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ABSTRACT 

The paper introduces generalized demand densities as a new and effective way of conceptualizing and analyzing retail 
demand. The demand density is demonstrated to contain the same information as the demand curve conventionally used 
in economic studies of consumer demand, but the fact that it is a probability density sets bounds on its possible behavior, 
a feature that may be exploited to allow near-exhaustive testing of possible demand scenarios using candidate demand 
densities. Four such demand densities are examined in detail. The Household Income demand density is based on the 
assumption that a person’s maximum acceptable price (MAP) for an item is proportional to his household after-tax in- 
come. The Double Power demand density allows the mode to be located anywhere in the range between zero and the 
highest MAP possessed by anyone in the target population. The two-parameter, Rectangular demand density, the sim- 
plest model that a retailer may employ, has the useful feature that it may be matched relatively easily to any unimodal 
demand density and hence may act as its approximate proxy. The Kinked demand density is derived from the kinked 
demand curve sometimes used as a relatively uncomplicated way of conceptualizing the effects of oligopoly. The cen- 
tral measures of each of these demand densities are derived: mean price, mode, median, optimal and, when appropriate, 
the mean of the matched Rectangular demand density. In a further result arising from the use of demand densities, it is 
shown that stable trading at the kink price will not occur if the demand curve is kinked and convex.   
 
Keywords: Demand Density; Probability Density; Demand Curve; Double Power Demand Density;  

Rectangular Demand Density; Kinked Demand Density 

1. Introduction 

While a demand curve may be used to investigate retail 
prices and how they are set [1-3], it has been demon- 
strated [4] that there are advantages in recasting the in- 
formation into a probability density for maximum ac- 
ceptable price (MAP) or “demand density”. The “de- 
mand density” allows investigations of the optimal price 
to proceed in a natural and convenient way. The funda- 
mental restriction on any probability density, namely that 
its integral over all values must equal unity, turns out to 
be a particularly useful feature, making the demand den- 
sity a feasible tool for exploring situations where data are 
sparse. Here a finite number of demand densities may be 
employed to provide a near-exhaustive coverage of pos- 
sible price preferences.   

The paper will begin by explaining the equivalence 
between the demand density curve and the demand curve 
conventionally shown in economics textbooks. It will 

show how the price optimization procedure based on 
demand density produces the same answer as the graphi- 
cal method based on the demand curve. Having estab- 
lished this equivalence, the paper will go on to consider 
four demand densities that have been found useful in 
assessing how retail prices may be set, deriving key pro- 
perties of   
 the Household Income demand density, where MAP 

is proportional to household income after tax.  
 the Double Power demand density, where an appro- 

priate choice of the four defining coefficients allows 
the mode to be located anywhere in the range be- 
tween zero and the highest MAP possessed by anyone 
in the target population.   

 the two-parameter, Rectangular demand density, 
which is the simplest model that a retailer may em- 
ploy, based on his knowledge only of the lowest price 
at which he is prepared to sell and the highest price he 
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believes he could charge before sales become negli- 
gible.   

 the Kinked demand density, derived from the kinked 
demand curve introduced independently by both Hall 
and Hitch [5] and Sweezy [6] as a relatively simple 
way of conceptualizing the effects of oligopoly.  

The clear perspective on the optimization procedure 
promoted by the use of the demand density rather than 
the demand curve has allowed the correction of a misap- 
prehension concerning the kinked demand curve. The 
location of the optimal price when that curve is convex is 
found not to be located at the kink price.   

The usefulness of the demand density as a model for 
retail demand has been found previously not to be greatly 
compromised when the underlying probability density 
for MAP is approximated by a Rectangular demand den- 
sity [4]. Therefore an analytical procedure will be pre- 
sented that allows a Rectangular demand density to be 
matched to a general, continuous and unimodal demand 
density.   

Note: upper case letters will be used in the paper to 
denote the name of each demand density for clarity and 
emphasis.  

2. Equivalence between the Demand Curve 
and the Demand Density Curve 

2.1. General Equations 

A retailer will need to offer a price common to all, but 
will face a differentiated market, with different people 
having a different MAP for the same good. As noted in 
[4], the term, “uniconsumer”, might be used to denote a 
consumer prepared to buy one but only one item if the 
price is right. Then a person, a “multiconsumer”, who 
will buy more than one item may be represented, as far 
as his economic behavior is concerned, as multiple, iden- 
tical uniconsumers. In the rest of the paper we shall use 
the word, “consumer”, in place of the more exact “uni- 
consumer”, simply to make it less cumbersome to read.   

Let n be the number of consumers in the target popula- 
tion prepared to pay at least p, i.e. having a MAP of p, 
for the good, so that:   

 pnn                   (1) 

Assuming a constant variable cost per item, v , and 
letting the fixed costs be , the retailer’s profit will be:  

c
FC

Fv Cncnp      (2) 

Since n is a function of MAP, the maximizing condi- 
tion, 0 dpd , may be written formally as:   

0


dp
dn

dn
d

    (3) 

Provided the rate of change, dpdn , in the number, n, 

of people in the target population prepared to pay at least 
p for the good is non-zero, the maximizing condition of 
Equation (3) implies  

0


dn
d

 provided 0
dp
dn

   (4) 

Thus differentiating Equation (2) gives the profit- 
maximization condition as 

    0


Fv Cnc
dn
dnp

dn
d

dn
d

  (5) 

Here  is the revenue at price, p, while np Fv Cnc   
represents the costs. Since differential operator,   dnd . , 
denotes marginal with respect to the number of sales, 
Equation (5) corresponds to the standard economic find- 
ing that the maximum profit occurs when marginal reve- 
nue,   dnnpdrm  , equals marginal costs:  
  vFCv cdnncd  . Thus the profit maximizing condi- 

tion has the form:   

vr cm       (6) 

where the marginal revenue is given by 

   
dn

ndpnnpmr      (7) 

The bracketed term, (n), emphasizes that the price, p, 
is related to the number, n, of consumers prepared to pay 
at least that amount.  

