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Abstract
Previous models have investigated the impact upon

diversity - and hence upon the reliability of fault-tolerant
software built from ‘diverse’ versions - of the variation in
‘difficulty’ of demands over the demand space. These
models are essentially static, taking a single snapshot
view of the system. In this paper we consider a
generalisation in which the individual versions are
allowed to evolve - and their reliability to grow - through
debugging. In particular, we examine the trade-off that
occurs in testing between, on the one hand, the increasing
reliability of individual versions, and on the other hand
the possible diminution of diversity.

1. Introduction

The first major breakthrough in stochastic modelling
of diversity came in a paper by Eckhardt and Lee [1]. The
key idea here was that the different demands that a
program might receive during operation would vary in
‘difficulty’ - specifically the probability of failure upon
execution of a demand would be different for different
demands1. From this insight it is possible to show that if
more than one version executes each demand, the failures
of the versions cannot be independent: in fact they will
exhibit dependence in failure behaviour which ensures
that fault tolerant systems built from the versions will be
less reliable, on average, than if independence could be
assumed.

The more variation in difficulty across demands, the
worse becomes the problem: everything depends upon a
key variance term. However, it is difficult to estimate the
necessary parameters to answer questions such as ‘how
much worse is this system than it would be under
independence?’ The model is thus essentially a conceptual

                                                          
1 In the original papers [1] and [2] the term ‘input’ was used instead

of ‘demand’. Here we refer to demand to avoid the confusion
surrounding the term ‘input’ used in different contexts. A demand can
consist of a single or many inputs to the software depending on the
system context.

one. Nevertheless, the result is extremely important, with
serious implications for industrial practice, since it
precludes the use in software diversity of the simplistic
probability models that have had some success in
hardware reliability.

In the original version of the model (EL model), the
intention was to represent the case where diversity
occurred naturally as a result of the software development
teams being  given a free hand to create their versions
‘independently’ of one another. The model was later
generalised [2] to take account of forced diversity (LM
model),  where the different teams would be required by a
higher design authority to use different methodologies: for
example different languages, testing and analysis
techniques, etc. Here the intent was to exploit the
possibility that what may be ‘difficult’ for one
methodology (i.e. have a high propensity of failure) may
be easy for another. In this model, it can be shown that it
is no longer inevitable that a fault tolerant system will be
less reliable than would be the case if the versions failed
independently. Everything here depends upon a
covariance factor, representing the dependence between
the versions created from the different methodologies. In
the event that this is negative, the reliability of a system
built from the versions will be better even than it would
be if the versions could be assumed to fail independently.
Even when, as seems likely, the covariance is not
negative, it can be shown that the Eckhardt and Lee result
is the worst case that can occur.

Both these models are essentially static: they address
questions concerning the reliabilities of unchanging
versions, and the dependencies of failure behaviour of
such versions. In the present paper we present a more
general model that treats the case in which the versions
are changing as a result of faults being found (and
removed) in testing or in operational use. This extension is
important because issues of cost effectiveness are at the
heart of those parts of software engineering that are
concerned with achieving system dependability. The work
here is intended to deepen the understanding of the trade-
offs that take place in building design-diverse fault
tolerant systems. In particular, we investigate the impact



upon system reliability of improvements in version
reliability, as these improvements also impact upon the
degree of version dependence.

We begin by recalling the notation and models
introduced in [1] and [2], which we are to extend.

For a particular set of requirements there is a
population of all possible programs (versions) which
(conceptually, at least) could be written, ℘  = {π1, π2,
π3,...}.

Many, if not most, of these programs will be incorrect,
i.e. they sometimes give wrong output. An actual product
development is then the random selection of π from ℘ ,
i.e., the program is a random variable Π, with P(Π = π) =
S(π), for some measure S(• ) over ℘ . The measure S(• )
can be thought of as representing the development
methodology used.

