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Abstract

CoVaR is a measure for systemic risk of the networked financial system con-

ditional on institutions being under distress. The analysis of systemic risk is the

focus of recent econometric analyzes and uses tail event and network based tech-

niques. Here, in this paper we bring tail event and network dynamics together into

one context. In order to pursue such joint efforts, we propose a semiparametric

measure to estimate systemic interconnectedness across financial institutions based

on tail-driven spillover effects in a high dimensional framework. The systemically

important institutions are identified conditional to their interconnectedness struc-

ture. Methodologically, a variable selection technique in a time series setting is

applied in the context of a single-index model for a generalized quantile regression

framework. We could thus include more financial institutions into the analysis to

measure their tail event interdependencies and, at the same time, be sensitive to

non-linear relationships between them. Network analysis, its behaviour and dy-

namics, allows us to characterize the role of each financial industry group in 2007

- 2012: the depositories received and transmitted more risk among other groups,

the insurers were less affected by the financial crisis. The proposed TENET - Tail

Event driven NETwork technique allows us to rank the Systemic Risk Receivers

and Systemic Risk Emitters in the U.S. financial market.
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1. Introduction

Systemic risk endangers the stability of the financial market, the failure of one institution

may harm the whole financial system. The sources of risk are complex, as both exogenous

and endogenous factors are involved. This calls for a study on a financial network which

accounts for interaction between the agents in the financial market. Although the notion

systemic risk is not novel in academic literature (see, e.g, Minsky (1977)), it had been

neglected both in academia and in the financial risk industry until the outbreak of the

financial crisis in 2008. Some financial institutions collapsed, even some major ones like

Lehman Brothers, Federal Home Loan Mortgage Corporation (Freddie Mac), and Federal

National Mortgage Association (Fannie Mae). The magnitude of repercussions caused by

this financial crisis and its complexity revealed a significant flaw in financial regulations.

As in the past, regulations had been focused primarily on stability of a single financial

institution. The detailed actions involved the establishment of Financial Stability Board

(FSB) after G-20 London summit in 2009, integration of systemic risk agenda into Basel

III in 2010 prior to the G-20 meeting in Seoul, and enacting the Dodd Frank Wall Street

Reform and Consumer Protection Act (‘Dodd Frank Act’) in the U.S. in 2010, which is

said to have bought the most radical changes into the U.S. financial system since the

Great Depression.

In this context, the focus is on systemically important financial institutions (SIFIs) whose

failure may not only impair the functioning of the financial system but also have adverse

effects on the real sectors of the economy. Therefore, we face several challenges such

as identifying SIFIs, studying the propagation mechanism of a shock in a system, or in

a network formed by financial institutions, investigating the response of a system to a

shock as a whole network and establishing a theoretical framework for systemic risk.

Although systemic risk is a relatively straightforward concept aimed at measuring risk

stemming from interaction between the agents, the variety of systemic risk measures and

diversity of methods to model interaction effects lead to the fact that the literature on

this topic is highly heterogenous. The relevant literature in this field can be broadly di-

vided into two groups: economic modelling of systemic risk and financial intermediation

including microeconomic (e.g. Beale et al. (2011), Eisenberg and Noe (2001)) and macroe-

conomic approaches (e.g. Gertler and Kiyotaki (2010)) with the emphasis on theoretical,
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structural frameworks, and quantitative modelling with the emphasis on empirical anal-

ysis. The quantitative literature can be further classified by statistical methodology into

quantile regression based modelling such as linear bivariate model by Adrian and Brun-

nermeier (2011), Acharya et al. (2012), Brownlees and Engle (2015), high-dimensional

linear model by Hautsch et al. (2015), partial quantile regression by Giglio et al. (2012)

and by Chao et al. (2015). Further approaches include principal-component-based analy-

sis, e.g. by Bisias et al. (2012), Rodriguez-Moreno and Peña (2013) and others; statistical

modelling based on default probabilities by Lehar (2005), Huang et al. (2009), and others;

graph theory and network topology, e.g. Boss et al. (2006), Chan-Lau et al. (2009), and

Diebold and Yilmaz (2014).

Our paper belongs to the quantitative group of the aforementioned literature, namely,

modelling the tail event driven network risk based on quantile regressions augmented

with non-linearity and variable selection in a high dimensional time series setting. Our

method is in nature different from Acharya et al. (2012) and Brownlees and Engle (2015)’s

method. Acharya et al. (2012) has measured the systemic risk relevance without captur-

ing the network effects of liquidity exposure, and Brownlees and Engle (2015) analyze

the risk of a specific asset given the distress of the whole system, which is a reverse of our

system at institutional analysis, and their method would capture little spillover effects.

Therefore, we believe, that our method is a good addition to the literature of systemic

risk measures. Also compared to Diebold and Yilmaz (2014), we focus more on the tail

event driven interconnectedness, which cannot be captured by conditional correlation.

As a starting point of our research we take co-Value-at-Risk, or CoVaR, model by Adri-

an and Brunnermeier (2011) (from here on abbreviation as AB), where ‘co-’ stands for

‘conditional’, ‘contagion’, ‘comovement’. To capture the tail interconnectedness between

the financial institutions in the system AB evaluate bivariate linear quantile regressions

for publicly traded financial companies in the U.S..

Whereas AB focus on bivariate measurement of tail risk, we aim at assessing the systemic

risk contribution of each institution conditional on its tail interconnectedness with the

relevant institutions. Thus, the primary challenge is selecting the set of relevant risk

drivers for each financial institution. Statistically we address this issue by employing

a variable selection method in the context of single-index model (SIM) for generalized

quantile regressions, i.e. for quantiles and expectiles. We further extend it to a time

series variable selection context in high dimensions. The semi-parametric framework due

to the SIM allows us to investigate possible non-linearities in tail interconnectedness.

Based on identified relevant risk drivers we construct a financial network consisting of

spillover effects across financial institutions. Further we define two indices: Systemic

Risk Receiver and Systemic Risk Emitter, which combine network structure and market

capitalization to identify the systemically important financial institutions.
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The assumption of non-linear relationship between returns of financial companies is moti-

vated by previous work by Chao et al. (2015), who find that the dependency between any

pair of financial assets is often non-linear, especially in periods of economic downturn.

Moreover, non-linearity assumption is more flexible especially in a high dimensional set-

ting where the system becomes too complex to support the belief of linear relationships.

From the 2012 U.S. financial company list from NASDAQ, we select 100 financial institu-

tions consisting of the top 25 financial institutions from each industry group: Depositories,

Insurance companies, Broker-Dealers and Others. These four groups are divided by S-

tandard Industrial Classification (SIC) codes. Our model is evaluated, based on weekly

log returns of these 100 publicly traded U.S. financial institutions. Firm specific charac-

teristics from balance sheet information such as leverage, maturity mismatch, market to

book and size are added into the model as well. Furthermore, the macro state variables

are also involved. The time period from 5 January, 2007 to 4 January, 2013 covers one

recession (from December 2007 to June 2009) and several documented financial crises

(2008 and 2011). Dividing companies by industry groups and including several market

perturbations allows not only to select the key players for each time period, but also

additionally to highlight the connections between financial industries, which can in turn

provide additional information on the nature of market dislocations. In application we

find out that there are more interconnectedness between 2008 and 2010. While the bank

sector plays a major role in the financial crisis, the insurance companies, however, play

more passive roles in term of risk transmission and risk reception. The most connected

financial institutions with respect to incoming and outgoing links are ranked based on

our network analysis. The new insight of our finding is that the non-linear relationships

between financial firms are stronger during the financial crisis than the stable periods.

