ALD(0, 1, 0.05) for 0 ≤ i ≤ n. The design matrix X is simulated from (16) and (17), but

here the parameter ρ is allowed to change after the point i0 = 300. The case where ρi = 0

for i ≤ i0 and ρi = 0.5 for i > i0 is illustrated in Figure 6.

Indeed, our expectations presented above hold true. Increased correlation between the co-

variates and with that increased condition number κ(X>X) result in decreasing values of

the estimated tuning parameter λ̂. This case together with other simulated changes in corre-

lation structure between covariates are summarized in Table 3. Starting value of ρ from (17)

is always 0.
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Figure 6: Time series of λ̂ (blue), other model characteristics and their respective averages
(red) drawn from the 50 simulations with change of ρi after i0 = 300, moving windows of
length 80.

XFGTVP LambdaSim

ρi ¯̂
λend
¯̂
λstart

¯̂
λend −

¯̂
λstarti > i0

0.1 1.023 0.012
0.3 0.943 -0.028
0.5 0.890 -0.055
0.7 0.692 -0.155
0.9 0.750 -0.126

Table 3: Relative and absolute change in averaged values of λ̂ before and after the change
point i0 = 300 with starting number of nonzero parameters ρi = 0 for i ≤ i0.

3.4 All factors affecting the value of λ

So far we investigated the effect of the change in the variance of error term σ2, in structure of

the vector of parameters β and in the correlation structure of the covariates ceteris paribus.

In this subsection we focus on all of the factors driving dynamics of λ at once and examine

the strength of their impact when combined together.
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For each of the elements driving the dynamics of the penalization parameter λ we simu-

lated three cases. The values of interest either stayed constant, increased or decreased after

the point i0 = 300. If constant, the scale parameter σ of the distribution of the error term

was set to be 1. Otherwise it increased from the value of 1 to 2 or decreased from 2 to

the value of 1. Number of nonzero parameters was either q0 = 5 for all n = 600 observations

or it increased to the value q0 = 10 or decreased from q0 = 10 to q0 = 5 after the point i0.

The change of the design matrix was again defined by the change of the correlation struc-

ture between corresponding covariates, i.e. change of ρ from (17). For the constant case it

was set to be ρ = 0.5, when increased it had value 0.9 after the i0-th observation and for

the decreasing case it was ρ = 0.9 for i ≤ i0 and ρ = 0.5 for i > i0.

Results of all combinations of the changes in the factors having impact on λ are summarized

in Table 4. There we can see that the effects can overpower each other when combined. This

holds particularly for the cases, when the condition number κ is increased and number of

nonzero parameters q0 decreased and vice versa. This fact can be explained by the issue of

multicollinearity as discussed before.

σ2 ↗ σ2 → σ2 ↘
κ↗ κ→ κ↘ κ↗ κ→ κ↘ κ↗ κ→ κ↘

q0 ↗ 0.884 1.101 1.311 0.783 0.843 1.003 0.659 0.710 0.841
q0 → 0.992 1.198 1.425 0.854 1.001 1.191 0.719 0.843 0.998
q0 ↘ 1.162 1.403 1.555 1.000 1.172 1.300 0.759 0.889 1.125

Table 4: Relative changes λ̂end/λ̂start as a result of combinations of changes in a model.
Blue and red colours indicate increased and decreased values of λ̂ after the change point
respectively, and white colour denotes cases when there is no change in λ̂ visible.

Empirically, when considering the situation on financial markets (particularly modeling of

stock prices), increased volatility indicates elevated risk. Parameter λ is sensitive to the changes

in degree of variation and therefore can be bound to the risk evaluation problem. Another

aspect indicating time series of λ as a measure of systemic risk is its dependency on inter-

connectedness of financial institutions, which can be measured by the number of nonzero

parameters in estimated model and their magnitude.

4 Empirical analysis

4.1 Data description

In order to be able to apply our insight to the FinancialRiskMeter (http://frm.wiwi.

hu-berlin.de), we closely follow the choice of data of Härdle et al. (2016). Due to the com-

putational efficiency, our dataset consists of daily stock returns of the first 100 largest U.S.

financial companies ordered by market capitalization according to NASDAQ company list.

In the FRM case it is 200. The stock returns are downloaded from Yahoo Finance and the

list of the corresponding companies is to be found in Table 6.

