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Abstract. Various concepts appeared in the existing literature to evaluate the
risk exposure of a financial or insurance firm/subsidiary/line of business due to the
occurrence of some extreme scenarios. Many of those concepts, such as Marginal
Expected Shortfall or Tail Conditional Expectation, are simply some conditional
expectations that evaluate the risk in adverse scenarios and are useful for signaling
to a decision-maker the poor performance of its risk portfolio or to identify which
sub-portfolio is likely to exhibit a massive downside risk. We investigate the latter
risk under the assumption that it is measured via a coherent risk measure, which
obviously generalizes the idea of only taking the expectation of the downside risk.
Multiple examples are given and our numerical illustrations show how the asymptotic
approximations can be used in the capital allocation exercise. We have concluded
that the expectation of the downside risk does not fairly take into account the
individual risk contribution when allocating the VaR-based regulatory capital, and
thus, more conservative risk measurements are recommended. Finally, we have found
that more conservative risk measurements do not improve the fairness of the cost of
capital allocation when the uncertainty with parameter estimation is present, even
at a very high level.

Keywords and phrases: Capital allocation; Coherent/Distortion risk measure; Condi-
tional Tail Expectation; Extreme Value Theory; Marginal Expected Shortfall; Rapid
Variation; Regular Variation.
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1. Introduction

Let (Ω,F , P) be a probability space and denote by L+(P) the set of non-negative random variables.
Consider X, Y ∈ L+(P) two random insurance risks possessing distribution functions (df) F and G,
respectively. The corresponding survival functions are F := 1 − F and G := 1 − G. It is assumed
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that the decision-maker orders its preferences via a risk measure, ρ, which is simply a functional,
i.e. ρ : L+(P) → <.

There is a massive literature on risk measures with many excellent references, but comprehensive
discussions may be found in Denuit et al. (2005) and Föllmer and Schied (2011). The choice of a risk
measure is usually subjective, but Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR) represent
the most known risk measures used in insurance regulation. Solvency II and Swiss Solvency Test
are the regulatory regimes for all (re)insurance companies that operate within the European Union
and Switzerland, respectively, and their capital requirements are solely based on VaR and TVaR.
For these reasons and not only, these standard risk measures have received special attention by
academics, practitioners and regulators, and therefore, vivid discussions have risen among them.
VaR is criticized for its lack of sub-additivity, while VaR may create regulatory arbitrage in an
insurance group (for details, see Asimit et al., 2013). A detailed discussion on possible regulatory
arbitrages in a TVaR-based regime is provided in Koch-Medina and Munari (2016). An interesting
discussion about the pros and cons of the two risk measures is detailed in the recent paper of
Emmer et al. (2015), but the general conclusion is that there is no evidence for global advantage of
one risk measure against the other.

While the basic understanding of a risk measure has been well-accepted by academics and practi-
tioners for many decades, the mathematical formulation has become a major topic in mathematical
finance literature for almost two decades. An important contribution in this direction is given in
the seminal paper by Artzner et al. (1999), which introduces the concept of coherent risk measures
by providing core economical and mathematical reasoning to support their formulation. The class
of coherent risk measures requires that their members are monotone, translation invariant, positive
homogeneous and sub-additive (for details, see Artzner et al., 1999). The subclass of coherent risk
measures that possesses the law-invariant and comonotonic property is known as the distortion risk
measures (see Wang et al., 1997). While law-invariance is desirable in practice as it is required
for the risk measure to be identifiable via the empirical data when designing statistical inference
methodology, the presence of the comonotonic property could be debatable. Fischer (2003) defines
a large subclass of coherent risk measures that are not comonotonic. An example of a coherent risk
measure, namely Worst Conditional Expectation, that is not law-invariant is given by Artzner et al.
(1999).

Academics, practitioners and regulators have considered various ways in measuring the sensitivity
of the financial well-being of a financial or insurance firm/subsidiary/line of business as a result of
an “observable” factor, especially when this factor is located in an extreme region. One popular
example is the widely popular indicator Marginal Expected Shortfall (MES), which in the financial
literature is a popular statistical measure of systemic resilience in financial markets. The literature
is quite rich and a comprehensive description is given by Idierb et al. (2014), where the practical
advantages of this risk measure in detecting extreme risk exposures of financial firms are empirically
explained. In mathematical terms, MES is a conditional expectation, E

(
X|Y > t

)
, for large values

of t. Clearly, extreme cases are viewed here by considering X and Y to be some future liabilities
(consisting with our prior definitions of X and Y ), rather than measuring the wealth, but changing
to the left hand side of the real line is a simple exercise.
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Non-parametric inferences for MES are present in Cai et al. (2015) via statistical extreme method-
ologies. See also Kulik and Soulier (2015), which shows that the model of Cai et al. (2015) can
be enlarged significantly. It is useful to note that a variant of Conditional Tail Expectation (CTE)
has the same representation like MES. CTE asymptotic approximations have appeared in various
forms in the insurance and actuarial literature; Joe and Li (2011) focuses on distributions satisfying
the multivariate regularly varying property, Hua and Joe (2011) and Zhu and Li (2012) investigate
the same problem for scaled mixtures and multivariate elliptical distributions, while Hashorva et
al. (2014) consider dependence models that exhibit the second order regularly varying tail prop-
erty. The same problem is discussed in Asimit et al. (2011) for a variety of asymptotic dependence
models, emphasizing that these extreme CTEs are useful when the total regulatory capital (based
on TVaR) is allocated amongst many subsidiaries/lines of business (LOBs). The purpose of this
paper is to evaluate asymptotic approximations for coherent risk measures of

(
X|Y > t

)
in extreme

regions, which incidentally generalizes the work of Asimit et al. (2011). It is quite apparent that
our formulation may help the decision-maker to much better understand the downside risk and for
this reason, we choose to investigate this problem.

The structure of the paper is as follows: the next section contains the necessary background and
the mathematical formulation of our main aims, Section 3 provides the main results of the paper,
Section 4 outlines various examples and provides some numerical illustrations of our findings, while
all proofs are relegated to Section 5.