In addition, to identify the systemically important firm, we weight the connections by

firms’s market capitalization. The empirical findings suggest that our method can effec-

tively identify the systemic risk relevant firms similar to the literature. Moreover, we can

discover the asymmetry and non linearity of the firms’ dependency structure, which leads

to more accurate measures in terms of backtesting performance. All the R programs for

this paper can be found on www.quantlet.de or www.quantlet.de/d3/ia/.

The rest of the paper is organized as follows. In Section 2 our approach of systemic risk

modelling is outlined. Section 3 illustrates the empirical application. Section 4 concludes.

Appendix A presents the statistical methodology and the related theorems. Appendix B

contains proofs and Appendix C contains tables and graphs of our estimation results.
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2. Systemic Risk Modelling

In this section, we lay down the background and the basic setup of our systemic risk

analysis, which can be divided into three steps.

2.1. Basic concepts

Traditional measures assessing riskiness of a financial institution such as Value at Risk

(VaR), or expected shortfall (ES) are based either on company characteristics or inte-

grated macro state variables which account for the general state of the economy. Thus,

for example, the VaR of a financial institution i at τ ∈ (0, 1) is defined as:

P(Xi,t ≤ V aRi,t,τ )
def
= τ, (1)

where τ is the quantile level, Xi,t represents the log return of financial institution i at

time t. AB propose, the risk measure CoVaR (Conditional Value at Risk) which takes

spillover effects and the macro state of the economy into account. The CoVaR of a

financial institution j given Xi at level τ ∈ (0, 1) at time t is defined as:

P
{
Xj,t ≤ CoV aRj|i,t,τ |Ri,t

} def
= τ, (2)

where Ri,t denotes the information set which includes the event of Xi,t = V aRi,t,τ and

Mt−1. Note that Mt−1 is a vector of macro state variables reflecting the general state of

the economy (see Section 4 for details of macro state variables).

We start with the concept of CoVaR, which is estimated in two steps of linear quantile

regression:

Xi,t = αi + γiMt−1 + εi,t, (3)

Xj,t = αj|i + γj|iMt−1 + βj|iXi,t + εj|i,t, (4)

F−1εi,t
(τ |Mt−1) = 0 and F−1εj|i,t

(τ |Mt−1, Xi,t) = 0 are assumed. AB propose, in the first

step, to determine VaR of an institution i by applying quantile (tail event) regression

of log return of company i on macro state variables. The βj|i in (4) has standard linear

regression interpretation, i.e. it determines the sensitivity of log return of an institution

j to changes in tail event log return of an institution i. In the second step the CoVaR is

calculated by plugging in VaR of company i at level τ estimated in (5) into the equation

(6):
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V̂aRi,t,τ = α̂i + γ̂iMt−1, (5)

ĈoVaR
AB

j|i,t,τ = α̂j|i + γ̂j|iMt−1 + β̂j|iV̂aRi,t,τ , (6)

Thus, the risk of a financial institution j is calculated via a macro state and a VaR of an

institution i. Here the coefficient β̂j|i of (6) reflects the degree of interconnectedness. By

setting j to be the return of a system, e.g. value-weighted average return on a financial

index, and i to be the return of a financial company i, we obtain the contribution CoVaR

which characterizes how a company i influences the rest of the financial system. By doing

the reverse, i.e. by setting j equal to a financial institution and i to a financial system,

one obtains exposure CoVaR, i.e. the extent to which a single institution is exposed to

the overall risk of a system.

This approach allows us to identify the key elements of systemic risk, namely, network ef-

fects, a single institution’s contribution to systemic risk and a single institution’s exposure

to systemic risk. In our models, we expand AB’s method in three aspects. First of all,

AB perform pairwise quantile regression, since two companies are not interacting in an

isolated environment, all other interaction effects need to be considered. This motivates

us to extend this bivariate model to a (ultra)high dimensional setting by including more

variables into the analysis, hence a variable selection should be carried out. Secondly,

a linear relationship between system return and a single institution’s return is assumed

by AB. Hautsch et al. (2015) apply a linear LASSO based variable selection to select

variables to estimate the VaR of the system. We enhance their methodologies by employ-

ing the nonlinear models because of the complexity of the financial system. The flexible

SIM will be implemented to allow the nonlinear relationship in this case. Thirdly, AB

use average market valued asset returns weighted by lagged market valued total assets

to calculate the system return, as they point out it may create mechanical correlation

between a single financial institution and the value-weighted financial index. Instead of

the regression on system return, we proposed two market capitalization weighted indices

which combine the connectedness structure of the companies: the index of Systemic Risk

Receiver and the index of Systemic Risk Emitter, to measure the systemic risk contribu-

tions, and further to identify the systemically important financial institutions.

2.2. Step 1 V aR Estimation

TENET can be illustrated by three steps. In the first step we estimate VaR for each

financial institution by using linear quantile regression as in AB:
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Xi,t = αi + γiMt−1 + εi,t, (7)

V̂aRi,t,τ = α̂i + γ̂iMt−1, (8)

Xi,t and Mt−1 are defined as in section 2.1. Note that the VaR is estimated by the linear

quantile regression (7) of log returns of an institution i on macro state variables. This

is justified by the analysis of Chao et al. (2015), who found evidence of linear effects in

regressing Xi,t on Mt−1.

2.3. Step 2 Network Analysis

2.3.1. Connectedness Analysis

In this step, TENET builds up a risk interdependence network based on SIM for quantile

regression with variable selection. Note that our model can be easily extended to the

case of expectiles, which provide coherent risk measures. First the basic element of the

network: CoVaR calculation has to be determined. As in equation (2), Xj represents

a single institution, and the CoVaR of institution j is estimated by conditioning on its

information set. This information set will not only include the asset returns of other

firms estimated and the macro variables used in the previous step, but also uses control

variables on internal factors of institution j, i.e. the company specific characteristics such

as leverage, maturity mismatch, market-to-book and size. This setting will allow us to

model the risk spillover channels among institutions mostly caused by liquidity or risk

exposure. Our choice of information set is more comprehensive than AB, and a similar

motivation can be found in Hautsch et al. (2015). Further, a systemic risk network is

built motivated by Diebold and Yilmaz (2014). TENET captures nonlinear dependency

as it is based on a SIM quantile variable selection technique. See Appendix for more

details of the statistical methodology. More precisely:

Xj,t = g(β>j|Rj
Rj,t) + εj,t, (9)

ĈoVaR
TENET

j|R̃j ,t,τ
def
= ĝ(β̂>

j|R̃j
R̃j,t), (10)

D̂j|R̃j

def
=
∂ĝ(β̂>j|Rj

Rj,t)

∂Rj,t

|Rj,t=R̃j,t
= ĝ ′(β̂>

j|R̃j
R̃j,t)β̂j|R̃j

. (11)

HereRj,t
def
= {X−j,t,Mt−1, Bj,t−1} is the information set which includes p variables, X−j,t

def
=

{X1,t, X2,t, · · · , Xk,t} are the explanatory variables including the log returns of all financial

institutions except for a financial institution j, k represents the number of financial insti-

7



tutions. Bj,t−1 are the firm characteristics calculated from their balance sheet information.

