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ABSTRACT

The paper introduces generalized demand densities as a new and effective way of conceptualizing and analyzing retail
demand. The demand density is demonstrated to contain the same information as the demand curve conventionally used
in economic studies of consumer demand, but the fact that it is a probability density sets bounds on its possible behavior,
a feature that may be exploited to alow near-exhaustive testing of possible demand scenarios using candidate demand
densities. Four such demand densities are examined in detail. The Household Income demand density is based on the
assumption that a person’s maximum acceptable price (MAP) for an item is proportional to his household after-tax in-
come. The Double Power demand density allows the mode to be located anywhere in the range between zero and the
highest MAP possessed by anyone in the target population. The two-parameter, Rectangular demand density, the sim-
plest model that a retailer may employ, has the useful feature that it may be matched relatively easily to any unimodal
demand density and hence may act as its approximate proxy. The Kinked demand density is derived from the kinked
demand curve sometimes used as a relatively uncomplicated way of conceptualizing the effects of oligopoly. The cen-
tral measures of each of these demand densities are derived: mean price, mode, median, optimal and, when appropriate,
the mean of the matched Rectangular demand density. In a further result arising from the use of demand densities, it is
shown that stable trading at the kink price will not occur if the demand curve is kinked and convex.

Keywords. Demand Density; Probability Density; Demand Curve; Double Power Demand Density;
Rectangular Demand Density; Kinked Demand Density

1. Introduction show how the price optimization procedure based on
demand density produces the same answer as the graphi-
cal method based on the demand curve. Having estab-
lished this equivalence, the paper will go on to consider
four demand densities that have been found useful in
assessing how retail prices may be set, deriving key pro-
perties of

¢ the Household Income demand density, where MAP

While a demand curve may be used to investigate retail
prices and how they are set [1-3], it has been demon-
strated [4] that there are advantages in recasting the in-
formation into a probability density for maximum ac-
ceptable price (MAP) or “demand density”. The “de-
mand density” allows investigations of the optimal price
to proceed in a natural and convenient way. The funda

mental restriction on any probability density, namely that is proportional to household income after tax.

its integral over all values must equal unity, turnsout to ¢ the Double Power demand density, where an appro-

be a particularly useful feature, making the demand den- priate choice of the four defining coefficients allows

sity afeasible tool for exploring situations where data are the mode to be located anywhere in the range be-

sparse. Here a finite number of demand densities may be tween zero and the highest MAP possessed by anyone

employed to provide a near-exhaustive coverage of pos- in the target population.

sible price preferences. e the two-parameter, Rectangular demand density,
The paper will begin by explaining the equivalence which is the simplest model that a retailer may em-

between the demand density curve and the demand curve ploy, based on his knowledge only of the lowest price

conventionally shown in economics textbooks. It will at which heis prepared to sell and the highest price he

Copyright © 2013 SciRes. AJIBM



280 Generalized Demand Densities for Retail Price Investigation

believes he could charge before sales become negli-
gible.

o the Kinked demand density, derived from the kinked
demand curve introduced independently by both Hall
and Hitch [5] and Sweezy [6] as a relatively simple
way of conceptualizing the effects of oligopoly.

The clear perspective on the optimization procedure
promoted by the use of the demand density rather than
the demand curve has alowed the correction of a misap-
prehension concerning the kinked demand curve. The
location of the optimal price when that curve is convex is
found not to be located at the kink price.

The usefulness of the demand density as a model for
retail demand has been found previously not to be greatly
compromised when the underlying probability density
for MAP is approximated by a Rectangular demand den-
sity [4]. Therefore an analytical procedure will be pre-
sented that allows a Rectangular demand density to be
matched to a general, continuous and unimodal demand
density.

Note: upper case letters will be used in the paper to
denote the name of each demand density for clarity and
emphasis

2. Equivalence between the Demand Curve
and the Demand Density Curve

2.1. General Equations

A retailer will need to offer a price common to al, but
will face a differentiated market, with different people
having a different MAP for the same good. As noted in
[4], the term, “uniconsumer”, might be used to denote a
consumer prepared to buy one but only one item if the
price is right. Then a person, a “multiconsumer”, who
will buy more than one item may be represented, as far
as his economic behavior is concerned, as multiple, iden-
tical uniconsumers. In the rest of the paper we shall use
the word, “consumer”, in place of the more exact “uni-
consumer”, simply to make it less cumbersome to read.

Let n be the number of consumersin the target popula
tion prepared to pay at least p, i.e. having a MAP of p,
for the good, so that:

n=n(p) (€
Assuming a constant variable cost per item, ¢,, and
letting the fixed costsbe C,., theretailer’s profit will be:
Y=np-nc,—-C, 2
Since n is a function of MAP, the maximizing condi-
tion, d¥/dp =0, may be written formally as:

A¥dn _

dn dp

Provided the rate of change, dn/dp , in the number, n,

©)

Copyright © 2013 SciRes.

of people in the target population prepared to pay at least
p for the good is non-zero, the maximizing condition of
Equation (3) implies

¥ o provided ¥ 20 @
dn dp

Thus differentiating Equation (2) gives the profit-
maximization condition as

dvy d d
= lnp)=—-lne, + C; ) =0 ()
Here np is the revenue at price, p, while nc, +C,.

represents the costs. Since differential operator, d(.)/dn,
denotes marginal with respect to the number of saes,
Equation (5) corresponds to the standard economic find-
ing that the maximum profit occurs when marginal reve-
nue, m, =d(np)/dn , equals marginal costs:
d(nc, +C,)/dn = c,. Thus the profit maximizing condi-
tion has the form:

m, =c, (6)
where the marginal revenueis given by
m, = p(n)+ ndp_(n) @)
dn

The bracketed term, (n), emphasizes that the price, p,
isrelated to the number, n, of consumers prepared to pay
at least that amount.

The fraction of the target population of consumers
prepared to pay at least p for the good is S(p)=n(p)/N .
Differentiating that expression with respect to » gives:

ds 1
= _ = 8
dn N ®
Moreover,
d, dpdS dp 1
ap _dpds _4dp - (9)

dn dSdn dS N

Substituting from Equation (9) into Equation (7) gives
the marginal revenue as:

_ dp(S)
m, = p(S)+S = (10)
The price, p, isrelated to the number, n(p), willing to
pay that price or more for the good by the probability
distribution for MAP, p, or demand density, A(p), as
illustrated in Figure 1. Meanwhile the fraction of con-
sumers prepared to pay price p or moreis given by:

S= Th(u)du (11)

where p, isthe highest MAP for anyone in the tar-
get population, the maximum price anyone is prepared to

pay.
By the properties of a probability distribution,

AJIBM
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Figure 1. Examples of Double Power demand density, a(p),
and Rectangular demand density, g(p).