2. Preliminaries

It has been anticipated in Section 1 that we are interested in finding asymptotic approximations
for coherent risk measures of conditional distributions around extreme regions. Therefore, we first
define the two classes of risk measures that allow us to produce such computations. The first class
is known as distortion risk measures which has the following mathematical formulation:

ρ(X; g) =
∫ ∞

0
g
(
P(X > x)

)
dx, (2.1)

where g : [0, 1] → [0, 1] is a non-decreasing function such that g(0) = 0 and g(1) = 1, known as the
distortion function (for example, see Denuit et al., 2005 or Dhaene et al., 2012). The second class
is given in Fischer (2003) and is as follows

ρ(X; θ, p) = EX + θ
(
E
[(

X − EX
)p
+

])1/p
, (2.2)

where θ ∈ [0, 1], p ∈ [1,∞) and (x)+ = max{x, 0}. Recall that distortion risk measures belong to
the large class of coherent risk measures if g is concave. Our main aim is to approximate ρ(·; g) and
ρ(·; θ, p) for the conditional random variable X|Y > t for large t. Therefore, we shall investigate
the asymptotic approximation as t →∞ for

ρ(t; g) = ρ
(
X|Y > t; g

)
(2.3)

and

ρ(t; θ, p) = ρ
(
X|Y > t; θ, p

)
, (2.4)

provided that the quantities defined in (2.3) and (2.4) are finite.
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There are many choices for the distortion function (for example, see Jones and Zitikis, 2003 and
2007) and some of the well-known examples are as follows:

i) Dual-power: g(s) = 1− (1− s)β , β > 1;
ii) TVaR: g(s) = min(s/(1− β), 1), 0 < β < 1;
iii) Gini: g(s) = (1 + β)s− βs2, 0 ≤ β ≤ 1;
iv) Proportional hazard transform (PHT): g(s) = s1−β, 0 ≤ β < 1;
v) Wang Transform: g(s) = FN

(
F−1

N (s) + λ
)
, λ > 0, where FN (·) and F−1

N (·) represent the
standard normal df and its inverse, respectively.

Finding asymptotic approximations of any quantity of interest, including our specific tail risk
measures defined in equations (2.3) and (2.4), requires knowledge about the behavior in the extreme
region for which necessary background is provided next.

Let
{
Xi; i ≥ 1

}
be a sequence of independent and identically distributed random variables with

common df F with an ultimate right tail, i.e. inf
x∈<

{F (x) = 1} = ∞. Extreme Value Theory (EVT)

assumes that there are constants an > 0 and bn ∈ < such that

lim
n→∞

P
(

an

(
max
1≤i≤n

Xi − bn

)
≤ x

)
= H(x), x ∈ <.

In this case, H is called an Extreme Value Distribution and F is said to belong to the max-domain
of attraction of H, denoted by F ∈ MDA(H). By the Fisher-Tippett Theorem (see Fisher and
Tippett, 1928), if the limit distribution H is non-degenerate, then it is of one of the following two
types: Φα(x) = exp{−x−α} for all x > 0 with α > 0, or Λ(x) = exp

{
− e−x

}
for all x ∈ <. In the

first case, X has a Fréchet tail which is regularly varying at ∞ with index −α, i.e.

lim
t→∞

F (tx)
F (t)

= x−α, x > 0. (2.5)

We signify the above by F ∈ R−α. Thus, F ∈ MDA(Φα) if and only if F ∈ R−α. In the second
case, X has a Gumbel tail and it is well-known (for example, see Embrechts et al., 1997) that there
exists a positive measurable function a(·) such that

lim
t→∞

F (t + xa(t))
F (t)

= e−x, x ∈ <. (2.6)

Equation (2.6) implies that X has a rapidly varying tail, written as F ∈ R−∞, which by definition
means that

lim
t→∞

F (tx)
F (t)

= 0, x > 1.

Moreover, we say that X has a dominatedly varying tail, denoted by F ∈ D, if

lim inf
t→∞

F (tx)
F (t)

> 0, x > 1.

For further details, we refer the reader to Bingham et al. (1987) or Embrechts et al. (1997). Further,
for a df F with an ultimate right tail, we define its lower Matuszewska index as

α∗F = sup

{
− log F

∗(x)
log x

: x > 1

}
∈ [0,∞],
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where F
∗(x) = lim sup

t→∞
F (tx)/F (t). It is clear that 0 < α∗F ≤ ∞ if and only if F

∗(x) < 1 for some

x > 1. In this case, Proposition 2.2.1 of Bingham et al. (1987) tells us that for every 0 < α′ < α∗F ,
there are some K > 1 and t0 > 0 such that

F (tx)
F (t)

≤ Kx−α′
(2.7)

holds for all tx > t > t0. It is not difficult to see that if F ∈ R−α for some α ∈ [0,∞] then α∗F = α.
We end this section with a summary of notations used in this paper. Let f1(·) and f2(·) be

two positive functions and let δ ∈ {0,∞}. We write f1(z) ∼ f2(z) to mean strong equivalence as
z → δ, i.e. lim

z→δ
f1(z)/f2(z) = 1. Moreover, we write f1(z) = O

(
f2(z)

)
and f1(z) = o

(
f2(z)

)
if

lim sup
z→δ

f1(z)/f2(z) < ∞ and lim
z→δ

f1(z)/f2(z) = 0, respectively. For two real numbers a1 and a2,

we write a1 ∧ a2 = min{a1, a2} and a1 ∨ a2 = max{a1, a2}. Finally, 1{·} represents the indicator
function.

3. Main Results

The aim of this section is to provide our main theoretical results. The initial step is to explain
the assumptions under which the asymptotic approximations hold. The fist set of conditions is for
the distortion function g defined in (2.3) and is stated as Assumption 3.1.

Assumption 3.1. The distortion function g from (2.3) is such that

Ωg =
{
β > 0 : g(s) = O

(
sβ
)
as s → 0

}
6= ∅.

Note that Assumption 3.1 implies the right continuity of g at 0. Moreover, Assumption 3.1 is very
mild, since it is satisfied by all power functions sβ with β > 0 and all distortion functions analytic
in a right neighborhood of 0 such as g(s) =

(
1− e−s

)
/
(
1− e−1

)
and g(s) = log(1 + s)/ log 2. It is a

simple exercise to check that each of Examples i)–v) given in Section 2 satisfies Assumption 3.1. In
fact, one only needs to verify that Ωg is non-empty, which is straightforward for Examples i)–iv).
Example v) holds this property as well and it can be shown by taking z = F−1

N (s) and noting that
for every 0 < β < 1 we have that

lim
s→0

FN

(
F−1

N (s) + λ
)

sβ
= lim

z→−∞

FN (z + λ)(
FN (z)

)β = lim
z→∞

FN (z − λ)(
FN (z)

)β
, (3.1)

where the last step is due to FN (·) = FN (−·). The survival function of the standard normal
distribution, FN (·) = 1− FN (·), satisfies

FN (z) ∼ 1√
2πz

e−
z2

2 , z →∞.

Plugging this result into (3.1) leads to FN

(
F−1

N (s) + λ
)

= o
(
sβ
)

as s → 0 for every 0 < β < 1.
Therefore, Example v) satisfies Assumption 3.1.

The next set of conditions summaries the required mild conditions for the joint asymptotic be-
havior of (X, Y ) and is given as Assumption 3.2.
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Assumption 3.2. Let X, Y ∈ L+(P) such that their dfs, F and G, have an ultimate right tail. In
addition, F (t) = O

(
G(t)

)
as t →∞ and the limit

lim
t→∞

P(X > tx|Y > t) =: h(x) ∈ [0, 1] (3.2)

exists almost everywhere for x > 0.