Define the parameters as βj|Rj

def
= {βj|−j, βj|M , βj|Bj

}>. Note that there is no time symbol

t in the parameters, since our model is set up based on one fixed window estimation, we

can then apply moving window estimation to estimate all parameters in different win-

dows. We define R̃j,t
def
= {V̂ aR−j,t,τ ,Mt−1,Bj,t−1}, V̂aR−j,t,τ as the estimated VaRs from

(8) for financial institutions except for j in step 1, and β̂j|R̃j

def
= {β̂j|−j, β̂j|M , β̂j|Bj

}>. As in

equation (10) CoVaR comprises of not only the influences of financial institutions except

for j, but also incorporates non-linearity reflected in the shape of a link function g(·).
Therefore, we name it ĈoVaR

TENET
which stands for Tail-Event driven NETwork risk

with SIM model.1 D̂j|R̃j
is the gradient measuring the marginal effect of covariates eval-

uated at Rj,t = R̃j,t, and the componentwise expression is D̂j|R̃j

def
= {D̂j|−j, D̂j|M , D̂j|Bj

}>.

In particular, D̂j|−j allows to measure spillover effects across the financial institutions

and to characterize their evolution as a system represented by a network. Note that in

our network analysis we only include the partial derivatives of institution j with respect

to the other financial institutions (i.e. D̂j|−j). The partial derivatives with respect to

institution’s characteristic variables D̂j|Bj
and macro state variables D̂j|M are not includ-

ed. The reason is that we concentrate on spillover effects among firms in the network

analysis.

The term network refers to a (directed) graph with a set of vertices and a set of links, or

edges. We summarize the estimation results in a form of a weighted adjacency matrix.

Let D̂s
j|i be one element in D̂s

j|−j at estimation window s, where j represents one financial

institution as before, i stands for another institution which is one element in the other

financial institutions set −j. Then a weighted adjacency matrix contains absolute values

of D̂s
j|i (in upper triangular matrix) and D̂s

i|j (in lower triangular matrix), where D̂s
j|i is

the impact from firm i to firm j and D̂s
i|j means the impact from firm j to firm i. Table

1 shows the adjacency matrix; note that in each window of estimation one has only one

adjacency matrix estimated.

As =



I1 I2 I3 · · · Ik

I1 0 |D̂s
1|2| |D̂s

1|3| · · · |D̂s
1|k|

I2 |D̂s
2|1| 0 |D̂s

2|3| · · · |D̂s
2|k|

I3 |D̂s
3|1| |D̂s

3|2| 0 · · · |D̂s
3|k|

...
...

...
...

. . .
...

Ik |D̂s
k|1| |D̂s

k|2| |D̂s
k|3| · · · 0


Table 1: A k × k adjacency matrix for financial institutions at the sth window.

1For simplicity we omit the subscript j|R̃j ,t,τ
in ĈoVaR

TENET

j|R̃j ,t,τ , and write ĈoVaR
TENET

.
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The above k × k matrix As in Table 1 represents total connectedness across variables at

window s, and Ii represents the name of financial institution i. The adjacency matrix, or

a total connectedness matrix, is sparse and off-diagonal since our model (by construction)

does not allow for self-loop effects (namely one variable cannot be regressed on itself).

The rows of this matrix correspond to incoming edges for a variable in a respective row

and the columns correspond to outgoing edges for a variable in a respective column.

2.3.2. Spectral Clustering

In this section, we apply spectral clustering technique, see Shi and Malik (2000), to

detect the time varying risk clusters. The weighted adjacency matrix at window s is

As, the corresponding unweighted matrix is defined by Aus , which means that non-zero

values in As are set to be 1s, and zeros are still 0s. We take the symmetrized adjacency

matrix Au>s Aus , and the corresponding degree matrix Γ2
s(a diagonal matrix with diagonal

elements as row(column) sums). The spectral clustering algorithm is launched by looking

at the eigenvalues and eigenvectors of the normalized Laplacian matrix Γ−1s Au>s AusΓ
−1
s .

We would like to identify for each window risk clusters of financial institutions.

2.4. Step 3: Identification of Systemic Risk Contributions

In the third step, TENET explains systemic risk measures. We define two indices to

identify systemically important financial institutions. The idea is that we would like to

measure the systemic risk relevance of a specific firm by its total in and out connections

weighted by market capitalization.

The Systemic Risk Receiver Index for a firm j is therefore defined as:

SRRj,s
def
= MCj,s{

∑
i∈kINs

(|D̂s
j|i| ·MCi,s)}, (12)

the Systemic Risk Emitter Index for a firm j is defined as:

SREj,s
def
= MCj,s{

∑
i∈kOUT

s

(|D̂s
i|j| ·MCi,s)}. (13)

where kINs and kOUTs are the sets of firms connected with firm j by incoming and outgoing

links at window s respectively, and MCi,s represents the market capitalization of firm i

at the starting point of window s. |D̂s
j|i| and |D̂s

i|j| are absolute partial derivatives derived

from (11) which represent row (incoming) and column (outgoing) direction connectedness

of firm j as in Table 1. Thus both SRRj,s and SREj,s would take into account the firm
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j’s and its connected firms’ market capitalization as well as its connectedness within our

network.

3. Results

3.1. Data

Since the SIC code can be applied to classify the industries, according to the company

list 2012 of U.S. financial institutions from the NASDAQ webpage and the corresponding

four-digit SIC codes from 6000 to 6799 for these financial institutions in COMPUSTAT

database, we divide the U.S. financial institutions into four groups: (1) depositories

(6000-6099), (2) insurance companies (6300-6499), (3) broker-dealers (6200-6231), (4)

others (the rest codes). For instance, the Goldman Sachs Group is classified as broker-

dealers based on its SIC code 6211. We select top 25 institutions in each group according

to the ranking of their market capitalization (like Billio et al. (2012) they apply a similar

selection method), so that we can compare the difference among industry groups. Our

analysis focuses on the panel of these 100 publicly traded U.S. financial institutions

between 5 January, 2007 and 4 January, 2013, see Table 2 in Appendix C for a complete

list. The weekly price data are available in Yahoo Finance.2

To capture the company specific characteristics we adopt the following variables calcu-

lated from balance sheet information as proposed in AB: 1. leverage, defined as total

assets / total equity (in book values); 2. maturity mismatch, calculated by (short term

debt - cash)/ total liabilities; 3. market-to-book, defined as the ratio of the market to the

book value of total equity; 4. size, calculated by the log of total book equity. The quar-

terly balance sheet information is available on the COMPUSTAT database, and cubic

interpolation is implemented in order to obtain the weekly data.

Apart from the data on the financial companies we use weekly observations of macro

state variables which characterize the general state of the economy. These variables are

defined as follows: (i) the implied volatility index, VIX, reported by the Chicago Board

Options Exchange; (ii) short term liquidity spread denoted as the difference between the

three-month repo rate (available on the Bloomberg database) and the three-month bill

rate (from Federal Reserve Board) to measure short-term liquidity risk; (iii) the changes

in the three-month Treasury bill rate from the Federal Reserve Board; (iv) the changes

in the slope of the yield curve corresponding to the yield spread between the ten-year

Treasury rate and the three-month bill rate from the Federal Reserve Board; (v) the

2We appreciate Mr. Lukas Borke, who is a doctoral student in LvB Chair of Statistics, with the help
for optimizing our code and downloading data.
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changes in the credit spread between BAA-rated bonds and the Treasury rate from the

Federal Reserve Board; (vi) the weekly S&P500 index returns from Yahoo finance, and

(vii) the weekly Dow Jones U.S. Real Estate index returns from Yahoo finance.