Execution of a program version involves random
selection of a demand from the demand space F =
{x1,x2,...}. That is, the demand is a random variable X with
P(X=x) = Q(x) for some measure Q(• ) over F. Here Q(• )
could be thought of as the usage distribution over
demands. It might vary from one user environment to
another.

The failure behaviour of the program is described by
the score function
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Thus the random variable υ(Π,X) represents the
performance of a random program on a random demand:
this is a model for the uncertainty both in software
development and usage.

A key average performance measure is
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which is the probability that a randomly chosen program
fails for a particular demand x. The heart of Eckhardt and
Lee’s idea is the recognition that θ(x) will generally take
different values for different x, representing the varying
‘difficulty’ in correctly processing different demands. For
a randomly chosen demand X, θ(X) is a random variable.
Finally,
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represents the probability that a randomly chosen program
fails on a randomly chosen demand. In the presence of
uncertainties of both development and usage, this
represents the likelihood that our software fails.

Suppose now that we create, independently, two
program versions. That is, we select Π1 and Π2

independently from ℘ . These are truly independent in the
conventional statistical sense:

 ).().(),( 22112211 ππππ =Π=Π==Π=Π PPP    (3)

It then follows that the probability that both Π1 and Π2

fail on a given demand x is:
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The conditional form of the joint behaviour is:
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Thus we can see that independently developed
programs fail independently when executing a given fixed
demand x.

However the situation is different when there is
uncertainty concerning the demand, i.e., the programs
execute a random demand, X:
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(here the random variable Θ = θ(X)). The conditional form
of the joint behaviour is:
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Equality holds if and only if θ(x) = θ identically for all
x and it seems likely that this will never be the case. This
is the main result of [1]: that the failure behaviour of
diverse versions will necessarily be worse than what could
be expected under the assumption of independence, even
though the versions themselves truly are ‘independent
objects’ in the sense of (3).

The work reported in [2] extends this model to the
case where several development methodologies A,B,C,
etc. are available. These might represent, for example,
different development environment, different types of
programmers, different languages, different testing
regimes, etc.

Each methodology induces a measure on ℘ , the set of
all possible program versions. A random program ΠA

developed using methodology A will be version π with
probability:

P(ΠA = π) = SA(π).



If the methodologies are very diverse, we would
expect a program with a high probability of selection
under one methodology to have a low, perhaps zero,
probability of selection under others. When
methodologies are identical, they have identical measures
S(• ).

Within a particular methodology, the situation is
exactly like that in [1]. Thus θA(x) is the probability of a
randomly chosen program from methodology A failing on
demand x; the random variable ΘA = θA(X) is the
probability of ΠA failing on the random demand X, etc.

Consider two random program versions ΠA and ΠB

developed independently under methodologies A and B
respectively, i.e.,
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It follows that, for any given demand, x, two randomly
chosen programs fail independently, as in (5). However,
the probability of simultaneous failure on a randomly
chosen demand X is:
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The conditional form of joint behaviour is:
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This is greater than )()( XonfailsP BB Π=ΘΕ  if and

only if Cov(ΘA, ΘB) > 0. But since it is possible that
Cov(ΘA, ΘB) < 0, it follows that using different design
methodologies it is possible in this model to do even
better than the (unattainable) goal of independent
performance of versions in the single methodology case.
This is the main result in [2].

2. Modelling the testing process

All this earlier work considers only a snapshot at a
single moment in time: it concerns the joint failure
behaviour of versions upon a single demand. In the
present paper we shall extend these ideas to the case
where the programs are allowed to increase in reliability
as a result of the faults being identified and removed via
testing. Clearly, when we come to build fault-tolerant
systems from diverse versions, the overall system
reliability will depend upon both the level of diversity
achieved and the individual reliability of the versions. It is
intuitively obvious that certain types of testing - for
example back-to-back testing - will allow version
reliability to improve only at the price of decreasing
diversity.