As a characterization of the general state of the economy, six macroprudential variables are

used as covariates in our model settings. These are implied volatility index reported by
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the Chicago Board Options Exchange, daily S&P500 index returns, daily Dow Jones U.S.

Real Estate index returns, changes in the three-month Treasury bill rate, changes in the slope

of the yield curve corresponding to the yield spread between the ten-year Treasury rate and

the three-month bill rate and, finally, changes in the credit spread between BAA-rated bonds

and the Treasury rate. The former three are obtained from Yahoo Finance and the latter

three from the Federal Reserve Board. The macro state variables are summarized in Table 7.

The data are downloaded with help of FRM download data.

All of the variables are recorded in the time interval from 03 January 2007 to 17 August 2016.

For the macroprudential variables we use 1 day lagged values.

4.2 Construction of time series of λ̂

In order to capture interdependencies among the companies and to reduce the dimensionality

of the data set into single time series of the penalization parameter λ of the Lasso regression,

we proceed as follows.

We take each of the 100 companies as a dependent variable and use the remaining 99 together

with the macro variables as predictors, i.e. p = 105. This way we get hundred regression

models, which are then fitted with help of the quantile Lasso method by Li and Zhu (2008).

To record the dynamics of λ̂, we use moving windows of size 63 observations (n = 63) which

in this case represents 3 months.

Within each window algorithm designed by Li and Zhu (2008) is used to fit the Lasso model.

Then the best fit and with it also the tuning parameter λ̂ are chosen with help of the BIC

criterion (14). We obtain time series of tuning parameters λ̂k for each of the hundred regressed

companies. These are plotted in Figure 7(a) together with the average over all estimated

parameters λ̂k, k = 1, . . . , 100, which we are interested in.

Indeed as suggested in our previous simulation study, λ̂ is driven by characteristics of an in-

vestigated model. From Figure 7 we can see that its values are higher when the residuals of

the model are higher, too. There are several peaks in time series of λ̂, which correspond to

time periods of financial crises. This fact drives us to the conclusion that the dynamics of λ̂

can serve as an indicator of a systemic risk.

4.3 λ̂ and systemic risk measures

In the past decade, much attention has been paid to measuring of systemic risk, particu-

larly after the financial crisis between 2007 and 2009. It has uncovered the cross-sectional

dependencies among financial institutions to be important when determining the risk on the

market. Adrian and Brunnermeier (2016), Hautsch et al. (2015) and Härdle et al. (2016),

just to mention a few, dealt with evaluating systemic risk according to the relevance of each

financial institution itself. This inspired us to connect the Lasso parameter λ with the sys-

temic risk, since it depends not only on the volatility but also on the size of model parameters

and the correlation structure of the design matrix. The latter two effects can be translated

into the connectedness of financial institutions throughout the market.
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(a) Penalty parameter λ̂ (b) Cardinality of active set q̂

(c) L2-norm of residuals (d) L1-norm of coefficients

Figure 7: Time series of λ̂k (blue) and other model characteristics and their respective aver-
ages (red) when fitted to given dataset, moving windows of length 63.

XFGTVP FRM

To illustrate the connection between λ̂ computed according to the method mentioned previ-

ously and other systemic risk measures, we plotted their common time development starting

from 3 April 2007 to 17 August 2016, see Figure 8.

We chose VIX to show the dependency between λ̂ and volatility observed on the financial

market. The Standard & Poor’s 500 stock market index (S&P500) moves in opposite direc-

tion of λ̂, which can also provide some information about behaviour of λ̂ in connection to

the situation on financial markets. Another systemic risk measure is CoVaR presented by

Adrian and Brunnermeier (2016) and extended by Härdle et al. (2016), where a single index

model for generalized quantile regression instead of linear quantile regression was employed.