3.2. Estimation Results

We perform the TENET analysis in three steps: Firstly, the Tail Event VaR of all firms

are estimated. Secondly, the NETwork analysis based on the SIM with variable selection

technique is performed. Finally, the systemically important financial institutions are

identified based on the SRR, SRE indices defined in section 2.4.

To estimate VaR as in (7) and (8), we regress weekly log returns of each institution

on macro state variables at the quantile level τ = 0.05, with the whole period being

T = 266, the number of independent variables is p = 110 (e.g. when JP Morgan is

dependent variable, then the independent variables include 4 firm characteristics of JP

Morgan, 99 other firms’ returns and 7 macro state variables), and the rolling window size

is set to be n = 48 corresponding to one year’s weekly data. (We choose a small window

size for the stationarity of the data process, and our methodology allows to work with

the setting p > n. We acknowledge that by choosing a larger window size, and different

data frequencies, the results may vary. We leave it as a further research topic to study

what is an optimal window size and data frequency in this context. )

Figure 1 is an example of estimated VaR (the thinner red line) for J P Morgan (with

the SIC code 6020). In the second step a CoVaR based risk network is estimated by

applying the SIM with variable selection, see (20) in Appendix A. Figure 1 shows the

ĈoVaR
TENET

(the thicker blue line) of J P Morgan. Then the network analysis induced

by the ĈoVaR
TENET

is shown from Figure 2 to Figure 6. Recall that the adjacency matrix

of Table 1 is constructed from |D̂s
j|i| and |D̂s

i|j|. To aggregate the results over windows,

we take the component-wise sum of the absolute values of the adjacency matrices. With

the aggregation we will be able to understand the risk channels and the relative role of

each firm or each sector in the whole financial network.

For this propose, we define three levels of connectedness: the overall level, the group level

and the firm level connectedness. The overall level of risk is characterized by the total

connectedness of the system and the averaged value of the tuning parameter λ. The total

connectedness of links is defined as TCs = TCIN
s = TCOUT

s
def
=
∑k

i=1

∑k
j=1 |D̂s

j|i|, where

TCIN
s and TCOUT

s are the total incoming and outgoing links in this matrix respectively.

The solid line of Figure 2 shows the evolution of the total connectedness, and the dashed

line of Figure 2 shows the averaged λ values of the CoVaR estimations, where λ is the

estimated penalization parameter, see Appendix A.
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While at the beginning of 2008 there was lower connectedness and smaller averaged λ,

from the second quarter of 2008 both connectedness and averaged λ began to increase

sharply which corresponds to the bankruptcy of Bear Stearns and Lehman Brothers. As

the crisis was unfolding, the system became more heavily interconnected and reached

its peak at the beginning of 2009, the averaged λ stayed at peak level in the middle of

2009, which can be seen as the influence of the European sovereign debt crisis. Then the

downward trend dominated the whole market, and lasted until end of 2010, the financial

institutions were most least connected to each others in second quarter of 2011. From the

third quarter of 2011 the averaged λ began to increase and lasted until beginning of 2012

which can be attributed to the impact of the US debt-ceiling crisis in July 2011. Total

connectedness series increased again in second quarter of 2011. After the middle of 2012,

both the averaged λ and the total connectedness series decreased. Since the evolution of

averaged λ represents the variation of the systemic risk, Borke et al. (2015) propose a

Financial Risk Meter (FRM): http://sfb649.wiwi.hu-berlin.de/frm/index.html.

The group connectedness with respect to incoming links is defined as follows: GCIN
g,s

def
=∑k

i=1

∑
j∈g |D̂s

j|i|, where g = 1, 2, 3, 4 correspond to the four aforementioned industry

groups. The group connectedness with respect to outgoing links is defined as GCOUT
g,s

def
=∑

i∈g
∑k

j=1 |D̂s
j|i|. Figure 3 shows the incoming links for these four groups. The patterns

of these four groups are almost identical, i.e. there are more links during the end of

2008 and beginning of 2010, during the middle of 2011 and the end of 2012. Only for

group “others”, there are even more links between 2010 and 2012, this maybe because

the heterogeneity of this group: AXP (American Express Company) is a credit card com-

pany, JLL (Jones Lang LaSalle Incorporated), CBG (CBRE Group, Inc) and AVHI (AV

Homes, Inc.) are real estate firms, BEN (Franklin Resources, Inc.), IVZ (Invesco Plc)

and AMG (Affiliated Managers Group) are investment management companies, whereas

OCN (Ocwen Financial Corporation) and AGM (Federal Agricultural Mortgage Corpora-

tion) are mortgage loan companies. While the depositories group (solid line) received on

average more risk than the other three groups, the insurance companies (dashed line) are

less influenced by the financial crisis. This can be seen as evidence supporting the report

of Systemic Risk in Insurance – An analysis of insurance and financial stability published

by Geneva Association in 2010 stating that losses in the insurance industry have been

only a sixth of those at banks. In contrast to the incoming links the outgoing links in

Figure 4 are more volatile. It is not surprising that the depositories sector dominates the

others in the outgoing links, i.e. the bank group emits more risk to the system than the

other groups. Broker-dealers and others fluctuate very much in the whole period, but

they send out less risk compared with banks. And the insurers emit averagely less risk

over all periods than the other groups.

Next we turn to analyzing firm level interconnectedness. Firstly we focus on the direc-
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tional connectedness from firm i to the firm j which is defined as follows: DCs
j|i

def
= |D̂s

j|i|.
The network in Figure 5 shows one example of the firm level directional connectedness

on 12 June 2009 which was in the financial crisis. There are several links emitted from C

(Citigroup) and MS (Morgan Stanley). To make the major connections more clearly, we

apply a hard thresholding to omit the small values. That is, the values of absolute deriva-

tives smaller than the average of the 100 largest absolute partial derivatives are set to be

zeros. Figure 6 is the network after the thresholding. We see that there are several strong

connections, for example, in violet circle the link from JLL to CBG (as we stated before

they are both real estate companies, the connection induced by spillover effects seems

reasonable), and in blue circle from PRU (Principal Financial Group) to HIG (Hartford

Financial Services Group), note that they are both insurances. Moreover there are also a

couple of weak connections from MS (Morgan Stanley) to others. Furthermore, there are

a lot of mutual connections, big banks like BAC (Bank of America) and C (Citigroup) in

red circle, STT (State Street Corporation) and FITB (Fifth Third Bancorp) in red circle,

insurances: LNC (Lincoln National Corporation) and HIG (Hartford Financial Services

Group) in blue circle, different groups, e.g. MS (a broker dealer) and KEY (KeyCorp, a

big bank). We aggregate the directional connectedness by the sum of absolute value of

D̂s
j|i and D̂s

i|j over T = 266 windows. The results for individual firm can be found in Table

3. For WFC (Wells Fargo) the strong incoming links come from STI (SunTrust Banks),

C and BAC, the outgoing links go to USB (U.S. Bancorp), STI and CBSH (Commerce

Bancshares). We also see some pairs of mutual interacting firms, like BAC and C, AIG