Demands used for testing software are drawn from the
demand space which is typically very large. Within this
space a set of points (failure regions) will be associated
with a fault: typically there will be many demands that
would trigger a particular fault (or, conversely, removing
a fault will result in many demands, which previously
could not be executed correctly, being transformed into
ones that can). A decision mechanism judges the
executions of demands by software as acceptable or
failed. Finally the programmer should respond to detected
failures by trying to identify the faults causing the failures
and remove them from software. The testing thus
includes: i) a sequence of demands on which software is
executed (a test suite), ii) a judging mechanism (for
example oracle(s)) and iii) actions aimed at removing
fault(s) causing a failure to occur. Clearly, the judging
mechanism can itself be fallible, and so can the actions
taken to remove a fault that is found. The efficacy of the
testing process thus will depend upon both of these, as
well as upon the fault-revealing power of the test suite.

Test suites are drawn in accord with the testing goal. If
operational reliability is targeted the test suites are
generated using the expected operational profile
(probability distribution on demand space) of software. If
debugging is targeted the test suite is generated according
to what the debugger believes maximises the chances of
finding faults. Usually, the size of the test suite (the
number of demands included in it) is determined with
respect to some stopping rule which gives the tester
sufficiently high confidence that the goal (e.g. targeted
reliability) has been achieved [3].

Clearly, with a given selection criterion a multitude of
test suites can be generated, each being a particular
realisation of a given test suite generation procedure. The
same test suite may, in principle, be generated with
different generation procedures. As a rule, the likelihood
that a particular test suite will be generated will vary with
generation procedures: this uncertainty will be modelled
here using probabilities.

With regard to the judging mechanism even if the
same test suite is used the effect of the testing on the same
software version may vary if the detection and the fault
removal are not perfect. Indeed if the detection
mechanisms are different it may be that executing the
same test suite with a particular software once may lead to
many failures being detected, while in some other cases to
fewer (in the extreme case none). The faults causing the
undetected failures will not be removed. Similarly
imperfect fault fixing may only partially remove the
causing fault and in the worst case even introduce new
faults. In summary, imperfection of failure detection and
fault fixing will create uncertainty about faults remaining
in the tested software and hence about its reliability. For
these reasons we shall concentrate on the case where there
is perfect detection and perfect fixing.



3. Testing with a perfect oracle and perfect
fault-fixing

In this section we assume that both the failure
detection and the fault-removal are perfect in which case
the effectiveness of the testing is limited by the revealing
power of the test suite used.

Let us define the set of all test suites, Ξ={t1,t2,...},
which can be generated with a given generation procedure
together with the probabilistic measure, M(• ), defined on 

Ξ. M(t) = P(T=t) is the probability that a particular test
suite t is created by a random application of the test
generation procedure. We use T to denote a test suite

randomly chosen from Ξ using M(• ).
We can model the effect of the testing using the scores

of the tested software. We define the score on demand x of
a particular software version, π, tested with a particular

test suite, t, selected from Ξ, similarly to how the scores
were defined by Eckhardt and Lee [1]:
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We use the notation υ(π,x,∅ ) for the score of π on x
before testing, i.e. υ(π,x,∅ ) is identical to Eckhardt and
Lee notation, υ(π,x). υ(Π,X,T) is the notation used for the
score on a randomly selected demand, X, of a randomly
selected version, Π, after being tested with a randomly
chosen test suite, T.

Note that, since we have assumed perfect both the
failure detection and the fault fixing, no new faults can be
introduced during testing. Consequently, i) a value ‘0’ of
the score υ(π,x,∅ ) implies ‘0’ of the score υ(π,x,t), too; ii)
‘1’ of the score υ(π,x,t) implies that the score before
testing, υ(π,x,∅ ), was also 1. The only possible difference
between the score before and after testing is υ(π,x,∅ ) = 1, 
υ(π,x,t) = 0. In other words, υ(π,x,∅ ) ≥ υ(π,x,t). Clearly,
it is sufficient for such a change that x belong to the test
suite. Indeed, under the assumed perfection of detection
and fault removal once x is executed by software the
failure will be detected and the corresponding fault fixed
with certainty.