The data for CoVaRS were downloaded from TENET VaR CoVaR where only weekly data

between 7 December 2007 and 4 January 2013 were available. Financial turbulence as a risk

measure was proposed by Kritzman and Li (2010). Its comovement with the time series of

λ̂ is visible from the Figure 8(d). A composite indicator of systemic risk (CISS) is an indi-

cator of contemporaneous stress in the financial system developed by Holló et al. (2012) and

computed for the area of Europe on weekly basis. Even when considering another financial

market, particularly collecting data from another countries, periods where CISS was elevated

correspond to the periods of higher λ̂ values. And, finally, credit spread, i.e. changes in
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(a) λ̂ and VIX (b) λ̂ and S&P500

(c) λ̂ and CoVaRS (d) λ̂ and Turbulence

(e) λ̂ and CISS (f) λ̂ and Credit spread

Figure 8: Time series of λ̂ (red) and various systemic risk measures (blue).

XFGTVP LambdaSysRisk

the credit spread between BAA-rated bonds and the Treasury rate, suggested by Giglio et al.

(2016), was used to relate λ̂ to systemic risk level.

From Figure 8 it is visible, that λ̂ has a common trend with some of the aforementioned

systemic risk measures. For CoVaRS and S&P500 index it holds, that their time development

goes in opposite direction compared to λ̂.

In order to show there is a comovement between λ̂ and other systemic risk measures also

from the statistical point of view, we conducted several cointegration tests. When looking
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at Figure 8 one can see, that the time series of observed measures are nonstationary, how-

ever, there may exist cointegration relations between them which would make it a stationary

stochastic process.

As a testing procedure we chose the Johansen (1991) test, where we used its eigenvalue

type. In Table 5 there are stated resulting values of test statistics and their corresponding

critical values on significance levels 10 % and 5%. Variable r corresponds to a number of

cointegration relations found between the two investigated nonstationary time series, i.e. for

the valid inference we require that r = 1.

H0 Test statistic 10 % 5 %

VIX
r ≤ 1 4.80 7.52 9.24
r = 0 87.43 13.75 15.67

S&P500
r ≤ 1 7.59 10.49 12.25
r = 0 9.20 16.85 18.96

CoVaRS
r ≤ 1 4.52 10.49 12.25
r = 0 50.58 16.85 18.96

CoVaRL
r ≤ 1 4.59 10.49 12.25
r = 0 57.15 16.85 18.96

Turbulence
r ≤ 1 8.94 10.49 12.25
r = 0 212.24 16.85 18.96

CISS
r ≤ 1 6.90 10.49 12.25
r = 0 31.12 16.85 18.96

Volatility Connectedness
r ≤ 1 9.48 10.49 12.25
r = 0 10.51 16.85 18.96

Yield Slope
r ≤ 1 7.20 10.49 12.25
r = 0 13.63 16.85 18.96

Credit Spread
r ≤ 1 5.45 10.49 12.25
r = 0 42.29 16.85 18.96

Table 5: Cointegration of λ̂ with systemic risk measures, r is number of cointegration relations
in Johansen procedure, measures cointegrated with λ̂ are written in bold.

In Table 5 we included 3 more systemic risk measures. We chose also CoVaR computed

with variable selection based on linear quantile regression (CoVaRL). Another systemic

risk measure is the volatility connectedness index designed by Diebold and Yilmaz (2014)

and accessed from http://financialconnectedness.org. Yield slope denotes changes in

the slope of the yield curve corresponding to the yield spread between the 10-year Treasury

rate and the 3-month bill rate.