(American International Group) and MS. We show the directional connection in τ = 0.95

case as well, the selected firms are mostly different from τ = 0.05 case, which shows that

our method can explain the asymmetric effects on the dependency structure at different

price levels. See Table 3 for more details. The ranking of the directional connectedness is

calculated by the sum of absolute value of D̂s
j|i over windows. The first two strongest mu-

tual connections are between JLL and CBG, between LNC and PFG (Principal Financial

Group), see Table 4. Secondly, the firm connectedness with respect to incoming links is

defined as FCIN
j,s =

∑k
i=1 |D̂s

j|i|. Finally, the firm connectedness with respect to outgoing

links is: FCOUT
j,s =

∑k
j=1 |D̂s

j|i|. From Table 5 and 6 we have the top 10 firms in terms of

incoming links and outgoing links respectively. The most connected firm with incoming

links is AGM (Federal Agricultural Mortgage Corporation) and the most connected firm

with outgoing links is LNC (Lincoln National Corporation) which is a multiple insurance

and investment management company. We have found out that among the top 10 IN-link

and OUT-link companies, there are several big firms, such as AIG (American Interna-

tional Group) and BAC (Bank of America Corporation) with IN-link, and C (Citigroup)

and MS (Morgan Stanley) with OUT-link. However, there are also firms with moderate

or small sizes e.g. AGM and HBAN (Huntington Bancshares Incorporated) with IN-link,
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and CLMS (Calamos Asset Management) and JNS (Janus Capital Group) with OUT-

link. This is connected with the Global Financial Stability Report (GFSR) of April 2009

which states that the crisis has shown that not only the banks but also other non-bank

financial intermediaries can be systemically important and their failure can cause desta-

bilizing effects. It also emphasizes that not only the largest financial institutions but

also the smaller but interconnected financial institutions are systemically important and

need to be regulated. “Too connected to fail” is an important issue. However, we see

that small firms tends to have more connections with small firms, such as AGM (market

cap $0.35 billion), which is with the largest sum of incoming links coming from GFIG

(market cap. $0.29 billion), LTS (market cap. $0.22 billion), NEWS (market cap.$0.62

billion), OPY (market cap.$0.21 billion) and HBAN (market cap. $5.2 billion). Despite

the heavy connections in the system, one would still not consider it as highly systemic

risk relevant. Therefore we try to account the three factors in the forthcoming systemic

risk analysis: (1) a firm is big enough, (2) a firm is highly connected with other firms,

(3) the connected firms are relative large in size. Therefore to identify the systemically

important financial institutions, we add a weight of market capitalization in the network.

In addition, based on our network analysis we have the following findings: (1) the con-

nections between institutions tend to increase before the financial crisis, (2) the network

is characterized by numerous heavy links at the peak of a crisis, (3) the connections be-

tween institutions reflected by the absolute value of partial derivatives get weaker as the

financial system stabilizes, (4) the incoming links are far less volatile than the outgoing

links. Whereas banks dominate both incoming and outgoing links, the insurers are less

affected by the financial crisis and exhibit less contribution in terms of risk transmission.

The broker-dealer and others are highly volatile with respect to the risk contribution.

(5) Several institutions with moderate or small sizes and also some non-bank institutions

have higher connectedness, as they are too connected firms. (6) “Too connected” is not

a sufficient condition to detect the importance of the firm. To identify the systemically

important financial institutions we need to find a measure which combines the concepts

“too connected to fail” and “too big to fail”.

While in the first part of step 2 we detect connectedness by applying sum of the absolute

derivatives, in the second part of step 2 we classify the risk clusters by using spectral

clustering. Figure 7 and 8 show the risk clusters in window starting on 6 June 2009 (dur-

ing subprime crisis) and 10 Aug 2012. For Figure 7, the biggest cluster with green color

includes some big banks, like WFC (Wells Fargo), JPM (J P Morgan), BAC (Bank of

America), C (Citigroup), USB (U.S. Bancorp), some insurances: PFG (Principal Finan-

cial Group) and CINF (Cincinnati Financial Corporation), broker-dealers: CME (CME

Group Inc.), SEIC (SEI Investments Company) and MKTX (MarketAxess Holdings),

and others like AXP (American Express Company) and IVZ (Invesco Plc). We see that

14



during crisis, WFC (Wells Fargo), JPM (J P Morgan) and C (Citigroup) are very fre-

quently classified into the same cluster. For Figure 8, we see that the clusters are more

widely spreading cross sectors.

In the third step we provide an exact systemic risk measure for each firm based on their

connectedness structure. We consider the market capitalization of each firm as well as

its connected firms with incoming or outgoing links, see equation (12) and (13). Ta-

ble 7 shows the ranking of the top 10 calculated Systemic Risk Receivers: JPM (J P

Morgan), C (Citigroup), WFC (Wells Fargo), BAC (Bank of America), AIG (American

International Group), GS (Goldman Sachs), USB (U.S. Bancorp), MS (Morgan Stanley),

AXP (American Express Company) and COF (Capital One Financial Corp.). As for the

Systemic Risk Emitters, the corresponding ranking is presented in Table 8. Although the

market capitalization of LNC and RF are moderate, they are still ranked in the top 10

largest systemic risk emitters list, as they have many strong outgoing links. Compared

with the result of global systemically important banks (G-SIBs) published by Financial

Stability Board 2012, six of our top ten systemic risk receivers appear in this report:

JPM (J P Morgan), C (Citigroup), WFC (Wells Fargo), BAC (Bank of America), GS

(Goldman Sachs), MS (Morgan Stanley), whereas four of our top ten systemic risk emit-

ters appear in this report: C (Citigroup), BAC (Bank of America), WFC (Wells Fargo &

Company) and MS (Morgan Stanley). Also we compare our result with the global sys-

temically important insurers (G-SIIs) published by the Financial Stability Board 2013,

AIG (American International Group) is present in their list. We also compare with the

list of all domestic systemically important banks (D-SIBs) in U.S. published by Board

of Governors of the Federal Reserve System 2013, USB (U.S. Bancorp), AXP (American

Express), COF (Capital One Financial Corp.), RF (Regions Financial Corp.) and STI

(SunTrust Banks, Inc.) are on that list. In total all our top 10 Systemic Risk Receivers

and 8 of our top 10 Systemic Risk Emitters are identified as systemically important fi-

nancial institutions. In this step, we could identify “too big as well as too connected”

firms which need to be well supervised and regulated.

3.3. Model Validation

3.3.1. Comparison with linear models

To evaluate the accuracy of the estimated VaR in the first step, we count the firms’ VaRs

violations, which is meant to be the situation when the stock losses exceed the estimated

VaRs. In Figure 1 there is no violation in the series of estimated VaR (thinner red line) for

J P Morgan. The average violation rate for 100 financial institutions is τ̂ = 0.0006, which

is much smaller than the nominal rate τ = 0.05. Since our observations are T = 266, most

15



of estimated VaRs do not have violation, the CaViaR test for VaR can not be performed.

