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ABSTRACT 

 
The shapes of forward curves of energy commodities are believed to contain information on the 

volatility of futures prices for these commodities. The slope of the forward curve not only reflects 

temporal supply and demand conditions, but also the relationship between current and expected 

market conditions. However, no empirical investigation exists in the literature on whether utilising 

information on the slopes of the forward curves of energy commodities can improve one‟s ability to 

capture the dynamics of the volatility of the futures prices of these commodities. The aim of this study 

is to undertake such an investigation. Daily energy futures prices traded on the New York Mercantile 

Exchange (NYMEX) over the period January 1997 to December 2006 are used to estimate the 

parameters of an augmented transition EGARCH model that allows for changes in the model‟s 

parameters based on the forward curve. The forecasting performance of the model is compared to that 

of other models in predicting the volatility of energy futures prices over the period January 2007 to 

December 2008. The results provide strong support in favour of a convex relationship between the 

volatility of energy futures prices and the forward curve. 
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1. Introduction 

In 2008 the world‟s energy consumption reached its highest record level: 11,295 million 

petroleum tons (crude oil, oil products, and natural gas), coal, and nuclear and hydro 

electricity, representing 59%, 29% and 12% of this consumption, respectively.
1
 The 

dependence of the world economy on energy commodities has been highlighted in numerous 

studies, e.g., studies by Lee et al. (1995), Ferderer (1996), Huang et al. (1996), and Sadorsky 

(1999, 2003). In recent years, competition to secure supplies of energy commodities by 

developed and developing economies and the growth in international trade and its 

transportation have contributed to substantial increases in the price and price volatility of 

energy commodities. Also, world political events have impacted energy markets and thus 

energy prices and price volatilities, e.g., the price of natural gas imported by Europe from 

Russia via Ukraine increased in the winter of 2008 following a dispute between Europe and 

Russia.  

 

Also in recent years, energy commodities have become an important asset group for investors 

and traders who use such commodities for diversification, speculation and investment 

purposes. This occurrence has been the impetus for a large body of literature that models the 

behaviour and dynamics of the volatility of energy prices (mainly oil and oil products). 

Wilson et al. (1996) found that there were three major shifts in the volatility of world oil 

prices during the 1984-1992 period, attributed to the nature and magnitude of the exogenous 

shocks – OPEC policy changes, Iran-Iraq conflict, Gulf War and extreme weather conditions.  

Fong and See (2002) found that the volatility of oil prices can vary with market conditions.  

 

Sadorsky (2006) in examining the forecasting performance of GARCH and Threshold 

GARCH (TGARCH) type models in predicting volatility of daily oil prices concludes that no 

one model is the best predictor. Further, non-parametric models perform better than 

parametric models based upon back-testing. This is expected because of the deviation of the 

oil price distribution from normality and the existence of excess kurtosis as observed by Chan 

et al (2007). Narayan and Narayan (2007) report that asymmetric impact of shocks on the 

volatility of oil prices and the persistence of this volatility can be different depending on 

sample period considered. Fan et al. (2008) propose a Generalised Error Distribution (GED) 

GARCH approach to estimate Value-at-Risk of WTI and Brent crude oil prices. They argue 

that this approach is more appropriate as it can address deviations from normality. Alizadeh et 

al. (2008) examine the performance of Markov Regime Switching GARCH (MRS-GARCH) 

models for hedging WTI Crude Oil, Heating Oil, and Gasoline futures contracts traded in 

NYMEX, and report that regime switching hedge ratios are generally perform better than 

other dynamic hedge ratios. 

  

In a recent study, Kang, Kang and Yoon (2009) examine the specification of different 

GARCH type volatility models in capturing, forecasting and identifying stylized features of 

volatility of crude oil prices for WTI, Brent and Dubai grades. They find that Component 

GARCH (CGARCH) and Fractionally Integrated GARCH (FIGARCH) models are better 
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equipped to explain the persistence of volatility of crude oil prices compared to simple 

GARCH and IGARCH models. In the natural gas market, Suenaga et al. (2008) examine the 

dynamics of volatility of NYMEX Natural Gas prices and report that while volatility tends to 

increase in winter, volatility persistence and correlation between concurrently traded contracts 

exhibits certain degree of seasonality. They also argue that ignoring such behaviour in 

volatility dynamics can result in sub-optimal hedging strategies. Models that have been used 

to investigate the volatility of energy prices, in turn, have been used for deriving hedge ratios 

(e.g. Haigh and Holt, 2002, Alizadeh et al, 2008), risk monitoring and Value-at-Risk 

estimations (e.g. Sadorsky, 2006, Sadeghi and Shavvalpour, 2006, Hung et al., 2008, and 

Marimoutou et al., 2009), asset allocation (e.g. Alizadeh and Nomikos, 2008, Liao, et al., 

2008) and derivatives pricing (Brennan and Schwartz, 1985, and Schwartz, 1997, and 

Anderluh and Borovkova, 2008).   

 

An aspect of the volatility of energy prices that has not been considered heretofore in the 

literature is the slope of the energy forward curve – a proxy for market condition - that can 

explain the dynamics of volatility of the energy prices. Whilst the theoretical underpinning of 

energy forward curve has been discussed by Litzenberger and Robinowitz (1995), Carlson et 

al. (2007) and Kogan et al. (2009), the nature of the curve and its importance to our 

understanding of the dynamics of the volatility of energy prices have not been examined in 

the literature. The purpose of this study is to empirically investigate whether incorporating the 

slope of the forward curve in energy price volatility models can improve their ability to 

capture the dynamics of second moments of the futures prices as well as to improve the 

forecasting performance of these models.  

 

This study contributes to the literature on modelling the volatility of energy prices in several 

ways. First, it provides empirical evidence of the existence of a strong convex relationship 

between the slope of forward curve and the volatility of energy prices. Second, it establishes 

that the dynamics of the volatility of energy prices depends on the market conditions defined 

by the shape of the forward curve. Third, using short-term energy futures prices, it assesses 

the impact of the shape of forward curve on 1, 2, and 3 monthly maturity futures energy price 

volatilities. Finally, it compares the forecasting performance of energy price volatility models 

that incorporate the shape of the forward curve with conventional volatility models that do not 

include the shape of the curve as well as measures the asymmetry of the forecasts. The 

study‟s findings are expected to have important implications for traders and other participants 

in energy futures markets by allowing them to accommodate asymmetry in risk assessment 

and loss functions measurement of these markets.      

 

The study is structured as follows. The next section reviews the theoretical background on the 

relationship between the market condition for energy commodities (as reflected by the slope 

of the forward curve) and the volatility of energy commodity prices. Section 3 presents 

proposed statistical models to be used in investigating the relationship between the forward 

curve and volatility of energy prices. Section 4 describes the data that are to be used in the 

estimation of the parameters of these models. Then, the estimation results are presented in 

section 5, while sections 6 and 7 discuss the forecasting performance and accuracy of VaR 

estimates of different volatility models, respectively. In the final section, conclusions of the 

study are found.  
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2. Theoretical background 

Market prices for energy commodities are determined via the market clearing supply-demand 

process. However, since energy commodities are exhaustible natural resources, the market 

clearing supply-demand process for these commodities will differ somewhat from the market 

clearing process of commodities with infinite supply. Theoretical models of the dynamics of 

energy prices and their volatilities have developed through a series of studies that have taken 

two different approaches in this development. The first approach is based on statistical models 

of commodity price dynamics where convenience yield is assumed to be exogenous, 

stochastic, and correlated with price (e.g., studies by Brennan and Schwartz 1985, Brenan 

1991, and Schwartz 1997). In the second approach, an endogenous price process is derived 

from an equilibrium price framework, where production, demand, storage, and inventories are 

considered (e.g., studies by Litzenberger and Robinowitz, 1995, Routledge et al., 2000, 

Carlson et al., 2007, Geman and Ohana, 2009, and Kogan et al., 2009).
2
 

 

Litzenberger and Robinowitz (1995) note that energy prices exhibit strong backwardation, 

i.e., discounted futures prices are below spot prices. Assuming that price and production are 

uncertain, they argue that holding commodity extraction rights is similar to a call option with 

a strike price (a proxy for extraction cost) and that price backwardation arises from an 

equilibrium trade-off between exercising the option or keeping it alive. That is to say, if 

discounted futures prices are higher than spot price and the cost of extraction was to increase, 

all producers would postpone extraction, thereby resulting in an increase in the spot price and 

weak price backwardation. Litzenberger and Robinowitz (1995) thus claim that the existence 

of weak price backwardation in energy markets is a necessary condition for current 

production. In addition, due to the production capacity constraint, they show that there is a 

positive and linear relationship between the volatility of energy prices and the degree of price 

backwardation. Assuming a mean reverting demand process and the resulting equilibrium 

inventory dynamics, Routledge et al. (2000) derive spot and forward energy prices. They 

show that their model in utilizing a backwardation forward curve captures the impact of low 

stock levels and high consumption of energy commodities.  

 

A study by Carlson et al. (2007) develops a general equilibrium model for a market for an 

extractable resource, where both prices and extraction costs are determined endogenously. 

The study argues that production adjustment costs result in endogenous extraction choices 

that, in turn, cause higher price volatility both at high and low demand levels. Further, the 

Carlson et al. (2007) model allows for a nonlinear U shape relationship between the slope of 

forward curve and price volatility due to production and extraction choices and adjustments. 

Geman and Ohana (2009) in using the slope of the forward curve as a proxy for inventory 

levels of energy commodities finds a negative correlation between price volatility of oil prices 

and oil inventory levels. This negative correlation however prevails only during periods of 

scarcity when oil inventory levels are below the historical. 

  

More recently, Kogan et al. (2009) argue that models such as that of Litzenberger and 

Robinowitz (1995), based on competitive storage and changes in inventory for future price 

determination, ignore the production side of the economy. This shortcoming is addressed by 

developing a model for determining energy futures prices in an equilibrium production 

economy with stochastic demand. Kogan et al. (2009) show that irreversibility and maximum 

investment rate constraints can affect the investment, output and supply decisions of energy 
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commodity firms, and therefore, the volatility of futures prices of energy commodities. Kogan 

et al. (2009) also conclude that the relationship between the forward curve and price volatility 

is non-monotonic and V shape. Their theoretical argument to support this relationship is as 

follows: if the capital stocks for energy commodity firms are much higher than the optimal 

level (for a given demand level), the firms‟ decisions would be to postpone investment and 

irreversibility constrains binds. However, when capital stocks are below the optimal level, 

firms tend to increase their investment rate and the investment rate constraint will be binding. 

