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LAPTH, CNRS, UMR 5108, Université de Savoie
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Abstract

The one-dimensional problem of N particles with contact interaction in the presence of a
tunable transmitting and reflecting impurity is investigated along the lines of the coordinate
Bethe ansatz. As a result, the system is shown to be exactly solvable by determining the
eigenfunctions and the energy spectrum. The latter is given by the solutions of the Bethe
ansatz equations which we establish for different boundary conditions in the presence of
the impurity. These impurity Bethe equations contain as special cases well-known Bethe
equations for systems on the half-line. We briefly study them on their own through the
toy-examples of one and two particles. It turns out that the impurity can be tuned to lift
degeneracies in the energies and can create bound states when it is sufficiently attractive.
The example of an impurity sitting at the center of a box and breaking parity invariance
shows that such an impurity can be used to confine asymmetrically a stationary state. This
could have interesting applications in condensed matter physics.
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Introduction

Forty years ago, E. Lieb and W. Liniger published their seminal paper presenting exact results

for the one-dimensional repulsive Bose gas [1], extending the previous investigation for hard-core

bosons [2]. This was completed in [3] for the attractive interaction. It is remarkable that this purely

theoretical work finds a huge amount of applications nowadays with the advent of optical lattices.

The latter allow to produce quasi one-dimensional environment where the quantum behaviour

of ultracold atoms can be probed experimentally [4]. The main ingredient used in [1] is the

celebrated Bethe ansatz [5] for the wavefunction. In essence, this ansatz assumes an expansion of

the wavefunction on plane waves and the coefficients are determined so as to take the interactions

into account. Then, the energy spectrum is given by the solution of the Bethe ansatz equations.

Soon after, C. N. Yang generalized the results for particles of any statistics by considering a

wavefunction in any irreducible representation of the permutation group [6]. In particular, his

investigation relied on the now famous Yang-Baxter equation [7]. Finally, M. Gaudin studied the

analog of the system of [1] when the bosons are enclosed in a box [8]. In particular, he introduced

a slightly more general Hamiltonian than the contact interaction Hamiltonian of [1] depending

on two different coupling constants. The latter was recovered recently in [9], for particles with

arbitrary spin, as a limit of a long range interacting Hamiltonian of Sutherland type [10] for which

integrability was proved. It was also shown that the symmetry of this system is the reflection

algebra symmetry [11, 12]. This motivates the interpretation of the Hamiltonian considered by

Gaudin as describing particles on the half-line, or equivalently in the presence of a purely reflecting

impurity.

Let us stress that the many-body Hamiltonian of [1] is the restriction to the N -particle Fock

space of the well-known nonlinear Schrödinger (NLS) Hamiltonian (see e.g. [13] for a review). The

NLS model is one of most studied examples of integrable field theory for which a huge amount

of exact results is known. In the same way, the Hamiltonian of [8] is the counterpart of the

NLS model on the half-line whose symmetry is given by the reflection algebra [14], showing the

consistency of the approach of [9]. In [14], the concept of boundary algebra [15] was crucial to

establish all the properties of NLS on the half-line as an integrable system.

More recently, the concept of Reflection-Transmission (RT) algebras was introduced to handle

impurities in integrable systems [16] and successfully applied to the NLS model with impurity to

establish the integrability, the symmetry and the correlations functions of the system [17]-[19].

Consequently, it seemed natural to us to consider the many-body analog of NLS with impurity

and to investigate it along the lines of [1] and [8]. Just like the system without impurity, it may

be of particular interest for current experiments in condensed matter physics.

After presenting the problem in Section 1 together with some notations to describe it, we

show in Section 2 that it is exactly solvable thanks to an appropriate Bethe ansatz for the N -

particle wavefunction. In Section 3, the full use of the Bethe ansatz combined with the physical

requirement of a finite size system allows to establish the Bethe ansatz equations in the presence of

an impurity. This, in turn, is well-known to determine the energy spectrum. Section 4 is devoted

to specific examples. First, we show that our setup reproduces the results of [8] as a special case.
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Then, we use the one and two-particle cases as toy examples to illustrate the effects of the impurity

on the energy levels and on the parity symmetry. Finally, in Section 5, we present our conclusions

for this work and give an outlook of future investigations.

1 The nature of the problem

1.1 Combining two systems

In this paper, we study a one-dimensional system of N particles interacting through a repulsive δ

potential in the presence of an impurity sitting at the origin and described by a point-like external

potential. This problem is the combination of the interacting system studied in [1, 6] and the free

problem in the presence of a point-like potential, see e.g. [20] and [21].