In step 2 we apply the SIM with variable selection to calculate CoVaR. We also compare

our results with linear quantile LASSO models in this step to justify the necessity of

having a nonlinear model. The benchmark linear LASSO model is written as follows:

Xj,t = αj|Rj
+ βL>j|Rj

Rj,t + εj,t, (14)

ĈoVaR
L

j|R̃j ,t,τ
def
= α̂j|R̃j

+ β̂L>
j|R̃j

R̃j,t, (15)

where αj|Rj
is a constant term, Rj,t, X−j,t, Bj,t−1,V̂aR−j,t,τ and R̃j,t are defined in section

2.3. The parameters βLj|Rj

def
= {βLj|−j, βLj|M , βLj|Bj

}>, and β̂Lj|Rj

def
= {β̂Lj|−j, β̂Lj|M , β̂Lj|Bj

}>

which are estimated by using linear quantile regression with variable selection. Then

ĈoVaR
L

can be simply calculated.3

Recall that we denote our estimated CoVaR in step 2 as ĈoVaR
TENET

. Now we compare

the performance of ĈoVaR
TENET

and ĈoVaR
L
. In Figure 1 the thinner green line rep-

resents the ĈoVaR
L

of J P Morgan, there is 1 violation during the whole time period of

T = 266, whereas there are 4 violations in the estimated ĈoVaR
TENET

series in Figure

1 (thicker blue line). We apply the CaViaR test proposed by Berkowitz et al. (2011).

While the p-values of ĈoVaR
TENET

in overall period is 0.63, ĈoVaR
L

is only 0.37. Also

in crisis period (from 15 September 2008 to 26 February 2010) ĈoVaR
TENET

performs

better than ĈoVaR
L
, see Table 9 for more details.

Further, we examine the shape of the link functions in the crisis period as well as in the

period of relative financial stability. We find out that for almost all firms in a financial

crisis period, the link functions are in most of the windows, non-linear, while in a stable

period, the link functions tend to be more linear. Take the ĈoVaR
TENET

for J P Morgan

as an example. The left panel of Figure 9 displays the shape of the estimated link function

in one window in crisis time and its 95% confidence bands, see Carroll and Härdle (1989).

In a stable period one observes in some windows the shape of the link function as on

the right panel of Figure 9. It confirms Chao et al. (2015)’s results stating that the

nonlinear model performs better especially in a financial crisis period. We conclude the

outperformance of our method over the linear model conditional on the network effects.

3.3.2. Pre-Crisis analysis

In this part we would like to test whether our model can detect in advance financial firms

which had knock-on effects for the financial systems. We consider mainly five financial

firms: FNM (Fannie Mae), FRE (Freddie Mac), LEH (Lehman Brothers), MER (Merrill

3For simplicity we omit the subscript j|R̃j ,t,τ
in ĈoVaR

L

j|R̃j ,t,τ , and write ĈoVaR
L

.
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Lynch) and WB (Wachovia Corp.). The weekly historical returns of these firms are

available on the CRSP database. The above mentioned exercise has been carried out

again with these five firms (a total of 105 firms in this case). The time period is from 7

December 2007 to 12 September 2008 includes 41 estimates in moving windows. Firstly

we show the results from step 2, which checks the connectedness of these firms. Table

10 shows the ranking of total incoming links, where FRE receives most incoming links

from other firms, and FNM is ranked as the 4th. From the Table 11 it can be seen that

the firm with the strongest outgoing links is FNM. Moreover FRE is ranked as the third

one, and LEH is ranked in the 7th place. Table 12 presents the direct incoming links and

outgoing links in terms of other firms. Besides, FRE and FNM is the most connected

pair, they send risk to each other. FNM dominates the incoming link tables, which can

also be confirmed in Table 10. According to the selected variables in step 2, we perform

the methodology in step 3. Table 13 shows the ranking of the systemic risk receivers

according to our SRR values, where WB is third largest risk receiver, FRE is ranked as

the sixth, AIG, MER, FNM follow subsequently, and LEH is ranked as the 12th. The

systemic risk emitters according to our SRE values are presented in Table 14. We see

that FNM is the biggest risk emitter, WB is the third one, FRE and LEH are 4th and

5th risk transmitters and the ranking of MER is 8th. In summary, all these five firms

are identified as systemically important institutions which shows the validation of our

methodology. Finally, we compare our ranking of systemic risk emitters in Table 14 with

Hautsch et al. (2015) and Brownlees and Engle (2015). In the pre-crisis results of Hautsch

et al. (2015), they involve five firms in the case study, i.e. AIG, FNM, FRE, LEH and

MER. MER is not in their top ten list, whereas we did not identify AIG in our top ten

list. Compared with the pre-crisis results with Brownlees and Engle (2015), where the

firm Bear Stearns is also involved in their analysis. Their rankings of the aforementioned

five firms between 2007 and 2008 are very similar with ours.

4. Conclusion

In this paper we propose TENET based on a semiparametric quantile regression frame-

work to assess the systemic importance of financial institutions conditional to their market

capitalization and interconnectedness in tails. The semiparametric model allows for more

flexible modeling of the relationship between the variables. This is especially justified in

a (ultra) high-dimensional setting when the assumption of linearity is not likely to hold.

In order to face these challenges statistically we estimate a SIM in a generalized quantile

regression framework while simultaneously performing variable selection. (Ultra) high

dimensional setting allows us to include more variables into the analysis.

Our empirical results show that there is growing interconnectedness during the period of
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a financial crisis, and a network-based measure reflecting the connectivity. Moreover, by

including more variables into the analysis we can investigate the overall performance of

different financial sectors, depositories, insurance, broker-dealers, and others. Estimation

results show a relatively high connectivity of depository industry in the financial crisis.

We also observe strong non-linear relationships between the variables, especially, in the

period of relative financial instability. The Systemic Risk Receivers and Systemic Risk

Emitters can be simply identified based on their connectedness structure and market

capitalization. We conclude that both the largest systemic risk receivers and the largest

systemic risk emitters are systemically important.
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5. Appendix A: Statistical Methodology

Let us denote Xt ∈ Rp as p dimensional variables Rj,t in (9), p can be very large, namely

of an exponential rate. We also drop the subscripts of the coefficients βj|Rj
, as we focus

on one regression. The SIM of (9) is then rewritten as:

Yt = g(X>t β
∗) + εt, (16)

where {Xt, εt} are strong mixing processes, g(·): R1 → R1 is an unknown smooth link

function, β∗ is the vector of index parameters. Regressors Xt can be the lagged variables

of Yt. For the identification, we assume that ‖β∗‖2 = 1, and the first component of β∗ is

positive. We assume that there are q non-zero components in β∗.

Note that (16) can be formulated in a location model and identified in a quasi maximum

likelihood framework: the direction β∗ (for known g(·)) is the solution of

min
β

E ρτ{Yt − g(X>t β)}, (17)

with loss function

ρτ (u) = τu1(u > 0) + (1− τ)u1(u < 0), (18)

E[ψτ{Yt − g(X>t β
∗)}|Xt] = 0 a.s.

where ψτ (·) is the derivative (a subgradient) of ρτ (·) . It can be reformulated as F−1εt|Xt
(τ) =

0.