Therefore, in both cases (extremes), the supply curves for energy commodities will become 

inelastic and therefore futures prices will become more volatile.  

 

Energy commodities tend to have highly price inelastic demand curves, since they are 

necessaries as opposed to luxury commodities, i.e., they are needed not only for day to day 

life such as transportation and heating, but also as an input into many industrial production 

processes (see Figure 1). On the other hand, supply curves for energy commodities tend to 

have highly price elastic and inelastic sections (see Figure 1). In region B in Figure 1, the 

demand curve is highly price inelastic and the supply curve is highly price elastic. An increase 

(decrease) in demand in this region will result in a pronounced increase (decrease) in supply 

and a relatively small increase (decrease) in price. In fact, at such price and demand levels, 

producers (suppliers) are able to adjust production (supply) and respond to changes in 

demand. This includes reducing production, using storage facilities to stock up excess 

production, adjusting refining output, reducing flow of gas through pipelines, and other 

methods. At the same time, when market recovers and demand start to increase, the excess 

capacity can be utilised to boast production to meet excess demand. In region C in Figure 1, 

both the demand and supply curves are highly price inelastic. The supply curve is price 

inelastic due to limited production capacity. A pronounced increase in price is needed to 

obtain the same increase in output that occurred in region B from a relatively small increase in 

price. In region A in Figure 1, both the demand and supply curves are again highly price 

inelastic. However, the supply curve is now price inelastic, mainly due to the irreversibility of 

capital investment in up- and down-stream oil and gas producing firms. Also, the costs of 

reactivating a production site following a shutdown are expected to be high. Further, in 

certain instances, reactivation of a production site may not be possible. Thus, energy 

commodity firms may continue to produce, even at relatively low prices.  

 

3. Methodology 

This study models prices of energy commodities via the EGARCH statistical model (Nelson, 

1991). The EGARCH model allows for asymmetric impact of shocks on price volatility and 

relaxes the non negativity assumptions on the parameters of the variance equation. 

Specifically, three versions of the EGARCH model are utilized: 1) Simple EGARCH model, 

2) Augmented EGARCH model (EGARCH-X), and 3) Augmented Transition EGARCH 

model (EGARCH-TX). The Simple EGARCH model is specified as  
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Where rt represents one period percentage price change in an energy commodity as an 

Autoregressive process function of its past values; εt is an independently and identically 

distributed random error process with zero mean and variance, 2

t . The variance, 2

t , is 

specified as an exponential function of lagged standardised residuals and lagged log of 

variance. While the main advantage of EGARCH specification is that it allows for 

asymmetric impact of shocks on price volatility, it also ensures positive definiteness of 

variances.  In equation 1 the 1,i coefficients measure the asymmetric impact of shocks (with 

respect to different magnitudes) on price volatility, while 2,i coefficients reflect the 

asymmetric impact of shocks (with respect to different signs) on price volatility. Coefficients 

of lagged variance, 3,i, measure the degree of persistence of price volatility on its past values.  
 

The effect of the slope of the forward curve on volatility of energy prices can be investigated 

by augmenting the variance equation in the Simple EGARCH model above to include the 

extra term – the quadratic function of the slope of the forward curve – to obtain the 

Augmented EGARCH model (EGARCH-X), i.e., equation 2.  
 

 

(2) 

 

 

 

 

where zt-1 represents the slope of the forward curve at time t-1 calculated as the difference 

between the log of the 6
th

-month and the near-month futures prices. The quadratic function is 

included to capture the asymmetric relationship between volatility of energy prices and the 

slope of the forward curve both in terms of the sign and the magnitude. Also, it is included, 

because it is believed that this relationship between the slope of the forward curve and 

volatility of energy prices is non- linear and U shape.
3
 The choice of the futures contracts to 

measure the slope of the forward curve is based on the idea that 6 month differences in futures 

contracts can present a clear picture with regard to the degree of contago or backwardation of 

the forward curve.  

 

Once again, 1,i coefficients measure the asymmetric impact of shocks (with respect to 

different magnitudes) on price volatility, while 2,i coefficients reflect the asymmetric impact 

of shocks (with respect to different signs) on price volatility. The coefficient of the slope of 

the forward curve, γ, measures the relationship between volatility of prices and the market 

condition for which the slope of the forward curve is its proxy. Furthermore, the use of 

EGARCH-X specification ensures that the non-negativity constraints on the parameters of the 

model are not violated, especially since the slope of the forward curve can be negative. 

 

The Augmented Transition EGARCH-X model (i.e., EGARCH-TX) augments the EGARCH-

X model by allowing the sign of the slope of the forward curve to be either negative or 

positive. The EGARCH-TX model is specified as follows  

 

 

                                                 
3
 We also used linear specification in the form of absolute value of zt-1, but empirical results and Likelihood Ratio tests 

strongly supported the quadratic relationship. 
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 (3) 

 

 

where St is a dummy variable taking a value of one when the slope of forward curve is 

negative, i.e., the market is in backwardation, and a value of zero when the slope of forward 

curve is positive, i.e. the market is in contango. Therefore, whether the behaviour of price 

volatility depends on the market condition and the slope of the forward curve can be tested by 

whether the estimates of coefficients δ0, δ1, δ2, and δ3 are statistically significant. 

Furthermore, EGARCH-TX equation  (3) can be regarded as a more general specification of 

the time-varying variance that not only incorporates information regarding changes in market 

condition and the slope of forward curve, but also allows for the dynamics of the variance to 

be dependent on the slope of the forward curve.   

 

The above three EGARCH model versions are estimated using futures prices for four main 

energy commodities. Further, tests will be performed to investigate whether the estimated 

models capture the dynamics of the time-varying volatility of energy futures prices. 

 

4. Description of data 

The data used in this study comprises daily futures prices for four main energy commodities 

traded on the New York Mercantile Exchange (NYMEX) – WTI Crude Oil, the New York 

Harbour Heating Oil Number 2, the New York Harbour Unleaded Gasoline, and the Henry 

Hub Natural Gas Futures – for the period January 1, 1997 to December 31, 2008. The data 

was obtained from Datastream. After filtering the data for holidays, missing values and non-

trading dates, the final sample contains 3,013 daily observations. To construct a continuous 

series out of monthly traded contracts the contracts were rolled over to the next once trading 

activity has shifted from the nearest to the second nearest to maturity contract. Consequently, 

in all cases, three continuous futures series with 1- , 2- and 3-month to maturity were 

constructed. Data for the period 1
st
 January 1997 to 31

st
 December 2006 (2,509 observations) 

are used for the in-sample analysis; out-of-sample analysis is carried out using the remaining 

data for the period of 1
st
 January 2007 to 31

st
 December 2008 (504 observations).  

 

Summary statistics of logarithmic first-differences (“log-returns”) of daily prices for the 

whole period in the four energy markets are presented in Table 1. Mean and standard 

deviation of returns are annualised. Average returns for all energy futures and maturities are 

positive varying from 3.0% to 9.2%. The unconditional volatility of returns declines as 

maturity increases, which confirms the Samuelsson effect and the term structure of volatility 

of energy prices due to mean reversion. Also, comparisons of volatilities across commodities 

suggest higher fluctuations in Natural Gas prices compared to Crude Oil, Heating Oil and 

Gasoline prices over the sample period.   
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Bera and Jarque (1980) tests indicate significant departures from normality for the return 

series of 1-, 2- and 3- month contracts across all commodities. The Ljung and Box (1978) 

statistic on the first 10 lags of the sample autocorrelation function is not significant for 

Heating Oil, Gasoline and Natural Gas returns, revealing that serial correlation is not present. 

However, the Ljung and Box (1978) statistic indicates some degree of autocorrelation in 

crude oil return series.  The Engle‟s (1982) ARCH test, carried out as the Ljung-Box tests on 

the squared return series, indicate the existence of strong heteroscedasticity in 1-, 2- and 3- 

month return series across all commodities. Finally, the Phillips and Perron (1988) unit root 

test and the Kwiatkowski et al. (1992) test for stationarity suggest that all return series are 

stationary. 

 

The state of the market for a given energy commodity over the sample period is illustrated in 

the plot of the slope of the forward curve measured as the difference between the 6
th

-month 

and the near-month futures prices for the four energy commodities. A positive slope suggests 

that the market is contango and a negative slope suggests that the market is in backwardation. 

The slopes of forward curves for the four energy commodities are presented in Figures 2 to 5. 

It can be seen that all in markets there are periods of backwardation and contango over the 

sample period. Moreover, the variation of the slope of the forward curve tends to differ across 

markets.      

 

5. Empirical Results 

This section presents the empirical results on the relationship between the term structure and 

the volatility of energy futures prices. Different EGARCH models that link the dynamics of 

term structure and volatility are estimated.   

 

The estimation results of the EGARCH(1,1), EGARCH-X(1,1) and EGARCH-TX(1,1) 

models for the near-month, 2
nd

-month and 3
rd

-month return series for WTI Crude, Heating 

Oil, Gasoline, and Natural Gas are presented in Tables 2 to 5, respectively. Models are 

estimated using the quasi-maximum likelihood estimation method of Bollerslev and 

Wooldridge (1992) that yields robust standard errors in the presence of non-normality. The 

tables include regression statistics and diagnostics tests with respect to specification, validity 

and in sample performance. 

 

In Table 2 the diagnostic tests of the estimated crude oil futures prices EGARCH models 

suggest that all the models are well specified and there is no sign of 1
st
 or 10

th
 order 

autocorrelation or first order ARCH effects in standardised residuals of each model. However, 

there seem to be some 10
th

 order ARCH effects in models for 2
nd

 and 3
rd

 month futures that 

could not be removed, even with the introduction of higher-order ARCH terms in variance 

specifications. The coefficients of size asymmetry, β1, are positive and significant in all 

models and across all maturities, thereby suggesting that larger-than-average shocks or news 

(price changes) have a greater impact on volatility than smaller-than-average shocks. The 

coefficients of sign asymmetry, β2, are negative and significant in all models, except in the 

EGARCH-TX models for 2
nd

 and 3
rd

 month futures, therefore suggesting that bad news 

(negative price changes) tend to have a greater impact on volatility than good news (positive 

price changes). The coefficients of lagged volatility are positive and statistically significant 

and ranging in value from 0.948 to 0.971, thereby indicating high persistence in volatility in 

all models. More importantly, coefficients of lagged squared slope, γ, are all positive and 

statistically significant in the EGRACH-X and EGARCH-TX models across all maturities – 
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indicating a quadratic relationship between the volatility and the slope of the forward curve, 

meaning that volatility increases at an increasing rate as the market moves deeper into 

backwardation or contango.  