Each of these problems has a well-defined translation in terms of a partial differential equation

problem together with boundary conditions for the wavefunction. For example, let us denote by

ϕ(x1, . . . , xN) the N -particle wavefunction for a gas with a repulsive δ interaction of coupling

constant g > 0. Then, following [1], ϕ is solution of the free problem for the energy E

−
N∑

i=1

∂2
xi

ϕ(x1, . . . , xN) = E ϕ(x1, . . . , xN) , (1.1)

with the additional requirement of continuity and jump in the derivative at each hyperplane

xj = xk, j 6= k

ϕ(x1, . . . , xN)| xj=x+
k

= ϕ(x1, . . . , xN)| xj=x−k
(1.2)

(∂xj
− ∂xk

) ϕ(x1, . . . , xN)| xj=x+
k

= [(∂xj
− ∂xk

) + 2g]ϕ(x1, . . . , xN)| xj=x−k
(1.3)

Now, in [20], the second problem is presented for the one-particle wavefunction ϕ(x), x 6= 0 using

a unitary matrix U ∈ U(2) characterizing the impurity1:

lim
x→0+

((U − I)Φ(x) + i(U + I)Φ′(x)) = 0 , (1.4)

where

Φ(x) =

(
ϕ(x)

ϕ(−x)

)
, Φ′(x) =

(
ϕ′(x)

−ϕ′(−x)

)
, x > 0 , (1.5)

ϕ′(x) = d/dx ϕ(x) and I is the 2× 2 unit matrix. The matrix U can be parametrized as follows

U = eiξ

(
µ ν
−ν∗ µ∗

)
, ξ ∈ [0, π), µ, ν ∈ C such that |µ|2 + |ν|2 = 1 . (1.6)

The symbol ∗ stands for complex conjugation. Mathematically, this problem corresponds to all

the possible self-adjoint extensions of the free Hamiltonian when the point x = 0 is removed from

the line.

As announced in the introduction, the goal of this paper is to present and solve the quantum

N -body problem combining these two models. Physically speaking, we address the problem of a

one-dimensional gas of interacting particles in the presence of an impurity.

1in [20], there is a length scale L0 which is shown to be an irrelevant parameter. We set it to 1 in this paper.
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1.2 Notations and definitions

From the mathematical point of view, the lesson we learn from [1, 6] is the crucial role played by

the permutation group SN of N ! elements. It consists of N generators: the identity Id and N − 1

elements T1, . . . , TN−1 satisfying

Tj Tj = Id , TjT` = T`Tj for |j − `| > 1 , (1.7)

TjTj+1Tj = Tj+1TjTj+1 . (1.8)

In particular, the last relation gives rise to the famous Yang-Baxter equation [6, 7]. For conve-

nience, we denote a general transposition of SN by Tij, i < j, given by

Tij = Tj−1 . . . Ti+1TiTi+1 . . . Tj−1 (1.9)

Then, in [8], the role of the so-called reflection group was emphasized and in [15], the Weyl

group WN associated to the Lie algebra BN replaced the permutation group in the construction

of a Fock space for systems on the half-line. Let us note that the same group proved to be

fundamental in the constructions of [22] corresponding to an interacting gas on the half-line where

the usual δ interaction was replaced by another contact interaction, the so-called δ′ interaction.

WN contains 2NN ! elements generated by Id, T1, . . . , TN−1 and R1 satisfying (1.7), (1.8) and

R1 R1 = Id , (1.10)

R1T1R1T1 = T1R1T1R1 , (1.11)

R1Tj = TjR1 for j > 1 . (1.12)

Let us define also Rj, j = 2, . . . , N as

Rj = Tj−1 . . . T1R1T1 . . . Tj−1 (1.13)

Remarkably enough, the same group appears in the construction of Fock space representations

for systems with an impurity in the context of RT algebras [16]. One may wonder how the same

structure can account for systems on the half-line (i.e. with purely reflecting impurity) and also for

systems on the whole line with a reflecting and transmitting impurity. The essential point is the

choice of representation. Typically, for a system on the half-line involving particles with n internal

degrees of freedom, n-dimensional representations of WN are used. It was realized in [17, 19]

that the same problem on the whole line with a reflecting and transmitting impurity requires

2n-dimensional (at least) representations of WN . An intuitive (maybe naive) interpretation of

this fact is that the impurity naturally defines two half-lines which are physically inequivalent,

especially if parity invariance is broken.

2 Exact solvability of the model

For pedagogical reasons, we present first the one and two-particle cases in detail before turning to

the study of the N -particle problem in its full generality. We refer the experienced reader directly

to section 2.3.
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2.1 One particle

For x ∈ R \ {0}, the one-particle wavefunction is taken as follows

ϕ(x) =

{
ϕ+(x) x > 0

ϕ−(x) x < 0
(2.1)

We define for x > 0

Φ(x) =

(
ϕ+(x)

ϕ−(−x)

)
(2.2)

and following the previous paragraph, the boundary conditions at x = 0, which we will call in this

paper the impurity conditions, read

(U − I)Φ(x) = −i(U + I)Φ′(x) for x → 0+ , (2.3)

the matrix U being given in (1.6).