The model is similar to the location scale model considered in Franke et al. (2014). Note

that it may be extended to a quantile AR-ARCH type of single index model,

Yt = g(X>t β
∗) + σ(X>t γ

∗)εt (19)

To estimate the shape of a link function g(·) and β∗, we adopt minimum average con-

trast estimation approach (MACE) with penalization outlined in Fan et al. (2013). The

estimation of β∗ and g(·) is as follows:
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β̂τ , ĝ(·) def
= arg min

β,g(·)
−Ln(β, g(·))

= arg min
β,g(·)

n−1
n∑
j=1

n∑
t=1

ρτ
{
Xt − g(β>Xj)− g′(β>Xj)X

>
tjβ
}
ωtj(β)

+

p∑
l=1

γλ(|βl|), (20)

where ωtj(β)
def
=

Kh(X
>
tjβ)∑n

t=1Kh(X>tjβ)
, Kh(·) = h−1K(·/h), K(·) is a kernel e.g. Gaussian

kernel, h is a bandwidth and Ln(β, g(·)) is defined as −n−1
n∑
j=1

n∑
t=1

ρτ
{
Xt − g(β>Xj) −

g′(β>Xj)X
>
tjβ
}
ωtj(β) +

∑p
l=1 γλ(|βl|). Since the data is not equally spaced we choose a

bandwidth h based on k-nearest neighbour procedure (See Härdle et al. (2004) and Carroll

and Härdle (1989)). The optimal k, number of neighbours, are selected based on a cross-

validation criterion. The implementation involves an iteration between estimating β∗ and

g(·), with a consistent initial estimate for β∗, Wu et al. (2010). Xtj = Xt − Xj, θ ≥ 0,

and γλ(t) is some non-decreasing function concave for t ∈ [0,+∞) with a continuous

derivative on (0,+∞). Please note that this MACE functional (with respect to g(·))
(20) is in fact only a finite dimensional optimization problem since the minimum over

g(·) is to be determined at aj = g(β>Xj), bj = g′(β>Xj). There are several approaches

for the choice of the penalty function. These approaches can be classified based on the

properties desired for an optimal penalty function, namely, unbiasedness, sparsity and

continuity. The L1 penalty approach known as least absolute shrinkage and selection

operator (LASSO) is proposed for mean regression by Tibshirani (1996). Numerous

studies further adapt LASSO to a quantile regression framework, Yu et al. (2003), Li and

Zhu (2008), Belloni and Chernozhukov (2011), among others. While achieving sparsity

the L1-norm penalty tends to over-penalize the large coefficients as the LASSO penalty

increases linearly in the magnitude of its argument, and, thus, may introduce bias to

estimation. As a remedy to this problem the adaptive LASSO estimation procedure was

proposed (Zou (2006); Zheng et al. (2013)). Another approach to alleviate the LASSO

bias was proposed by Fan and Li (2001) known as Smoothly Clipped Absolute Deviation

(SCAD):

γλ(t) =


λ|t| for |t| ≤ λ,

−(t2 − 2aλ|t|+ λ2)/2(a− 1) for λ < |t| ≤ aλ,

(a+ 1)λ2/2 for |t| > aλ,

where λ > 0 and a > 2. Note that for λ =∞, this is exactly LASSO.
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As for selecting λ, there are two common ways: data-driven generalized cross-validation

criterion (GCV) and likelihood-based Schwartz, or Bayesian information criterion-type

criteria (SIC, or BIC), Schwarz (1978); Koenker et al. (1994), and their further modifi-

cations. The most commonly used criterion is GCV, however, it has been shown that it

leads to an overfitted model. Therefore, we employ a modified BIC-type model selection

criteria proposed by Wang et al. (2007) and use GCV criterion only to verify whether

GCV and BIC diverge significantly. We need to introduce some more notation to present

our theoretical results.

Define β̂τ
def
= (β̂>τ(1), β̂

>
τ(2))

> as the estimator for β∗
def
= (β∗>(1) , β

∗>
(2))
> attained by the loss

in (20). Here β̂τ(1) and β̂τ(2) refer to the first q components and the remaining p − q

components of β̂τ respectively. The same notional logic applies to β∗. For Xt, X(1)t

corresponds to β∗>(1) and X(0)t corresponds to β∗>(2) . If in the iterations, we have the initial

estimator β̂
(0)
(1) as a

√
n/q consistent one for β∗(1) , we will obtain, with a very high

probability, an oracle estimator of the following type, say β̃τ = (β̃>τ(1),0
>)>, since the

oracle knows the true model M∗
def
= {l : β∗l 6= 0}. The following theorem shows that the

penalized estimator enjoys the oracle property. Define β̂0 ∈ Rp as the minimizer with the

same loss in (20) but within subspace {β ∈ Rp : βMc
∗ = 0}.

With all the above definitions and conditions, see Appendix, we present the following

theorems.

THEOREM 5.1. Under Conditions 1-7, the estimators β̂0 and β̂τ exist and coincide

on a set with probability tending to 1. Moreover,

P(β̂0 = β̂τ ) ≥ 1− (p− q) exp(−C ′nα) (21)

for a positive constant C ′, where β̂0 is the “ideal” estimator with non-zero elements

correctly specified.

This theorem implies the sign consistency.

THEOREM 5.2. Under Conditions 1-7, we have

‖β̂τ(1) − β∗(1)‖ = Op{(Dn + n−1/2)
√
q} (22)

For any unit vector b in Rq, we have

b>C
1/2
0(1)C

−1/2
1(1) C

1/2
0(1)

√
n(β̂τ(1) − β∗(1))

L−→ N(0, 1) (23)

where C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g′(Zt)]2[E(X(1)t|Zt) − X(1)t][E(X(1)t|Zt) − X(1)t]
>}, and

C0(1)
def
= E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(X(1)t|Zt) − X(1)t)(E(X(1)t|Zt) − X(1)t)}>. Note that
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E(X(1)t|Zt) denotes a p× 1 vector, and Zt
def
= X>t β

∗, ψτ (εt) is a choice of the subgradient

of ρτ (εt) and

σ2
τ

def
= E[ψτ (εt)]

2/[∂ Eψτ (εt)]
2, where

∂ Eψτ (·)|Zt =
∂ Eψτ (εt − v)2|Zt

∂v2

∣∣∣
v=0

. (24)

Let us now look at the distribution of ĝ(·) and ĝ′(·), estimators of g(·), g′(·).

THEOREM 5.3. Under Conditions 1-7, for any interior point z = x>β∗, fZ(z) is the

density of Zt, t = 1, . . . , n, if nh3 →∞ and h→ 0, we have

√
nh
√
fZ(z)/(ν0σ2

τ )

{
ĝ(x>β̂)− g(x>β∗)− 1

2
h2g′′(x>β∗)µ2∂ Eψτ

(
εt
)} L−→ N (0, 1) ,

Also, we have

√
nh3
√
{fZ(z)µ2

2}/(ν2σ2
τ )
{
ĝ′(x>β̂)− g′(x>β∗)

}
L−→ N (0, 1) .

The dependence doesn’t have any impact on the rate of the convergence of our non-

parametric link function. As the degree of the dependence is measured by the mixing

coefficient, it is weak enough such that Condition 7 is satisfied. In fact we assume an

exponential decaying rate here, which implies the (A.4) in Kong et al. (2010).

6. Appendix B: Proof

Condition 1. The kernel K(·) is a continuous symmetric function. The link function

g(·) ∈ C2, let µj
def
=
∫
ujK(u)du and νj

def
=
∫
ujK2(u)du, j = 0, 1, 2.

Condition 2. The derivative (or a subgradient) of ρτ (x), satisfies Eψτ (εt) = 0 and

inf |v|≤c ∂ Eψτ (εt − v) = C1 where ∂ Eψτ (εt − v) is the partial derivative with respect

to v, and C1 is a constant.