Note that the assumed perfection of fault fixing
implies fixing all faults that cause a failure on x. The
inclusion of x in the test suite, however, is not necessary
for the score on x to change from 1 to 0. Assume that a
failure on x in the untested version is caused by a set of
faults Ox = {f1, f2, …}. Assume further that the faults in Ox

cause failures on a set of demands DX = {x1, x2, …}
different from x. Finally, let us assume that removing the
faults from Ox will transform the demands from DX from
failures to successfully processed demands. Clearly, if x is
in the test suite all demands from DX will be successfully
executed in the tested version. Similarly, if at least one

demand y from DX is in the test suite it will cause a failure
detection and then all faults from Ox will be fixed. As a
result the demand x will be processed correctly in the
tested versions, i.e. υ(π,x,t) = 0. More refined
arrangements are also possible for υ(π,x,t) = 0 which do
not require either of the demands from DX to be in the test
suite. If all faults from Ox are fixed during testing because
different sub-sets of Ox are found to cause failures on
demands which are not in DX the tested software will
execute successfully x and all other demands from DX. In
summary, the tested software will have more demands
converted from failures to successes than the number of
failures observed during the testing.

Note that the score of the tested version is a function
of the applied testing suite. If multiple versions are tested
on the same test suite, clearly, the scores of all tested
versions will be 0 on demands included in the test suite
but may differ on demands not included in the test suite.
Now we express the probability of failure of a particular
version π on x with a randomly selected test suite, T,
which is represented by the expected value of the score
function ),,( Txπυ  over the population of the tests:

∑
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Similarly, we can take the average over the population
of programs, ℘ :

∑
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is the probability that a randomly chosen program, Π,
tested with a particular test t fails on x.

This last probability represents how efficient a
particular test is with respect to x when applied to the
population of tested programs – the lower the probability
the better. If the test leads to the removal of all faults from
all versions, 0),( =txξ . ),( Txξ , as a rule, will vary

between test suites. Clearly ),( Txξ  is related to the

difficulty function of the untested population, θ(x). Since 
υ(π,x,∅ ) ≥ υ(π,x,t) then θ(x) ≥ ),( Txξ , too.

Finally:
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is the probability that program π, tested on t fails on a
randomly selected demand X.

Now, the mixed moment of the score over the
population of programs and of test suites can be expressed
as:
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and represents the probability that a randomly selected
program, Π, tested on a randomly selected test suite, T,



fails on a particular demand x. )(xζ  is the counterpart

after testing of θ(x), the Eckhardt and Lee ‘difficulty’
function for the untested versions given in (1) above.

It is interesting to compare )(xθ  and )(xζ . Since θ(x)

≥ ),( Txξ , i.e. the difficulties are ordered on every

demand, then )()( xx ζθ ≥  whatever M(• ). The efficiency

of the test generation procedure can be measured by
comparing by how much )()( xx ζθ ≥ . Intuitively, the

bigger the difference the more efficient the testing (but
this may be misleading since if 0)( =xθ  there is no room

for improvement).
If one had two testing procedures with M1(• ) and

M2(• ) and their corresponding )(1 xζ  and )(2 xζ one
would be interested to know which of the two procedures
is more efficient. If )()( 21 xx ζζ >  then the second

procedure is more efficient than the first one and vice
versa.

Yet another important question is whether variability
of the difficulty changes as a result of the testing. In the
extreme case it may be possible through testing to
compensate completely for the variability of difficulty
function, i.e. make constx =)(ζ  across demands. Then

the problematic assessment of the probability of joint
failure of two version system (7) will be avoided since in
this case unconditional independence of version failures
will follow. At the very least it seems desirable to reduce
the variability of )(xζ . Even though such a possibility

exists it is unclear how realistic it is to expect it in
practice. The constraints which must be imposed upon the
testing so that the variability of the difficulty decreases are
not known and open for future research.