Define now ∆a = {x > a : h exists at x} for any a ≥ 0. Clearly, ∆0 is nothing but the definitional
domain of h. In view of Assumption 3.2, (a,∞)\∆a is a null Lebesgue measure set and hence, ∆a is
dense in (a,∞). Additionally, it follows immediately from (3.2) that h(x) is non-increasing in ∆0.
These facts and the monotonicity of P

(
X > tx|Y > t

)
with respect to x imply that

(i) if h(a) = 0 for some a ∈ ∆0, then ∆a = (a,∞) with h(x) = 0 for all x ∈ (a,∞);
(ii) if h(a) = 1 for some a ∈ ∆0, then (0, a) ⊆ ∆0 with h(x) = 1 for all x ∈ (0, a).

The next lemma gives some further properties of the function h, which is crucial for demonstrating
all of our main results.

Lemma 3.1. Let Assumption 3.2 hold.

(i) If 0 < α∗F ≤ ∞ then lim
x→∞, x∈∆0

h(x) = 0.

(ii) We have that h(x) = 0 for all x > 0 if either
(a) P(X > tx, Y > t) = O

(
F (tx)G(t)

)
as t →∞ for every x > 0 or

(b) 1 ∈ ∆0 with h(1) = 0 and G ∈ D.
(iii) Assume 1 ∈ ∆0 with h(1) > 0, then

(a) h(x1) = 0 for some x1 ∈ ∆1, h(x) = 0 for all x > 1 and F ∈ R−∞ are equivalent.
(b) h(x1) > 0 for some x1 ∈ ∆1, h(x) > 0 for all x ∈ ∆0 and F ∈ D are equivalent.

(iv) If 1 ∈ ∆0 with h(1) = lim
t→∞

F (t)/G(t) > 0 and h(x1) > 0 for some x1 ∈ ∆1, then F ∈ R−α

for some 0 ≤ α < ∞ and h(x) = h(1)x−α for all x ≥ 1.

We are now ready to provide the first main result, stated as Theorem 3.1, which gives asymptotic
approximations for distortion risk measures in extreme regions as defined in (2.3).

Theorem 3.1. Consider the distortion risk measure ρ(t; g) defined in (2.3) and let Assumptions 3.1
and 3.2 hold. If 1/β∗ < α∗F ≤ ∞, where β∗ = sup

{
Ωg

}
and 1/∞ = 0 by convention, then

lim
t→∞

ρ(t; g)
t

=
∫ ∞

0
g
(
h(x)

)
dx. (3.3)

It is interesting to point out that a very weak asymptotic dependence amongst X and Y may
lead to a non-informative approximation in Theorem 3.1. Specifically, under the condition of
Lemma 3.1(ii), the limit displayed in (3.3) is 0, which is definitely not informative, unless a sec-
ond order condition is imposed in (3.2) in order to better understand the rate of convergence of
ρ(t; g)/t. This weak dependence occurs especially when concomitant extreme events for X and Y

are not possible, which in the EVT lingo is known as asymptotic independence.
By Lemma 3.1 (iii)(a) and (iv), under Assumption 3.2, the case of h(1) = lim

t→∞
F (t)/G(t) > 0

can only occur when F ∈ R−α for some 0 ≤ α < ∞ or F ∈ R−∞, according to whether or not
there is some x1 ∈ ∆1 such that h

(
x1

)
> 0. In such a case, the value of h(x) for x > 1 has been
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explicitly given by Lemma 3.1(iii)(a) and (iv). For an example of this case, consider that X ≤ Y

and lim
t→∞

F (t)/G(t) = c ∈ (0, 1] and in turn, we have h(1) = lim
t→∞

F (t)/G(t) = c > 0.

A more extreme case is the one in which X ≤ Y and F ∼ G (in particular when X ≡ Y ). Clearly,
h(1) = lim

t→∞
F (t)/G(t) = 1, and in turn h(x) = 1 for all 0 < x < 1 in view of comment (ii) displayed

after Assumption 3.2. By the above analysis, it is not difficult to verify that Assumption 3.2 holds
in this setting if and only if F ∈ R−α with some 0 ≤ α ≤ ∞, and if either of them holds then

h(x) =

{
1, 0 < x ≤ 1,

x−α1{α<∞} + 0 · 1{α=∞}, x > 1.

Consequently, Theorem 3.1 is applicable to ρ(t; g) if 1/β∗ < α ≤ ∞. We refine these discussions
and establish the following corollary.

Corollary 3.1. Consider the distortion risk measure ρ(t; g) defined in (2.3) with X ≤ Y and
F (t) ∼ G(t) as t →∞. If Assumption 3.1 holds and F ∈ R−α with 1/β∗ < α ≤ ∞, then we have

lim
t→∞

ρ(t; g)
t

=

{
1 +

∫∞
1 g

(
x−α

)
dx, 1/β∗ < α < ∞,

1, α = ∞.

Our second main result is given in Theorem 3.2 and provides asymptotic approximations for
non-comonotonic coherent risk measures in extreme regions as defined in (2.4).

Theorem 3.2. Consider the risk measure ρ(t; θ, p) defined in (2.4) and let Assumption 3.2 hold.
If p < α∗F ≤ ∞ then

lim
t→∞

ρ(t; θ, p)
t

= h̃ + θp1/p

(∫ ∞

h̃
h(x)

(
x− h̃

)p−1
dx

)1/p

where h̃ =
∫ ∞

0
h(x)dx. (3.4)

4. Examples and Applications

The current section begins with some examples given in Section 4.1 under which Assumption 3.2
holds. As a result, Theorems 3.1 and 3.2 could be used to approximate various coherent risk
measures in extreme regions as given in (2.3) and (2.4). Clearly, many examples could be chosen
and we focus mainly on those that are related to our numerical illustrations provided in Section 4.2.
Even though the examples are simply based on the aggregate risk or maximal risk, other examples
could be provided; for instance, various large layers (based on weighted order statistics) could be
considered, as discussed in Asimit et al. (2016).

Assume that Xi ∈ L+(P) with survival functions F i for all i ∈ {1, . . . , d}, where d is a positive
integer. The following three settings are further considered:

(A) X = Xk and Y = Sd :=
d∑

i=1

Xi, where k ∈ {1, . . . , d};

(B) X = Xk and Y = Md :=
d∨

i=1

Xi, where k ∈ {1, . . . , d};

(C) X = Md and Y = Sd.

Recall that all random variables are considered to have ultimate right tails and hence they could
be either of Fréchet or Gumbel type.
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4.1. Examples. An important notion for detailing our examples is the vague convergence. Let
{µn;n ≥ 1} be a sequence of measures on a locally compact Hausdorff space B with countable base.
Then, µn converges vaguely to some measure µ, written as µn

v→ µ, if for all continuous functions
f with compact support we have

lim
n→∞

∫
B

f dµn =
∫

B
f dµ.

Note that we deal only with Radon measures, i.e. measures that are finite for every compact set
in B. A thorough background on vague convergence is given by Kallenberg (1983) and Resnick
(1987). Two specific choices for B are considered in this section: BΨ := [0,∞]d\{0} for Fréchet
tails with a metric for which relatively compact sets are those that are bounded away from 0, and
BΛ := [−∞,∞]d\{−∞} for Gumbel tails with a metric for which relatively compact sets are those
that are bounded away from −∞. Unless otherwise stated, all vectors appear in the following are
of dimension d.