 

The coefficients of transition in the dynamics of volatility, δ0, δ1, δ2, and δ3, are negative and 

statistically significant in the EGARCH-TX models, suggesting that the behaviour of 

volatility changes as market moves from contango to backwardation. For instance, the 

negative δ3 coefficients for all maturities suggest that volatility is lower in a backwardated 

market than in a contango market. The negative δ2 coefficients in the 2
nd

 and 3
rd

 month 

models suggest that negative shocks or bad news tend to a have greater impact on volatility 

than positive shocks or good news only when the market is in backwardation. Finally, the 

likelihood ratio, LR, tests for the null of δ0=δ1=δ2= δ3=0 are rejected for 2
nd

 and 3
rd

 month 

EGARCH-TX models, suggesting that the dynamics of volatility of crude oil futures are 

dependent the state of the market.
4
  

 

In Table 3 the diagnostic tests of the estimated gasoline futures prices EGARCH models 

suggest that all the models are well specified and with no sign of autocorrelation or ARCH 

effects in residuals. The estimation results for gasoline futures prices indicate that there are 

significant size effects across all maturities in EGACH and EGARCH-X models, since the 

coefficients of β1 are positive and statistically significant. However, the EGARCH-TX 

estimate for the 2
nd

 month return series suggests that size effects are only present when the 

market is backwardated since coefficient β1 is insignificant and the coefficients of δ1 is  

positive and significant. At the same time, coefficients of sign effects, β2, for 2
nd

 and 3
rd

 

month futures are negative throughout in the EGARCH, EGARCH-X and EGARCH-TX 

models and are statistically significant except for the coefficient in the EGARCH-TX model 

for the 2
nd

 month return series. Moreover, coefficients of lagged squared slope of forward 

curve, γ, are all positive and significant in EGRACH-X and EGARCH-TX models and across 

all maturities. Significance of the likelihood ratio tests for the joint significance of δ0, δ1, δ2, 

and δ3 in the EGARCH-TX models confirm that these unrestricted models can capture the 

dynamics of volatility of gasoline futures better than restricted models EGARCH and 

EGARCH-X models.  

 

The estimates of the heating oil futures prices EGARCH models are presented in Table 4. 

Again, the diagnostics tests suggest that the models are well specified, with the exception of 

the test for normality. Estimated coefficients of size asymmetry, β1, are all positive and 

statistically significant, suggesting that larger shocks have a relatively greater impact on 

volatility than smaller shocks. The statistically significant and positive δ1 coefficients in the 

EGARCH-TX model estimates suggest that the impact of larger shocks on volatility is greater 

than smaller shocks when the heating oil market is backwardation than when it is in contango. 

Estimated coefficients of β2 and δ2 are all insignificant which suggests that there is no 

asymmetric impact on volatility with respect to shocks of different signs. Coefficients of δ3 

are all negative and significant in the case of 2
nd

 and 3
rd

 month futures, meaning that volatility 

persistence declines as the market moves from contango to backwardation. The coefficients of 

γ are all positive and statistically significant in the EGRACH-X and EGARCH-TX models 

across all maturities. Once again, the likelihood ratio tests reject the restricted EGARCH and 

                                                 
4
 The LR test is a test for joint significance of δ0, δ1, δ2, and δ3 with the null of δ0=δ1=δ2= δ3=0. The test statistic is calculated 

as ][2 rur LLLLLR  where LLur and LLr are the Loglikelihood of the unrestricted model (EGARCH-TX) and restricted 

model (EGARCH-X). The test statistics follows a chi-squared distribution with 4 degrees of freedom, 2

4 . 
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EGACRH-X models in favour of the EGARCH-TX model in the case of near month and 2
nd

 

month futures.  

 

Finally, the estimates of the natural gas futures prices EGARCH models are found in Table 5. 

The diagnostic tests confirm that the models are well specified with no sign of autocorrelation 

or ARCH effects in residuals. The coefficients of size asymmetry, β1, are positive and 

statistically significant in all models across all maturities. The estimated coefficients of δ1 in 

the EGARCH-TX models are negative and statistically significant for the near month and 

second month futures – suggesting that the asymmetric impact of shocks with different 

magnitudes is less when the natural gas market is in backwardation than when it is in 

contango. Estimated coefficients β2 are positive and statistically significant in the EGARCH 

and EGARCH-X models, suggesting that positive shocks tend to increase volatility more than 

negative shocks. Conversely, the estimated coefficients of β2 for the EGARCH-TX models 

are statistically insignificant. The estimated δ2 coefficients are positive and statistically, 

revealing that an asymmetric impact of shocks with different signs on volatility exists when 

the market is in backwardation. Additionally, the δ3 coefficients are negative but only 

significant in the near month series, suggesting similar volatility persistence under 

backwardation and contango in the near month series. The coefficients of γ are all positive 

and significant in the EGRACH-X and EGARCH-TX models and across all maturities – 

again suggesting the existence of a quadratic relation between volatility and the slope of the 

forward curve but now in the natural gas market. Furthermore, the LR tests reject the 

restricted EGARCH-X models in favour of unrestricted EGARCH-TX models which allow 

for changes in the values of parameters and dynamics of volatility of Natural Gas futures 

prices.  

 

The above estimation results reveal noticeable differences in the dynamics of the volatility of 

the futures prices of the four energy commodities when the condition of the market is 

measured via the slope of the forward curve. The volatilities vary with shocks that differ in 

size and in direction. For instance, negative shocks (or bad news) tend to increase the 

volatility of crude oil and gasoline futures prices more than positive shocks (or  good news), 

whereas the volatility of natural gas futures tend to increase more following a positive shock 

than a negative shock. The volatility of crude oil, gasoline and heating oil futures prices 

depend on the slope of the forward curve, whereas the volatility of natural gas futures prices 

is independent of market conditions.  There are also differences in the degree of dependence 

of volatility of energy commodities on the slope of forward curve. Figure 6 presents the 

scatter diagram of slope of forward curve and volatility of near-month futures contract for the 

four commodities under investigation. The scatter plots and fitted quadratic regression lines 

illustrate a clear quadratic association between the two variables. However, the degree of this 

convexity differs among the relationships.          

 

 

6. Forecasting Performance of Volatility Models 

The appropriateness of the above volatility models is examined by investigating their out-of-

sample forecasting performance over the period January 2007 to December 2008.
5
 

                                                 
5
 We set the end of our estimation period two years before the end of the sample, i.e. December 2006. This allows us to use 

the last two years of the sample (January 2007 to December 2008, 504 observations) to examine the forecasting performance 

of models in predicting volatility of energy futures prices, a practice known as ex-post forecast evaluation technique.  
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Specifically, the out-of-sample forecast evaluation tests are carried out by comparing the 

forecasting performance of the one-step-ahead forecasts of the EGARCH(1,1), EGARCH-

X(1,1) and EGARCH-TX(1,1) models to those of the Naïve (or Historical Variance) and 

Exponentially Weighted Moving Average Variance (the RiskMetrics method) models. The 

Naïve model, which is the simplest method of forecasting variance, is based on the 

assumption that the best one-period ahead forecast for variance is the current variance, i.e., 
22

1
ˆ

tt   , where, 
2

1
ˆ

t  is the one-period ahead forecast of variance. The RiskMetrics method 

uses exponentially weighted average of current variance and returns to predict the future 

variance, 222

1 )1(ˆ
ttt r 

, with a weighting coefficient of  (e.g. =0.95). 

 

The accuracy of the out-of-sample volatility forecasts for different models is investigated 

using the root mean square error (RMSE), which is the root of the average of the squared 

differences between forecasted variances and squared realised returns, i.e.,   

 

 

(4) 

 

 

where M is the number of forecasts and 2

ir  is the square of realized changes in futures prices. 

The RMSE essentially measures how close the variance estimates track the changes in the 

square of futures prices. However, RMSE does not provide information on the asymmetry of 

the variance prediction errors, i.e., if there is a significant difference between variance 

forecast errors when the variance forecasts over-predict or under-predict the realised variance 

(changes in futures prices). 

 

Although forecast errors are expected to be unbiased, there might be occasions when a model 

over-predicts the variance of futures prices relatively more often but the forecast errors are 

smaller and under predicts the variance relatively less frequently but the forecast errors are 

larger. A model with symmetric forecast errors should produce about 50% positive and 50% 

negative forecast errors, with similar positive and negative mean errors. The existence of 

asymmetric forecast errors is investigated using the Brailsford and Faff (1996) Mixed Mean 

Error (MME) statistic, which uses a mixture of positive and negative forecast errors with 

different weights to assess the asymmetry in forecast errors.      

 

(5) 

 

 

(6) 

 

 

MME(O) applies more weight to over-predicted forecast errors in calculating the MME 

statistic, while MME(U) applies more weight to under-predicted forecast errors in calculating 

the statistic. By comparing the two statistics, one can assess the relative degree of under-

prediction and over-prediction of forecast errors. Asymmetric error statistics in volatility 

estimation and forecasting have important implications for traders and other participants in 







M

i

ii

M

r
RMSE

1

222 )ˆ(
 









  

 



U

i

O

i

itititit rr
M

OMME
1 1

2222 ˆ|ˆ|
1

)(   









 









O

i

itit

U

i

itit rr
M

UMME
1

22

1

22 |ˆ||ˆ|
1

)(   



 12 

energy futures markets, since the statistics enable traders and other participants to address the 

issue of asymmetry in their risk assessments.  

 

Results of different forecasts evaluation techniques for crude oil futures prices are found in 

Table 6. A comparison of the RMSE statistics suggests that EGACRH-TX out-performs the 

other models in terms of predictive accuracy. At the same time, the MME statistics reveal that 

all models appear to over-predict the variance of futures prices more often than under 

predicting. However, the mean over-prediction is much lower than the mean under-prediction 

in all models. The EGARCH model has the lowest MME(U) statistic and the Historical 

Variance model has the lowest MME(O) statistic. Nevertheless, the sum of the MME(U) and 

MME(O) statistics for each model reveals that this sum is the lowest for the Historical 

Variance, thus indicating that it has the best performance in terms of forecasting error 

asymmetry.    

 

With respect to gasoline futures prices, no model outperforms the other (see Table 6) in 

predicting the volatility of these prices. The RiskMetrics model has the lowest RMSE 

statistic, while the EGARCH and Historical Variance models have the lowest MME(O) and 

MME(U) statistics, respectively. Once again, the sum of the MME(O) and MME(U) statistics 

is the lowest for the Historical Variance model.  