The other extreme case, increase of variability as a
result of the testing, is also possible.

With forced diversity [2] the likelihood to draw the
same version from different methodologies, A and B, will
be different. The expectations, (12) – (14), given above,
can be similarly defined for each of the methodologies.
For instance, the probabilities of failure on demand x of a
program tested with t, taken at random from A and B

respectively are ∑
℘
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functions on the tested populations ℘ A and ℘ B become:
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respectively.

Applying EL and LM results to the population of
tested versions requires conditional independence
between coincident failures, as in (4). In these models
conditional independence follows ‘naturally’ from the fact
that the versions are drawn at random (i.e. independently
with replacement) from the populations. Once the versions
are tested the urn model, see [4], is not applicable any
more. The pairs are chosen before the testing and the
versions in the pair evolve together affected by the chosen
test suite(s). In the next section we check if and for which
testing regimes the conditional independence still holds.
Intuitively, we expect to see some differences between the
testing regimes.

3.1. Testing with test suites independently
drawn from the same population

3.1.1. Versions independently drawn from same
population

Consider that a pair of programs is tested with two
independently generated test suites. We still assume that
the detection and the fault fixing are perfect, that is given
a fault is activated by a demand in the test suite the failure
is detected by the oracle and the causing fault is
successfully removed. These assumptions limit the
uncertainty about the effect of the tests on the tested
versions: now this is limited to the revealing power of the
test suite only. Consequently a given test suite represents a
single test. The effect of the testing upon the failure of a
program is to change its score function according to
whether the program’s ability to execute x correctly has
changed as a result of the test: in this case, if x originally
lay within a fault that has been executed in the test, then
this fault will now have been removed and x will have
been executed correctly.

Consider the probability of simultaneous failure of two
randomly selected versions, Π1 and Π2, tested with
randomly selected tests, T1 and T2, on a particular demand
x:
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This can be simplified (see Appendix for details):
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Thus when versions are selected and tested in this
way, they will exhibit conditional independence of failure
for each demand x. That is, if there is conditional failure
independence before testing, there will be conditional



independence after testing, so long as the test suites are
themselves independent.

3.1.2. Versions independently drawn from different
populations (forced design diversity)

By a similar argument to that above:
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Once again, there is conditional independence between
version failures after testing.

3.2. Testing with test suites independently
drawn from different populations (forced
testing diversity)

Here we assume that two procedures for generating
test suites exists, TA and TB, which we model by defining
two probabilistic measures, MTA(• ) and MTB(• ),
respectively, on the set of possible set suites, Ξ.

3.2.1. Versions independently drawn from same
population

Inference similar to (16) leads us to the following
expression of the probability of system failure:
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Again, there is conditional independence of version
failures after testing.

3.2.2. Versions independently drawn from
different populations (forced design diversity)
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Again, there is conditional independence between

version failures after testing.

To summarise these four results: if the versions are
tested on independently chosen test suites, the conditional
independence is preserved after the testing, no matter
whether diversity is employed in development only or in
the selection of the test suites as well. We now consider
the effect of testing the versions on the same test suite.

3.3. Testing with the same test suite

First we consider the case where the versions are
selected independently from the same population (see
Appendix for details):
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In the case where the versions are selected
independently from different populations – forced
diversity - the probability of coincident failure is:
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These results, (20) and (21), show that, although the
versions fail conditionally independently on demand x
before testing, this will generally not be true after testing.
Essentially, the use of a common test suite has induced
dependence in their failure behaviour.

For the independence of version failures to remain true
after testing, it would be sufficient to have a constant
efficiency for each test suite t, i.e. consttx =),(ξ , (this is
also necessary without forced diversity). Clearly, this is
unrealistic.