We now show that Assumption 3.2 holds for the next three examples, namely Examples 4.1-
4.3. Since the other conditions of Assumption 3.2 are obvious, we only focus on the verification
of relation (3.2). The first example is fairly general and the underlying assumption implies the
property of multivariate regular variation (for details, see Resnick, 1987 and 2007).

Example 4.1. Assume that there is some function HΨ(·) such that the relation

lim
t→∞

P
(
X1 > tx1, . . . , Xd > txd

)
F 1(t)

= HΨ(x) (4.1)

holds for every x ∈ BΨ.
Relation (4.1) implies that the relation

P
((

X1/t, . . . ,Xd/t
)
∈ ·
)

F 1(t)
v→ µΨ(·) as t →∞, (4.2)

holds on BΨ with a measure µΨ such that µΨ

(
y: yi > xi, for all i ∈ {1, . . . , d}

)
= HΨ(x). It is clear

that µΨ

(
y : y1 > 1

)
= 1 and hence, for every x > 0,

lim
t→∞

F 1(tx)
F 1(t)

= µΨ

(
y : y1 > x

)
> 0,

which indicates that F1 ∈ R−α for some α ∈ [0,∞) by Theorem 1.4.1 of Bingham et al. (1987).
A more specific example for (4.1) is the so called scale mixing that has been investigated many

times in the literature; examples that are very much related to our paper are Hua and Joe (2011) and
Zhu and Li (2012). Under scale mixing, we have that

(
X1, . . . , Xd

)
=
(
ZU1, . . . , ZUd

)
, where Z is

a non-negative random variable with df satisfying FZ ∈ R−α for some α ∈ (0,∞) and
(
U1, . . . , Ud

)
is a non-negative random vector independent of Z with all components not degenerate at 0. Our
asymptotic calculations require that there exists some ε > 0 such that

EUα+ε
i < ∞, for all i ∈ {1, . . . , d}.

Then, by Breiman’s Lemma (see Breiman, 1965), we have that

lim
t→∞

P
(
ZUi > t

)
FZ(t)

= E
(
Uα

i

)
, i ∈ {1, . . . , d},
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i.e. Xi ∈ MDA
(
Ψα

)
. Moreover, Breiman’s Lemma tells us that for every x ∈ BΨ we have that

HΨ(x) = lim
t→∞

P
(
ZU1 > tx1, . . . , ZUd > txd

)
P
(
ZU1 > t

)

= lim
t→∞

P

(
Z

d∧
i=1

(
Ui/xi

)
> t

)
FZ(t)

FZ(t)
P
(
ZU1 > t

)

=

E

(
d∧

i=1

(
Ui/xi

)α)
E
(
Uα

1

) ,

where Ui/xi is understood as ∞ if xi = 0 for some i ∈ {1, . . . , d}. Further examples for (4.1) beyond
scale mixing are based on copula assumptions and are detailed in Kortschak and Albrecher (2009)
and Asimit et al. (2011).

We now show that Assumption 3.2 holds for all settings (A)-(C) if (4.1) is true. Consider first

the setting (A). Note that µΨ

(
y: y1 > 1

)
= 1 > 0 implies µΨ

(
y :

d∑
i=1

yi > 1
)

> 0, which makes the

denominator appearing in the next equation meaningful. For every 0 < x < 1,

lim
t→∞

P (Xk > tx|Sd > t) = lim
t→∞

P
(
Xk > tx, Sd > t

)
F 1(t)

F 1(t)
P
(
Sd > t

) =

µΨ

(
y : yk > x,

d∑
i=1

yi > 1

)

µΨ

(
y :

d∑
i=1

yi > 1

) ,

where the last step is due to (4.2) and Proposition A2.12 of Embrechts et al. (1997). Note that the
latter proposition can be applied as long as

µΨ

(
∂

{
y :

d∑
i=1

yi > 1

})
= 0 and µΨ

(
∂

{
y : yk > x,

d∑
i=1

yi > 1

})
= 0.

The first claim is shown in the proof of Theorem 3.2 of Kortschak and Albrecher (2009), while
the second claim is true for the same reason and the fact that µΨ

(
∂{y : yk > x}

)
= 0, which is

a consequence of the uniform convergence of (2.5) (see Embrechts et al., 1997 or Resnick, 1987).
Similar arguments help in justifying that, for every x ≥ 1,

lim
t→∞

P
(
Xk > tx|Sd > t

)
= lim

t→∞

F k(tx)
F 1(tx)

F 1(t)
P
(
Sd > t

) F 1(tx)
F 1(t)

=
µΨ (y : yk > 1)

µΨ

(
y :

d∑
i=1

yi > 1

) x−α.

Hence, (3.2) holds with

hA(x) =

µΨ

(
y : yk > x,

d∑
i=1

yi > 1

)

µΨ

(
y :

d∑
i=1

yi > 1

) 1{0<x<1} +
µΨ (y : yk > 1)

µΨ

(
y :

d∑
i=1

yi > 1

)x−α1{x≥1}.



10

For settings (B) and (C), similar arguments are used when showing setting (A) may lead to

hB(x) =

µΨ

(
y : yk > x,

d∨
i=1

yi > 1

)

µΨ

(
y :

d∨
i=1

yi > 1

) 1{0<x<1} +
µΨ (y : yk > 1)

µΨ

(
y :

d∨
i=1

yi > 1

)x−α1{x≥1}

and

hC(x) =

µΨ

(
y :

d∨
i=1

yi > x,

d∑
i=1

yi > 1

)

µΨ

(
y :

d∑
i=1

yi > 1

) 1{0<x<1} +
µΨ

(
y :

d∨
i=1

yi > 1
)

µΨ

(
y :

d∑
i=1

yi > 1

)x−α1{x≥1}.

The second example is the mirror setting of Example 4.1 and requires all distribution functions
to have a Gumbel tail.

Example 4.2. Assume that there is some function HΛ(·) such that the relation

lim
t→∞

P
(
X1 > t + x1a(t), . . . , Xd > t + xda(t)

)
F 1(t)

= HΛ(x) (4.3)

holds for every x ∈ BΛ. Similar to Example 4.1, relation (4.3) implies that

P
((

X1−t
a(t) , . . . , Xd−t

a(t)

)
∈ ·
)

F 1(t)
v→ µΛ(·), t →∞ (4.4)

holds on BΛ with a measure µΛ such that µΛ

(
y : yi > xi, for all i ∈ {1, . . . , d}

)
= HΛ(x). Once

again, further examples for (4.3) that are based on the concept of copula are detailed in Kortschak
and Albrecher (2009) and Asimit et al. (2011). From now on, it is imperative to impose that

µΛ

(
y :

d∑
i=1

yi > 0
)

> 0 holds without which all further results would have not been true, but a

remedy to this restriction is discussed in Example 4.3. Note that such a technical condition excludes
the following asymptotic independence case:

P
(
X1 > t, . . . ,Xd > t

)
= o
(
F 1(t)

)
, t →∞.