The fraction of the target population of consumers 
prepared to pay at least p for the good is     NpnpS  . 
Differentiating that expression with respect to n gives:  

Ndn
dS 1

      (8) 

Moreover,  

NdS
dp

dn
dS

dS
dp

dn
dp 1

    (9) 

Substituting from Equation (9) into Equation (7) gives 
the marginal revenue as:  

   
dS

SdpSSpmr     (10) 

The price, p, is related to the number, , willing to 
pay that price or more for the good by the probability 
distribution for MAP, p, or demand density, 

 pn

 ph , as 
illustrated in Figure 1. Meanwhile the fraction of con- 
sumers prepared to pay price p or more is given by:   

 
mp

p

duuhS     (11) 

where m  is the highest MAP for anyone in the tar- 
get population, the maximum price anyone is prepared to 
pay.   

p

By the properties of a probability distribution, 
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Figure 1. Examples of Double Power demand density, h(p), 
and Rectangular demand density, g(p). 
 

      
mm p

p

pp

duuhduuhduuh
00

1   (12) 

Substituting from Equation (12) into Equation (11), we 
achieve the relationship between price, p, and the frac- 
tion, S, prepared to pay at least that amount as:   

   
p

duuhpS
0

1     (13) 

Differentiating Equation (13) with respect to p gives: 

 ph
dp
dS

     (14) 

and so 

 phdS
dp 1

     (15) 

Substituting into Equation (10) gives the marginal 
revenue as: 

   ph
SSpmr      (16) 

The conventional demand curve may be found by plot- 
ting on the graph of p vs. , the additional functions:   pS
 the marginal revenue, rm  (found from Equation 

(16)), versus S 
 the marginal cost, c , versus S. v

See Figure 2, which may be compared with, for ex-
ample, Figure 13.3 of [1]. 

2.2. Equivalence between the Two Curves for a 
Double Power Demand Density 

The Double Power demand density, which will be dis- 
cussed more fully in Section 4, is defined on non-nega- 
tive values of MAP, p, by  

 
m

m
dc

pp
ppbpapph




for                      0

0for         
  (17) 

Where a, b, c and d are non-negative constants, and 

m  is the highest MAP for anyone in the population. It 
will be shown in Section 4 that, if the mode is strictly  
p

interior to the interval,  mp,0 , then the coefficients, a 
and b, are given in terms of the powers, c and d and the 
highest MAP, , by:  mp

  
  1

11



 c
mpcd

dca     (18) 

  
  1

11



 d
mpcd

dcb     (19) 

Hence, within the range of interest, mpp 0 , the 
fraction of the population prepared to pay at least price, p, 
is 

   
11

0

11
1

1









 
dc

p
dc

p
d

bp
c

a

dubuaupS
  (20) 

The marginal revenue at this value of S is given using 
Equation (16)  

 

dc

dc

dc

dc

r

bpap

p
d
dbp

c
ca

bpap

p
d

bp
c

a

pSm


























1
1

2

1

2

11
1

11

11

  (21) 

The condition of optimality using the demand curve 
approach is vr cm  , which implies 

       
      d

v
c

v

dc

d
v

c
v

dc

pcdcbpcdca
dcpdcbpcda

pbcpacp
d
dbp

c
ca

1111

112121

1
1

2

1

2
0

11

11






















 

 (22) 
Substituting for a and b gives: 

         

      

    d

mm

v

c

mm

v

d

m

c

m

p
p

p
c

cd
dc

p
p

p
c

cd
dcdc

p
p

cd
ddc

p
p

cd
cdc
























































22

221

212

11

11
11

211211
0

 

(23) 
Multiplying throughout by     11  dcdc , and 

denoting the optimal price by p* gives: 

     

   0
**

11

*
21

*
21

11






















































cd
p
p

p
pdc

p
c

p
pcd

p
pdc

d

m

c

mm

v

c

m

d

m
 (24) 
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Figure 2. Conventional demand curve. 
 

Equation (24) matches Equation (67) derived from the 
direct optimization procedure explained in Section 4. 

2.3. Equivalence between the Two Curves for a 
Rectangular Demand Density 

The demand density, , for a general Rectangular 
distribution for MAP, p, is given by: 

 pg

 

b

ba
ab

a

pp

ppp
pp

pppg










for                  0

for       
1

for                  0

  (25) 

Using the probability density, , in place of  pg  ph  
in Equation (13) gives 

   

ab

b

ab

a

p

p ab

pp

pp
pp

pp
pp

du
pp

duduugpS
a

a











 

1

1
011

00  (26) 

The function may be rearranged to give p explicitly in 
terms of S: 

 Spppp abb      (27) 

Meanwhile, from Equation (16)  

   
 Sppp

pg
SpSm

ab

r




   (28) 

Substituting from Equation (27) into (28) gives the re-
sult that is the basis of the straight-line graph often used 
in economic text books: 

   SpppSm abbr  2    (29) 

Thus when a Rectangular distribution is used to repre- 
sent the MAP, then the demand curve is a downward 
sloping straight line (Equation (27)), while the marginal 
revenue curve is also a downward sloping straight line, 
with twice the gradient (Equation (29)). 

Since the optimal price occurs when vr , using 
Equation (28) and then Equation (26) to eliminate S, we 

have: 

cm 

    pppSpppSmc babrv    (30) 

So that the optimal price is 

  2* bv pcp      (31) 

Assuming that the retailer will expect v  and the 
lower limit of his mental model for the MAP to coincide, 
so that 

c

av pc   [4], then the optimal price is simply 

  2* ba ppp      (32) 

The same as the mean of the Rectangular demand den-
sity for MAP. The result coincides with Equation (10) of 
[4]. 