P,

m P Pm
1= J.h(u)du = Ih(u)du + jh(u)du (12)
0 0 P

Substituting from Equation (12) into Equation (11), we
achieve the relationship between price, p, and the frac-
tion, S, prepared to pay at least that amount as:

P
S(p)=1~ [ hlu)eu (13)
0
Differentiating Equation (13) with respect to p gives:
ds
—===h(p) (14)
p
and so
dp 1
L= 15
s h(p) =

Substituting into Equation (10) gives the margina
revenue as:

m, = p(S)- (16)

h(p)
The conventional demand curve may be found by plot-
ting on the graph of p vs. S(p), the additional functions:
e the marginal revenue, m, (found from Equation
(16)), versus S
e themargina cost, ¢,, versuss.
See Figure 2, which may be compared with, for ex-
ample, Figure 13.3 of [1].

2.2. Equivalence between the Two Curvesfor a
Double Power Demand Density

The Double Power demand density, which will be dis-
cussed more fully in Section 4, is defined on non-nega-
tive values of MAP, p, by

h(p): ap* —bp*
=0 for p>p,

f <p<
or 0O<p<p, an

Where a, b, ¢ and d are non-negative constants, and
p,, isthe highest MAP for anyone in the population. It
will be shown in Section 4 that, if the mode is strictly

Copyright © 2013 SciRes.

interior to the interval, (0,p,), then the coefficients, a
and b, are given in terms of the powers, ¢ and 4 and the
highest MAP, p,, , by:

(c+1)\d +1)

Tla—op” 4o

Hence, within the range of interest, O<p<p, , the
fraction of the population prepared to pay at least price, p,
is

P
S(p)zl—J.(auC —bud}lu
° (20)
a e+l b d+l
=1-— R
1t Taa?
The marginal revenue at this value of S is given using
Equation (16)
1- a 1pc+l+ db 1pd+1
mr(S): 2 ct - d+
ap* —bp
ac+2p"”—bd+2 a_q
c+1l d+1
ap* —bp*

(21)

The condition of optimality using the demand curve

approachis m, =c,, which implies
0:ac+2 c*l—bd+2
c+1 d+1

=a(d +1)c+2)pt —blc+1)d + 2)p** —(c +1)d +1)
—alc+2)d + 1, p° +b(c+1)d +2)c, p*

pt—1-ac,p +bc,p’

(22)
Substituting for @ and b gives:

o (c+1)(d+1)2(c+z)(£J“”_ (c+1P(d+1fd+2)

d-c Dn d-c
d+1 c
x[ij _(c+1)(d+1)_M&[£j
P d—c  p,\p,
+(c+1)2(d+1)2i Ld
d-c  p,\p,
(23

Multiplying throughout by (c—d)/((c+2)d +1)), and
denoting the optimal price by p* gives:

(c+1)d+ 2)(”—*JM —(d+2)c+ 2)(1’—*JH1

m m

c d
4o (c+1)d +1 [p—J —(p—] +d—-c=0
pm pm pm

AJIBM
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— Price (average revenue), p

s N — - Marginal revenue, p + Sdp/dS

—— Marginal cost, cv
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Fraction, S(p), of target population prepared to pay a price of at least p

Figure 2. Conventional demand curve.

Equation (24) matches Equation (67) derived from the
direct optimization procedure explained in Section 4.

2.3. Equivalence between the Two Curvesfor a
Rectangular Demand Density

The demand density, g(p), for a general Rectangular
distribution for MAP, p, is given by:

g(p)=0 for p<p,
L forp<pep, (@9
pb_pa
=0 for p>p,

Using the probability density, g(p), inplaceof h(p)
in Equation (13) gives

P Pg 4 1
S(p)zl—_[g(u)duzl— deu—I du
0 0 paph_pa

(26)
1 PPy _ PP
pb _pa pb _pa
The function may be rearranged to give p explicitly in
termsof S:

p=p,~(p,—p.)S (27)
Meanwhile, from Equation (16)
S
mA\S)=p———=
) g(p) (28)
=p—(p,—p.)S

Substituting from Equation (27) into (28) gives the re-
sult that is the basis of the straight-line graph often used
in economic text books:

m,(S)=p,-2p,~p,)S (29)

Thus when a Rectangular distribution is used to repre-
sent the MAP, then the demand curve is a downward
sloping straight line (Equation (27)), while the marginal
revenue curve is also a downward sloping straight line,
with twice the gradient (Equation (29)).

Since the optimal price occurs when m, =c¢,, using
Equation (28) and then Equation (26) to eliminate S, we

Copyright © 2013 SciRes.

have:
¢,=m(S)=p-(p,—p)S=p-p,+p  (30)
So that the optimal priceis
p*=(c.+p,)/2 (31)

Assuming that the retailer will expect ¢, and the
lower limit of his mental model for the MAP to coincide,
sothat ¢, = p, [4], thenthe optimal priceissimply

P =(p,+p,)2 (32)

The same as the mean of the Rectangular demand den-
sity for MAP. The result coincides with Equation (10) of

[4].

3. Relating the Demand Density to UK
Post-T ax Household I ncome Per centiles

This Section addresses the problem of relating demand
densities to the willingness to pay as measured by UK
post-tax household income. The income percentile will
be shown to be equivalent to the cumulative probability
of a household chosen at random having an income less
than the specified amount. The relationship between this
cumulative probability and an associated cumulative
probability for MAP will be established. Mathematical
reasoning then produces the necessary relationship be-
tween demand density and probability density for the
income of a cohort at a given percentile. Data on income
may be available only cumulative form, in which case
the demand densities need to be found by numerical dif-
ferentiation, so that they will emerge as staircase func-
tions. Since the method of matching the Rectangular de-
mand density to the underlying demand density presented
in Section 5 relies on the latter being continuous, it is
necessary to fit a polynomial to portions of the staircase
function, with a quadratic giving adequate accuracy.

3.1. Household Post-Tax | ncome and I ncome
Cohorts

The data on income are often available only in cumula-
tive form. Thus Figur e 3 shows the cumulative probabil-
ity for the post-tax income, x, of a UK couple with no
children [5]. The data are presented in the format of the
“Modified OECD" equivalence scale, in which an adult
couple with no dependent children is taken as the
benchmark with an equivalence scale of 1.0. This “equi-
valised income” is intended to allow comparability be-
tween all individual s within the nation.

Let x be a household income level, and let F(x) be
the cumulative probability of a household, chosen at
random, having an income, X, up to x (£/y):
Pr(XSx)zF(x).