In addition, µΛ

(
y :

d∧
i=1

yi > 0
)

> 0, since otherwise some mass would have been put on one of the

axes, which is not possible due to the fact that µΛ is a Radon measure and keeping in mind that
µΛ(A + x1) = e−xµΛ(A) holds for any x ∈ < and set A such that µΛ(∂A) = 0. Similarly, one may
show that µΛ (y : yk > 0) > 0 for all 1 ≤ k ≤ n, which in turn implies that Fk ∈ MDA(Λ) ⊂ R−∞

with auxiliary function a(·) and α∗Fk
= ∞ for all k ∈ {1, . . . , d}.

We now show that Assumption 3.2 holds for settings (A) if (4.3) is true. Let r = t/d and write

P
(
Xk > tx|Sd > t

)
=

P
(
Xk > dxr, Sd > dr

)
F 1(r)

F 1(r)
P
(
Sd > dr

) . (4.5)
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The second quotient in (4.5) satisfies

lim
r→∞

F 1(r)
P
(
Sd > dr

) =
1

µΛ

(
y :

d∑
i=1

yi > 0

) , (4.6)

where we used (4.4) and Proposition A2.12 of Embrechts et al. (1997). Note that the latter propo-
sition can be applied as long as

µΛ

(
∂

{
y :

d∑
i=1

yi > 0

})
= 0, (4.7)

which is shown in the proof of Theorem 3.3 of Kortschak and Albrecher (2009). It only remains to
estimate the first quotient in (4.5). For 0 < x < 1/d, we further write

P
(
Xk > dxr, Sd > dr

)
F 1(r)

=
P
(
Sd > dr

)
− P

(
Xk ≤ dxr, Sd > dr

)
F 1(r)

. (4.8)

Now, for 0 < x < 1/d,

lim sup
r→∞

P
(
Xk ≤ dxr, Sd > dr

)
F 1(r)

≤ lim sup
r→∞

P

 d∑
i=1,i6=k

Xi > d(1− x)r


F 1(r)

= lim
r→∞

P

 d∑
i=1,i6=k

Xi > (d− 1)
d(1− x)

d− 1
r


F 1

(
d(1−x)

d−1 r
) F 1

(
d(1−x)

d−1 r
)

F 1(r)

= νΛ

y :
d∑

i=1,i6=k

yi > 0

 · 0 = 0,

where the last step is due to F1 ∈ R−∞, similar arguments to those used in (4.7), and the fact that
νΛ is a Radon measure. A combination of the latter result, (4.6) and (4.8) leads to

lim
r→∞

P
(
Xk > dxr, Sd > dr

)
F 1(r)

= νΛ

(
y :

d∑
i=1

yi > 0

)
, 0 < x < 1/d. (4.9)

If x = 1/d, we get that

lim
r→∞

P
(
Xk > dxr, Sd > dr

)
F 1(r)

= µΛ

(
y : yk > 0,

d∑
i=1

yi > 0

)
, (4.10)

as a result of (4.4) and Proposition A2.12 of Embrechts et al. (1997). The latter proposition could
be applied due to (4.7) and the uniform convergence of (2.6) (see Embrechts et al., 1997 or Resnick,
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1987). Finally, for x > 1/d, it follows from F ∈ R−∞ and (4.4) that

lim sup
r→∞

P
(
Xk > dxr, Sd > dr

)
F 1(r)

≤ lim sup
r→∞

P
(
Xk > dxr

)
F 1(r)

= lim
r→∞

F k(dxr)
F 1(dxr)

F 1(dxr)
F 1(r)

= νΛ

(
y : yk > 0

)
· 0 = 0. (4.11)

Hence, plugging (4.6) and (4.9)-(4.11) into (4.5), we know that (3.2) holds with

hA(x) = 1{0<x<1/d} +
µΛ

(
y : yk > 0,

d∑
i=1

yi > 0
)

µΛ

(
y :

d∑
i=1

yi > 0

) 1{x=1/d} + 0 · 1{x>1/d}.

Note that the jump of hA at x = 1/d does not change the actual values of the asymptotic constants
in equations (3.3) and (3.4).

Unfortunately, (3.2) does not hold for 0 < x < 1 in settings (B) and (C).

The next example is a reaction to the restriction we impose in Example 4.2, i.e. removing the
asymptotic independence case with Gumbel tails. Example 4.3 provides a case in which (4.3) holds

such that µΛ

(
y :

d∑
i=1

yi > 0

)
= 0, where different arguments are needed. The set of assumptions

are precisely the same as in Mitra and Resnick (2009), but a similar setup can be found in Hashorva
and Li (2015).

Example 4.3. Let F1 ∈ MDA(Λ) with an auxiliary function a(·). Further, F i(x) ∼ ciF 1(x) holds
as x →∞ with ci ≥ 0 for all i ∈ {1, . . . , d}. Moreover, for all 1 ≤ i 6= j ≤ d, assume that

lim
t→∞

P (Xi > t,Xj > a(t)x)
F 1(t)

= 0, for all x > 0, (4.12)

and

lim
t→∞

P (Xi > Lijt, Xj > Lijt)
F 1(t)

= 0, for some Lij > 0.

We show now that Assumption 3.2 holds for all settings (A)-(C) under the above conditions.
Consider first the setting (A). Recall that Corollary 2.2 of Mitra and Resnick (2009) tells us

P
(
Sd > t

)
∼

d∑
i=1

ci F 1(t), t →∞. (4.13)
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For 0 < x ≤ 1, one can get that

P
(
Xk > tx, Sd > t

)
= P

(
Sd > t

)
− P

(
Xk ≤ tx, Sd > t

)
≤ P

(
Sd > t

)
− P

Xk ≤ tx,
d⋃

i=1,i6=k

{
Xi > t

}
= P

(
Sd > t

)
− P

 d⋃
i=1,i6=k

{
Xi > t

}+ P

Xk > tx,

d⋃
i=1,i6=k

{
Xi > t

}
≤ P

(
Sd > t

)
−

d∑
i=1
i6=k

P
(
Xi > t

)
+

∑
1≤i<j≤d
i6=k 6=j

P
(
Xi > t,Xj > t

)

+
d∑

i=1
i6=k

P
(
Xk > tx, Xi > t

)
,

which together with (4.13), (4.12) and the well-known fact a(t) = o(t) as t →∞ lead to

lim sup
t→∞

P
(
Xk > tx, Sd > t

)
F 1(t)

≤
d∑

i=1

ci −
d∑

i=1,i6=k

ci + 0 + 0 = ck.

Clearly,

lim inf
t→∞

P
(
Xk > tx, Sd > t

)
F 1(t)

≥ lim inf
t→∞

F k(t)
F 1(t)

= ck.

Hence, combining the two relations from above with (4.13) leads to

lim
t→∞

P
(
Xk > tx|Sd > t

)
= ck

(
d∑

i=1

ci

)−1

, 0 < x ≤ 1.