3. Relating the Demand Density to UK 
Post-Tax Household Income Percentiles 

This Section addresses the problem of relating demand 
densities to the willingness to pay as measured by UK 
post-tax household income. The income percentile will 
be shown to be equivalent to the cumulative probability 
of a household chosen at random having an income less 
than the specified amount. The relationship between this 
cumulative probability and an associated cumulative 
probability for MAP will be established. Mathematical 
reasoning then produces the necessary relationship be- 
tween demand density and probability density for the 
income of a cohort at a given percentile. Data on income 
may be available only cumulative form, in which case 
the demand densities need to be found by numerical dif- 
ferentiation, so that they will emerge as staircase func- 
tions. Since the method of matching the Rectangular de- 
mand density to the underlying demand density presented 
in Section 5 relies on the latter being continuous, it is 
necessary to fit a polynomial to portions of the staircase 
function, with a quadratic giving adequate accuracy.   

3.1. Household Post-Tax Income and Income 
Cohorts 

The data on income are often available only in cumula- 
tive form. Thus Figure 3 shows the cumulative probabil- 
ity for the post-tax income, x, of a UK couple with no 
children [5]. The data are presented in the format of the 
“Modified OECD” equivalence scale, in which an adult 
couple with no dependent children is taken as the 
benchmark with an equivalence scale of 1.0. This “equi- 
valised income” is intended to allow comparability be- 
tween all individuals within the nation.   

Let x be a household income level, and let  xF  be 
the cumulative probability of a household, chosen at 
random, having an income, X, up to x (£/y): 

   xFxX Pr .  
Associated with this income level, x, will be a figure,  
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Figure 3. Cumulative probability versus UK post-tax 
household income 2009. 
 
 , for the percentage of households having that income, 
x, or lower: 

    100Pr  xFxX    (33) 

Let that income be called the  -percentile income 
and let the  -percentile cohort be the collection of peo- 
ple whose household income is less than or equal to this 
income, x. Now choose an income level, y, less than or 
equal to x. The conditional probability that a household 
chosen at random has an income level, X, satisfying 

 given that the household is known to be a mem- 
ber of the 

yX 
 -percentile cohort follows from the basic 

tenets of probability theory: 

     
 xX

yXxXyX
xXyX





Pr

PrPr
Pr   (34) 

But since xy  , it follows that:   1Pr  yXxX . 
Hence, using the notation:    xXyXyF  Pr , 
Equation (34) becomes: 

   
 

 
 

 
100Pr

Pr


 yF

xF
yF

xX
yXyF 




    (35) 

Thus, for any two cohorts defined by income levels, 
and 2 , with associated cumulative percentages, 1x

1

x
1x   and  22 x  , 

 
  1

2

2

1








yF
yF

    (36) 

Hence by setting 1002  , any conditional distribu- 
tion,  1yF , may be calculated from the unconditional 
distribution,    100yFyF  , using Equation (36).   

3.2. Relating MAP to Income Cohorts 

Assume that the maximum amount that people will be 
prepared to pay for each good is proportional to their 
income. Thus the maximum any person is prepared to 
pay, his MAP, p, measured in £, will be proportional to 
his ability to pay, y , as measured by his post-tax house- 

hold income, in £/year: yp  , where   is a constant 
of proportionality. The highest MAP, the maximum that 
anyone in the  -percentile cohort will prepared to pay, 

 mp , will be dependent on the highest income in that 
cohort, viz.     xpm  , where  x  is the maxi- 
mum income earned by anyone in the cohort. Meanwhile, 
cohort members in any income bracket  will 
have MAPs in the range 

 nn yy ,1 
 nynpnn yp    ,11 . Thus 

the number of people with a MAP between 11   nn yp   
and nn yp   will be the same as the number with in- 
comes between 1n  and n . Therefore the following 
relation will hold, between the cumulative probability 
density for MAP, 

y y

 pH , and the cumulative probabil- 
ity of income, for the  -percentile cohort: 

        11   nnnn yFyFpHpH  for all   (37) 

Because both incomes and MAP may both fall to zero 
but not go below this value, i.e. , then: 000  py

        00 000 yFFHpH   for all   (38) 

It follows that Equation (37) may be applied succes-
sively, starting from 1n , to give 

    nn yFpH      (39) 

The cumulative probability densities,  npH , may 
now be used to estimate the probability density for MAP, 
 ph . (The paper will use the convention that the high- 

est MAP in the  th percentile cohort will be set at 10 
units of currency:   10mp  for each value of  . 
Hence  ph  will be defined on  for all 100  p
 .)  

We may develop also the relationship between the 
probability density for MAP,  ph , and the probability 
density for the income of the  -percentile cohort, given 
by     dyydFyf   . Equation (38) implies:  
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p




11

     (40) 

Since yp   and hence dydp  , we may change 
the variable of integration of the left hand side from p to 
y:  

   dyyfdyyh
n

n

n

n

y

y

y

y




11

    (41) 

Equating integrands shows that the probability density 
for MAP for people in the θ-percentile for income is re- 
lated linearly to the probability density for income in that 
percentile:   

     




yf

yhph   for  xy 0  (42) 

3.3. Price Takers 

To develop the MAP model further, assume that the price 
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emerge as a staircase function: of commodities that are needed and obtained by all will 
be determined by the attitudes and decisions of those 
who have household incomes up to a certain percentile, 
the  th percentile. Those with incomes above the  th 
percentile will then be price-takers for these goods. 
Clearly the valuation of some scarcer, desirable goods 
will require   to be set high, very high for luxury 
goods such as high-performance sports cars and large 
residences in central London; the latter, particularly, are 
generally accepted as being the preserve of the su- 
per-rich.  
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By the properties of a probability density: 

      1

1




nn

p

p

pHpHdpph
n

n

    (44) The percentage,  , of people determining the price of 
each commodity may vary according to commodity, and 
moreover, that percentage may not be known with any 
precision. To cope with this situation, results may be 
derived for a range of possible percentages,  , from 
51% to 99%, for example. See Table 1.   