Associated with this income level, x, will be a figure,

AJIBM
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Figure 3. Cumulative probability versus UK post-tax
household income 2009.

8, for the percentage of households having that income,
x, or lower:

Pr(X < x)=F(x)=6/100 (33)

Let that income be called the @ -percentile income
and let the @ -percentile cohort be the collection of peo-
ple whose household income is less than or equal to this
income, x. Now choose an income level, y, less than or
equal to x. The conditional probability that a household
chosen at random has an income level, X, satisfying
X <y given that the household is known to be a mem-
ber of the @ -percentile cohort follows from the basic
tenets of probability theory:

Pr(X Sy)Pr(XSx|X < y)

Pr(XSy|XSx): Pr(XSx)

(34)

Butsince y < x, it followsthat: Pr(x <x|x <y)=1.

Hence, using the notation: F(y|0)= Pr(X <)X Sx) ,
Equation (34) becomes:

Pix<y) F(y) F() (35)

#ilo)- Pr(x <x) F(x) /100

Thus, for any two cohorts defined by income levels,
x, and x,, with associated cumulative percentages,
6,=6(x,) and 6,=6(x,),

F(y|¢91) _0

F(J’|‘92j_ 6 0

Hence by setting 6, =100, any conditional distribu-
tion, F(y|91), may be calculated from the unconditional
distribution, F(y)= F(y|100), using Equation (36).

3.2. Relating MAP to Income Cohorts

Assume that the maximum amount that people will be
prepared to pay for each good is proportional to their
income. Thus the maximum any person is prepared to
pay, his MAP, p, measured in £, will be proportional to
his ability to pay, y , as measured by his post-tax house-

Copyright © 2013 SciRes.

hold income, in £/year: p=1y,where 4 isa constant
of proportionality. The highest MAP, the maximum that
anyone in the @ -percentile cohort will prepared to pay,
p,,(0), will be dependent on the highest income in that
cohort, viz. p,(0)=x(0), where x(9) is the maxi-
mum income earned by anyone in the cohort. Meanwhile,
cohort members in any income bracket (y,,,v,) will
have MAPs in the range (p, ,= Ay, 4, p, =Av,). Thus
the number of people with a MAP between p, =4y, ,
and p,=Ay, will be the same as the number with in-
comes between y, , and y, . Therefore the following
relation will hold, between the cumulative probability
density for MAP, H (p|0), and the cumulative probabil-
ity of income, for the @ -percentile cohort:

H(p,|0)-H(p, |0)= F(y,|0)- F(y, ,|6) for al o (37)

Because both incomes and MAP may both fall to zero
but not go below thisvalue, i.e. y,= p, =0, then:

H(pol6)=H(0jp)=0=F(06)=F(y o) for al 6 (38)

n n

It follows that Equation (37) may be applied succes-
sively, starting from n =1, to give

H(p,|6)=F(y,|6) (39)

The cumulative probability densities, H(p,|0), may
now be used to estimate the probability density for MAP,
h(p|€). (The paper will use the convention that the high-
est MAP in the @™ percentile cohort will be set at 10
units of currency: p,(0)=10 for each value of 4.
Hence 4(pf) will be defined on 0<p<10 for all
0)

We may develop also the relationship between the
probability density for MAP, #(p|6), and the probability
density for the income of the @ -percentile cohort, given
by f (y|9): dF(y|6)/dy. Equation (38) implies:

Th(plé’)fp = yjf (o) (40)

Since p=Ay and hence dp =Ady, we may change
the variable of integration of the left hand side from p to
v

[aniohy = [ r(vfohy (41

Equating integrands shows that the probability density
for MAP for people in the 6-percentile for income is re-
lated linearly to the probability density for incomein that
percentile:

h(p|6)= h(1x6)= @ for 0<y<x(0) (42)

3.3. Price Takers
To develop the MAP model further, assume that the price

AJIBM
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of commodities that are needed and obtained by all will
be determined by the attitudes and decisions of those
who have household incomes up to a certain percentile,
the @™ percentile. Those with incomes above the 9™
percentile will then be price-takers for these goods.
Clearly the valuation of some scarcer, desirable goods
will require 6 to be set high, very high for luxury
goods such as high-performance sports cars and large
residences in central London; the latter, particularly, are
generaly accepted as being the preserve of the su-
per-rich.

The percentage, &, of people determining the price of
each commodity may vary according to commaodity, and
moreover, that percentage may not be known with any
precision. To cope with this situation, results may be
derived for a range of possible percentages, ¢, from
51% to 99%, for example. See Table 1.

3.4. Fitting a Stair case Probability Density to the
Probability Density, k(p,|6),for MAP for
People with Income Below the 6™ Per centile

In the case where the data on income is available only in
cumulative form, the demand density, h(p|9), needs to
be found by numerical differentiation, and hence will

emerge as a staircase function:

a, for 0<p<p,

a for p<p<p,

h(plo) =1 (43)
an—l for pn—l < p < pn

Ay for Pna < p < P

By the properties of a probability density:

Py
jh(l?|9)dp = H(p,|0)-H(p, ,|o) (44)
Pn-1
So that combining Equation (43) with Equation (44)
gives:

Pp
[nplokp =a, +(p, - p, )= Hp,0)-H(p,.|0) (45)
Pn-1
Hence the coefficient, a, ,, will be given by:
= Hpo)-1lpulo) ¢ o n<m (46)
Pn~Pua

Applying the procedure to the data points marked in

Table 1. UK post-tax household income 2009: Cumulative probability, F(y,e), up to the @™ percentile income (equiv-

alised, based on a couple with no children).

House-hold income,

Cumulative probability, F(y,6)

y(Epa)

6 ="51% 0 =59% 0=67% 0 =178% 6 =85% 6 =93% 0 =96% 6=99%  0=100%
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5200 0.0588 0.0508 0.0448 0.0385 0.0353 0.0323 0.0313 0.0303 0.0300
7800 0.1176 0.1017 0.0896 0.0769 0.0706 0.0645 0.0625 0.0606 0.0600
10,400 0.2353 0.2034 0.1791 0.1538 0.1412 0.1290 0.1250 0.1212 0.1200
13,000 0.4118 0.3559 0.3134 0.2692 0.2471 0.2258 0.2188 0.2121 0.2100
15,600 0.6078 0.5254 0.4627 0.3974 0.3647 0.3333 0.3229 0.3131 0.3100
18,200 0.8235 0.7119 0.6269 0.5385 0.4941 0.4516 0.4375 0.4242 0.4200
20,800 1.0000 0.8644 0.7612 0.6538 0.6000 0.5484 0.5313 0.5152 0.5100
23,400 1.0000 0.8806 0.7564 0.6941 0.6344 0.6146 0.5960 0.5900
26,000 1.0000 0.8590 0.7882 0.7204 0.6979 0.6768 0.6700
28,600 0.9359 0.8588 0.7849 0.7604 0.7374 0.7300
31,200 1.0000 0.9176 0.8387 0.8125 0.7879 0.7800
36,400 1.0000 0.9140 0.8854 0.8586 0.8500
46,800 1.0000 0.9688 0.9394 0.9300
54,600 1.0000 0.9697 0.9600
80,860 1.0000 0.9900
Copyright © 2013 SciRes. AJIBM
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Figure 3, produces the staircase probability density for
MAP shown in Figure 4. It is clear from this figure that
the probability density, h(p|9), resulting from this pro-
cedure is strictly unimodal.