 

The forecast evaluation technique results for heating oil futures prices in Table 6 suggests that 

the RiskMetrics model out-performs the other models in terms of predictive accuracy with 

respect to the RMSE and MME(O) statistics. That is to say, the RiskMetrics model has the 

lowest RMSE, and MME(O) statistics. However, the RiskMetrics model has the highest 

MME(U) statistic, while the EGARCH model has the lowest MME(U) statistic. Nevertheless, 

the sum of the MME(U) and MME(O) statistics for each model reveals that this sum is the 

lowest for the Historical Variance model, followed by the RiskMetrics model with the second 

lowest sum value.  

 

For natural gas futures prices, all three EGRACH-type models have the same and lowest 

RMSE statistic and EGARCH-TX has the lowest MME(O) statistic. The EGARCH model has 

the lowest MME(U) statistic. However, the sum of the MME(O) and MME(U) statistics is the 

lowest for the EGACRH-TX model.   

 

 

7. Value-at-Risk Analysis 

VaR analysis that has become an integral part of risk management in financial institutions, 

trading houses, oil companies and other businesses related to energy markets, is essentially a 

method of monitoring risk exposure of trading positions and portfolios. By definition, VaR is 

the possible portfolio loss that might occur over a given time with a given probability. The 

time horizon over which the VaR is estimated is known as the VaR horizon, typically one 

day. The probability associated with VaR is the significant level (α), typically taking on 

values of 1%, 2.5% or 5%. For instance, a 1-day 1% VaR is the possible loss that may occur 

in one day with a 1% probability.  

 

Let rt+k be the (log) return on an asset over the period t to t+k and (1-α) the confidence level. 

Then, conditional on the information set available at t, Ωt, the VaR can be defined as the 

solution to the following expression:  
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(7) 

 

 

The simplest method among several methods for estimating VaR is to use the one-day ahead 

forecast of volatility, 1t


, and the α percentile of a parametric distribution such as the 

standardised normal, Zα, to obtain 1

%

1
ˆ
 td ZVaR 

 . In using this method, the accuracy and 

forecasting performance of VaR estimates will thus depend on the accuracy of the volatility 

forecast and the underlying distribution from which the α-percentile is obtained. While the α-

percentile can be obtained from parametric distributions, VaR estimates can also be retrieved 

from the historical distribution of returns or standardised returns. These nonparametric VaR 

approaches, e.g., the Historical Simulation (HS) and Filtered Historical Simulation (FHS) 

approaches, obtain percentiles from historical distributions of returns or standardised returns.
6
     

 

To further assess the practical implication of the results in terms of risk assessment and 

measurement, the VaR estimates of the proposed EGARCH-X and EGACRH-TX models are 

compared with other competing models using a backtesting procedure. Backtesting is 

performed by running the model through a given sample to test whether the proportion of 

times that changes in the variable/portfolio exceeded the VaR level corresponds to the 

significance level chosen. If such violations of VaR occur, say at % of the time, then we are 

assured that the method chosen to estimate the % VaR is relatively accurate. On the other 

hand, if changes in the portfolio significantly exceed the % VaR level, one would not be 
confident about the predictive performance of the VaR methodology. The most commonly 

used framework in backtesting VaR models has been developed by Christoffersen (2003) and 

appears in Appendix A.  

 

The performance of models in accuracy and efficiency of VaR estimation are compared for 

long and short positions of near-month futures prices of different energy commodities. The 

results of the VaR analysis for the four energy commodities are presented in Tables 7 to 10. In 

each table 1-day VaR values are reported for long and short positions and different 

significance levels (1%, 2.5% and 5%). Reported statistics include: number of failures or 

violations (Nf), percentage of violations (%), and Likelihood Ratio tests for unconditional 

coverage (LLuc),   independence coverage (LLind), and conditional coverage (LLcc).  

 

The backtesting results for near-month crude oil futures prices that are reported in Table 7 

reveal that that the Historical Variance (HV), Historical Simulation (HS), and Filtered 

Historical Simulation (FHS) models all fail to pass one or more of LR tests in the estimation 

of VaR for both long and short positions (upside and downside risks). In addition, the 

RiskMetrics and simple EGACRH models also fail the LR tests with respect to short position 

when  is 2.5%. The models that pass the backtesting exercise for different levels of  are the 

EGARCH-X and EGARCH-TX models.  

 

The backtesting results for gasoline futures prices found in Table 8 are mixed, since no model 

convincingly outperforms the others. For instance, the Historical Variance, HS, and FHS 

models all fail to pass one or more of the LR tests in estimation of VaR for both long and 

short positions for different levels of . At the same time, the EGACRH, EGARCH-X and 

                                                 
6
 See Christoffersen (1998) for more details on nonparametric models for VaR estimation, and Cabedo and Moya (2003) and 

Costello et al. (2008) for applications of nonparametric VaR estimation in oil markets.  

   )Pr( tktkt VaRr  
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EGRACH-TX models pass the tests when  is 5%, but the EGACRH-TX model fails the test 

when  is 1% and 2.5%. Overall, the RiskMetrics and EGARCH-X models perform better 

than other models, i.e., passing more of the LR tests for different levels of . 

 

In the case of heating oil futures prices, backtesting results reported in Table 9 reveal that the 

Historical Variance, RiskMetrics and all EGACH models pass the LR tests for all  levels. 
However, the two nonparametric models fail to pass one or more of the LR tests. The 

backtesting results for natural gas futures prices reported in Table 10 reveal that all volatility 

models except the Historical Variance and FHS models pass all LR tests for long and short 

positions at different levels of α.  The historical variance and FHS models also pass the LR 

tests when α is at 2.5% and 5%. However, when we consider the forecast accuracy and 

backtesting results together, the EGARCH-TX model performs best in terms of low RMSE 

values and VaR violations.   

 

8. Conclusions 

This paper has investigated the relationship between the dynamics of the term structure of 

forward curves and the time-varying volatility of the futures prices of energy commodities 

from estimation of augmented EGARCH models. The rationale for the investigation is that 

the slopes of forward curves not only reflect temporal supply and demand conditions, but also 

relationships between current and expected market conditions. Four main energy commodities 

traded on the New York Mercantile Exchange are used in the investigation; namely, crude oil, 

gasoline, heating oil and natural gas.   

 

The main findings of the paper are as follows. First, it provides evidence that a convex (U 

shape) relationship exists between the forward curve and the volatility of energy prices – i.e., 

the volatility of energy prices increases exponentially as the market moves deeper into 

backwardation or contango. Second, it provides evidence that the dynamics of the volatility of 

energy prices and thus the behaviour of energy prices are dependent on the slope of the 

forward curve. Third, it enhances our understanding of the dynamics of price volatility of 

specific energy commodities: a) negative shocks tend to increase the volatility of crude oil 

and gasoline futures prices more than positive shocks; b) the volatility for natural gas tends to 

increase more following a positive shock than following a negative shock; c) the volatility of 

crude oil, gasoline and heating oil futures prices depend on the slope of the forward curve, 

whereas the volatility of natural gas futures prices is independent of market conditions; and d) 

the degree of the dependence of the volatility of energy prices on the slope of the forward 

curve differs among energy commodities.  

 

Out-of-sample forecasting performance of the estimated models are somewhat mixed as there 

is no single model that consistently outperforms others. This might be due to the fact that the 

volatility of energy prices is an unobservable variable and the metric used as a proxy for this 

volatility (i.e., squared returns of futures prices) in evaluating forecasting performance might 

not be an appropriate proxy. Nevertheless, the forecasting evaluation statistics suggest that all 

models tend to over-predict more often than they under-predict the volatility of energy prices, 

but the average under-prediction is higher than the average over prediction. However, the 

backtesting VaR analysis results suggest that in general volatility energy-price models that 

include the slope of the forward curve, i.e., the EGARCH-X and EGARCH-TX models, 

perform reasonably well in forecasting energy prices in main energy markets. 
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Appendix A 

 
A sequence of out-of-sample VaR estimates for a long position is said to be efficient with 

respect to the information set available at t-1, Ωt-1, if the following condition holds:  

 

 

A.1 

 

The above equation implies that the expected VaR failures, E[t], should be: 1) on average, 

equal to the nominal confidence level, , and 2) uncorrelated with any function/variable in the 
information set available at t-1. The above property is tested using intermediary statistics of 

unconditional coverage developed by Kupiec (1995), independence, and conditional coverage 

proposed by Christoffersen (2003). In this respect, the rejection of the model can be 

categorized as the failure of unconditional coverage, clustering of violations, or both. 

Christoffersen (2003) defines all three tests as likelihood ratio based tests.  

 

The LR statistic for the correct unconditional coverage is specified as: 

 

 

A.2 

 

where 1n is the number of 1‟s in the indicator series, 0n is the number of 0‟s in the indicator 

series, α is the tolerance level of the VaR estimates, and  )/( 0111 nnn  . The LR statistic 

for test of independence is specified as:  

 

 

A.3 

 

where ijn  is the number of i values followed by a j value in the indicator series,  

 

 

A.4 

 

 

And finally, the LR statistic for the correct conditional coverage is given as the sum of the 

correct unconditional coverage and the independence test: 

 

A.5 

 

The best models are those that generate a coverage rate less than the nominal and a model is 

considered to be adequate for risk management when it is able to pass both the conditional 

and unconditional coverage tests. 
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Table 1: Descriptive statistics of daily returns on energy futures prices  

 Mean Volatility Normality Autocorrelation ARCH Unit Root 

  SD J-B LB-Q 10
th
 10

th
 PP KPSS 

WTI Crude Oil         

1-month  0.045 0.396 2026.4 23.094 393.98 -55.807 0.125 

2-month 0.055 0.357 1303.9 17.219 351.19 -55.756 0.130 

3-month 0.060 0.335 1023.2 18.572 516.57 -55.911 0.135 

Heating Oil         

1-month  0.055 0.392 2642.2 13.431 121.56 -56.744 0.128 

2-month 0.058 0.359 548.4 12.153 115.92 -57.275 0.136 

3-month 0.062 0.337 321.2 11.660 163.24 -57.178 0.140 

Gasoline         

1-month  0.030 0.431 1509.1 8.359 109.89 -53.717 0.111 

2-month 0.034 0.378 731.9 8.582 250.65 -54.834 0.136 

3-month 0.038 0.344 552.4 16.918 498.24 -55.518 0.148 

Natural Gas         

1-month  0.092 0.587 4687.3 8.328 108.82 -56.394 0.026 

2-month 0.068 0.531 1505.7 6.627 162.94 -56.741 0.054 

3-month 0.078 0.476 4719.9 6.928 57.018 -55.882 0.070 

 Sample period: 1
st
 January 1997 to 31

st
 December 2008. 