As we can see, many of the measures are cointegrated with the estimated Lasso parameter λ̂.
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WFC Wells Fargo & Company ALL Allstate Corporation (The)
JPM JP Morgan Chase & Co. BEN Franklin Resources, Inc.
BAC Bank of America Corporation STI SunTrust Banks, Inc.
C Citigroup Inc. MCO Moody’s Corporation
AIG American International Group, Inc. PGR Progressive Corporation (The)
GS Goldman Sachs Group, Inc. (The) AMP AMERIPRISE FINANCIAL SERVICES, INC.
USB U.S. Bancorp AMTD TD Ameritrade Holding Corporation
AXP American Express Company HIG Hartford Financial Services Group, Inc. (The)
MS Morgan Stanley TROW T. Rowe Price Group, Inc.
BLK BlackRock, Inc. NTRS Northern Trust Corporation
MET MetLife, Inc. MTB M&T Bank Corporation
PNC PNC Financial Services Group, Inc. (The) FITB Fifth Third Bancorp
BK Bank Of New York Mellon Corporation (The) IVZ Invesco Plc
SCHW The Charles Schwab Corporation L Loews Corporation
COF Capital One Financial Corporation EFX Equifax, Inc.
PRU Prudential Financial, Inc. PFG Principal Financial Group Inc
TRV The Travelers Companies, Inc. RF Regions Financial Corporation
CME CME Group Inc. MKL Markel Corporation
CB Chubb Corporation (The) LNC Lincoln National Corporation
MMC Marsh & McLennan Companies, Inc. CBG CBRE Group, Inc.
BBT BB&T Corporation KEY KeyCorp
ICE Intercontinental Exchange Inc. NDAQ The NASDAQ OMX Group, Inc.
STT State Street Corporation CINF Cincinnati Financial Corporation
AFL Aflac Incorporated CNA CNA Financial Corporation
AON Aon plc HBAN Huntington Bancshares Incorporated
SEIC SEI Investments Company ERIE Erie Indemnity Company
ETFC E*TRADE Financial Corporation OZRK Bank of the Ozarks
AMG Affiliated Managers Group, Inc. WTM White Mountains Insurance Group, Ltd.
RJF Raymond James Financial, Inc. SNV Synovus Financial Corp.
UNM Unum Group ISBC Investors Bancorp, Inc.
NYCB New York Community Bancorp, Inc. MKTX MarketAxess Holdings, Inc.
Y Alleghany Corporation LM Legg Mason, Inc.
SBNY Signature Bank CBSH Commerce Bancshares, Inc.
CMA Comerica Incorporated BOKF BOK Financial Corporation
AJG Arthur J. Gallagher & Co. EEFT Euronet Worldwide, Inc.
JLL Jones Lang LaSalle Incorporated DNB Dun & Bradstreet Corporation (The)
TMK Torchmark Corporation WAL Western Alliance Bancorporation
WRB W.R. Berkley Corporation EV Eaton Vance Corporation
AFG American Financial Group, Inc. CFR Cullen/Frost Bankers, Inc.
SIVB SVB Financial Group MORN Morningstar, Inc.
EWBC East West Bancorp, Inc. THG The Hanover Insurance Group, Inc.
ROL Rollins, Inc. UMPQ Umpqua Holdings Corporation
ZION Zions Bancorporation CNO CNO Financial Group, Inc.
AIZ Assurant, Inc. FHN First Horizon National Corporation
PACW PacWest Bancorp WBS Webster Financial Corporation
AFSI AmTrust Financial Services, Inc. PB Prosperity Bancshares, Inc.
ORI Old Republic International Corporation PVTB PrivateBancorp, Inc.
PBCT People’s United Financial, Inc. SEB Seaboard Corporation
CACC Credit Acceptance Corporation FCNCA First Citizens BancShares, Inc.
BRO Brown & Brown, Inc. MTG MGIC Investment Corporation

Table 6: List of 100 U.S. largest financial companies
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1. VIX
2. Daily change in the 3-month Treasury maturities
3. Change in the slope of the yield curve
4. Change in the credit spread
5. Daily Dow Jones U.S. Real Estate index returns
6. Daily S&P500 index returns

Table 7: List of macro state variables.

5 Summary

In the present paper we proposed to study dynamics of the penalization parameter of the Lasso

regression by Tibshirani (1996) and its quantile regression extension by Li and Zhu (2008).

We focused on three effects driving the time-dependent behaviour of the penalization param-

eter λ, particularly variation of the model residuals, size of active set of the model and the

covariance structure of its respective design matrix.

In the simulation study we justified our expectations about relationships between the afore-

mentioned effects and λ. These results led us to relate the dynamics of λ to the evaluation of

systemic risk, since both interdependency among covariates and variability of the error term

are neatly connected to the problem of risk controlling.

For the empirical study we chose to follow the setup of the risk control time series Financial-

RiskMeter (http://frm.wiwi.hu-berlin.de) and focused on 100 largest U.S. financial companies

and 6 macroprudential variables to obtain time series of the estimated Lasso parameter λ.

Consequently, we found cointegration relations between estimated λ and several systemic risk

measures.

Thus, we may conclude there is a substantiated reason to study time series of λ and build

theoretical model, which would provide further insight into prediction of the Lasso parameter

λ and systemic risk simultaneously. Furthermore, implementing our work into time series

context or the network framework might be of interest.
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