(20) and (21) are important because they preclude
using the EL and LM models (which assume conditional
independence of failures on each demand x) once a two
channel system is expected to be tested with the same test
suite, which appears to be a common practice. Acceptance
testing for fault-tolerant software, for instance, is based on
the same test suite and so is the integration/system testing
for such systems.

(20) asserts that testing both versions on the same suite
implies on average that an (incorrect) assumption of
conditional independence will be too optimistic.

(21) seems to salvage the assumption of conditional
independence: in theory the covariance,

( )),(),,( TxTxCov BA ξξ
Ξ

 could even be negative, i.e. in

some cases assuming conditional independence will be
conservative. It is unclear, however, how realistic in
practice it is for ( )),(),,( TxTxCov BA ξξ

Ξ
 to be negative,

given ),( TxAξ  and ),( TxBξ  represent the efficiency of

the same population of test suites on the (same)
population of programs.



3.4.  Marginal probability of system failure

All of the foregoing concerns what happens on one
particular demand x. In practice, we are interested in the
marginal probability of system failure (i.e. on a demand
selected randomly via the operational demand profile).
We consider the cases of unforced and forced version
selection (design) separately.

3.4.1. Versions independently drawn from the same
population

(16) and (20) show what happens conditionally on a
particular demand, x: essentially, in each case the use of a
common test suite increases the probability of
simultaneous failure of the versions compared with the
case when both versions are tested independently. Since
this is true for each x, it follows that the use of a common
test suite increases the marginal probability of system
failure (i.e. on a randomly chosen X). More precisely:
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where )(XT ζ≡Θ , by analogy with [1], is a random

variable representing the proportion of tested versions
failing on a randomly selected demand X. All this is
intuitively plausible, since even though the programs
started out as ‘independent objects’, the common testing
they have undergone will have made them ‘more alike’.
Whilst it is obvious that on average the chance of
simultaneous failures of two versions will be increased by
their being tested on the same test suite, rather than on
different suites, it is less obvious that the magnitude of the
difference depends upon the variance term here.

This variance, ( )),( xTVar ξ
Ξ

, is a non-negative number

which can be substantial with a maximal value of 0.25 in
the case ζ(x) = 0.5 and ),( xTξ  taking on values either 0

or 1 and nothing in between for various test suites. The
point here is not to argue that having a large variance is
likely, rather that if the effectiveness of the testing varies
between test suites, which is plausible, then testing the
versions together will make a two-channel system on

average less reliable than if the two versions are subjected
to the same ‘amount of testing’ independently, and that
this difference may be substantial. The minimum of the
variance is of course 0, but this is, as explained above, a
very special case – when the testing makes ),( xTξ  =

const, which is not realistic.
Note, however, that none of the above means that we

should in practice necessarily prefer to test with different
test suites. The question of what is optimal will involve a
cost-benefit trade-off. The cost will be affected by the cost
of generating the test suites and the cost of testing the
versions on these. Two extreme scenarios can be
identified for which different testing strategies may be
optimal.

If the test generation is very expensive while running
the tests is very cheap, testing versions independently on
different test suites may not make much sense. The
reliability improvements from testing versions on
independently generated tests may be too small, while the
benefits of removing more faults in versions too great to
be missed, even at the expense of making the versions
more alike. In other words, we can run twice as long a test
(merging the two generated test suites) on each of the
versions at the same cost as running each version with
only one of the tests. Clearly, with the longer test not only
the individual reliability of the versions is going to be
better but so is the system reliability. The only way for the
shorter tests to produce the same system reliability is for
the second half of testing (the second test suite) to be
completely ineffective, finding no faults. This would be
possible, for instance, if the two test suites were identical
(or the demands are perturbed) and becomes increasingly
plausible as the individual reliability increases (the law of
diminishing returns is operating). Testing versions
together with a test twice longer, therefore, may be better
than testing them individually on independently generated
shorter test suites. The reason, of course, is the extreme
assumption that the costs of running the tests are
negligible.