 Mean and standard deviation of returns are annualised.   

 JB is the Bera and Jarque (1980) test for normality which follows a
2

)2(  distribution. The 5% critical 

value for this test is 5.991. 

 ARCH is the Engle (1982) test for 10
th
 order Autoregressive Conditional Heteroscedasticity which 

follows a
2

)10( distribution. The 5% critical value for this test is 18.307.  

 LB-Q is the Ljung and Box (1978) test for 10
th
 order autocorrelation which follows a

2

)10(  

distribution. The 5% critical value for this test is 18.307.  

 PP is the Philips and Perron (1988) unit root test. The 5% critical value for this test is -2.862. 

 KPSS is the Kwiatkowski et al. (1992) test for stationarity. The 5% critical value for this test is 0.463. 
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Table 2: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX crude oil futures prices  
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  Near month  2
nd

 Month  3
rd

 Month 

  EGARCH EGARCH-X EGARCH-TX  EGARCH EGARCHX EGARCH-TX  EGARCH EGARCHX EGARCH-TX 

Mean             

0  0.0003 

(0.777) 

0.0005 

(1.085) 

0.0005 

(1.076) 

 0.0004 

(0.979) 

0.005 

(1.260) 

0.0005 

(1.305) 

 0.0004 

(1.087) 

0.0005 

(1.281) 

 0.0005 

(1.430) 

 

Variance             

0 
 -0.217

***
 

(-4.148) 

-0.404
***

 

(-5.387) 

  -0.286
***

 

(-3.620) 

   -0.333
***

 

(-4.423) 

   -0.404
***

 

(-4.757) 

  -0.331
***

 

(-3.432) 

 -0.309
***

 

(-3.888) 

  -0.343
***

 

(-4.263) 

   -0.314
***

 

(-3.091) 

1 
 0.105

***
 

(8.026) 

0.090
***

 

(6.739) 

   0.091
***

 

(4.846) 

   0.116
***

 

(10.399) 

   0.098
***

 

(8.532) 

   0.124
***

 

(6.348) 

   0.101
***

 

(8.595) 

   0.091
***

 

(7.909) 

    0.131
***

 

(6.608) 

2 
 -0.044

***
 

(-5.592) 

-0.045
***

 

(-4.717) 

  -0.041
***

 

(-2.929) 

 -0.041
***

 

(-4.547) 

-0.042
***

 

(-4.308) 

-0.015 

(-0.957) 

 -0.035
***

 

(-3.963) 

 -0.033
***

 

(-3.370) 

-0.012 

(-0.785) 

3 

 0.971
***

 

(139.82) 

0.948
*** 

(97.866) 

    0.964
***

 

(92.988) 

 0.956
***

 

(80.922) 

0.949
***

 

(88.247) 

    0.958
***

 

(77.190) 

   0.960
***

 

(95.321) 

  0.957
***

 

(95.433) 

    0.961
***

 

(74.818) 

 

δ0 
        -0.306

***
 

(-2.679) 

      -0.666
***

 

(-3.154) 

   -0.693
***

 

(-2.817) 

δ1 
   -0.014 

(-0.529) 

    -0.040 

(-1.328) 

   -0.046 

(-1.512) 

δ2 
   -0.016 

(-0.775) 

      -0.078
***

 

(-3.428) 

     -0.068
***

 

(-3.021) 

δ3 

       -0.041
***

 

(-2.671) 

       -0.086
***

 

(-3.138) 

      -0.088
***

 

(-2.807) 

 

γ 
  2.345

***
 

(5.413) 

    2.503
***

 

(5.581) 

  1.823
***

 

(5.168) 

    2.752
***

 

(5.991) 

     1.391
***

 

(4.348) 

    2.281
***

 

(5.204) 
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LR test     5.540    14.260    12.420 

p-value    0.2362    0.0065    0.0145 

Diagnostics             

R-bar sq  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004 

AIC  -6.551 -6.565 -6.567  -6.745 -6.754 -6.760  -6.895 -6.902 -6.907 

SBIC  -6.535 -6.546 -6.536  -6.730 -6.736 -6.729  -6.879 -6.883 -6.876 

LL  8218.18 8235.39 8238.16  8461.88 8473.48 8480.61  8649.61 8658.39 8664.60 

LB-Q(1)  0.139 

[0.710] 

0.139 

[0.710] 

0.139 

[0.710] 

 0.064 

[0.801] 

0.064 

[0.801] 

0.064 

[0.801] 

 0.033 

[0.856] 

0.033 

[0.856] 

0.033 

[0.856] 

LB-Q(10)  13.597 

[0.192] 

13.597 

[0.192] 

13.597 

[0.192] 

 12.951 

[0.226] 

12.951 

[0.226] 

12.951 

[0.226] 

 11.410 

[0.326] 

11.410 

[0.326] 

11.410 

[0.326] 

ARCH (1) 
 1.201 

[0.273] 

0.345 

[0.556] 

0.472 

[0.492] 

 0.263 

[0.608] 

0.053 

[0.817] 

0.035 

[0.851] 

 1.960 

[0.169] 

1.476 

[0.224] 

0.715 

[0.398] 

ARCH (10) 
 13.079 

[0.219] 

14.135 

[0.167] 

12.809 

[0.235] 

 21.480 

[0.018] 

22.740 

[0.012] 

21.442 

[0.018] 

 19.384 

[0.036] 

19.974 

[0.039] 

18.845 

[0.042] 

JB test  1173.5 

[0.000] 

1173.5 

[0.000] 

1173.5 

[0.000] 

 1039.55 

[0.000] 

1039.55 

[0.000] 

1039.55 

[0.000] 

 579.65 

[0.000] 

579.65 

[0.000] 

579.65 

[0.000] 

 Sample period: 1
st
 January 1997 to 31

st
 December 2006. 

 zt is the slope of forward curve calculated as the difference in log of near month and the 6
th
 month futures prices. 

 AIC and SBIC are the Akaike and Schwartz Bayesian Information Criteria, respectively. 

 LL is the log-likelihood value of the estimated model. 

 LR test is the likelihood Ratio test for the joint significance of δ0, δ1, δ2, δ3. 

 LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests for the 1
st
 and the 10

th
 order autocorrelation. The 5% critical values for these tests are 3.841 and 18.307, 

respectively. 

 ARCH(1) and ARCH(10) are the Engle (1982) tests for the 1
st
 and the 10

th
 order Autoregressive Conditional Heteroscedasticity. The 5% critical values for these 

tests are 3.841 and 18.307, respectively. 

 JB is the Jarque and Bera (1980) test for normality. The 5% critical value for this test is 5.991. 

 Standard errors are corrected using Bollerslev and Wooldridge (1992). 

 

 

 

 

 

 

 

 



 21 

 

Table 3: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX gasoline futures prices  
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  Near month  2
nd

 Month  3
rd

 Month 

  EGARCH EGARCH-X EGARCH-TX  EGARCH EGARCHX EGARCH-TX  EGARCH EGARCHX EGARCH-TX 

Mean             

0  0.0005 

(0.990) 

0.0006 

(1.291) 

0.0006 

(1.229) 

 0.0002 

(0.378) 

0.0003 

(0.674) 

0.0003 

(0.703) 

 0.0001 

(0.327) 

 0.0003 

(0.659) 

 0.0002 

(0.592) 

Variance             

0 
 -0.304

***
 

(-4.073) 

   -0.502
***

 

(-4.834) 

   -0.455
***

 

(-3.545) 

 -0.135
***

 

(-3.384) 

-0.193
***

 

(-3.833) 

  -0.169
***

 

(-2.881) 

   -0.203
***

 

(-2.938) 

  -0.293
***

 

(-3.454) 

  -0.288
***

 

(-2.748) 

1 
  0.136

***
 

(9.292) 

  0.134
***

 

(8.129) 

  0.053
*
 

(1.684) 

 0.067
***

 

(5.948) 

0.076
***

 

(5.968) 

 0.033 

(1.492) 

   0.087
***

 

(6.140) 

  0.095
***

 

(6.374) 

 0.070
***

 

(2.633) 

2 
   0.009 

(1.050) 

0.0003 

(0.030) 

  0.009 

(0.455) 

 -0.016
***

 

(-2.367) 

-0.015
***

 

(-1.936) 

-0.015 

(-1.059) 

 -0.025
***

 

(-3.098) 

 -0.024
***

 

(-2.625) 

 -0.030
*
 

(-1.870) 

3 

   0.957
***

 

(92.965) 

   0.933
*** 

(66.580) 

    0.939
***

 

(52.942) 

 0.982
***

 

(185.53) 

0.975
***

 

(148.49) 

    0.978
***

 

(126.19) 

  0.974
***

 

(109.99) 

  0.963
***

 

(89.798) 

    0.963
***

 

(71.553) 

 

δ0 
   -0.115 

(-0.765) 

     -0.403
**

 

(-2.451) 

   -0.608
**

 

(-2.402) 

δ1 
       0.115

***
 

(3.194) 

      0.084
***

 

(3.026) 

   0.054 

(1.515) 

δ2 
   -0.023 

(-0.869) 

   -0.031 

(-1.431) 

   -0.030 

(-1.160) 

δ3 

    -0.015 

(-0.701) 

     -0.052
**

 

(-2.430) 

      -0.076
**

 

(-2.351) 

 

γ 
    1.118

***
 

(5.141) 

    1.240
***

 

(5.182) 

     0.325
***

 

(3.015) 

    0.542
***

 

(3.083) 

     0.441
***

 

(3.728) 

   0.802
***

 

(3.214) 
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LR test     10.800    7.960    10.900 

p-value    0.0289    0.0931    0.0277 

Diagnostics             

R-bar sq  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004 

AIC  -6.298 -6.309 -6.313  -6.599 -6.6-2 -6.605  -6.822 -6.825 -6.830 

SBIC  -6.282 -6.290 -6.262  -6.583 -6.583 -6.574  -6.806 -6.807 -6.798 

LL  7900.88 7914.02 7919.42  8277.98 8281.96 8285.94  8557.77 8562.36 8567.81 

LB-Q(1)  3.412 

[0.065] 

3.412 

[0.065] 

3.412 

[0.065] 

 0.605 

[0.437] 

0.605 

[0.437] 

0.605 

[0.437] 

 0.112 

[0.738] 

0.112 

[0.738] 

0.112 

[0.738] 

LB-Q(10)  13.553 

[0.194] 

13.553 

[0.194] 

13.553 

[0.194] 

 10.235 

[0.420] 

10.235 

[0.420] 

10.235 

[0.420] 

 13.046 

[0.221] 

13.046 

[0.221] 

13.046 

[0.221] 

ARCH (1) 
 1.037 

[0.309] 

0.660 

[0.417] 

1.038 

[0.308] 

 3.076 

[0.079] 

1.862 

[0.172] 

1.059 

[0.303] 

 1.289 

[0.256] 

0.584 

[0.445] 

0.107 

[0.744] 

ARCH (10) 
 10.942 

[0.362] 

8.701 

[0.561] 

9.421 

[0.493] 

 11.322 

[0.333] 

10.359 

[0.410] 

8.278 

[0.602] 

 11.437 

[0.324] 

10.655 

[0.385] 

8.279 

[0.602] 

JB test  1541.24 

[0.000] 

1541.24 

[0.000] 

1541.24 

[0.000] 

 482.45 

[0.000] 

482.45 

[0.000] 

482.45 

[0.000] 

 185.68 

[0.000] 

185.68 

[0.000] 

185.68 

[0.000] 

 Sample period: 1
st
 January 1997 to 31

st
 December 2006. 

 zt is the slope of forward curve calculated as the difference in log of near month and the 6
th
 month futures prices. 