So that combining Equation (43) with Equation (44) 
gives: 

        111

1
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p

pHpHppadpph
n

n

 (45) 
3.4. Fitting a Staircase Probability Density to the 

Probability Density,  h pn  , for MAP for 
People with Income Below the θth Percentile 

Hence the coefficient, , will be given by: 1na

   
1

1
1




 




nn

nn
n pp

pHpH
a


 for 1   (46) mn In the case where the data on income is available only in 

cumulative form, the demand density,  ph , needs to 
be found by numerical differentiation, and hence will  Applying the procedure to the data points marked in  
 
Table 1. UK post-tax household income 2009: Cumulative probability,  ,F y  , up to the  th percentile income (equiv-

alised, based on a couple with no children). 

Cumulative probability,  ,F y   
House-hold income,  

y (£ p.a.) θ = 51% θ = 59% θ = 67% θ = 78% θ = 85% θ = 93% θ = 96% θ = 99% θ = 100%

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

5200 0.0588 0.0508 0.0448 0.0385 0.0353 0.0323 0.0313 0.0303 0.0300 

7800 0.1176 0.1017 0.0896 0.0769 0.0706 0.0645 0.0625 0.0606 0.0600 

10,400 0.2353 0.2034 0.1791 0.1538 0.1412 0.1290 0.1250 0.1212 0.1200 

13,000 0.4118 0.3559 0.3134 0.2692 0.2471 0.2258 0.2188 0.2121 0.2100 

15,600 0.6078 0.5254 0.4627 0.3974 0.3647 0.3333 0.3229 0.3131 0.3100 

18,200 0.8235 0.7119 0.6269 0.5385 0.4941 0.4516 0.4375 0.4242 0.4200 

20,800 1.0000 0.8644 0.7612 0.6538 0.6000 0.5484 0.5313 0.5152 0.5100 

23,400  1.0000 0.8806 0.7564 0.6941 0.6344 0.6146 0.5960 0.5900 

26,000   1.0000 0.8590 0.7882 0.7204 0.6979 0.6768 0.6700 

28,600    0.9359 0.8588 0.7849 0.7604 0.7374 0.7300 

31,200    1.0000 0.9176 0.8387 0.8125 0.7879 0.7800 

36,400     1.0000 0.9140 0.8854 0.8586 0.8500 

46,800      1.0000 0.9688 0.9394 0.9300 

54,600       1.0000 0.9697 0.9600 

80,860        1.0000 0.9900 
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Figure 3, produces the staircase probability density for 
MAP shown in Figure 4. It is clear from this figure that 
the probability density,  ph , resulting from this pro- 
cedure is strictly unimodal. 

The correctness of the procedure may be checked by 
integrating  ph  from an initial condition of 00 p , 
utilizing the coefficients, n , that have been found from 
Equation (46) and then employing Equation (44):  
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(47) 
Figure 4 shows two piecewise continuous probability 

densities that have been matched over the central section 
of the distribution. They have been chosen to be quadrat- 
ics to allow ease of inversion, a convenient property used 
in the least-squares fitting of a Rectangular distribution. 
The process of fitting the quadratics will be discussed in 
the next section. 

3.5. Smoothing Sections of the Staircase  
Probability Density Using 2nd Order  
Polynomials 

The method of matching the Rectangular demand density 
to the underlying demand density (explained in Section 5 
to follow) relies on the latter being continuous. Hence it  
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Figure 4. Staircase probability density for UK post-tax 
household income 2009. Quadratics matched to the portions 
of the curve above and below the mode. 

is necessary to fit a polynomial to portions of the stair- 
case function, with a quadratic giving adequate accuracy. 
Let the 2nd order polynomial approximation to the stair- 
case probability density over the interval modeppp j   
take the form: 

     
   

11
2
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2
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2
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2
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2
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



 

(48) 
where   10  jph , 21 A , jpB 211 2   and 

. The optimal values of 1
2

2101 jj ppC     and 

2  are taken to minimize the integral squared error: 

    
mode

2

1

p

p
a

j

dpphph      (49) 

Then let the 2nd order polynomial approximation to the 
staircase probability density over the interval 

kppp mode  take the form: 

     
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(50) 
where   mode10 pha , 22 A ,  

mode212 2 pB    and . 
The optimal values of 1

2
mode2mode1 pp  02C  

  and 2  are taken to mini- 
mize the integral squared error: 

    
kp

p
a dpphph

mode

2

2            (51) 

The quadratics are, of course, convenient to invert. 
Rearranging Equation (51) gives: 

  0111
2

1  phCpBpA a        (52) 

For the data shown in Figure 4, the positive root of the 
discriminant is needed, so that the general solution for 
the MAP, p, between  and  is: jp modep

  
1

111
2

11

2

4

A
phCABB

p a 
    modeppp j   

(53) 
Similarly, the general solution is for the MAP, p, be-

tween  and  is: modep kp

  
2

222
2
22

2

4

A
phCABB

p a 
  kppp mode  

(54) 
since the negative root of the discriminant is needed in 
this case. 
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4. The Properties of the Double Power  
Demand Density  

This Section will derive the properties of the Double 
Power demand density for the three exhaustive and ex- 
clusive cases, namely 1) when the mode is strictly inte- 
rior to the interval between zero, 2) when the mode is 
located on the lower boundary of the interval, viz. 0, and 
3) when the mode is located on the upper boundary, viz. 

m . The properties sought are the central measures 
characterizing any probability distribution, namely the 
mode, the median and the mean, and then the optimal 
price, which becomes a property of a demand density. 
Furthermore, the parameters, a  and b , that define a 
Rectangular demand density matched to the underlying 
demand density become additional characteristics of that 
underlying probability density. These lead to a Rectan- 
gular optimal price that is simply the arithmetic average, 

p

p p

  2bap p , which becomes a further characteristic of 
the underlying demand density.   