The correctness of the procedure may be checked by
integrating k(p|0) from an initial condition of p,=0,
utilizing the coefficients, «,, that have been found from
Equation (46) and then employing Equation (44):
ao(p - po) for0<p<p,

aO(pl _po)+ al(p - Pl) for p, < p<p,

H(plo) =1,

i=1

Ez(a,_l(pi ~pia)

i=1 + amfl(p - pmfl)

nz{ai_l(pi —P,--l) ] forp, ,<p<p,
+ an,l(p - pnfl)

] for pmflgp<pm

(47)
Figure 4 shows two piecewise continuous probability
densities that have been matched over the central section
of the distribution. They have been chosen to be quadrat-
icsto alow ease of inversion, a convenient property used
in the least-squares fitting of a Rectangular distribution.
The process of fitting the quadratics will be discussed in
the next section.

3.5. Smoothing Sections of the Stair case
Probability Density Using 2™ Order
Polynomials

The method of matching the Rectangular demand density
to the underlying demand density (explained in Section 5
to follow) relies on the latter being continuous. Hence it

0.4

Probability density h(p)
o o o o
o o b S N 9 W
(5] [ [$)] \S) [62) w (3]

o

4 6 8 10
MAP, p (£)

o
N

Figure 4. Staircase probability density for UK post-tax
household income 2009. Quadr atics matched to the portions
of the curve above and below the mode.

Copyright © 2013 SciRes.

is necessary to fit a polynomial to portions of the stair-
case function, with a quadratic giving adequate accuracy.
Let the 2™ order polynomial approximation to the stair-
case probability density over the interval p, < p < p 4
take the form:

hal(p|9)=ao+0!1(p—pj)+az(p—p,-)2
:(ao—alpj+a2p12.)+(a1—2a2pj)p+a2p2
= lp2+Blp+Cl
(48)
where aozh(pj_lﬁ), 4 =a,, B=ay-2a,p, and

C=a,-a,p;+a,p;. The optima vaues of «, and
a, aretaken to minimizetheintegral squared error:

T (4lolo)- nalolo)ap (49)

Pj

Then let the 2™ order polynomial approximation to the
staircase probability density over the interval
Prote < P < p, teketheform:

haz(P|0) =po+ ﬂl(P - pmode)+ ﬂz(p - pmode)2

= ( o = PiPrmoge + ﬂzpriode)+ (ﬁl - 2ﬂ2pmode)p + fop’
= 4,p* +B,p+C,
(50)
where f, = hal(pmode|6)’ A, =P,

BZ = ﬂl - Zﬁzpmode and C2 = ﬁo - ﬂlpmode + azpriode :
The optimal values of £, and g, are taken to mini-

mize the integral squared error:

T<h(1’|9)— o (plo)f dp (51)

Pmode

The quadratics are, of course, convenient to invert.
Rearranging Equation (51) gives:

Ap?+Bp+Cy—hy(pl6)=0 (52)

For the data shown in Figure 4, the positive root of the
discriminant is needed, so that the general solution for
the MAP, p, between p, and po IS

_ B, + \/Blz - 4A1(C1 B hal(p|0))
- 24,

P PSP S Proe

(53)

Similarly, the genera solution is for the MAP, p, be-
tween p. ad p, is

—B,—+|BZ-44,\C, - h ,(p|o
P 2 \/ 2 2Az( 2 az(P| )) P <P P
2

(54)
since the negative root of the discriminant is needed in
this case.
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4. The Properties of the Double Power
Demand Density

This Section will derive the properties of the Double
Power demand density for the three exhaustive and ex-
clusive cases, namely 1) when the mode is strictly inte-
rior to the interval between zero, 2) when the mode is
located on the lower boundary of the interval, viz. 0, and
3) when the mode is located on the upper boundary, viz.
p,, - The properties sought are the central measures
characterizing any probability distribution, namely the
mode, the median and the mean, and then the optimal
price, which becomes a property of a demand density.
Furthermore, the parameters, p, and p,, that define a
Rectangular demand density matched to the underlying
demand density become additional characteristics of that
underlying probability density. These lead to a Rectan-
gular optimal price that is simply the arithmetic average,
(p, +p,)/2, which becomes a further characteristic of
the underlying demand density.

4.1. When the Mode Is Strictly Interior

For the general Double Power demand density defined
by Equation (17), a strictly interior mode will occur
when b > 0 and ¢ > 0. Moreover, continuity implies that
ap, —bp, =0. Meanwhile it is a property of any prob-
ability distribution that its integral over all possible val-
ueswill be unity. Hence:

c+l d+1

jh (p)dp = j(ap ~bp Jip = T —b5 Al (9

The solution of Equation (55) under the condition of
continuity gives a and b in terms of the powers, ¢ and d
as.

The mode, p,.., Occurs a the maximum value of
h(p), which will occur when

ﬁ = acprLT.:ode - bdpmode 0 (58)
dp

Substituting from Equations (56) and (57) gives
e+ d+1) 4 dlc+Nd+1) o

(d —C)p”l Prmode — (d — ) 71 Pmode = 0 (59)
so that, on cancelling the term, M , we are left
with: (d—c)p?

c-1 d-1
C[M] - d(M] (60)
pIM pm
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so that the normalised mode, p,ce/ P,, » EMErges as:

1
p;ode — (%jc_d (61)
Themeanis given by:
dil c + 1)(d + 1)
(62)

in which Equations (56) and (57) have been used to
eliminate « and . Thus the normalised mean, x,/p, ,
isgiven by:

4, (c+1)fd+1)

= AT 63
. (cx2\d+2) (63)
The median occurs when:
Pmed

jh dp = J-(ap —bp )dp

(64
_ _a e+l b d+1
c+lpmed d 1pmed

so that, after substituting for ¢ and b, the normalised me-
dian, p,../p. ,isgivenby:

c+l d+1
d +1 pmed _ ¢ +1 pmed — 1 (65)
d-c d-c\ p, 2

which Equation will normaly require an iterative, nu-
merical solution.