 AIC and SBIC are the Akaike and Schwartz Bayesian Information Criteria, respectively. 

 LL is the log-likelihood value of the estimated model. 

 LR test is the likelihood Ratio for the joint significance of δ0, δ1, δ2, δ3. 

 LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests for the 1
st
 and the 10

th
 order autocorrelation. 

 ARCH(1) and ARCH(10) are the Engle (1982) tests for the 1
st
 and the 10

th
 order Autoregressive Conditional Heteroscedasticity. 

 JB is the Jarque and Bera (1980) test for normality. 

 Standard errors are corrected using Bollerslev and Wooldridge (1992). 
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Table 4: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX heating oil futures prices  
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  Near month  2
nd

 Month  3
rd

 Month 

  EGARCH EGARCH-X EGARCH-TX  EGARCH EGARCHX EGARCH-TX  EGARCH EGARCHX EGARCH-TX 

Mean             

0  0.0006 

(1.470) 

0.0007 

(1.572) 

0.0007 

(1.552) 

  0.0004 

(1.047) 

 0.0005 

(1.343) 

0.0006 

(1.280) 

  0.0003 

(0.737) 

0.0005 

(1.162) 

 0.0004 

(1.052) 

Variance             

0  -0.336
***

 

(-5.169) 

   -0.716
***

 

(-4.591) 

   -0.586
***

 

(-3.637) 

    -0.297
***

 

(-3.436) 

   -0.566
***

 

(-3.637) 

   -0.456
***

 

(-2.915) 

  -0.220
***

 

(-3.480) 

   -0.420
***

 

(-3.562) 

  -0.158
**

 

(-2.339) 

1  0.162
***

 

(10.579) 

  0.160
***

 

    (7.622) 

       0.061
***

 

(2.626) 

     0.102
***

 

(7.255) 

   0.106
***

 

(5.591) 

 0.060
***

 

(2.825) 

   0.085
***

 

 (6.049) 

  0.100
***

 

(5.736) 

   0.046
***

 

(3.120) 

2   0.034
***

 

(3.495) 

0.017 

(1.482) 

 0.018 

(1.223) 

     -0.003 

(-0.307) 

 -0.007 

(-0.689) 

0.000 

(0.000) 

   -0.005 

(-0.640) 

 -0.001 

(-0.110) 

 -0.007 

(-0.771) 

3  0.954
***

 

(109.31) 

 0.906
***

 

(44.340) 

    0.925
***

 

 (44.230) 

      0.961
***

 

(85.151) 

     0.927
***

 

(46.186) 

     0.942
***

 

(46.918) 

   0.971
***

 

(119.38) 

    0.946
***

 

(63.150) 

    0.980
***

 

(114.57) 

 

δ0     -0.124 

(-0.580) 

   -0.390 

(-1.593) 

     -0.352
**

 

(-2.018) 

δ1        0.180
***

 

(5.333) 

      0.119
***

 

(3.358) 

       0.091
***

 

(3.144) 

δ2     0.015 

(0.569) 

    -0.006 

(-0.235) 

   0.021 

(1.023) 

δ3    -0.021 

(-0.747) 

    -0.054
*
 

(-1.678) 

      -0.047
**

 

(-2.064) 

 

γ      2.002
***

 

(6.294) 

    1.633
***

 

(4.945) 

       1.155
***

 

(4.768) 

    1.255
***

 

(4.163) 

     0.746
***

 

(4.230) 

    0.586
***

 

(3.639) 
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LR test     19.220    8.400    7.000 

p-value    0.0007    0.0780    0.1359 

Diagnostics             

R-bar sq  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004  -0.002 -0.002 -0.004 

AIC  -6.468 -6.487 -6.495  -6.628 -6.638 -6.642  -6.773 -6.778 -6.781 

SBIC  -6.452 -6.469 -6.464  -6.612 -6.620 -6.610  -6.757 -6.760 -6.750 

LL  8114.11 8138.45 8148.06  8114.71 8327.79 8331.99  8496.10 8503.29 8506.79 

LB-Q(1)  1.542 

[0.214] 

1.542 

[0.214] 

1.542 

[0.214] 

 3.232 

[0.072] 

3.232 

[0.072] 

3.232 

[0.072] 

 2.550 

[0.110] 

2.550 

[0.110] 

2.550 

[0.110] 

LB-Q(10)  11.975 

[0.287] 

11.975 

[0.287] 

11.975 

[0.287] 

 9.589 

[0.477] 

9.589 

[0.477] 

9.589 

[0.477] 

 9.261 

[0.507] 

9.261 

[0.507] 

9.261 

[0.507] 

ARCH (1) 
 0.028 

[0.868] 

0.391 

[0.532] 

0.550 

[0.214] 

 0.743 

[0.389] 

0.443 

[0.506] 

0.678 

[0.410] 

 0.030 

[0.863] 

0.004 

[0.947] 

0.012 

[0.912] 

ARCH (10) 
 8.673 

[0.563] 

9.016 

[0.530] 

9.472 

[0.488] 

 14.256 

[0.162] 

14.410 

[0.155] 

12.840 

[0.232] 

 11.751 

[0.302] 

11.095 

[0.350] 

13.070 

[0.220] 

JB test  2718.24 

[0.000] 

2718.24 

[0.000] 

2718.24 

[0.000] 

 510.49 

[0.000] 

510.49 

[0.000] 

510.49 

[0.000] 

 262.66 

[0.000] 

262.66 

[0.000] 

262.66 

[0.000] 

 Sample period: 1
st
 January 1997 to 31

st
 December 2006. 

 zt is the slope of forward curve calculated as the difference in log of near month and the 6
th
 month futures prices. 

 AIC and SBIC are the Akaike and Schwartz Bayesian Information Criteria, respectively. 

 LL is the log-likelihood value of the estimated model. 

 LR test is the likelihood Ratio for the joint significance of δ0, δ1, δ2, δ3. 

 LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests for the 1
st
 and the 10

th
 order autocorrelation. 

 ARCH(1) and ARCH(10) are the Engle (1982) tests for the 1
st
 and the 10

th
 order Autoregressive Conditional Heteroscedasticity. 

 JB is the Jarque and Bera (1980) test for normality. 

 Standard errors are corrected using Bollerslev and Wooldridge (1992). 
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Table 5: Estimation results of EGARCH(1,1), EGARCH-X(1,1), and EGARCH-TX(1,1) for NYMEX natural gas futures prices 
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  Near month  2
nd

 Month  3
rd

 Month 

  EGARCH EGARCH-X EGARCH-TX  EGARCH EGARCHX EGARCH-TX  EGARCH EGARCHX EGARCH-TX 

Mean             

0  0.001 

(1.638) 

0.001 

(1.782) 

0.0009 

(1.437) 

 0.001
**

 

(2.043) 

0.001
*
 

(1.705) 

0.001 

(1.117) 

   0.0015
***

 

(2.736) 

   0.0013
**

 

(2.391) 

   0.0013
**

 

(2.363) 

Variance             

0    -0.132
***

 

(-4.105) 

  -0.198
***

 

(-5.146) 

   -0.200
***

 

(-4.629) 

    -0.107
***

 

(-5.224) 

   -0.269
***

 

(-5.318) 

   -0.262
***

 

(-4.367) 

    -0.085
***

 

(-4.025) 

   -0.267
***

 

(-4.605) 

  -0.248
***

 

(-3.724) 

1     0.149
***

 

(10.495) 

  0.122
***

 

    (9.941) 

       0.117
***

 

(7.474) 

     0.119
***

 

(10.463) 

   0.107
***

 

(8.326) 

    0.100
***

 

(5.861) 

 0.111
***

 

(9.565) 

  0.113
***

 

(7.597) 

   0.102
***

 

(5.171) 

2     0.025
***

 

(3.495) 

     0.039
***

 

(6.201) 

 0.000 

(0.002) 

      0.029
***

 

(4.315) 

   0.036
***

 

(4.239) 

  0.007 

(0.709) 

 0.042
***

 

(6.282) 

   0.035
***

 

(4.173) 

0.004 

(0.419) 

3     0.979
***

 

(200.87) 

   0.971
***

 

(171.70) 

    0.971
***

 

 (157.40) 

      0.983
***

 

(325.91) 

     0.961
***

 

(133.48) 

     0.963
***

 

(114.51) 

 0.987
***

 

(322.44) 

    0.963
***

 

(119.94) 

    0.966
***

 

(105.30) 

 

Δ0    -0.105 

(-1.633) 

   -0.082 

(-1.052) 

   -0.017 

(-0.257) 

Δ1        -0.077
***

 

(-3.024) 

     -0.048
*
 

(-1.774) 

   -0.005 

(-0.156) 

Δ2        0.091
***

 

(5.973) 

       0.075
***

 

(4.371) 

       0.088
***

 

(4.978) 

Δ3     -0.018
*
 

(-1.772) 

    -0.014 

(-1.199) 

    -0.004 

(-0.450) 

 

γ      0.276
***

 

(6.984) 

    0.282
***

 

(6.335) 

       0.322
***

 

(6.658) 

    0.318
***

 

(5.365) 

     0.278
***

 

(6.242) 

    0.238
***

 