At the other extreme is the case where the cost of the
testing is mainly affected by the cost of running the tests,
i.e. the cost of generating the test suites is low but running
the tests is expensive. This seems to be a more realistic
scenario than the previous one. Under this scenario it
seems reasonable to limit the effort to testing the versions
individually only, i.e. with different test suites. Our results
are directly applicable in this case were we can generate
many test suites but can afford to test each version on just
one suite.

Finally, the most realistic scenario is, of course, when
both the test generation and running of tests are expensive.
Our models do not address this situation and the choice of
the most cost-effective way of testing must be based on
taking into account the detailed costs of generating and
executing the tests. Simulation has been used to



investigate how the reliabilities of the versions and of the
system improve as a function of testing effort [5].

3.4.2. Versions independently drawn from different
populations (forced design diversity)

In case of forced diversity the probability of system
failure depends on the covariance terms

( )),(),,( txtxCov BA ξξ
Ξ

, which may be positive or negative.

Thus, in principle, the system tested with the same test
suite can be more reliable than if the versions were tested
individually. More precisely:
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where )()( XATA ζ≡Θ and )()( XBTB ζ≡Θ , by analogy

with [2], are random variables representing the proportion
of tested versions failing on X for methodologies A and B,
respectively. Similarly,
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Comparing (24) and (25) does not allow one to
conclude which of the testing regimes will produce on
average a more reliable two-version system. The
difference between (24) and (25), is the term

( )∑ Ξ
F

BA xQxTxTCov )(.),(),,( ξξ . This is a sum of

covariances each of which can be a positive or a negative
number. It is not clear what the balance between the
positive and the negative terms will be. In the cases where
this expression is positive, testing the versions
individually will produce a more reliable pair, as in the
case without forced diversity. If

( )∑ Ξ
F

BA xQxTxTCov )(),(),,( ξξ  is negative, however,

then testing the versions on the same test suite will
produce a more reliable pair, which is counterintuitive
because it means that by testing more cheaply (only one
testing suite will need to be generated) a more reliable
system can be delivered.

We can analyse specific cases under additional
assumptions, e.g. assuming disjoint failure regions as in
[6], [7], but the general constraints under which

( ) 0),(),,( ≤
Ξ

txtxCov BA ξξ  are currently not known. More

refined analysis is needed to reveal the constraints which,
if imposed on the generation of the tests suites, will make

( )),(),,( txtxCov BA ξξ
Ξ

 more likely to be positive or

negative.

4. Other testing

4.1. Testing with imperfect oracle and
imperfect fault-fixing

If the oracle is imperfect and/or fault-fixing is
imperfect, there is extra uncertainty involved in the testing
process and the kind of modelling presented above
becomes more difficult. The best we can do is find some
bounds for the system probabilities of failure.

Assume, for simplicity, that introducing new faults
during testing is impossible. Such an assumption is not
unusual in software reliability modelling: for example,
most reliability growth models rely on such an
assumption. Clearly, under this assumption a tested
version will have scores on individual demands no better
than if tested with perfect oracle/fixing. Thus, the results
from the previous section (15-25) can be used as lower
bounds on the probability of system failure. Equally, the
scores will be no worse than the scores of the untested
version which thus forms a natural upper bound (though
not a very useful one) on the probability of system failure.

4.2. Back-to-back testing

Back-to-back testing is a special case of testing the
versions on the same test suite. The failures are detected if
a mismatch occurs between the outputs of the versions.
This is the main practical advantage of back-to-back
testing: it does not require an oracle to judge whether the
output of a software version is a failure or success. If at
least one version (in a fault-tolerant software system)
succeeds on a demand then detection of any failures of
other versions is guaranteed. If, however, all versions fail
coincidentally on a demand then successful detection is
not guaranteed: there is a possibility that all versions fail
in exactly the same way in which case there will be no
mismatch of the outcomes.