The optima price, p*, will be the solution to Equa-
tion (6) of [4]:

0= [hlpklp— (e, Ji(p)

p

m

(ap bp )dp p(ap —bp° )+c‘,(ap”—bpd)

c+1l c+l ¢
_a ey [i} e +1)(L] vac, ,,;[Lj
c+1 P Pu P
b d+1 d+1 d
t—pita-| L (@+1) £ |—bept| £
d+1 P Pn P

(66)

Substituting for « and » from Equations (56) and (57)

and re-arranging gives the equation for the normalised
optimal price, p*/p,, ,as

d+1 ct+l
(c+1)d + 2)("—*} ~(d+1)c+ 2)(1’—*J
pm plﬂ

c d
< (c+1)(d+1{(p—j —(p—J ]+d—c=o
pm pm plﬂ

\v*—.’“
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The condition for the least-squares fitting of a Rec-
tangular demand density with base coordinates, ( p,,0)
and (p,,0), is derived in Section 5 as Equation (100).
This leads, in the case when the Double Power is the
underlying demand density, to:

2= T0p)-nlp, v

= C%l(pb”l —pi*l)—d%l(pz’ 1opit)  (69)
—(aps —bp¢ N py - p.)

Eliminating ¢ and b and re-arranging gives the final
expression

R GRGNEERTY
—(c+1)d +1)H;’_:T _(%JdJ(%_i_:J—%(d—c)=o

(69)

Noting that p, isthefunctionof p, givenin Equa
tion (119) of Section 5.3, it is now possible to solve
Equation (69) by iterating on p,/p,, , the normalised
value of the lowest MAP in the Rectangular distribution.

4.2. When theMode Occursat p=0
When ¢ = 0, Equation (17) becomes

h(p):a—bpd for 0O<p<p, (70)
=0 for p>p,
where, from Equations (56) and (57):
_d+11 (70)
d p,
b= d7+1 :d:ﬂ - ii (72)

The normalised mean, u, / p,, » follows from putting
¢=0 into Equation (63), to give:
Hp_Ld+l
p, 2d+2

(73)

The normalised median, p,.,/p, ,isfound by putting
¢=0 into Equation (65), to give:

d+1
d+1(pmedJ_l[pmedJ :l (74)

d pm d plﬂ 2

The condition for the least-squares fitting of a Rec-
tangular probability density is given by Equation (102)
from Section 5, which yields, in the case where p, =0,
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Py

3= [00) i o= |

0

(h(p)—h(p,)ldp ~ (75)

Py

1 Py
5" J(a—bpd —(a—bpf))dp=bI(PZ - p* Mp
o o (76)
d d+1
—p—=
d +1pb

Combining Equations (72) and (76) provides an ex-
plicit solution for p,/p, , the normaised value of the
highest MAP in the Rectangular distribution.:

1
1 \d+1
23 %

Clearly p,/p, >%2 as d—0 and p,/p, —>1
as d — oo, which will result in the mean value of the
Rectangular distribution becoming 0.25 and 0.5 respec-
tively.

The optimal value resulting from the Double Power
probability distribution with ¢ = 0 may be found from
substituting ¢ =0, and also ¢, =0 into Equation (69):

(@+ 2)(P—*] ~2(d +1)(p—*J +d=0 (78)

pm pm

Clealy (p*/p, )" —0 as d — o for the condi-
tion that the optimal price is strictly less than the maxi-
mum feasible price, p*<p, , and this means, from
Equation (78), that p*/p, —0.5 as d — oo. Limit-
ing behavior can also be demonstrated by numerical so-
lution as d >0, when p*/p, —0.2846. Numerical
caculation shows that p*/p, rises from 0.2847 to
0.4995 as d increases from 0.001 to 1000.

4.3. When the Mode Occurs at p = p,,

When 5 = 0, the Double Power probability density of
Equation (17) reduces to:

h(p)zap" for 0<p<p,

79
=0 for p>p, "

The requirement for aprobability distribution means that

0 Pm apc+l
W(p)dp = [apedp=2Pm 1 80
! (p)dp {ap p=—"r (80)

So thet a isdefined assoonasc and p,, are defined:

c+1
a=

(81)

c+l
m

The mode for this distribution will be p, . The mean
value will be:
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©

Pm
_ — c+l — c
u, = [ ph(p)p !ap dp =-

0

+1

+2 82

where the last step follows the substitution for a from

Equation (81). Hence the normalised mean, u, / JZ

given by:
Hy _ctl (83)
p, c+2
The median, p,,, , followsfrom:
Pmed
J‘ (p)dp J‘ap p = lpmed o (84)

Substituting for ¢ and re-arranging gives the normal-
|$d medlan' pmed/pm ' as

1
ppmed — (%J el (85)

From Equation (6) of [4] the optimum priceis:

Pm Pm
0= Ih(p)dp - (p —-c, )h(p)z Iap"dp —ap“t+ c,ap’

P P (86)
a c+1l c+1 _ c+1 c
- 1( 1) ap e ap

Substituting for a from Equation (81) and re-arranging
gives the normalised optimal price, p*/p, , as:

c+l c
(c+2)(p ] —"—v(c+1)(p—] ~1=0 (87)
Pn Pn Pn

The condition for the least-squares fitting of a Rec-
tangular probability density is given by Equation (100) of
Section 5. With the additional condition that p, = p,, ,
thisyields

5= () =(p)) o

se—F

(89)

a

- +1(p,, -p*)=api(p, - p.)

Substituting for a from Equation (81) gives:

c+l c c+l
1:1_[&j _<c+1)(&j +<c+1{&j )
2 P P P

Which gives the final expression for p,/p,, , the nor-
malised lowest price in the Rectangular demand density

as.
c+l c 1
{pa] -(c+1)(&j +==0 (90)
Pn Pn) 2

For which a solution may be found by iteration.
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5. Optimal Matching of a Rectangular
Demand Density to a General Unimodal
Distribution

This section derives a method for matching a Rectangu-
lar demand density to a general unimodal demand distri-
bution, based on minimizing the squared error between
the two curves. The first subsection uses calculus, while
the second shows the results in geometrical terms. Both
the analytical first part and the geometrical second part
are needed in order to devise a robust numerical method
for thefitting procedure, as described in Section 5.3.