(4.584) 
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LR test     39.040    20.500    20.940 

p-value    0.0000    0.0004    0.0003 

Diagnostics             

R-bar sq  -0.002 -0.003 -0.004  -0.002 -0.003 -0.004  -0.003 -0.003 -0.004 

AIC  -6.671 -6.688 -6.703  -5.835 -5.854 -5.862  -6.078 -6.088 -6.096 

SBIC  -6.655 -6.669 -6.672  -5.820 -5.835 -5.831  -6.062 -6.069 -6.065 

LL  7114.18 7134.99 7154.51  7320.21 7344.04 7354.29  7624.75 7637.37 7647.84 

LB-Q(1)  3.853 

[0.050] 

3.853 

[0.050] 

3.853 

[0.050] 

 2.481 

[0.115] 

2.481 

[0.115] 

2.481 

[0.115] 

 0.524 

[0.469] 

0.524 

[0.469] 

0.524 

[0.469] 

LB-Q(10)  9.317 

[0.502] 

9.317 

[0.502] 

9.317 

[0.502] 

 7.321 

[0.695] 

7.321 

[0.695] 

7.321 

[0.695] 

 10.064 

[0.435] 

10.064 

[0.435] 

10.064 

[0.435] 

ARCH (1) 
 0.531 

[0.466] 

0.253 

[0.615] 

0.035 

[0.851] 

 0.003 

[0.960] 

0.004 

[0.950] 

0.205 

[0.651] 

 0.364 

[0.546] 

0.644 

[0.422] 

0.124 

[0.725] 

ARCH (10) 
 12.643 

[0.244] 

9.644 

[0.472] 

12.244 

[0.269] 

 13.623 

[0.191] 

12.935 

[0.227] 

14.026 

[0.172] 

 7.225 

[0.704] 

10.968 

[0360] 

12.054 

[0.281] 

JB test  2632.22 

[0.000] 

2632.22 

[0.000] 

2632.22 

[0.000] 
 1190.41 

[0.000] 

1190.41 

[0.000] 

1190.41 

[0.000] 

 4097.94 

[0.000] 

4097.94 

[0.000] 

4097.94 

[0.000] 

 Sample period: 1
st
 January 1997 to 31

st
 December 2006. 

 zt is the slope of forward curve calculated as the difference in log of near month and the 6
th
 month futures prices. 

 AIC and SBIC are the Akaike and Schwartz Bayesian Information Criteria, respectively. 

 LL is the log-likelihood value of the estimated model. 

 LR test is the likelihood Ratio for the joint significance of δ0, δ1, δ2, δ3. 

 LB-Q(1) and LB-Q(10) are the Ljung and Box (1978) tests for the 1
st
 and the 10

th
 order autocorrelation. 

 ARCH(1) and ARCH(10) are the Engle (1982) tests for the 1
st
 and the 10

th
 order Autoregressive Conditional Heteroscedasticity. 

 JB is the Jarque and Bera (1980) test for normality. 

 Standard errors are corrected using Bollerslev and Wooldridge (1992). 
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Table 6: Forecast evaluation and asymmetric bias of volatility forecasts 

Crude Oil 

  Ave Vol  RMSE  Over Prediction  Under Prediction  Sum 

     % Mean MME(O)  % Mean MME(U)   

Hist. Variance  0.37158 0.00225  64.3% 0.00034 0.01183  35.7% -0.00177 0.01200  0.02383 

RiskMetrics  0.43871 0.00210  66.7% 0.00050 0.01367  33.3% -0.00158 0.01070  0.02437 

EGARCH  0.43436 0.00214  67.9% 0.00049 0.01426  32.1% -0.00168 0.01049  0.02476 

EGARCH-X  0.42388 0.00209  67.3% 0.00045 0.01343  32.7% -0.00168 0.01079  0.02422 

EGARCH-TX  0.42862 0.00208  65.7% 0.00047 0.01314  34.3% -0.00157 0.01088  0.02401 

              

Gasoline 

  Ave Vol  RMSE  Over Prediction  Under Prediction  Sum 

     % Mean MME(O)  % Mean MME(U)   

Hist. Variance  0.40034 0.00174  66.67% 0.00043 0.01157  33.3% -0.00165 0.01382  0.02539 

RiskMetrics  0.44660 0.00165  66.87% 0.00055 0.01076  33.1% -0.00144 0.01495  0.02571 
EGARCH  0.44830 0.00169  68.65% 0.00056 0.01056  31.3% -0.00156 0.01597  0.02653 

EGARCH-X  0.44740 0.00168  68.65% 0.00055 0.01064  31.3% -0.00156 0.01576  0.02640 
EGARCH-TX  0.43472 0.00168  68.25% 0.00051 0.01091  31.7% -0.00158 0.01488  0.02578 

              

Heating Oil  

  Ave Vol  RMSE  Over Prediction  Under Prediction  Sum 

     % Mean MME(O)  % Mean MME(U)   

Hist. Variance  0.32793 0.00103  63.10% 0.00030 0.00930  36.9% -0.00090 0.01083  0.02013 
RiskMetrics  0.35751 0.00100  66.07% 0.00036 0.00846  33.9% -0.00087 0.01183  0.02029 

EGARCH  0.37816 0.00102  70.63% 0.00040 0.01383  29.4% -0.00097 0.00784  0.02168 
EGARCH-X  0.36015 0.00103  69.64% 0.00036 0.01301  30.4% -0.00100 0.00826  0.02127 

EGARCH-TX  0.33641 0.00104  66.87% 0.00031 0.01168  33.1% -0.00098 0.00890  0.02058 

              

Natural Gas  

  Ave Vol  RMSE  Over Prediction  Under Prediction  Sum 

     % Mean MME(O)  % Mean MME(U)   

Hist. Variance  0.50540 0.00446  71.63% 0.00081 0.02002  28.4% -0.00232 0.01086  0.03088 

RiskMetrics  0.48710 0.00442  69.64% 0.00071 0.01819  30.4% -0.00212 0.01076  0.02896 
EGARCH  0.51540 0.00441  73.41% 0.00078 0.02016  26.6% -0.00229 0.00987  0.03003 

EGARCH-X  0.50491 0.00441  74.01% 0.00073 0.01961  26.0% -0.00238 0.00994  0.02955 
EGARCH-TX  0.47326 0.00441  70.63% 0.00064 0.01762  29.4% -0.00222 0.01075  0.02837 

              
Notes:  
The total number of one-step ahead forecasts is 504.  
Historical Variance forecast is based on a 126 day rolling variance.  

Ave Vol is the average annualised volatility over the forecasting period. RMSE is the root mean squared error of volatility 

forecast compared to squared returns. MME(O) and MME(U) are Mixed Mean Error statistics (Brailsford and Faff, 1996) for 

comparisons of  asymmetries in volatility forecasts. Mean Over (Under) Prediction is the average of forecast errors when 
predicted volatility is higher (Lower) than the realised one. Percentage is the proportion of under prediction and over prediction 

over the forecast period. Sum is the sum of the MME(O) and MME(U) statistics. 
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Table 7: Comparison of forecasts of different volatility models for Near-month NYMEX 

crude oil futures 

Panel A: VaR for 1% and 5% Models Crude Oil 

Model  Nf  % LLuc LRind LRcc  Nf % LLuc LRind LRcc 

    1.0%      99.0%   

Hist. Variance  10 1.98% 3.833 1.768 5.601  14 2.78% 10.848* 3.731 14.58* 

Hist. Sim   16 3.17% 15.288* 2.800 18.088*  17 3.37% 17.706* 2.404 20.11* 

Filtred Hist Sim   12 2.38% 6.998* 1.167 8.165*  13 2.58% 8.844* NA NA 
RiskMetrics   6 1.19% 0.174 3.730 3.904  10 1.98% 3.833 NA NA 
EGARCH(1,1)  6 1.19% 0.174 NA NA  6 1.19% 0.174 NA NA 
EGARCHX(1,1)   8 1.59% 1.490 NA NA  8 1.59% 1.490 2.584 4.074 

EGARCHTX(1,1)   9 1.79% 2.548 2.144 4.692  9 1.79% 2.548 2.144 4.692 

             

    2.5%      97.5%   

Hist. Variance  25 4.96% 9.775* 2.055 11.83*  25 4.96% 9.775* 2.055 11.829* 

Hist. Sim   38 7.54% 34.43* 1.574 36.01*  26 5.16% 11.238* 1.747 12.984* 

Filtred Hist Sim   22 4.37% 5.904* 0.962 6.866*  23 4.56% 7.104* 0.764 7.868* 

RiskMetrics   13 2.58% 0.013 0.928 0.941  24 4.76% 8.396* 2.394 10.790* 

EGARCH(1,1)  14 2.78% 0.154 0.723 0.877  17 3.37% 1.423 5.843 7.266* 

EGARCHX(1,1)   15 2.98% 0.442 0.549 0.991  19 3.77% 2.892 1.728 4.620 

EGARCHTX(1,1)   17 3.37% 1.423 2.404 3.827  17 3.37% 1.423 2.404 3.827 

             

    5.0%      95.0%   

Hist. Variance  46 9.13% 14.682* 0.177 14.859*  39 7.74% 6.866* 0.000 6.866* 

Hist. Sim   54 10.71% 26.479* 1.988 28.468*  47 9.33% 15.999* 0.102 16.100* 

Filtred Hist Sim   37 7.34% 5.115* 0.034 5.148  36 7.14% 4.326* 0.806 5.132 

RiskMetrics   31 6.15% 1.313 0.619 1.932  33 6.55% 2.326 0.338 2.664 

EGARCH(1,1)  26 5.16% 0.026 1.747 1.773  30 5.95% 0.909 0.794 1.703 

EGARCHX(1,1)   32 6.35% 1.786 0.467 2.253  31 6.15% 1.313 0.619 1.932 

EGARCHTX(1,1)   32 6.35% 1.786 1.756 3.542  30 5.95% 0.909 0.794 1.703 

             

Notes:  
The total number of one-step ahead forecasts is 504.  

Historical Variance forecast is based on a 126 day rolling variance.  