On the other hand, for x > 1, we have

lim
t→∞

P (Xk > tx|Sd > t) = lim
t→∞

F k(tx)
F 1(tx)

F 1(t)
P
(
Sd > t

) F 1(tx)
F 1(t)

= ck

(
d∑

i=1

ci

)−1

· 0 = 0,

since F1 ∈ R−∞. Hence, (3.2) holds with

hA(x) = ck

(
d∑

i=1

ci

)−1

1{0<x≤1} + 0 · 1{x>1}.

Setting (B) may be concluded in the same manner as above and one may find that hB(x) = hA(x).
Finally, for setting (C) note that (4.12) and (4.13) imply

P
(
Md > t

)
∼

d∑
i=1

ci F 1(t) ∼ P
(
Sd > t

)
, t →∞,

and hence the df of Md also belongs to R−∞. Thus, we may directly apply Corollary 3.1 to obtain
that

hC(x) = 1{0<x≤1} + 0 · 1{x>1}.
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It is interesting to mention that Theorems 2.1, 2.2, 3.1 and 3.3 of Asimit et al. (2011) can be
retrieved by plugging the appropriate functions hA(·) obtained in Examples 4.1-4.3 into (3.3) with
g(s) = s.

4.2. Numerical Illustrations. Consider a European-based insurance company, i.e. Solvency II
Regime is in force, that holds a portfolio consisting of two LOBs with random future liabilities
(corresponding to business written in the coming year) denoted by X1 and X2, respectively. Under
this assumption, the total capital is VaR-based and is calculated at the 99.5% level. By definition,
the V aR of a generic loss variable Z at a confidence level a, V aRa(Z), is the a%-quantile, i.e.

V aRa(Z) := inf{z ≥ z0 : P(Z ≤ z) ≥ a},

where by convention, inf ∅ := +∞. Specifically, the total cost of meeting the capital requirements,
according to the Solvency II Regime, is

EX1 + EX2 + λCoC

(
V aR99.5%

(
X1 + X2

)
− EX1 − EX2

)
, (4.14)

where λCoC is a constant representing the return on capital that the shareholders expect to receive
for making their capital available to run this specific business. This constant is usually greater
than 6% and depends on the level of taxation of the economic area that the insurance business
takes place. The random liabilities are assumed to be Pareto distributed with survival function
F k(x) =

(
λk

λk+x

)α
with x, λk > 0 and α > 1 for all k ∈ {1, 2}, which implies that EXk = λk/(α−1).

Thus, F 2(x) ∼ cF 1(x), where c =
(
λ2/λ1

)α, as t →∞ and F1, F2 ∈ R−α. Assume that (4.1) holds
such that

HΨ(x) =
(
xαβ

1 + c−βxαβ
2

)−1/β
, with β > 0. (4.15)

The structure shown in (4.15) is derived from an Archimedean survival copula with a regularly
varying generator function (for details, see Juri and Wüthrich, 2003 or Section 4 of Asimit et
al., 2011). Recall that Lemma 2.1 of Asimit et al. (2011) implies that V aR99.5%

(
X1 + X2

)
≈

C
1/α
+ V aR99.5%

(
X1

)
with C+ := µΨ

(
y : y1 + y2 > 1

)
, where µΨ is the measure induced by the limit

from (4.15).
As it has been anticipated, the main exercise is to allocate the total cost of meeting the capital

requirements given in (4.14). The first step is to evaluate the total cost, which is computable via an
asymptotic approximation that has been detailed above. The second step is to distribute the total
cost among the LOBs in the most fair way that takes into account the individual risk profile and the
dependence amongst risks; this step is essential when evaluating the financial performance of the two
LOBs, making the cost allocation to be a genuine measure of performance in the evaluation process of
the actual emerging profits. The cost allocation may be done in many ways and one possibility is the
so-called proportional allocation, which is the case when asymptotic approximations are considered
(for details, see Asimit et al., 2011). Given the nature of this paper, proportional allocations are
sought in further numerical illustrations. Specifically, take g(s; ξ) = (1 + ξ)s − ξs2 with 0 ≤ ξ ≤ 1
in Theorem 3.1, which implies that equation (3.3) becomes

lim
t→∞

ρ(Xk|X1 + X2 > t; ξ)
t

=
∫ ∞

0
g
(
hk(x); ξ

)
dx := Ck, k ∈ {1, 2}.
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Note that we choose the Gini risk measure (see Example iii) from Section 2) for the reason of
simplifying the numerical calculations when evaluating multiple integrals, but any other choice is
doable via more advanced Monte-Carlo integration. Moreover, as in Example 4.1, we have that

h1(x) =
µΨ

(
y : y1 > x, y1 + y2 > 1

)
C+

1{0<x<1} +
x−α

C+
1{x≥1}

and

h2(x) =
µΨ

(
y : y2 > x, y1 + y2 > 1

)
C+

1{0<x<1} +
cx−α

C+
1{x≥1}.

Having all of these in mind, the total capital cost from (4.14) is allocated (amongst the two LOBs)
as follows:

COCk := EXk + λCoC

(
Ck

C1 + C2
C

1/α
+ V aR99.5%

(
X1

)
− EXk

)
, k ∈ {1, 2}.

Now, we further simplify the expressions for C+, C1 and C2 in a way that the Monte Carlo
methods are implementable in a straightforward manner when integrals are numerically computed.
Denote H

(1)
Ψ (y1, y2) = −∂HΨ(y1,y2)

∂y1
and H

(2)
Ψ (y1, y2) = −∂HΨ(y1,y2)

∂y2
. Clearly,

C+ = 1 +
∫ 1

0
µΨ

(
dx× (1− x,∞]

)
= 1 +

∫ 1

0
H

(1)
Ψ (x, 1− x)dx

and

C1 = (1 + ξ)
∫ ∞

0
h1(x)dx− ξ

∫ ∞

0
h2

1(x)dx

=
1 + ξ

C+

(∫ 1

0
µΨ

(
y : y1 > x, y1 + y2 > 1

)
dx +

∫ ∞

1
x−αdx

)
− ξ

C2
+

(∫ 1

0
µ2

Ψ

(
y : y1 > x, y1 + y2 > 1

)
dx +

∫ ∞

1
x−2αdx

)
=

1 + ξ

C+

{
1

α− 1
+
∫ 1

0

(
1 +

∫ 1

x
H

(1)
Ψ (z, 1− z)dz

)
dx

}
− ξ

C2
+

{
1

2α− 1
+ 1 + 2

∫ 1

0
x · µΨ

(
y : y1 > x, y1 + y2 > 1

)
H

(1)
Ψ (x, 1− x)dx

}
=

1 + ξ

C+

{
α

α− 1
+
∫ 1

0

∫ 1

x
H

(1)
Ψ (z, 1− z)dzdx

}
− ξ

C2
+

{
2α

2α− 1
+ 2

∫ 1

0
xH

(1)
Ψ (x, 1− x)dx + 2

∫ 1

0

∫ 1

x
xH

(1)
Ψ (x, 1− x)H(1)

Ψ (z, 1− z)dzdx

}
,

where the second last step is a simple consequence of integration by parts. Similarly,

C2 =
1 + ξ

C+

{
cα

α− 1
+
∫ 1

0

∫ 1

x
H

(2)
Ψ (1− z, z)dzdx

}
− ξ

C2
+

{
2c2α

2α− 1
+ 2c

∫ 1

0
xH

(2)
Ψ (1− x, x)dx + 2

∫ 1

0

∫ 1

x
xH

(2)
Ψ (1− x, x)H(2)

Ψ (1− z, z)dzdx

}
.