Let us expand Φ on plane waves as follows

Φ(x) = exp(ikx)AId + exp(−ikx)AR (2.4)

where AP =

(
A+

P

A−
P

)
, P = Id, R. These coefficients are constrained by condition (2.3). This is

essentially the celebrated Bethe ansatz for one particle and it is solution of equation (1.1) with

E = k2. Plugging back into (2.3), one gets,

AR = Z(−k)AId and AId = Z(k)AR (2.5)

where

Z(k) = −[U − I− k(U + I)]−1 [U − I+ k(U + I)] (2.6)

The consistency of the ansatz is ensured by Z(k)Z(−k) = I which is readily seen to hold. The

property Z†(k) = Z(−k), where † stands for Hermitian conjugation, then leads to the physical

unitarity Z†(k)Z(k) = I.
For completeness, let us make the connection with the other usual setting of the problem. For

ν 6= 0, (2.3) is equivalent to
(

ϕ(x)
ϕ′(x)

)
= α

(
a b
c d

)(
ϕ(−x)
ϕ′(−x)

)
, for x → 0+ , (2.7)

where

{a, ..., d ∈ R, α ∈ C : ad− bc = 1, αα = 1} . (2.8)

This is the SU(2) parametrization. Writing µ = µR + iµI , ν = νR + iνI with µR, µI , νR, νI∈ R,

the relation between the two parametrizations is

α =
iν

|ν| , a =
sin ξ − µI

|ν| , b = −cos ξ + µR

|ν| , c =
cos ξ − µR

|ν| , d =
sin ξ + µI

|ν| . (2.9)
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From this one finds

Z(k) =

(
R+(k) T+(k)

T−(−k) R−(−k)

)
(2.10)

where

R+(k) =
bk2 + i(a− d)k + c

bk2 + i(a + d)k − c
, T+(k) =

2iαk

bk2 + i(a + d)k − c
, (2.11)

R−(k) =
bk2 + i(a− d)k + c

bk2 − i(a + d)k − c
, T−(k) =

−2iαk

bk2 − i(a + d)k − c
, (2.12)

are usually referred to as reflection and transmission coefficients of the impurity. Of great impor-

tance is the well-known associated basis of orthonormal eigenfunctions for scattering states

ψ+
k (x) = θ(−x)T−(k)eikx + θ(x)

[
eikx + R+(−k)e−ikx

]
, k < 0 , (2.13)

ψ−k (x) = θ(x)T+(k)eikx + θ(−x)
[
eikx + R−(−k)e−ikx

]
, k > 0 , (2.14)

which appears as a particular choice of the above setting, justifying the Bethe ansatz approach.

These eigenfunctions play a crucial role in the quantum field theoretic version of this problem i.e.

the nonlinear Schrödinger equation with impurity [17].

For ν = 0, (2.3) gives rise to the so-called separated boundary conditions of the form

ϕ+′(0+) = q+ ϕ+(0+) , ϕ−
′
(−0+) = q− ϕ−(−0+) (2.15)

with q+, q−∈ R ∪ {∞} given by q± = ∓ tan( ξ±ζ
2

), ζ being the argument of µ.

2.2 Two particles

In the same spirit as before, for x1, x2 ∈ R \ {0} and x1 6= x2, the two-particle wavefunction is

taken to be

ϕ(x1, x2) =





ϕ++(x1, x2) x1 > 0, x2 > 0

ϕ+−(x1, x2) x1 > 0, x2 < 0

ϕ−+(x1, x2) x1 < 0, x2 > 0

ϕ−−(x1, x2) x1 < 0, x2 < 0

(2.16)

Then, we define for x1, x2 > 0 and x1 6= x2

Φ(x1, x2) =




ϕ++(x1, x2)
ϕ+−(x1,−x2)
ϕ−+(−x1, x2)

ϕ−−(−x1,−x2)


 (2.17)

Now, we implement the fact that each particle can interact with the impurity by imposing two

impurity conditions

[(U − I)⊗ I]Φ(x1, x2) = −i[(U + I)⊗ I]∂x1Φ(x1, x2) for x1 → 0+ (2.18)

[I⊗ (U − I)]Φ(x1, x2) = −i[I⊗ (U + I)]∂x2Φ(x1, x2) for x2 → 0+ . (2.19)

5



The interaction in the bulk between the two particles through a δ potential is implemented as

follows

Φ(x1, x2)| x1=x+
2

= T̃1 Φ(x1, x2)| x1=x−2
(2.20)

(∂x1 − ∂x2) Φ(x1, x2)| x1=x+
2

= T̃1 [(∂x1 − ∂x2) + 2g] Φ(x1, x2)| x1=x−2
(2.21)

where T̃1 is the representation on C2 ⊗ C2 of T1 ∈ S2 given by

T̃1 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (2.22)

Similarly, Ĩd is the 4× 4 unit matrix representing Id.

The crucial and new point now is to formulate an ansatz for Φ(x1, x2) and show that it solves

the problem. For 0 < xQ1 < xQ2 with Q ∈ S2 = {Id, T1}, we take

ΦQ(x1, x2) =
∑

P∈ W2

exp[i(kP1xQ1 + kP2xQ2)] Q̃AP (Q) (2.23)

where AP (Q) =




A++
P (Q)

A+−
P (Q)

A−+
P (Q)

A−−
P (Q)


 are the coefficients to determine. The energy is simply E = k2

1 +k2
2.

The impurity conditions imply

APR1(Id) = [Z(−kP1)⊗ I] AP (Id) (2.24)

T̃1 APR1(T1) = [I⊗ Z(−kP1)] T̃1 AP (T1) (2.25)

which reduce to

APR1(Q) = [Z(−kP1)⊗ I] AP (Q) with Q ∈ S2 (2.26)

using

T̃1 [I⊗ Z(k)] T̃1 = Z(k)⊗ I . (2.27)

The matrix Z is the one given in (2.6).