4.1. When the Mode Is Strictly Interior 

For the general Double Power demand density defined 
by Equation (17), a strictly interior mode will occur 
when b > 0 and c > 0. Moreover, continuity implies that 

. Meanwhile it is a property of any prob- 
ability distribution that its integral over all possible val- 
ues will be unity. Hence:   
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  (55) 

The solution of Equation (55) under the condition of 
continuity gives a and b in terms of the powers, c and d 
as: 
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The mode, mode , occurs at the maximum value of 
, which will occur when 
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   (58) 

Substituting from Equations (56) and (57) gives 
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so that, on cancelling the term, 
 
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, we are left 
with: 
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so that the normalised mode, mppmode , emerges as: 
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The mean is given by: 
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in which Equations (56) and (57) have been used to 
eliminate a and b. Thus the normalised mean, mp p , 
is given by:  
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The median occurs when: 
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so that, after substituting for a and b, the normalised me- 
dian, mmed pp , is given by: 
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which Equation will normally require an iterative, nu- 
merical solution. 

The optimal price, , will be the solution to Equa-
tion (6) of [4]: 
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(66) 
Substituting for a and b from Equations (56) and (57) 

and re-arranging gives the equation for the normalised 
optimal price, mpp * , as:  
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The condition for the least-squares fitting of a Rec- 
tangular demand density with base coordinates, ( ) 
and ( ), is derived in Section 5 as Equation (100). 
This leads, in the case when the Double Power is the 
underlying demand density, to:   
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Eliminating a and b and re-arranging gives the final 
expression 
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  (69) 

Noting that b  is the function of a  given in Equa- 
tion (119) of Section 5.3, it is now possible to solve 
Equation (69) by iterating on 

p p

mpa , the normalised 
value of the lowest MAP in the Rectangular distribution.  

p

4.2. When the Mode Occurs at p = 0  

When c = 0, Equation (17) becomes 
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where, from Equations (56) and (57): 
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The normalised mean, mp p , follows from putting 
 into Equation (63), to give: 0c
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The normalised median, mmed pp , is found by putting 
 into Equation (65), to give: 0c

2

111
1


















d

m

med

m

med

p
p

dp
p

d
d

  (74) 

The condition for the least-squares fitting of a Rec- 
tangular probability density is given by Equation (102) 
from Section 5, which yields, in the case where 0ap ,  

        
bb

a

p

b

p

p
b dpphphdpphph

02

1   (75) 

Thus 

    

1

00

1

2

1






 
d
b

p
dd

b

p
d
b

d

p
d

db

dpppbdpbpabpa
bb

  (76) 

Combining Equations (72) and (76) provides an ex- 
plicit solution for mb pp , the normalised value of the 
highest MAP in the Rectangular distribution.:   

1

1

2

1 








d

m

b

p
p

     (77) 

Clearly 1 2b mp p   as  and 0d 1b mp p   
as d , which will result in the mean value of the 
Rectangular distribution becoming 0.25 and 0.5 respec-
tively.  

The optimal value resulting from the Double Power 
probability distribution with c = 0 may be found from 
substituting c = 0, and also  into Equation (69):  0vc

    0
*

12
*

2
1






















d
p
pd

p
pd

m

d

m

  (78) 

Clearly   0* 1 d
mpp  as  for the condi- 

tion that the optimal price is strictly less than the maxi- 
mum feasible price, 

d

mpp * , and this means, from 
Equation (78), that 5.0* mpp  as d . Limit- 
ing behavior can also be demonstrated by numerical so- 
lution as , when 0d 2846.0mp*p . Numerical 
calculation shows that mpp*  rises from 0.2847 to 
0.4995 as d increases from 0.001 to 1000.    

4.3. When the Mode Occurs at p = pm 

When b = 0, the Double Power probability density of 
Equation (17) reduces to: 

 
m

m
c

pp
ppapph




for             0

0for         
   (79) 

The requirement for a probability distribution means that 

  1
1

1

00







 c
 apdpapdpph

c
m

p
c

m

  (80) 

So that a is defined as soon as c and  are defined:  mp

1

1



 c

mp
ca                 (81) 

The mode for this distribution will be . The mean 
value will be: 

mp
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  m

p
c

p p
c
cdpapdppph

m

2

1

0

1

0 


  


   (82) 

where the last step follows the substitution for a from 
Equation (81). Hence the normalised mean, mp p , is 
given by:  

2

1





c
c

pm

p     (83) 

The median, , follows from: medp

  1

00 12

1 


  c

med

p
c

p

p
c

adpapdpph
medmed

 (84) 

Substituting for a and re-arranging gives the normal-
ised median, mmed pp , as: 

1

1

2

1 








c

m

med

p
p

    (85) 

From Equation (6) of [4] the optimum price is: 

     

  c
v

ccc
m

c
v

c
p

p

c
v

p

p

apcappp
c

a

apcapdpapphcpdpph
mm












111

1

1

0
(86) 

Substituting for a from Equation (81) and re-arranging 
gives the normalised optimal price, mpp* , as:  

    01
*

1
*

2

1





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







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




 c

mm

v

c

m p
pc

p
c

p
pc   (87) 

The condition for the least-squares fitting of a Rec- 
tangular probability density is given by Equation (100) of 
Section 5. With the additional condition that mb pp  , 
this yields   

    

   1 1

1

2

1

m

a

p

a
p

c c c
m a a m a

h p h p dp

a p p ap p p
c

 

 

   



  (88) 

Substituting for a from Equation (81) gives: 

   
11

111
2

1

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




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
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c

m

a
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m

a
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m

a

p
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p
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p
p

 (89) 

Which gives the final expression for ma pp , the nor- 
malised lowest price in the Rectangular demand density 
as: 

  0
2

1
1

1


















 c

m

a

c

m

a

p
pc

p
pc   (90) 

For which a solution may be found by iteration. 

5. Optimal Matching of a Rectangular  
Demand Density to a General Unimodal 
Distribution 

This section derives a method for matching a Rectangu- 
lar demand density to a general unimodal demand distri- 
bution, based on minimizing the squared error between 
the two curves. The first subsection uses calculus, while 
the second shows the results in geometrical terms. Both 
the analytical first part and the geometrical second part 
are needed in order to devise a robust numerical method 
for the fitting procedure, as described in Section 5.3.   