Assume now that α = 3, β = 2, c = 0.8, λCoC = 10% and λ1 = 5, 000, which implies that a total
cost of capital of 3, 858.72 needs to be allocated. Using the previously-mentioned derivations for C+,
C1 and C2, proportional allocations based on Gini risk measures are displayed in Table 4.1. Recall
that the lower the value of ξ, the more conservative the risk measure is. The results are sensible
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Allocations ξ = 1 ξ = 0.75 ξ = 0.5
COC1 1, 931.11 1, 964.60 1, 995.50
COC2 1, 927.61 1, 894.12 1, 863.22
Total 3, 858.72 3, 858.72 3, 858.72

Table 4.1. Cost of capital allocations for various values of ξ, when α = 3, β = 2,
c = 0.8, λCoC = 10% and λ1 = 5, 000.

and it can be observed that the riskier LOB, i.e. the first LOB, requires a large amount of capital
cost when the risk measure becomes more conservative. The increase in capital cost for LOB1 is
3.33% when the value for ξ is reduced from 1 to 0.5. Thus, we may conclude that the expectation
of the downside risk (when ξ = 1) does not reasonably account for the individual risk contribution
when the costs of the VaR-based regulatory capital is allocated, and thus, more conservative risk
measurements would be recommended.

We finally investigate the effect of parameter uncertainty for the cost of capital proportions from
the total cost. Thus, we alter the previous toy model, where it was assumed that α = 3, β = 2,
c = 0.8, λCoC = 10% and λ1 = 5, 000. Numerical illustrations are displayed in Table 4.2, where
the parameter α changes by {−10%,−5%,−2.5%, 2.5%, 5%, 10%} and the actual costs of capital for
each LOB are compared to the toy model. We observe that there is no gain (in the sense that the
allocations take into account the change of the individual risk profiles) for allocating the costs via a
more conservative risk measure. Similar sensitivity analyses were performed for all other parameters
and the conclusion remain the same, i.e. conservative risk measures do not make the allocations
fairer when the risk parameter is present. Therefore, we may conclude that more conservative risk
measurements do not improve the fairness of the proportions for cost of capital allocations when
the uncertainty with parameter estimation is present, even at a very high level. We simply infer
that the most influential estimation for accurate cost of capital allocations is given by the estimate
of V aR99.5%

(
X1 + X2

)
, which in our case is reduced to estimating a high quantile of the LOB1, i.e.

V aR99.5%

(
X1

)
.

5. Proofs

Proof of Lemma 3.1. (i) By (2.7), for every 0 < α′ < α∗F , there are some K1 > 1 and t0 > 0
such that F (tx)/F (t) ≤ K1x

−α′
holds for all tx > t > t0. Since F (t) = O

(
G(t)

)
as t →∞, there is

some K2 > 1 such that F (t)/G(t) ≤ K2 is true for all t ≥ 0. Thus, for any tx > t > t0 we have that

P(X > tx|Y > t) =
P(X > tx, Y > t)

F (t)
F (t)
G(t)

≤ F (tx)
F (t)

F (t)
G(t)

≤ K1K2x
−α′

. (5.1)

Hence, the following holds for all x ∈ ∆1:

0 ≤ h(x) = lim
t→∞

P(X > tx|Y > t) ≤ K1K2x
−α′

,

and in turn we get that lim
x→∞, x∈∆0

h(x) = 0. This completes the argumentation for part (i).

(ii) If P(X > tx, Y > t) = O
(
F (tx)G(t)

)
as t → ∞ for every x > 0, then it is clear that

P(X > tx|Y > t) = O
(
F (tx)

)
as t →∞. Thus, h(x) = 0.
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ξ = 1
Allocations −10% −5% −2.5% 2.5% 5% 10%

COC1 −22.77% −11.65% −5.91% 6.00% 12.12% 24.64%
COC2 −20.95% −10.71% −5.39% 5.53% 11.18% 22.86%
Total −21.89% −11.18% −5.65% 5.77% 11.65% 23.75%

ξ = 0.75
Allocations −10% −5% −2.5% 2.5% 5% 10%

COC1 −22.40% −11.43% −5.79% 5.87% 11.85% 24.05%
COC2 −21.35% −10.92% −5.50% 5.66% 11.45% 23.44%
Total −21.89% −11.18% −5.65% 5.77% 11.65% 23.75%

ξ = 0.5
Allocations −10% −5% −2.5% 2.5% 5% 10%

COC1 −22.10% −11.27% −5.69% 5.77% 11.64% 23.60%
COC2 −21.66% −11.09% −5.60% 5.76% 11.66% 23.90%
Total −21.89% −11.18% −5.65% 5.77% 11.65% 23.75%

Table 4.2. Sensitivity analysis for the cost of capital allocations with respect to
parameter α.

Assume now that 1 ∈ ∆0 with h(1) = 0 and G ∈ D. The comment (i) after Assumption 3.2 gives
that h(x) = 0 for all x > 1, since h(1) = 0. In addition, for every 0 < x ≤ 1,

lim sup
t→∞

P(X > tx|Y > t) ≤ lim sup
t→∞

P(X > tx, Y > tx)
G(tx)

G(tx)
G(t)

≤ h(1) lim sup
t→∞

G(tx)
G(t)

= 0,

since h(1) = 0 and G ∈ D. Therefore, h(x) = 0 for all x > 0, which concludes part (ii).
(iii) We first prove part (a). Clearly, lim inf

t→∞
F (t)/G(t) ≥ h(1) > 0. This fact and F (t) = O

(
G(t)

)
as t →∞ imply that there exist c1 and c2 such that

0 < c1 := lim inf
t→∞

F (t)
G(t)

≤ lim sup
t→∞

F (t)
G(t)

=: c2 < ∞.

Thus, for every x ∈ ∆0,

lim inf
t→∞

F (tx)
F (t)

≥ lim inf
t→∞

P(X > tx, Y > t)
G(t)

G(t)
F (t)

≥ 1
c2

h(x),

and for every x ∈ ∆1,

lim sup
t→∞

F (tx)
F (t)

≤ lim sup
t→∞

P(X > tx, Y > t)
G(t)

G(tx)
P(X > tx, Y > tx)

F (tx)
G(tx)

G(t)
F (t)

≤ c2

c1h(1)
h(x).