Nf is the number of failures of VaR. LRuc , LRind, and LRcc are tests for  “unconditional coverage”, “ independence” and 

“conditional coverage”, respectively (see Christoffersen 2003). LRuc and LRind follow a Chi-Squared distribution with 1 degree of 
freedom, while LRcc follows a Chi-Squared distribution with 2 degrees of freedom. The 5% critical value for LRuc and LRind tests 

is 3.841, and the 5% critical value for LRcc test is 5.991. * indicates rejection of the null and failure of the test. 
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Table 8: Comparison of forecasts of different volatility models for Near-month NYMEX 

gasoline futures 

Panel A: VaR for 1% and 5% Models Crude Oil 

Model  Nf  % LLuc LRind LRcc  Nf % LLuc LRind LRcc 

    1.0%      99.0%   

Hist. Variance  15 2.98% 13.00* 0.549 13.55*  7 1.39% 0.687 3.105 3.792 

Hist. Sim   10 1.98% 3.833* NA NA  13 2.58% 8.844* 0.928 9.772* 

Filtred Hist Sim   16 3.17% 15.29* NA NA  20 3.97% 25.66* 0.054 25.72* 

RiskMetrics   13 2.58% 8.844* NA NA  5 0.99% 0.000 4.499 4.499 

EGARCH(1,1)  7 1.39% 0.687 NA NA  4 0.79% 0.233 5.482* 5.715 

EGARCHX(1,1)   9 1.79% 2.548 NA NA  5 0.99% 0.000 4.499* 4.500 

EGARCHTX(1,1)   15 2.98% 12.99* 0.549 13.55*  4 0.79% 0.233 NA NA 
             

    2.5%      97.5%   

Hist. Variance  25 4.96% 9.775* 0.055 9.829*  14 2.78% 0.154 3.731 3.885 

Hist. Sim   19 3.77% 2.892 0.109 3.001  25 4.96% 9.775 2.055 11.83* 

Filtred Hist Sim   24 4.76% 8.396* 0.020 8.416*  36 7.14% 29.920 0.158 30.08* 

RiskMetrics   18 3.57% 2.100 NA NA  17 3.37% 1.423 2.404 3.827 

EGARCH(1,1)  19 3.77% 2.892 0.109 3.001  7 1.39% 3.035 3.105 6.139* 

EGARCHX(1,1)   19 3.77% 2.892 0.109 3.001  9 1.79% 1.170 2.144 3.314 

EGARCHTX(1,1)   18 3.57% 2.100 0.184 2.284  10 1.98% 0.591 6.353* 6.944* 

             

    5.0%      95.0%   

Hist. Variance  38 7.54% 5.962* 1.574 7.536*  33 6.55% 2.326 0.014 2.340 

Hist. Sim   40 7.94% 7.825* 1.084 8.909*  38 7.54% 5.962* 0.007 5.969* 

Filtred Hist Sim   46 9.13% 14.68* 0.012 14.69*  45 8.93% 13.41* 0.000 13.41* 

RiskMetrics   28 5.56% 0.317 0.251 0.568  32 6.35% 1.786 0.001 1.787 

EGARCH(1,1)  27 5.36% 0.132 0.171 0.303  21 4.17% 0.779 1.188 1.967 

EGARCHX(1,1)   25 4.96% 0.002 0.055 0.056  22 4.37% 0.446 0.962 1.408 

EGARCHTX(1,1)   35 6.94% 3.597 0.093 3.690  24 4.76% 0.061 0.591 0.652 

             

Notes:  
The total number of one-step ahead forecasts is 504.  

Historical Variance forecast is based on a 126 day rolling variance.  

Nf is the number of failures of VaR. LRuc , LRind, and LRcc are tests for  “unconditional coverage”, “ independence” and 

“conditional coverage”, respectively (see Christoffersen 2003). LRuc and LRind follow a Chi-Squared distribution with 1 degree of 
freedom, while LRcc follows a Chi-Squared distribution with 2 degrees of freedom. The 5% critical value for LRuc and LRind tests 

is 3.841, and the 5% critical value for LRcc test is 5.991. * indicates rejection of the null and failure of the test. 
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Table 9: Comparison of forecasts of different volatility models for Near-month NYMEX 

heating oil futures 

Panel A: VaR for 1% and 5% Models Crude Oil 

Model  Nf  % LLuc LRind LRcc  Nf % LLuc LRind LRcc 

    1.0%      99.0%   

Hist. Variance  8 1.59% 1.490 NA NA  9 1.79% 2.548 2.144 4.692 

Hist. Sim   13 2.58% 8.844* NA NA  13 2.58% 8.844* 0.928 9.772* 

Filtred Hist Sim   21 4.17% 28.55* NA NA  14 2.78% 10.85* NA NA 
RiskMetrics   9 1.79% 2.548 NA NA  9 1.79% 2.548 NA NA 
EGARCH(1,1)  6 1.19% 0.174 NA NA  5 0.99% 0.000 4.499 4.500 

EGARCHX(1,1)   8 1.59% 1.490 NA NA  4 0.79% 0.233 5.482 5.715 

EGARCHTX(1,1)   9 1.79% 2.548 NA NA  6 1.19% 0.174 3.730 3.904 

             

    2.5%      97.5%   

Hist. Variance  17 3.37% 1.423 NA NA  20 3.97% 3.793 0.054 3.847 

Hist. Sim   24 4.76% 8.396* 0.020 8.416*  23 4.56% 7.104 0.003 7.107 

Filtred Hist Sim   24 4.76% 8.396* NA NA  29 5.75% 16.10* 0.070 16.17* 

RiskMetrics   16 3.17% 0.868 NA NA  18 3.57% 2.100 0.184 2.284 

EGARCH(1,1)  10 1.98% 0.591 NA NA  12 2.38% 0.030 1.167 1.197 

EGARCHX(1,1)   11 2.18% 0.218 NA NA  11 2.18% 0.218 1.445 1.662 

EGARCHTX(1,1)   16 3.17% 0.868 0.403 1.271  15 2.98% 0.442 0.549 0.991 

             

    5.0%      95.0%   

Hist. Variance  29 5.75% 0.576 0.347 0.923  36 7.14% 4.326 0.806 5.132 

Hist. Sim   43 8.53% 11.03* 1.057 12.08*  39 7.74% 6.866* 0.346 7.212* 

Filtred Hist Sim   44 8.73% 12.19* 1.246 13.44*  48 9.52% 17.36* 0.048 17.41* 

RiskMetrics   24 4.76% 0.061 NA NA  33 6.55% 2.326 0.338 2.664 

EGARCH(1,1)  17 3.37% 3.156 NA NA  23 4.56% 0.208 0.764 0.972 

EGARCHX(1,1)   24 4.76% 0.061 0.020 0.082  26 5.16% 0.026 0.317 0.344 

EGARCHTX(1,1)   36 7.14% 4.326 0.079 4.405  36 7.14% 4.326 0.079 4.405 

             

Notes:  
The total number of one-step ahead forecasts is 504.  

Historical Variance forecast is based on a 126 day rolling variance.  

Nf is the number of failures of VaR. LRuc , LRind, and LRcc are tests for  “unconditional coverage”, “ independence” and 

“conditional coverage”, respectively (see Christoffersen 2003). LRuc and LRind follow a Chi-Squared distribution with 1 degree of 
freedom, while LRcc follows a Chi-Squared distribution with 2 degrees of freedom. The 5% critical value for LRuc and LRind tests 

is 3.841, and the 5% critical value for LRcc test is 5.991. * indicates rejection of the null and failure of the test. 
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Table 10: Comparison of forecasts of different volatility models for Near-month 

NYMEX natural gas futures 

Panel A: VaR for 1% and 5% Models Crude Oil 

Model  Nf  % LLuc LRind LRcc  Nf % LLuc LRind LRcc 

    1.0%      99.0%   

Hist. Variance  9 1.79% 2.548 NA NA  11 2.18% 5.322* 1.445 6.767* 

Hist. Sim   6 1.19% 0.174 NA NA  9 1.79% 2.548 2.144 4.692 

Filtred Hist Sim   11 2.18% 5.322* 1.445 6.767*  5 0.99% 0.000 4.499 4.500 

RiskMetrics   9 1.79% 2.548 2.144 4.692  5 0.99% 0.000 4.499 4.500 

EGARCH(1,1)  5 0.99% 0.000 NA NA  4 0.79% 0.233 5.482 5.715 

EGARCHX(1,1)   5 0.99% 0.000 NA NA  6 1.19% 0.174 3.730 3.904 

EGARCHTX(1,1)   8 1.59% 1.490 NA NA  7 1.39% 0.687 3.105 3.792 

             

    2.5%      97.5%   

Hist. Variance  18 3.57% 2.100 0.184 2.284  16 3.17% 0.868 0.403 1.271 

Hist. Sim   13 2.58% 0.013 NA NA  16 3.17% 0.868 0.403 1.271 

Filtred Hist Sim   20 3.97% 3.793 0.054 3.847  18 3.57% 2.100 0.184 2.284 

RiskMetrics   14 2.78% 0.154 0.723 0.877  16 3.17% 0.868 0.403 1.271 

EGARCH(1,1)  10 1.98% 0.591 NA NA  10 1.98% 0.591 1.768 2.359 

EGARCHX(1,1)   11 2.18% 0.218 NA NA  9 1.79% 1.170 2.144 3.314 

EGARCHTX(1,1)   15 2.98% 0.442 0.549 0.991  11 2.18% 0.218 1.445 1.662 

             

    5.0%      95.0%   

Hist. Variance  26 5.16% 0.026 0.105 0.131  21 4.17% 0.779 0.019 0.798 

Hist. Sim   29 5.75% 0.576 0.070 0.647  26 5.16% 0.026 0.105 0.131 

Filtred Hist Sim   44 8.73% 12.194 0.008 12.202  36 7.14% 4.326 1.405 5.731 

RiskMetrics   27 5.36% 0.132 1.468 1.601  29 5.75% 0.576 0.347 0.923 

EGARCH(1,1)  20 3.97% 1.212 0.054 1.266  25 4.96% 0.002 0.055 0.056 

EGARCHX(1,1)   21 4.17% 0.779 0.019 0.798  25 4.96% 0.002 0.055 0.056 

EGARCHTX(1,1)   23 4.56% 0.208 0.764 0.972  28 5.56% 0.317 0.132 0.448 

             

Notes:  
The total number of one-step ahead forecasts is 504.  

Historical Variance forecast is based on a 126 day rolling variance.  

Nf is the number of failures of VaR. LRuc , LRind, and LRcc are tests for  “unconditional coverage”, “ independence” and 

“conditional coverage”, respectively (see Christoffersen 2003). LRuc and LRind follow a Chi-Squared distribution with 1 degree of 
freedom, while LRcc follows a Chi-Squared distribution with 2 degrees of freedom. The 5% critical value for LRuc and LRind tests 

is 3.841, and the 5% critical value for LRcc test is 5.991. * indicates rejection of the null and failure of the test. 
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Figure 1: Supply-demand framework for energy commodities 
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Figure 2: The slope of NEMEX crude oil forward curve    Figure 3: The slope of NEMEX gasoline forward curve 

    

Figure 4: The slope of NEMEX heating oil forward curve   Figure 5: The slope of NEMEX natural gas forward curve 
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Figure 6: Slope of forward curve and volatility of near month futures prices for different energy commodities 
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