5.1. Optimal Matching Procedure

Let the general unimodal demand density be #(p), de-
fined on 0<p<p, , where p, isthe maximum pos-
sible price. The integra of the squared error between the
general distribution, /(p), and the Rectangular demand
density with vertical legsat p, and p,, will be:

1= (0-n(p)f o

0
Py

+[(e=n(p)) dp+°f(0—h(p))2 dp

Pa Pp

2 p)dp-ﬁ-[jr(cz —20h(p)+h2 (p))dp

P,

Il

'm

s O t——
=

+ fhz (p)dp

Pp

(91)
where:
c= 1 (92
p b p a
Hence
dc 1
_— = (93)
dp, (p,-p.)
And
dc __ 1 (94)

dpb (pb - pa )2

The integral of Equation (91) will be minimized when
o =0= or (95)
apa apb

Now the general integral:
b
O(a,b)= [ qla,b, p)ip (96)

May be differentiated to give the following partial dif-
ferentials:
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2Q(a,b) _ 20 ob , 00 da
oa ob 8a oa 6a

j % gla.b.pYip

oa
! (97)

b

0
=—qla,b,p=a)+ ja

qla,b, phip

0Q(a,b) _ 0Q ab L 00 da
b ob b da b

f—q a,b, pYp
(98)

b

~glabp=b)+ [ >

I3 qla,b, p)ip

Hence

% = hz(pa)— (cz - ZCh(pa)‘i' hz(pa))

Py

+ j (2(:——2;1( )2—+Ojdp+0 (99)

2 ]-” ( )
M p)dp
(pb_pa)zpu

_2p), 1
py—p. (py-p.f

Noting Equation (95), we may write the first maxi-
mizing condition as:

Py

CORINTE (100
Moreover
O 04— 2ch(p,)+ H(p,)
apb
et oa ety oy

1 2up,)
=- - h(p)dp
(pb_pa)z pb_pa (pb a J.

Applying condition (95) gives the second maximizing
condition as

[0p)-

Pa

(102)

o, o =

Comparing the integrands in Equations (100) and
(102), it is clear that, at the minimum integral squared
error,

m,=h(p,)==,=h(p,) (103)

Since [ “h(p)dp=1 as a consequence of h(p) being
a probablpty density, it follows that the horizontal,
straight line connecting (p,,A(p,)) with (pb,h(pb))
will cut the locus of 4(p) so asto divide the area under
the curve into two, with equal areas above and below the
straight line. See Figure 5 and Section 5.2 below.

In the general case, Equation (103) and either Equation
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Figure 5. Fitting a Rectangular demand density, g(p), to a
general demand density, &(p), with an interior mode.

(100) or Equation (102) need to be solved simultaneously
for p, and p,. One numerical procedure consists of
iterating on the two values, p, , p, , SO asto satisfy

Pp
)= H(p Jeap =5 - 2(0p,)- hlp, )} =0 (104
Pa

where 4 may take any value; 4 may be recognized
as alLagrange multiplier.

When the best fit occurs with either p, =0 or ese
p, =D, ,» one of the minimizing variables, p,,p,, will
drop out of the optimization process, and the horizontal
lineislost. In the case where p, isfixed at the top end
of the interval, viz. p, = p, , then only Equation (100)
needs to be solved for p, . If p, isfixed at the lower
end of the interval: p, =0, then only Equation (102)
must be solved for p, .

5.2. Geometrical Considerations

Aswill be seen, geometrical considerations allow a more
robust numerical algorithm to be developed. Referring to
Figure 5, since the area under the probability distribution,
h(p), defined on (0, p, ), must equal unity, it follows
that

A+C+E+F+G=1 (105)

The area under the Rectangular probability distribution,
g(p), defined on ( p,, p, ), must equal unity also. Hence:

B+C+D+F=1 (106)
Eliminatingthearea, C+ F, gives:
B+D=A+E+G (107)

which means that the integrated error will be zero. Equa-
tion (102) implies that

1

Thus combining Equation (108) with Equation (105):

1

E+F+G:§ (109)
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Positive areas, E or G or both, will imply F <0.5.

It has been shown in Section 5.1 that the lower line
bounding the area, C, must be horizontal (4(p,)=h(p,),
see Equation (103)). Hence

F=h(p,Xp,~p.) (110)
A positive area, E, implies
h(p)>0 for some p:0<p<p, (111)
While apositive area, G, implies
h(p)>0 for some p:p,<p<p, (112)

Either or both of conditions (111) or (112) will entail

F=h(p,Yp, - p.)<= (113)

2
So that

h(p,)< (114)

2p, - 1r.)

Equation (114) adds an additional constraint to the op-
timization Equation (104) for the important case where
the probability density has positive values throughout the
range, 0< p< p,,, that isto say when

h(p)>0 for dl p:0<p<p, (115)

The limiting case, where inequality (114) becomes an
equality, viz.:
1
2p, - p.)

Occurs when the area, F, and the sum of areas,
B+ C+ D, each becomes 0.5:

h(p,)= (116)

F=B+C+D=% (117)

Equation (117) applies when E=G =0, when the
probability distribution being matched would need to
have the same base as the Rectangular distribution. It
might, indeed, be a Rectangular distribution, implying a
perfect match, but, conceivably, it could be some other
distribution, albeit a somewhat unusual one, such as a
rectangle of height 1/{2(p, - p,)} topped by a triangle

of height 3(p, - p,)-

5.3. Numerical Method for Fitting a Rectangular
Demand Density to a General Unimodal
Distribution

Successively better estimates may be made of the two
prices, p, and p,, so as to satisfy Equation (104)
more exactly, subject to the constraint of Equation (115),
but the process is not always well conditioned. An alter-
native is given in this section.

Knowledge of the unimoda probability density func-
tion, 7z =~h(p), for MAP, p, alows usto invert the func-
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tion (e.g. viaanumerical table):

p= kl(ﬂ) for0< p< proge (118)
= kz(ﬂ') fOr Proge <P < P
Using Equation (103), we may write:
Py =ko(m,) = kol ) = ko(h(p,)) (119)
From Equation (109):
Th(p p+7,(py— pa)+ ]fh(p}fp = % (120)
0 P

Equations (103), (119) and (120) now form an implicit
equation set in the single unknown, p, .
Alternatively, it follows from Figure 5 that

Pmode

[ np)ip+ pfh(p}lp =A+C+F

Pa Pmode

Equation (121) may be reduced using Equations (103)
and (110) to:

(121)

Pmode Pp 1
[#pYp+ [h(plp-7,(p=p.)=5
Pa

Pmode

(122)

which is an aternative expression to Equation (120).
Making use of the intermediate transformation

p. =exp(in(p,)) (123)

we may choose to iterate on In(p,) rather than on p,
when the mode is close to zero, and p, — 0.