Hence, for every x ∈ ∆1 we have that

1
c2

h(x) ≤ lim inf
t→∞

F (tx)
F (t)

≤ lim sup
t→∞

F (tx)
F (t)

≤ c2

c1h(1)
h(x). (5.2)
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Keeping (5.2) in mind, the only non-trivial task in proving part (a) is to verify that h(x) = 0 for
all x > 1 if h(x1) = 0 for some x1 ∈ ∆1. The comment (i) following Assumption 3.2 tells us that if
h(x1) = 0 for some x1 ∈ ∆1 then h(x) = 0 for all x > x1. Note also that h(x1) = 0, which together
with (5.2), imply

lim
t→∞

F (tx1)
F (t)

= 0. (5.3)

Suppose now that there is some x0 ∈ ∆1 ∩ (1, x1) such that h(x0) > 0. Since x0 > 1, there is some
positive integer n ≥ 2 such that xn

0 ≥ x1, and therefore, we have that

F (tx1)
F (t)

≥ F (txn
0 )

F (t)
=

F (txn
0 )

F (txn−1
0 )

F (txn−1
0 )

F (txn−2
0 )

· · · F (tx0)
F (t)

.

Applying (5.2) to the above yields

lim inf
t→∞

F (tx1)
F (t)

≥
(

lim inf
t→∞

F (tx0)
F (t)

)n

≥
(

1
c2

h(x0)
)n

> 0,

which contradicts (5.3). Hence, h(x) = 0 for all x ∈ ∆1. Now, since ∆1 is dense in (1,∞), for every
x > 1 there exists some x2 ∈ ∆1 such that 1 < x2 < x. Then,

lim sup
t→∞

P(X > tx|Y > t) ≤ lim sup
t→∞

P(X > tx2|Y > t) = h(x2) = 0,

which implies that h(x) exists for every x > 1 with h(x) = 0.
We now outline the proof for part (b). The first equivalence is an immediate consequence of part

(a). The second equivalence can be obtained by using (5.2), the monotonicity of F (tx) with respect
to x > 0 and the denseness of ∆1 in (1,∞). This completes the argumentation for part (iii).

(iv) The result from (iii)(b) tells us that h(x) > 0 for all x ∈ ∆0. Now, lim
t→∞

F (t)/G(t) = h(1)

leads to c1 = c2 = h(1) in equation (5.2), which implies that

lim
t→∞

F (tx)
F (t)

=
h(x)
h(1)

∈ (0,∞) (5.4)

holds for every x ∈ ∆̃1 =: ∆1 ∪ {1}. Hence, the set of all x > 0 such that lim
t→∞

F (tx)/F (t) exists

and belongs to (0,∞) has a positive measure. Then, by Theorem 1.4.1 of Bingham et al. (1987),
we have F ∈ R−α for some 0 ≤ α < ∞. This fact and (5.4) imply that h(x) = h(1)x−α for every
x ∈ ∆̃1. Further, since ∆̃1 is dense in [1,∞), for every x ≥ 1 there are two sequences {yn;n ≥ 1}
and {zn;n ≥ 1} from ∆̃1 such that yn ↗ x ↙ zn as n →∞. Then, for every n ≥ 1,

h(1)z−α
n =h(zn)≤ lim inf

t→∞
P(X > tx|Y > t)≤ lim sup

t→∞
P(X > tx|Y > t)≤h(yn)=h(1)y−α

n .

Letting n →∞ in the above relation, we obtain that h(x) exists for all x ≥ 1 and h(x) = h(1)x−α,
which concludes part (iv). The proof is now complete. �

Proof of Theorem 3.1. Recalling (2.1) and (2.3), we get that

ρ(t; g)
t

=
∫ ∞

0
g
(
P(X > tx|Y > t)

)
dx (5.5)

holds for every t > 0. Since g is non-decreasing, equation (5.1) implies that for every 1/β∗ < α′ < α∗F
there are some K1 > 1 and t0 > 0 such that

g
(
P(X > tx|Y > t)

)
≤ g

(
K1x

−α′
)
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holds for tx > t > t0. It is easy to see that β′ ∈ Ωg for every 0 < β′ < β∗. Hence, by Assumption 3.1,
for every 0 < β′ < β∗ there are some K2 > 1 and x0 > 1 such that

g
(
P(X > tx|Y > t)

)
≤ K2x

−α′β′

holds for all x > x0 and t > t0. Clearly, g
(
P(X > tx|Y > t)

)
≤ g(1) = 1 for all x > 0. Hence, for

all t > t0 and x > 0 we have that

g
(
P(X > tx|Y > t)

)
≤ 1{0<x≤x0} + K2x

−α′β′
1{x>x0}.

Noting that α∗F β∗ > 1, we may choose α′ and β′ satisfying α′β′ > 1, which in turn implies that
1{0<x≤x0} + K2x

−α′β′
1{x>x0} is integrable over (0,∞). The latter and (3.2) enable us to apply the

Dominated Convergence Theorem to (5.5) to justify our claim stated in (3.3), since the function g

is monotonic and hence continuous almost everywhere. The proof is now complete. �

Proof of Theorem 3.2. Next, denote ξt := X|Y > t and µt := Eξt. Then, recalling (2.2), (2.4)
can be rewritten as follows:

ρ(t; θ, p) = µt + θ
(
E
[(

ξt − µt

)p
+

])1/p
. (5.6)

Note that 1 ≤ p < α∗F . Hence, applying Theorem 3.1 with g(s) = s leads to

lim
t→∞

µt

t
=
∫ ∞

0
h(x)dx = h̃. (5.7)

Next, we focus on the asymptotic approximate of E
[(

ξt − µt

)p
+

]
as t →∞. Clearly,

E
[(

ξt − µt

)p
+

]
= p

∫ ∞

µt

P(X > x|Y > t)
(
x− µt

)p−1dx

= p tp
∫ ∞

µt
t

P(X > tx|Y > t)
(
x− µt

t

)p−1
dx,

which is equivalent to

E
[(

ξt − µt

)p
+

]
p tp

=
∫ ∞

0
P(X > tx|Y > t)

(
x− µt

t

)p−1
1{x>

µt
t }dx. (5.8)

Due to relation (5.7), there is some large t0 > 0 such that µt/t ≥ h̃/2 holds for all t > t0. Recalling
(5.1), we can choose t0 large enough such that P(X > tx|Y > t) ≤ Kx−α′

is true for some K > 1,
p < α′ < α∗F and all tx > t > t0. Hence, for all t > t0, the integrand of (5.8) is not greater than

P(X > tx|Y > t)

(
x− h̃

2

)p−1

1{
x> h̃

2

} ≤
(
x− h̃

2

)p−1

1{
h̃
2
<x≤ h̃

2
∨1

} + Kx−α′

(
x− h̃

2

)p−1

1{
x> h̃

2
∨1

},

which is obviously integrable over (0,∞). Thus, applying (3.2), (5.7) and the Dominated Conver-
gence Theorem to (5.8) yields

lim
t→∞

E
[(

ξt − µt

)p
+

]
p tp

=
∫ ∞

h̃
h(x)

(
x− h̃

)p−1dx.

Combining the above relation with (5.6) and (5.7), one may conclude (3.4). �
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