Our model does not allow us to analyse the most
general case where there is only a possibility of detection.
The most we can do, again, is obtain bounds for the
evolving system reliability based on the most optimistic
and most pessimistic scenarios.

If we assume optimistically that coincident failures are
never identical we can guarantee failure detection. The
results are then the same as those involving a perfect
oracle obtained in section 3.

The most pessimistic assumption about failure
detection, on the other hand, assumes that all coincident



failures are identical. Such failures are undetectable. In
this worst-case scenario, back-to-back testing does not
improve system reliability at all – it only improves the
reliability of the individual versions on demands which
have no effect on system reliability. Essentially the
version reliability improvements are exactly matched by
worsening diversity between versions as testing proceeds.
In the limit (after exhaustive testing), the versions would
fail identically and the system behave exactly as each
version does.

5. Conclusion

The work reported here is part of an ongoing effort to
acquire a more formal understanding of the effect of
diversity upon system dependability. At one level,
diversity is ‘clearly a good thing’ – this is reflected in its
ubiquity in human affairs. On the other hand, the precise
mechanisms that underpin its efficacy are still not well
understood. However, it is becoming clear that simple
intuition can sometimes be misleading hence the need for
careful formal modelling.

The earlier models of Eckhardt and Lee, and
Littlewood and Miller, were attempts to provide a formal
probabilistic framework for the use of design diversity in
achieving system dependability. Essentially these models
took a snap-shot view of the system. The present work
extends these models to represent the evolution of system
dependability that takes place as a result of testing.

The results presented in this paper are still more in the
area of conceptual answers than advice on how to apply
diversity  to achieve reliability in practice. The results we
have presented – e.g. that testing versions on
independently generated suites has a greater potential to
improve system reliability - are not surprising. Essentially,
the results simply confirm previous intuition to ‘make the
versions as independent as possible’. Thus using the same
test suite means introducing a ‘channel’ of dependence
between the failures of the versions, making the two tested
versions more likely to fail together on a specific demand
than under the assumption of their failing independently.

On the other hand, the results give detailed insight into
the way diversity impacts upon system dependability.
They do this via generalisations of the earlier models, i.e.
through the use of moments of ‘difficulty functions’. It
remains a moot point whether these variances and
covariances that determine the efficacy of diversity in
design and testing can be estimated in practice. This
remains an open research issue.

The formalism in modelling the evolution of diverse
software presented here seems applicable to modelling
any kind of commonality, not only those arising from
testing on the same test suite. There are many other ways
in which commonalities can be introduced into otherwise
independent development of several versions. For

instance, if an ambiguity is discovered by one of the
teams, and a common clarification is sent to all
development teams, this can conceptually be modelled as
running the same ‘test suite’ against all versions. The
difference in this case, compared with the description
given in section 3, will be that the common test suite is
not generated to cover the whole demand space and be
representative of the operational usage of the versions, but
instead will affect a (possibly small) sub-set of the
demand space. The effect of this propagation of the
common knowledge, however, may be the same –
reducing diversity of the versions.

Another instance of the ‘same test suite’ approach,
which may be useful to explore, is the representation of
common mistakes (e.g. giving incorrect instructions to all
teams about how to resolve ambiguities in the
specification). The difference in this case, compared with
the description in section 3, is that the ‘common test’ will
result in setting the scores of all demands affected to 1
(i.e. make versions produce incorrect results) instead of
fixing the mistakes. Detailed modelling is left for the
future.

In practical software development a combination of
different activities is utilised which introduce sources of
dependence between the channels. We intend to study the
effect of applying more than one activity to the diverse
channels and the interplay between their individual
characteristics (e.g. efficacy) and mutual diversity which
may reveal practical ways of enforcing useful diversity
between the final software products.
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Appendix

The derivation of expression (16) is detailed below:
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Expression (20) is derived as follows:
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