5.1. Optimal Matching Procedure 

Let the general unimodal demand density be  ph , de- 
fined on mpp 0 , where m  is the maximum pos- 
sible price. The integral of the squared error between the 
general distribution, 

p

 ph , and the Rectangular demand 
density with vertical legs at  and , will be:   ap bp

  

     

      

 
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a b

a b
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p p

p p

p

p

p

I h p dp

c h p dp h p dp

h p dp c ch p h p dp

h p dp



 

   

   





 

 



 

(91) 
where: 

ab pp
c




1
    (92) 

Hence 

 2
1

aba ppdp
dc


    (93) 

And  

 2
1

abb ppdp
dc


    (94) 

The integral of Equation (91) will be minimized when 

ba p
I

p
I








0     (95) 

Now the general integral: 

   dppbaqbaQ
b

a
 ,,,    (96) 

May be differentiated to give the following partial dif- 
ferentials:  
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   (98) 

Hence 
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 (99) 

Noting Equation (95), we may write the first maxi-
mizing condition as: 

    
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Moreover 

   

   

 
 

 
 


























b

a

b

a

p

pabab

b

ab

b

p

p bb

bb
b

dpph
pppp

ph
pp

phdp
dp
dcph

dp
dcc

phpchc
p
I

22

2

22

221

22

20

(101) 

Applying condition (95) gives the second maximizing 
condition as 

    
2

1


b

a

p

p
b dpphph    (102) 

Comparing the integrands in Equations (100) and 
(102), it is clear that, at the minimum integral squared 
error,  

   aabb phph      (103) 

Since 
0

 as a consequence of h(p) being 
a probability density, it follows that the horizontal, 
straight line connecting  with 

  1
mp

dpph

  aa php ,   bb php ,  
will cut the locus of  so as to divide the area under 
the curve into two, with equal areas above and below the 
straight line. See Figure 5 and Section 5.2 below.   

 ph

In the general case, Equation (103) and either Equation  
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Figure 5. Fitting a Rectangular demand density, g(p), to a 
general demand density, h(p), with an interior mode. 
 
(100) or Equation (102) need to be solved simultaneously 
for a  and b . One numerical procedure consists of 
iterating on the two values, , , so as to satisfy 

p p
ap bp

         0
2

1
 ab

p

p
a phphdpphph

b

a

   (104) 

where   may take any value;   may be recognized 
as a Lagrange multiplier. 

When the best fit occurs with either  or else 

mb

0ap
pp  , one of the minimizing variables, ba , will 

drop out of the optimization process, and the horizontal 
line is lost. In the case where b  is fixed at the top end 
of the interval, viz. mb

pp ,

p
pp  , then only Equation (100) 

needs to be solved for . If a  is fixed at the lower 
end of the interval: 

ap
0

p
ap

bp
, then only Equation (102) 

must be solved for .  

5.2. Geometrical Considerations 

As will be seen, geometrical considerations allow a more 
robust numerical algorithm to be developed. Referring to 
Figure 5, since the area under the probability distribution, 
 ph , defined on ( ), must equal unity, it follows 

that   
mp,0

1 GFECA   (105) 

The area under the Rectangular probability distribution, 
 pg , defined on ( ), must equal unity also. Hence: ba pp ,

1 FDCB    (106) 

Eliminating the area, FC  , gives: 

GEADB     (107) 

which means that the integrated error will be zero. Equa- 
tion (102) implies that 

2

1
CA                (108) 

Thus combining Equation (108) with Equation (105): 

2

1
 GFE           (109) 
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Positive areas, E or G or both, will imply 5.0F . 
It has been shown in Section 5.1 that the lower line 

bounding the area, C, must be horizontal (    ab phph  , 
see Equation (103)). Hence  

  aba ppphF      (110) 

A positive area, E, implies 

  0ph  for some   (111) appp 0:

While a positive area, G, implies 

  0ph  for some   (112) mb pppp :

Either or both of conditions (111) or (112) will entail 

  
2

1
 aba ppphF    (113) 

So that 

   ab
a pp

ph



2

1
    (114) 

Equation (114) adds an additional constraint to the op- 
timization Equation (104) for the important case where 
the probability density has positive values throughout the 
range, , that is to say when  mpp 0

  0ph  for all   (115) mppp 0:

The limiting case, where inequality (114) becomes an 
equality, viz.: 

   ab
a pp

ph



2

1
    (116) 

Occurs when the area, F, and the sum of areas, 
, each becomes 0.5: DCB 

2

1
 DCBF     (117) 

Equation (117) applies when , when the 
probability distribution being matched would need to 
have the same base as the Rectangular distribution. It 
might, indeed, be a Rectangular distribution, implying a 
perfect match, but, conceivably, it could be some other 
distribution, albeit a somewhat unusual one, such as a 
rectangle of height 

0 GE

 ab pp 21  topped by a triangle 
of height  ab pp 1 .  

5.3. Numerical Method for Fitting a Rectangular 
Demand Density to a General Unimodal 
Distribution  

Successively better estimates may be made of the two 
prices, a  and b , so as to satisfy Equation (104) 
more exactly, subject to the constraint of Equation (115), 
but the process is not always well conditioned. An alter- 
native is given in this section. 

p p

Knowledge of the unimodal probability density func- 
tion,  ph , for MAP, p, allows us to invert the func- 

tion (e.g. via a numerical table): 

 
  mmode2

mode1

for        

0for        

pppk
ppkp






  (118) 

Using Equation (103), we may write: 

     aabb phkkkp 222      (119) 

From Equation (109): 

     
2

1

0

  dpphppdpph
m

b

a p

p
aba

p

   (120) 

Equations (103), (119) and (120) now form an implicit 
equation set in the single unknown, .  a

Alternatively, it follows from Figure 5 that  
p

    FCAdpphdpph
b

a

p

p

p

p

 
mode

mode

   (121) 

Equation (121) may be reduced using Equations (103) 
and (110) to: 

     
2

1

mode

mode

  aba

p

p

p

p

ppdpphdpph
b

a

   (122) 

which is an alternative expression to Equation (120). 
Making use of the intermediate transformation  

  aa pp lnexp     (123) 

we may choose to iterate on  rather than on  
when the mode is close to zero, and . 

 apln ap
0ap

6. The Properties of the Kinked Demand 
Curve 

The kinked demand curve [6], [7], may be seen as an 
asymmetric combination of the assumptions made by 
Bertrand [8] and Cournot [9] about the behavior of an 
oligopoly. The construct has caused controversy amongst 
those economists who considered the rapid adjustment of 
prices a fundamental economic tenet [10].  The present 
authors make no case for or against the kinked demand 
curve, but include it as a method that has been used to 
represent demand under oligopoly.   