The bulk conditions (2.20) and (2.21) give

APT1(Q) =
1

kP1 − kP2 + ig
((kP1 − kP2)AP (QT1)− igAP (Q)) with Q ∈ S2 (2.28)

Introducing the eight-component vector

AP =

( AP (Id)
AP (T1)

)
(2.29)
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We can rewrite (2.26) and (2.28) in a compact form

APR1 = [I⊗ Z(−kP1)⊗ I] AP (2.30)

APT1 = Y (kP1 − kP2)AP (2.31)

where

Y (k) =




−ig
k+ig

k
k+ig

−ig
k+ig

k
k+ig

−ig
k+ig

k
k+ig

−ig
k+ig

k
k+ig

k
k+ig

−ig
k+ig

k
k+ig

−ig
k+ig

k
k+ig

−ig
k+ig

k
k+ig

−ig
k+ig




(2.32)

Since the relations R2
1 = Id, T 2

1 = Id and R1T1R1T1 = T1R1T1R1 hold in W2, equations (2.30)

and (2.31) require that Y (k) and Z(k) satisfy the consistency relations

Z(k)Z(−k) = I , Y (k1 − k2)Y (k2 − k1) = I⊗ I⊗ I (2.33)

and a generalization of the celebrated reflection equation [11, 12],

Y (u− v)[Z(u)⊗ I]Y (u + v)[Z(v)⊗ I] = [Z(v)⊗ I]Y (u + v)[Z(u)⊗ I]Y (u− v) (2.34)

The explicit form of Y and Z ensures the validity of these equations.

It is a generalization in the sense that even in the scalar case (particles with no internal

degrees of freedom), our setup produces a two-dimensional representation of W2. This is the first

illustration of the general statement at the end of Section 1.

We conclude that the two-particle model is exactly solvable in the sense that the eigenfunction

can be consistently given starting from a given AP , say AId.

2.3 N particles

Following the previous arguments, we present the general solution of our problem for N particles

and prove its exact solvability.

For x1, . . . , xN ∈ R \ {0} and x1, . . . , xN 2 by 2 different, the natural generalization of (2.16)

for the wavefunction is

ϕ(x1, . . . , xN) = ϕε1 ... εN (x1, . . . , xN) in the region ε1x1 > 0, . . . , εNxN > 0 (2.35)

where εi = ±, i = 1, . . . , N . Then, for x1, . . . , xN > 0 and x1, . . . , xN 2 by 2 different, we define

Φ(x1, . . . , xN) =
∑

ε1,...,εN=±
ϕε1 ... εN (ε1x1, . . . , εNxN) eε1 ⊗ · · · ⊗ eεN

(2.36)
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where e+ =

(
1
0

)
and e− =

(
0
1

)
.

Given a tensor product of spaces, (C2)⊗N , we define the action of a matrix M ∈ End(C2) on

the k-th space by

M [k] = I⊗ · · · ⊗ I︸ ︷︷ ︸
k−1

⊗M ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
N−k

(2.37)

Therefore, the impurity conditions are,

(U − I)[k] Φ(x1, . . . , xN) = −i(U + I)[k] ∂xk
Φ(x1, . . . , xN) for xk → 0+ , 1 6 k 6 N (2.38)

The natural generalization of the bulk conditions read, for Q ∈ SN and 1 6 i 6 N − 1,

Φ(x1, . . . , xN)| xQi=x+
Q(i+1)

= Q̃ T̃i Q̃ Φ(x1, . . . , xN)| xQi=x−
Q(i+1)

(2.39)

(∂xQi
− ∂xQ(i+1)

) Φ(x1, . . . , xN)| xQi=x+
Q(i+1)

= Q̃ T̃i Q̃
[
(∂xQi

− ∂xQ(i+1)
) + 2g

]
Φ(x1, . . . , xN)| xQi=x−

Q(i+1)
(2.40)

Q̃ is the usual representation of the element Q ∈ SN on (C2)⊗N . Namely, denoting by Eij,

i, j = 1, 2 the matrices with 1 at position (i, j) and 0 elsewhere, one has

T̃j =
2∑

k,`=1

I⊗ · · · ⊗ I︸ ︷︷ ︸
j−1

⊗Ek` ⊗ E`k ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
N−j−1

. (2.41)

Then using T̃iTj = T̃iT̃j and (1.9), it is easy to get Q̃ for any Q ∈ SN since an arbitrary permutation

can always be decomposed in transpositions. At this stage, we have explicitly formulated the N -

body problem corresponding to the combination of the two systems as described in Section 1.

Let us make the ansatz for Φ: in the region 0 < xQ1 < · · · < xQN , Q ∈ SN , it is represented

by

ΦQ(x1, . . . , xN) =
∑

P∈ WN

exp[i(kP1xQ1 + · · ·+ kPNxQN)] Q̃AP (Q) (2.42)

where

AP (Q) =
∑

ε1,...,εN=±
Aε1 ... εN

P (Q) eε1 ⊗ · · · ⊗ eεN
(2.43)

Again, the eigenvalue problem is simply solved by E =
∑N

i=1 k2
i .