6. The Properties of the Kinked Demand
Curve

The kinked demand curve [6], [7], may be seen as an
asymmetric combination of the assumptions made by
Bertrand [8] and Cournot [9] about the behavior of an
oligopoly. The construct has caused controversy amongst
those economists who considered the rapid adjustment of
prices a fundamental economic tenet [10]. The present
authors make no case for or against the kinked demand
curve, but include it as a method that has been used to
represent demand under oligopoly.

6.1. The Equivalence of the Kinked Demand
Curve and the Kinked Demand Density

Referring to Figure 6 for the notation, assume the
Kinked demand density, 4(p), isgiven by

h(p)=0 for p<p,
=k for p, <p<p, (124)
=rk for p,<p<p,
=0 for p>p,
Applying Equation (13) gives
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Figure 6. Kinked demand density defining &, r, p, , px and
Pp
Py
S(p)=1- j Odlu — j kdu
Pa

=1-k(p-p,) forp,<p<p,

Py Pk 4
=1- [ Odu — [ kdu~ [ rhdu
0 Pa Pk
po)-rk(p-p,) forp, <p<p,
(125)
Moreover, S(pﬂ)zo, which implies from the second

part of Equation (125) that the following relationships
hold:

zl_k(pk_

1
k= 126
(1_r)pk+rpﬂ_pa (120)
And
ps=pi +@=k(p, - p,))/ (k) (127)

Hence Equation (125) may be rearranged to give p ex-
plicitly in terms of S:

1
p=p, —;S(p) for0< S(p)<1-k(p, - p,)

11
=Pa +——;S( p)

p for1-k(p, - p, )< S(p)<1

(128)

Equation (128) is the equation of the kinked demand
curve, as shown in Figure 7, which includes the marginal
revenue calculated from Equation (16). It may be noted
that Figure 7 gives the demand curve for the target
population, defined by those whose MAP lies in the

range: p,<p=<p,.

6.2. The Optimal Price

For a constant population, with each buyer purchasing
one item, the optima price implies maximization of the
profit per person, y , for which a necessary, but not suf-
ficient, condition isthat dy /dp =0. Using Equation (5)
of [4], but now with p, replacing p, as the
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Price, p

— MAP
- Marginal revenue
—-cv

0 0.2 0.4 0.6 0.8 1
Fraction, S(p), of population prepared to pay a
price of at least p

Figure 7. Demand curvewhen: r=2, p, =6, ps = 9.

maximum price that will achieve asale, gives
Ih u)du+(p-c,) {J.h u)du — jh J
P
Pp
= [ hu)du—(p e, n(p)
P

(129)

The assumption is made that the rational retailer will
expect ¢, and the lower limit of his mental model for
MAP to coincide: ¢, = p,, as discussed in Section 4 of
[4]. Equation (129) will be valid for prices, p, above and
below the kink price, p, . For the case where p<p,,
Equation (129) becomes, after putting ¢, = p,

kdu+ | rkdu—k(p—p,
dp { pj ( ) p<p, (130)

= k(pk(l— P+ p, + g — 2p)

Applying the necessary requirement for optimality
namely that dy /dp =0, the optimal price will be

_pla=r)+p, +1p,
2

Moreover, differentiating Equation (130) gives
dzl///dpz =-2<0, confirming a maximal point. We
may constrain the optimal price to be equal to the kink
price, so that there is a incentive for stable trading at this
price, in which case:

r<p, (131

:pa+rpﬂ

132
1+r (132)

Pu
where the extra subscript “1” has been added because it
is necessary to consider, in addition, how dy/dp
changes beyond the kink point. For higher prices the fol-
lowing equation holds for the rate of change of profit per
person with price:
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d Pp
d_Z = Jrkdu - rk(p —pa)

9
=rk(pa + Dy —Zp)

Setting dy/dp to zero, this implies an optimum at a
different price, which is a second candidate for the kink
price:

rzp, (133)

pa+pﬁ
2

For the first kink price, p,,, to give rise to stable
trading, it needs to preserve its optimality over prices
above thekink price: p > p, . This may be examined by
substituting p = p,, +Ap into the expression for the
profit derivativewhen p > p, , Equation (133):

dy _dy _ .
dA\p dp

Substituting for the first kink price, p,,, from Equa-
tion (132) gives, after re-arrangement:

d
ﬁ - kﬁ((l— \py = pa)-20+7)Ap)

P2 = (134)

(pu + 1y~ 2P0 —28p) (135)

(136)

Since p,>p,, itisclear that, when »>1, the profit

per person,y , will fall if theretail priceisset above p,,:

dy/dAp <0 at al positive values of Ap. Thus it is
clear that, provided that » >1, entailing an upward step
in probability density and hence a concave kinked de-
mand curve, the profit will reach an overall maximum at
a kink price of p,,. This will enable stable trading at
that value.

Such stability is will not occur at akink price of p,,
if »<1, implying a convex kinked demand curve. The
profit per person will now tend to rise, dy /dAp >0, as
the price is moved just above p,,. The overal optimal
price will now be that which pertains in the region above
the kink, and therefore given by Equation (134):

+
s Pa zpﬁ #Pu

To examine the validity of the second candidate for the
kink price, p,, , we substitute p=p,+Ap and
p, =p,, into the expression for the profit derivative
when p < p, , Equation (130):

V4 optl (137)

d
Y kpe@=r)+ po+10, — 2,5~ 20p)

dp (138)
= k(pa +rpg — (l+ ’”)sz - ZAP)
Substituting for p,, from Equation (134) gives:
+
d—l//:: (pa +1py —(1+ r)%— ZAp]
dp (139)

= %((1— r)(pa + rpﬁ)— 4Ap)
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Hence, if the retail price is set below p,,, viz
Ap <0, then the profit per person is guaranteed to rise,
dy/dAp >0, if r<1 and the kinked demand curve is
convex. ForAp <0 and r>1, corresponding to a con-
cave kinked demand curve, dy/dAp <0 when Ap —
0, indicating a local maximum. When » >>1 a global
maximum is indicated, as has been confirmed by nu-
merical calculation.

Thus for a concave kinked demand curve, where r>1,
it is possible for the same values of p,, p, and r to
have two different values for the kink price, p,; and
D2 Oiven by Equations (132) and (134).

Consider the case of a convex kinked demand curve,
viz. r<1, when the kink price isset at p,,. The price
giving the overall maximum profit per person may be
found by substituting for p,, from Equation (134) into
Equation (131):

(8-r)p, +@+r)p,
r<l = 4
It may be seen from Equations (137) and (140) that
when »<1 and the kinked demand curve is convex,
neither setting the kink price at p,, nor setting it at
P> Will cause the kink price and the optimal price to
coincide. Hence there will be no incentive for aretailer to
continue trading at the kink price when the kinked de-
mand curve is convex. This suggests that the construct of
a convex kinked demand curve, as suggested as a variant
by Sweezy [7] in his Figure 2, does not represent a situa-
tion of stable trading. Hence convex kinked demand
curves will not be considered further in this paper.