6.1. The Equivalence of the Kinked Demand 
Curve and the Kinked Demand Density 

Referring to Figure 6 for the notation, assume the 
Kinked demand density,  ph , is given by  

 









pp
ppprk
pppk

ppph

k

k








for                  0

for                 

for                  

for                  0

   (124) 

Applying Equation (13) gives 
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Figure 6. Kinked demand density defining k, r, pα , pk and 
pβ. 
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 (125) 
Moreover,   0pS , which implies from the second 

part of Equation (125) that the following relationships 
hold: 

   prppr
k

k 


1

1
   (126) 

And 

    rkppkpp kk   1   (127) 

Hence Equation (125) may be rearranged to give p ex-
plicitly in terms of S: 

     

      11for         
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ppkpSpS
rk

pp

k

k





 

(128) 

Equation (128) is the equation of the kinked demand 
curve, as shown in Figure 7, which includes the marginal 
revenue calculated from Equation (16). It may be noted 
that Figure 7 gives the demand curve for the target 
population, defined by those whose MAP lies in the 
range: .  ppp 

6.2. The Optimal Price 

For a constant population, with each buyer purchasing 
one item, the optimal price implies maximization of the 
profit per person,  , for which a necessary, but not suf- 
ficient, condition is that 0dpd . Using Equation (5) 
of [4], but now with  replacing  as the  p mp
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Figure 7. Demand curve when: r = 2, pα = 6, pβ = 9. 
 
maximum price that will achieve a sale, gives 
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The assumption is made that the rational retailer will 
expect v  and the lower limit of his mental model for 
MAP to coincide: 

c
pcv  , as discussed in Section 4 of 

[4]. Equation (129) will be valid for prices, p, above and 
below the kink price, k . For the case where p kpp  , 
Equation (129) becomes, after putting : pcv 

 

  prpprpk

ppkrkdukdu
dp
d

k

p

p

p

p k

k

21 

 






  p kp  (130) 

Applying the necessary requirement for optimality 
namely that 0dpd , the optimal price will be 

 
2

1  rpprp
p k 
        (131) kpp 

Moreover, differentiating Equation (130) gives 
0222 dpd  , confirming a maximal point. We 

may constrain the optimal price to be equal to the kink 
price, so that there is a incentive for stable trading at this 
price, in which case:  

r
rpp

pk 




11
     (132) 

where the extra subscript “1” has been added because it 
is necessary to consider, in addition, how dpd  
changes beyond the kink point. For higher prices the fol- 
lowing equation holds for the rate of change of profit per 
person with price: 
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 

 ppprk

pprkrkdu
dp
d

p

p

2

 






   (133) kpp 

Setting dpd  to zero, this implies an optimum at a 
different price, which is a second candidate for the kink 
price: 

22
 pp

pk


     (134) 

For the first kink price, 1k , to give rise to stable 
trading, it needs to preserve its optimality over prices 
above the kink price: k . This may be examined by 
substituting  into the expression for the 
profit derivative when , Equation (133): 

p

kp

pp 
p
p 

pp k 1

 pppprk
dp
d

pd
d

k 


22 1


  (135) 

Substituting for the first kink price, , from Equa-
tion (132) gives, after re-arrangement: 

1kp

     prppr
r

rk
pd

d






121

1  
 (136) 

Since  , it is clear that, when  pp  1r , the profit 
per person, , will fall if the retail price is set above 1k : p

0pdd  at all positive values of . Thus it is 
clear that, provided that 

p
1r , entailing an upward step 

in probability density and hence a concave kinked de-
mand curve, the profit will reach an overall maximum at 
a kink price of . This will enable stable trading at 
that value.  

1kp

Such stability is will not occur at a kink price of 1k  
if 

p
1r , implying a convex kinked demand curve. The 

profit per person will now tend to rise, 0pdd , as 
the price is moved just above 1k . The overall optimal 
price will now be that which pertains in the region above 
the kink, and therefore given by Equation (134): 

p

111opt 2 kr
p

pp
p 


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

    (137) 

To examine the validity of the second candidate for the 
kink price, 2k , we substitute p ppp k  2  and 

 into the expression for the profit derivative 
when , Equation (130): 

2kk pp 
p  kp

 
  pprrppk
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dp
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  (138) 

Substituting for  from Equation (134) gives: 2kp

 
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p
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 (139) 

Hence, if the retail price is set below 2k , viz. p
0p , then the profit per person is guaranteed to rise, 

0pdd , if 1r  and the kinked demand curve is 
convex. For 0p  and 1r , corresponding to a con- 
cave kinked demand curve, 0pdd  when p   

, indicating a local maximum. When 0 1r  a global 
maximum is indicated, as has been confirmed by nu-
merical calculation. 