Inserting in (2.38), one gets

APR1(Q) = Z [1](−kP1) AP (Q) (2.44)

where Z is given by (2.6). From relations (2.39), (2.40), we get for 1 6 j 6 N − 1

APTj
(Q) =

1

kPj − kP (j+1) + ig

(
(kPj − kP (j+1))AP (QTj)− igAP (Q)

)
(2.45)
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To get an analog of (2.29), we introduce an ordering on SN by associating to each element Q ∈ SN

an integer [Q] ∈ {1, . . . , N !} so that Q be the [Q]th element of the ordering list. Next, we define

AP =
∑

Q∈SN

e[Q] ⊗AP (Q) (2.46)

where e[Q] =




0
...
0
1
0
...
0












[Q]− 1

N !− [Q]

∈ CN ! so that AP (Q) is just (AP )[Q].

Thus, the relations (2.44) and (2.45) take the compact form

APR1 = Z1(−kP1) AP (2.47)

and for 1 6 j 6 N − 1

APTj
= Yj(kPj − kP (j+1))AP (2.48)

where the matrix elements of Z and Yj read (recall that these matrix elements are matrices

themselves acting on (C2)⊗N)

Z1(k)[Q],[Q′] = Z [1](k)δ[Q],[Q′] (2.49)

Yj(k)[Q],[Q′] =
1

k + ig

(
k δ[QTj ],[Q′] − ig δ[Q],[Q′]

)
I⊗N (2.50)

Since our construction is based on WN , the Bethe ansatz solution is consistent if Z1 and Yj satisfy

Yj(k)Yj(−k) = IN ! ⊗ I⊗N , Z1(k)Z1(−k) = IN ! ⊗ I⊗N (2.51)

Yj(k1)Yj+1(k1 + k2)Yj(k2) = Yj+1(k2)Yj(k1 + k2)Yj+1(k1) (2.52)

Y1(k1 − k2)Z1(k1)Y1(k1 + k2)Z1(k2) = Z1(k2)Y1(k1 + k2)Z1(k1)Y1(k1 − k2) (2.53)

Yj(k1)Y`(k2) = Y`(k2)Yj(k1) for |j − `| > 1 , (2.54)

Z1(k1)Yj(k2) = Yj(k2)Z1(k1) for j > 1 (2.55)

where IN ! the N !×N ! unit matrix. Relations (2.51) are usually called unitarity conditions while

(2.52) is the celebrated quantum Yang-Baxter equation [6, 7]. Relation (2.53) is again our gen-

eralized reflection equation. One can check that these relations hold true by direct computation,

finishing our argument about the exact solvability of our N -particle system. Starting from AId

and using (2.47) and (2.48) repeatedly, one gets the eigenfunction.
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3 Bethe ansatz: spectrum in the presence of an impurity

In the previous section, we showed that the energy problem reads

E =
N∑

i=1

k2
i (3.1)

where the k’s are the momenta of the particles. It is known that the complete use of the Bethe

ansatz entails that the k’s are the solutions of the so-called Bethe ansatz equations. From these

equations, it is possible to get some insight in the energy spectrum of the problem. The usual

approach is to enclose the system in a finite region of space. One can imagine two types of

conditions at the border of the finite region. In one dimension, one can put the N particles on a

circle requiring periodic (or even anti-periodic) condition. This was the choice made in [1] where

the properties on the whole line were subsequently extracted through the so-called thermodynamic

limit. An alternative approach is to enclose the particles in a box requiring the vanishing of the

wave function on the walls of the box. This was explore e.g. in [8].

3.1 Bethe ansatz equations for particles on a circle

Let us imagine that the N particles live on the interval [−L,L] centered for convenience on the

impurity. The periodic (resp. anti-periodic) condition on the `-th particle, 1 6 ` 6 N , reads

ϕ(x1, . . . , x`−1, L, x`+1 . . . , xN) = θ ϕ(x1, . . . , x`−1,−L, x`+1 . . . , xN) (3.2)

ϕ′(x1, . . . , x`−1, L, x`+1 . . . , xN) = θ ϕ′(x1, . . . , x`−1,−L, x`+1 . . . , xN) , (3.3)

with θ = 1 (resp. θ = −1). Introducing

σ = θ

(
0 1
1 0

)
, (3.4)

and using the tensor notations (2.37), this can be written in terms of Φ as

Φ(x1, . . . , x`−1, L, x`+1 . . . , xN) = σ[`] Φ(x1, . . . , x`−1, L, x`+1 . . . , xN) (3.5)

∂x`
Φ(x1, . . . , x`−1, L, x`+1 . . . , xN) = −σ[`] ∂x`

Φ(x1, . . . , x`−1, L, x`+1 . . . , xN) (3.6)

Invoking the Bethe ansatz solution (2.42) for some Q` ∈ SN such that Q`(N) = `, one gets (noting

that Q̃` σ[`] = σ[N ] Q̃`)

eikPNLAP (Q`) + e−ikPNLAPRN
(Q`) = σ[N ]

(
eikPNLAP (Q`) + e−ikPNLAPRN

(Q`)
)

(3.7)

eikPNLAP (Q`)− e−ikPNLAPRN
(Q`) = −σ[N ]