Popt2 # Dio (140)

6.3. Central M easures of the Concave Kinked
Demand Curve

As a preliminary, substitute p, =p,, into Equation
(126) and use Equation (132) to give
1+r

and p, =p,, into Equation (126), now using Equation
(134) to give

(141)

2
=k, =
> W r)p, - pa)

The mean value of the Kinked demand distribution
may be calculated from:

(142)

© Py Pp
u, = [ ph(p)dp = [kpdp + [ rkpdp
0 Pa Py (143)

=S lwi = v+ @ r)ot)

When p,=p, and k=k , substituting into Equa-
tion (143) from Equations (132) and (141) gives, after
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re-arrangement:

" = (r+3)pa +(3r+l)pﬂ
’ 4r+1)

When p, =p,, and k=k,, substituting into Equa-
tion (143) from Equations (132) and (141) gives

(144)

1 )(pa +pﬂ)2

2 2
= — 1-
SO PYEN Pl
(145)

which reduces to the same form as Equation (143): the
same mean value pertains whether the kink priceis p,,
or p,,. Moreover, it follows from Equations (132) and
(134) that the mean price is the average of the two possi-
ble kink prices:

_Pu + Pro

u, > (146)
Now consider the integral J':“h(p)dp :
Pr1 Pia
[#(p)p = [kdp =k (- p.,)
0 Pa (147)
_ Ltr patmpy 1
Zr(pﬂ - pa) 1r P73
Since the median, p,, ., is defined by

J?""’" h(p)dp =05, it is clear that, when the kink price is
setat p,,,the median coincides with it:

DPiear = Pra (148)

When thekink priceissetat p,,, the median, p,_,.,
will be defined by:

1 Pmed2 Pi2 Pmed2
5= j h(p)dp = j kodp + irkzdp (149
= kz(sz — D )+ rk, (pmedZ - sz)

Making the necessary substitutions from Equations
(134) and (142) gives, after re-arrangement, the median
price when thekink priceis p,,.

3 (r +1)pa + (3r —1)pﬂ
med2 —
4r

The mode will occur between p,, or p,, and p,.

(150)

6.4. Contour Plot for Kinked Demand Curves

The ratio, 1, / P May be found by dividing Equation
(143) by Equation (132)

34r+ (14322
H _ Pa (151)

Pu 4{1+ rpﬂj
P
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which may be recast into the form:
&: 4ﬂll/pk1_3_r (152)
p, 1- ’”(4,Up /pkl - 3)
to enable a contour plot to be drawn with the price ra-
tio, p, / p, » plotted against the post-kink slope multi-
plier, r, on the horizontal axis, with the ratio of the mean
price to the optimal, kinked price, 1, /p,, , & parameter.
See Figure 8.
A similar set of curves are plotted in Figure 9 for
Dy = Py, » based on the anal ogous eguation:
Py _ 2(r+1),up/pk2—3—r (153)
p, 3r+l- 2(r+1),up/pk2
It is clear from these two figures that the mean price
and the optimal (kink) price are smilar, u,~ p, , for a

0 T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12
Ratio of demand curve slopes, r

Figure 8. Kink price = p;;: contour plot with the ratio of
mean priceto the optimal price, u,/p,, as parameter.

10

pﬁ/pa

0 1 2 3 4 5 6 7 8 9 10 11 12
Ratio of demand curve slopes, r

Figure 9. Kink price = p;,: contour plot with the ratio of
mean priceto the optimal price, u,/p;,, as parameter.
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wide range of kinked-curve parameters.

By modifying the approach used in Section 5, it can be
shown that the best-fit Rectangular demand density
shares the same base as the Kinked demand density, so

that pa:pa and pb:pﬁ

7. Conclusions

The demand density curve has been shown to be equiva
lent to the demand curve conventionally used by econo-
mists. It has been shown that the demand density curve
can offer a sharper picture of consumer demand than the
conventional demand curve. The straight-line demand
curve often used by economists as an exemplar has been
shown to be equivalent to a Rectangular demand density,
the simplest model of demand that may be useful to a
retailer.

Derivations have been made of the properties of four
demand densities of potential importance to retail price
investigation, starting with the Household Income de-
mand density, based on the assumption that a person’s
MAP for aretail item will be proportional to his post-tax
household income. The notion has been introduced that
prices may be set by the retailer’s interaction with con-
sumers earning incomes up a certain percentile, with
those with incomes above that level being price takers.
Mathematics has been presented relating the demand
density to the probability density for income up to a
given percentile. The process for trandating cumulative
probabilities for income into demand densities has also
been explained, and a technique has been given for
smoothing the results to facilitate later, optimal matching
by a Rectangular demand density.

The Double Power demand density allows the mode to
be located anywhere within a price interval, including at
the boundaries, by suitable choice of its four coefficients.
Analytical derivations have been given for the mode, the
mean, the median and the optimal price for the Double
Power demand density in each of the three possible loca-
tions of the mode: at the lower boundary, strictly interior
to the interval and at the upper boundary. In addition, the
mean of the matched Rectangular demand density, equal
to the optimal price, has been derived for each of the
three instances.

The process of matching a Rectangular demand den-
Sity to a general demand density has been explained,
based on the minimization of the integral of the squared
error between the Rectangular and the underlying de-
mand density. The mathematical results have been inter-
preted geometrically and a numerical method has been
devised that allows the numerical matching procedure to
proceed rapidly and efficiently. The results have been
applied to al the Household Income and Double Power
demand densities considered.

The Kinked demand density has been derived from the

Copyright © 2013 SciRes.

kinked demand curve sometimes used to conceptualize
the effects of oligopoly. The translation into the domain
of demand density has facilitated the analysis of the
convex kinked demand curve, showing that it will not
lead to stable trading at the kink price because the opti-
mal price will aways lie elsewhere. By contrast, it has
been shown that stable trading at the kink price can occur
with a kinked demand curve that is concave. For the
same overall upper and overall lower price defining the
Kinked demand density and the same ratio of slopes, it is
possible for either of two, similar kink prices to be opti-
mal and thus promote stable trading at the kink price.
The mean price and the median price for a Kinked de-
mand density have been derived analytically. Moreover,
it has been shown that the optimal price and the mean
price will be similar for awide range of parameters when
the kinked demand curve is concave.
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