Thus for a concave kinked demand curve, where 1r , 
it is possible for the same values of  ,   and r to 
have two different values for the kink price,  and 

, given by Equations (132) and (134).  

p p
1kp

2k
Consider the case of a convex kinked demand curve, 

viz. 

p

1r , when the kink price is set at 2k . The price 
giving the overall maximum profit per person may be 
found by substituting for  from Equation (134) into 
Equation (131):  

p

2kp

   
212opt 4

13
kr

p
prpr

p 





   (140) 

It may be seen from Equations (137) and (140) that 
when 1r  and the kinked demand curve is convex, 
neither setting the kink price at 1k  nor setting it at 

2k  will cause the kink price and the optimal price to 
coincide. Hence there will be no incentive for a retailer to 
continue trading at the kink price when the kinked de- 
mand curve is convex. This suggests that the construct of 
a convex kinked demand curve, as suggested as a variant 
by Sweezy [7] in his Figure 2, does not represent a situa- 
tion of stable trading. Hence convex kinked demand 
curves will not be considered further in this paper.  

p
p

6.3. Central Measures of the Concave Kinked 
Demand Curve 

As a preliminary, substitute  into Equation 
(126) and use Equation (132) to give 

1kk pp 

  ppr
rkk





2

1
1    (141) 

and 2kk pp   into Equation (126), now using Equation 
(134) to give 

   ppr
kk




1

2
2    (142) 

The mean value of the Kinked demand distribution 
may be calculated from: 

 
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When 1kk pp   and 1kk  , substituting into Equa- 
tion (143) from Equations (132) and (141) gives, after 
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re-arrangement: 

   
 14
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
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r
prpr

p
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When 2kk  and 2 , substituting into Equa- 
tion (143) from Equations (132) and (141) gives 

pp  kk 
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(145) 
which reduces to the same form as Equation (143): the 
same mean value pertains whether the kink price is 1k  
or 2k . Moreover, it follows from Equations (132) and 
(134) that the mean price is the average of the two possi- 
ble kink prices:  

p
p

2
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p
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Now consider the integral :  
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 (147) 

Since the median, med , is defined by 

0
, it is clear that, when the kink price is 

set at , the median coincides with it:  

p
  5.0

medp
dpph
1kp

11 kmed pp      (148) 

When the kink price is set at , the median, , 
will be defined by: 

2kp 2medp
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Making the necessary substitutions from Equations 
(134) and (142) gives, after re-arrangement, the median 
price when the kink price is .  2kp

   
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prpr
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The mode will occur between  or  and . 1kp 2kp p

6.4. Contour Plot for Kinked Demand Curves 

The ratio, 1kp p  may be found by dividing Equation 
(143) by Equation (132) 
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which may be recast into the form: 
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to enable a contour plot to be drawn with the price ra-
tio,  pp , plotted against the post-kink slope multi-
plier, r, on the horizontal axis, with the ratio of the mean 
price to the optimal, kinked price, 1kp p , as parameter. 
See Figure 8.  

A similar set of curves are plotted in Figure 9 for 

2kk pp  , based on the analogous equation: 
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It is clear from these two figures that the mean price 
and the optimal (kink) price are similar, kp p , for a  
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Figure 8. Kink price = pk1: contour plot with the ratio of 
mean price to the optimal price, μp/pk1, as parameter.  
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Figure 9. Kink price = pk2: contour plot with the ratio of 
mean price to the optimal price, μp/pk2, as parameter. 
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wide range of kinked-curve parameters. 
By modifying the approach used in Section 5, it can be 

shown that the best-fit Rectangular demand density 
shares the same base as the Kinked demand density, so 
that  and . ppa  ppb 

7. Conclusions 

The demand density curve has been shown to be equiva- 
lent to the demand curve conventionally used by econo- 
mists. It has been shown that the demand density curve 
can offer a sharper picture of consumer demand than the 
conventional demand curve. The straight-line demand 
curve often used by economists as an exemplar has been 
shown to be equivalent to a Rectangular demand density, 
the simplest model of demand that may be useful to a 
retailer.   

Derivations have been made of the properties of four 
demand densities of potential importance to retail price 
investigation, starting with the Household Income de- 
mand density, based on the assumption that a person’s 
MAP for a retail item will be proportional to his post-tax 
household income. The notion has been introduced that 
prices may be set by the retailer’s interaction with con- 
sumers earning incomes up a certain percentile, with 
those with incomes above that level being price takers. 
Mathematics has been presented relating the demand 
density to the probability density for income up to a 
given percentile. The process for translating cumulative 
probabilities for income into demand densities has also 
been explained, and a technique has been given for 
smoothing the results to facilitate later, optimal matching 
by a Rectangular demand density.  

The Double Power demand density allows the mode to 
be located anywhere within a price interval, including at 
the boundaries, by suitable choice of its four coefficients. 
Analytical derivations have been given for the mode, the 
mean, the median and the optimal price for the Double 
Power demand density in each of the three possible loca- 
tions of the mode: at the lower boundary, strictly interior 
to the interval and at the upper boundary. In addition, the 
mean of the matched Rectangular demand density, equal 
to the optimal price, has been derived for each of the 
three instances.   

The process of matching a Rectangular demand den- 
sity to a general demand density has been explained, 
based on the minimization of the integral of the squared 
error between the Rectangular and the underlying de- 
mand density. The mathematical results have been inter- 
preted geometrically and a numerical method has been 
devised that allows the numerical matching procedure to 
proceed rapidly and efficiently. The results have been 
applied to all the Household Income and Double Power 
demand densities considered.   

The Kinked demand density has been derived from the 

kinked demand curve sometimes used to conceptualize 
the effects of oligopoly. The translation into the domain 
of demand density has facilitated the analysis of the 
convex kinked demand curve, showing that it will not 
lead to stable trading at the kink price because the opti- 
mal price will always lie elsewhere. By contrast, it has 
been shown that stable trading at the kink price can occur 
with a kinked demand curve that is concave. For the 
same overall upper and overall lower price defining the 
Kinked demand density and the same ratio of slopes, it is 
possible for either of two, similar kink prices to be opti- 
mal and thus promote stable trading at the kink price. 
The mean price and the median price for a Kinked de- 
mand density have been derived analytically. Moreover, 
it has been shown that the optimal price and the mean 
price will be similar for a wide range of parameters when 
the kinked demand curve is concave.   
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