(
eikPNLAP (Q`)− e−ikPNLAPRN

(Q`)
)

(3.8)

This entails

e2ikPNLAP (Q`)− σ[N ]APRN
(Q`) = 0 , ` = 1, . . . , N (3.9)
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that is, in terms of AP as defined in (2.46)

e2ikPNLAP − ΣAPRN
= 0 , Σ = IN ! ⊗ σ[N ] . (3.10)

This holds for any P ∈ WN yielding a priori 2NN ! different equations. In fact, let us show that

we only need to consider N of them by proving that if (3.10) holds for AP then it holds for APTj
,

j = 1, . . . , N − 2, APR1 and APRN
. For j = 1, . . . , N − 2

APTj
= Yj(kPj − kP (j+1))AP (3.11)

= e−2ikPNLYj(kPj − kP (j+1))ΣAPRN
(3.12)

= e−2ikPNLΣYj(kPj − kP (j+1))APRN
(3.13)

= e−2ikPNLΣAPRNTj
(3.14)

= e−2ikPNLΣAPTjRN
(3.15)

where we used Yj(k)Σ = ΣYj(k) and RNTj = TjRN . The proof for the other two cases is similar

and requires Z1(k)Σ = ΣZ1(k), RNR1 = R1RN and Σ2 = IN ! ⊗ I⊗N . Since Tj, j = 1, . . . , N − 2

and R1 are the generators of WN−1 of cardinal 2N−1(N − 1)!, adding RN brings the number of

elements to 2N(N − 1)!. Therefore, quotienting WN by this set, we are left with N different

elements: SN = Id and Sj = Tj . . . TN−1 for j = 1, . . . , N − 1.

Now using (2.47) and (2.48) repeatedly, one has

ASjRN
= YN−1(−kN − kj) . . . Y1(−k1 − kj)

× Z1(−kj)Y1(k1 − kj) . . . YN−1(kN − kj)ASj
, (3.16)

and

ASj
= YN−1(kj − kN) . . . Yj(kj − kj+1)AId . (3.17)

Let us introduce the matrices Rj for j = 1, . . . , N as

Rj = Yj(kj+1 − kj) . . . YN−1(kN − kj) Σ YN−1(−kN − kj) . . . Yj(−kj+1 − kj)

× Yj−1(−kj−1 − kj) . . . Y1(−k1 − kj)Z1(−kj)Y1(k1 − kj) . . . Yj−1(kj−1 − kj) (3.18)

Applying all these results in (3.10), we are now in position to state the main result of this paper:

Proposition 3.1 The wavefunction of our exactly solvable model is completely determined for a

given vector AId, using relations (2.47) and (2.48) to find AP for any P ∈ WN . In turn, AId is

the common eigenvector of the matrices Rj with the eigenvalues e2ikjL respectively, j = 1, . . . , N :

Rj AId = e2ikjL AId . (3.19)

This entails in particular the following constraints

det
[Rj − e2ikjL IN ! ⊗ I⊗N

]
= 0 , j = 1, . . . , N . (3.20)

These are the impurity Bethe ansatz equations constraining the allowed values of the momenta of

the particles. The presence of Z in Rj accounts for the effect of the impurity on the dynamics of

the system while the matrices Yj contain the interaction effects.

11



The proof goes as follows. First, relation (3.19) is a direct consequence of (3.10), (3.16) and (3.17).

The fact that AId is the common eigenvector of all these matrices follows from

Rj R` = R` Rj , j, ` = 1, . . . , N . (3.21)

This equality, albeit tedious to establish, holds thanks to relations (2.51)-(2.55) together with

[Yj(k1), Yj(k2)] = 0 , for all k1, k2 . (3.22)

3.2 Fixing the statistics

So far, we said nothing about the statistics of the particles under considerations (on purpose).

Indeed, our setup can be accommodated along the lines of [6] to allow for arbitrary statistics. Here,

to get more insight when dealing with the Bethe ansatz equations, let us choose the statistics of our

model. For bosons (resp. fermions), the wavefunction should be symmetric (resp. antisymmetric)

under the exchange of any two particles. In terms of Φ, this reads, for 1 6 i < j 6 N ,

Φ(x1, . . . , xi, . . . , xj, . . . , xN) = τ T̃ij Φ(x1, . . . , xj, . . . , xi, . . . , xN) (3.23)

with τ = +1 for bosons and τ = −1 for fermions. In turn, this yields an additional relation

between the coefficients AP (QTi) and AP (Q):

AP (QTi) = τAP (Q) . (3.24)

As a consequence, all the matrices Yj(u) become proportional to the identity, the multiplication

factor being yτ (k) given by

yτ (k) =
τk − ig

k + ig
(3.25)

When τ = −1, we recover that the δ interaction is trivial for fermions. The N impurity Bethe

equations are equivalent to

det

[∏

m6=j

yτ (kj + km)yτ (kj − km) exp(2ikjL)− Z [1](−kj)σ
[N ]

]
= 0 , 1 6 j 6 N (3.26)

Let us denote z1(k), z2(k) the eigenvalues of Z(k) then, for N ≥ 2, Z [1](k)σ[N ] has four different

eigenvalues z1(k), −z1(k), z2(k) and −z2(k), each of which is 2N−2-fold degenerate. The four

possible sets of scalar equations read

exp(2ikjL)
∏

m6=j

yτ (kj + km)yτ (kj − km) = λj(kj) , 1 6 j 6 N (3.27)

where for each j, λj(kj) takes one of the four possible values z1(−kj), −z1(−kj), z2(−kj) or

−z2(−kj), yielding 4N different sets of equations. For N = 1, the equations read

exp(2ikL) = s1(−k) or exp(2ikL) = s2(−k) (3.28)

where s1(k), s2(k) are the eigenvalues of σZ(k). In the previous equations, we isolated on the

left-hand side the usual terms corresponding to the interaction and on the right-hand side the new

part arising from the presence of the reflecting and transmitting impurity.
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3.3 Bethe ansatz equations for particles in a box

In this paragraph, instead of putting the particle on a circle, we are going to let them live in a

box [−L,L]. Thus, we impose the following conditions for 1 6 ` 6 N

Φ(x1, . . . , x`−1, L, x`+1 . . . , xN) = 0 , (3.29)

and we follow the above analysis along the same lines. The linear system of equations relating the

2NN ! coefficients in each ASj
, j = 1, . . . , N , take the form

RjAId = −e2ikjLAId (3.30)

with Rj as defined in (3.18) replacing Σ by the identity here. In this case, the impurity Bethe

equations read

det
[Rj + exp(2ikjL) IN ! ⊗ I⊗N

]
= 0 , j = 1, . . . , N . (3.31)

These are the Bethe ansatz equations for our system with the particular box conditions under

consideration. If we fix the statistics for bosons or fermions as in the previous paragraph, these

equations take the simpler form

exp(2ikjL)
∏

m6=j

yτ (kj + km)yτ (kj − km) = γj(kj) , 1 6 j 6 N (3.32)

where for each j, γj(kj) takes two possible values : z1(−kj) or z2(−kj), yielding 2N different sets

of equations. This setup will be used in the examples to illustrate the case of a parity-breaking

impurity.

4 Detailed study of selected examples

4.1 Recovering previous results

Let us show how to recover the historical results of [8] which are the analog of the results of [1]

when the particles are confined in a box.

We recall briefly the setup of [8] and adapt ours to reproduce it. M. Gaudin considered a

gas of N bosons with δ interaction enclosed in a box of length L. The symmetric wavefunction

φ(x1, . . . , xN) is required to satisfy

φ(x1 = 0, x2, . . . , xN) = 0 , (4.1)

φ(x1, x2, . . . , xN = L) = 0 , (4.2)

in the region 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L.

Thus we must take (3.25) with τ = 1. Then, the most natural idea that comes to mind

to recover this setup from ours is to ”fold” our system which lives on [−L,L] and tune the
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parameters of the impurity so as to make it a wall of the box at the origin. This goes as follows:

for j = 1, . . . , N , we require

ϕ(x1, . . . , xj, . . . , xN) = ϕ(x1, . . . ,−xj, . . . , xN) , 0 < xj < L (4.3)

This global property has a direct consequence on Φ as defined in (2.36)

Φ(x1, . . . , xN) = ϕ+... +(x1, . . . , xN)




1
...
1






 2N . (4.4)

In other words, the representation is completely reducible and the only relevant wavefunction is

ϕ+... +(x1, . . . , xN) which we identify to φ(x1, . . . , xN). The reducibility of the problem will show

up again consistently in the rest of this paragraph (e.g. for Z(k)). It has to be related to the fact

that we break the chirality of the impurity when we require (4.3), that is we restore the parity

invariance and the need for a two-dimensional representation disappears.

In this respect, we also expect (4.3) not to be compatible with the impurity conditions (2.38)

in general. In fact, it is easy to see that the coefficients µ, ν in (1.6) must satisfy

µ− µ∗ = 0 , ν + ν∗ = 0 . (4.5)

When translated in terms of α, a, b, c, d in (2.9), this is perfectly consistent with the well-known

characterization of a parity-invariant impurity i.e. a = d and α2 = 1.

Now to reproduce (4.1), one just has to choose µ = −1 and ν = 0. In particular, this gives

Z(k) = −I showing again the reducibility of the problem to a scalar representation where the

impurity is to be seen as a purely reflecting wall with reflection coefficient equal to −1.

Finally, taking θ = −1 in (3.5), (3.6) yields (4.2) with no condition for the derivative as

required. Again, the representation using σ is reducible and one can see that the relevant eigenvalue

for sigma is −1. Collecting all these settings, we end up with the following Bethe equations

e2ikjL =
∏

m6=j

km − kj − ig

km − kj + ig

km + kj − ig

km + kj + ig
, j = 1, . . . , N (4.6)

which are precisely those obtained by Gaudin in [8].

4.2 One and two particles with δ impurity

As a first step towards the understanding of the properties of our system, we pay special attention

to the special cases of one and two particles in the presence of the well-known δ impurity. The one-

particle case is presented as a reminder and already displays the interesting features of degeneracies

and bound states. Then, the two-particle exhibits the new properties arising from the impurity

Bethe equations.

The δ impurity is characterized by

Uδ = − exp(iξ)

(
cos(ξ) i sin(ξ)
i sin(ξ) cos(ξ)

)
, ξ ∈ [0, π) (4.7)
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and the impurity Bethe equations constraining the momentum of the particle read

exp(2ikL) = θ or exp(2ikL) = θ
k tan ξ + i

k tan ξ − i
(4.8)

The first equation reproduces the usual integer quantization of the momentum while the second

shows how this quantization is controlled by ξ.

Figure 1 shows the energy spectrum2 as a function of the tunable impurity parameter ξ.

1

E

100

xi

50

0
3

-50

2

Figure 1: Lowest energy level in terms of ξ
for δ impurity and θ = 1

1

10-1

density

3

x

2

Figure 2: Density profiles for various values
of ξ.

The constant energy levels correspond to the first equation and do not depend on the impurity

parameter ξ as expected. The other energy levels show the effect of the impurity on the spectrum.

Of special interest is the lowest energy level which exhibits a bound state for ξ > π/2. This is

consistent with the fact that the coupling constant to the impurity η, given by η = 1/ tan ξ, be-

comes negative. We have also plotted in Figure 2 the corresponding densities for different regimes.

The thick curve corresponds to ξ = 0: the impurity is completely reflecting and no transmission

occurs. For ξ = π/3, the double-solid curve shows reflection and transmission for a repulsive

impurity. The constant curve for ξ = π/2 is very special since for this value of ξ, the impurity

becomes trivial in the sense that the reflection vanishes and the transmission is just 1. This corre-

sponds to the zero energy state. Finally, the thin curve represents the profile for ξ = 11π/12: this

is the bound state whose profile gets sharper and sharper as ξ → π (infinitely attractive impurity).

Let us move on to the case of two particles. The impurity Bethe equations read{
exp(2ik1L) k1+k2−ig

k1+k2+ig
k1−k2−ig
k1−k2+ig

= λ1(k1)

exp(2ik2L) k2+k1−ig
k2+k1+ig

k2−k1−ig
k2−k1+ig

= λ2(k2)
(4.9)

2all the figures are plotted in units of ~2/2m and for a unit length, L = 1, using Maple.

15



where each of the eigenvalues λ1(k), λ2(k) can be either ±1 or ±k tan ξ+i
k tan ξ−i

. We display on Figure 3

the corresponding lowest energy levels. When the two eigenvalues are ±1, we obtain the constant

1
xi

E

6

4

3

2

0
2

-2

Figure 3: Lowest energy level in terms of ξ for 2 particles and δ impurity

energy levels. Otherwise, when one at least of the eigenvalues is ±k tan ξ+i
k tan ξ−i

, the energy levels are

decreasing functions of ξ. Again, for special values of ξ (ξ = 0, ξ = π/2), there are degeneracies

which are lifted when we tune the impurity. Finally, for ξ > π/2, the lowest energy levels give rise

to bound states with the impurity (we recall that ξ → π corresponds to η → −∞ i.e. an infinitely

negative coupling constant).

4.3 Asymmetric impurity in a box

In this paragraph, we give an example of an asymmetric impurity i.e. an impurity which breaks

parity invariance. We simply present the one-particle case for the box boundary conditions of

section 3.3. For convenience, we use the parametrization (2.7) and the impurity is characterized

by a single parameter as follows

α = 1 , a = sin2 w , b = − cos w , c = cos w , d = 1 , w ∈ [0, π) . (4.10)

Then the Bethe equations take the form

e2ikL = −(k2 − 1) cos w + ik
√

4 + cos4 w

(k2 + 1) cos w− ik(cos2 w− 2)
or e2ikL = −(k2 − 1) cos w− ik

√
4 + cos4 w

(k2 + 1) cos w− ik(cos2 w− 2)
(4.11)

The two equations are never equivalent so that we do not observe level crossing (see Figure 4). On

Figure 5, the density profile for the lowest positive energy level shows the striking feature of this
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Figure 4: Lowest energy levels for a parity
breaking impurity
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Figure 5: Density profile for the first positive
energy level

impurity for different values of w. One can clearly see the parity invariance breaking on the thin

and double-solid curves (w = 0 and 11π/12 respectively). Again for the particular value w = π/2

(the thick curve), the impurity becomes reflectionless with trivial transmission equal to 1. Parity

is restored and we observe a single excited mode in a box.

5 Conclusions and outlook

In this paper, we presented and solved the one-dimensional problem of N interacting particles in

the presence of an impurity. In the process of the Bethe ansatz for the wavefunction, doubling

the dimension of the representation of the underlying Weyl group was a crucial ingredient with

respect to previous approaches. This is reminiscent of the general RT algebras framework recently

introduced and allows for an exact treatment of impurities.

We also established the impurity Bethe equations controlling the energy spectrum. Although

some basic understanding emerged from the study of the simple one and two-particle cases, we are

convinced that useful information can be extracted from the thermodynamic limit. In particular,

the ground state energy and the low-lying excited states should be influenced by the impurity.

We will investigate this issue later on [23].

In any case, we already observed that a tunable impurity can lift degeneracies in the energy

and also confine asymmetrically stationary states. We strongly believe that further developments

in the context of condensed matter physics will bring interesting results.
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