Condition 3. The density fZ(z) of Zt = β∗>Xt is bounded with bounded absolute con-

tinuous first-order derivatives on its support. Assume E{ψτ (εt|Xt)} = 0 a.s., which

means for a quantile loss we have F−1εt|Xt
(τ) = 0. Let X(1)t denote the sub-vector of

Xt consisting of its first q elements. Let Zt
def
= X>t β

∗ and Ztj
def
= Zt − Zj . Define

C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g′(Zt)]2[E(X(1)t|Zt) − X(1)t][E(X(1)t|Zt) − X(1)t]
>}, and C0(1)

def
=

E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(X(1)t|Zt)−X(1)t)(E(X(1)t|Zt)−X(1)t)}>, and the matrix C1(1)

satisfies 0 < L1 ≤ λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 <∞ for positive constants L1 and L2.

A constant c0 > 0 exists such that
∑n

t=1{‖X(1)t‖/
√
n}2+c0 → 0, with 0 < c0 < 1.

vtj
def
= Yt − aj − bjX

>
tjβ. Also, a constant C3 exists such that for all β close to β∗
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(‖β − β∗‖ ≤ C3), let X(1)tj denote the subvector of Xtj consisting of its first q compo-

nents, X(0)tj denote the subvector of Xtj consisting of its first p− q components:

‖
∑
t

∑
j

X(0)tjωtjX
>
(1)tj∂ Eψτ (vtj)‖2,∞ = Op(n1−α1).

Condition 4. The penalty parameter λ is chosen such that λ = O(n−1/2), with Dn
def
=

max{dl : l ∈ M∗} = O(nα1−α2/2λ) = O(n−1/2), dl
def
= γλ(|β∗l |), M∗ = {l : β∗l 6= 0} be

the true model. Furthermore assume qh→ 0 and h−1
√
q/n = O(1) as n goes to infinity,

q = O(nα2), p = O{exp(nδ)}, nh3 → ∞ and h → 0. Also, 0 < δ < α < α2/2 < 1/2,

α2/2 < α1 < 1.

Condition 5. The error term εt satisfies Var(εt) < ∞. Assume that for any integer

m = 1, · · · ,∞

sup
t

E
∣∣ψmτ (εt)/m!

∣∣ ≤ s0M
m

sup
t

E
∣∣ψmτ (xtj)/m!

∣∣ ≤ s0M
m

where s0 and M are constants, and ψτ (·) is the derivative (a subgradient) of ρτ (·).

Condition 6. The conditional density function f(εt|Zt = z) is bounded and absolutely

continuously differentiable.

Conditions 7. {Xtj, εt}t=∞t=−∞ is a strong mixing process for any j. Moreover, let m1 and

m2 be constants, positive constants cm1 and cm2 exists such that the α−mixing coefficient

for every j ∈ {1, · · · , p},
α(l) ≤ exp(−cm1l

cm2), (25)

where cm2 > 2α.

Recall (20) and β̂0 as the minimizer with the loss

L̃n(β)
def
=

n∑
j=1

n∑
t=1

ρτ
(
Yt − a∗j − b∗jX>tjβ

)
ωtj(β

∗) + n

p∑
l=1

dl|βl|,

but within the subspace {β ∈ Rp : βMc
∗ = 0}, and a∗j = g(β∗>Xj), b

∗
j = g′(β∗>Xj). The

following lemma assures the consistency of β̂0,

LEMMA 6.1. Under Conditions 1-7, recall dj = γλ
(
|β∗j |
)
, we have that

‖β̂0 − β∗‖ = Op
(√

q/n+ ‖d(1)‖
)

(26)

where d(1) is the subvector of d = (d1, · · · , dp)> which contains q elements corresponding

to the non-zero β∗(1).
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PROOF. Note that the last p− q elements of both β̂0 and β∗ are zero, so it is sufficient

to prove ‖β̂0
(1) − β∗(1)‖ = Op

(√
q/n+ ‖d(1)‖

)
.

Following Fan et al. (2013), it is not hard to prove that for γn = O(1):

P

[
inf
‖u‖=1

{
L̃n(β∗(1) + γnu, 0) > L̃n(β∗)

}]
→ 1.

Then a minimizer inside the ball exists {β(1) : ‖β(1) − β∗(1)‖ ≤ γn}. Construct γn → 0

so that for a sufficiently large constant B0: γn > B0 ·
(√

q/n + ‖d(1)‖
)
. Then by the

local convexity of L̃n(β(1),0) near β∗(1), a unique minimizer exists inside the ball {β(1) :

‖β(1) − β∗(1)‖ ≤ γn} with probability tending to 1.

Recall that Xt = (X(1)t, X(0)t) and M∗ = {1, . . . , q} is the set of indices at which β are

non-zero.

Lemma 1 shows the consistency of β̂0, and we need to show further that β̂0 is the unique

minimizer in Rp on a set with probability tending to 1.

LEMMA 6.2. Under conditions 1-7, minimizing the loss function L̃n(β) has a unique

global minimizer β̂τ = (β̂>τ(1), β̂
>
τ(2))

> = (β̂>τ(1),0
>)>, if and only if on a set with probability

tending to 1,

n∑
j=1

n∑
t=1

ψτ
(
Yt − âj − b̂jX>tj β̂τ

)
b̂jX(1)tjωtj(β

∗) + nd(1) ◦ sign(β̂τ ) = 0 (27)

‖z(β̂τ )‖∞ ≤ n, (28)

where

z(β̂τ )
def
= d−1(0) ◦

{ n∑
j=1

n∑
t=1

b∗jψτ
(
Yt − a∗j − b∗jX>tj β̂τ

)
X(0)tjωtj(β̂τ )

}
(29)

where ◦ stands for multiplication element-wise.

PROOF. According to the definition of β̂τ , it is clear that β̂(1) already satisfies condition

(27). Therefore we only need to verify condition (28). To prove (28), a bound for

n∑
i=1

n∑
i=1

b∗jψτ
(
Yi − a∗j − b∗jX>ijβ∗

)
ωijX(0)ij (30)

is needed, note that to be consistent with notations for U− statistics we use j instead of

t within this proof. Define the following kernel function

hd(Xi, a
∗
j , b
∗
j , Yi, Xj, a

∗
i , b
∗
i , Yj)

=
n

2

{
b∗jψτ

(
Yi − a∗j − b∗jX>ijβ∗

)
ωijX(0)ij + b∗iψτ

(
Yj − a∗i − b∗iX>ijβ∗

)
ωjiX(0)ji

}
d

,
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where {.}d denotes the dth element of a vector, d = 1, . . . , p− q.

According to Borisov and Volodko (2009), based on Condition 5:

Define Un,d
def
= 1

n(n−1)
∑

1≤i<j≤n hd(Xi, a
∗
j , b
∗
j , Yi, Xj, a

∗
i , b
∗
i , Yj) as the U− statistics for (30).

We have, with sufficient large cm2 in Condition 7.

P{|Un,d − EUn,d| > ε} ≤ cm3 exp(cm5ε/(cm3 + cm4ε
1/2n−1/2))

where cm3, cm4, cm5 are constants. Moreover, let ε = O(n1/2+α) and m6 be a constant, as

α < 1/2, we can further have,

P({|Un,d − EUn,d| > ε}) ≤ cm3 exp(−cm6ε/2),

Define

Fn,d
def
= (n)−1

n∑
i=1

n∑
j=1

bjψτ
(
Yi − a∗j − b∗jX>ijβ∗

)
ωijX(0)ij,

also it is not hard to derive that Un,d = Fn,dn/(n− 1).

It then follows that

P(|Fn,d − EFn,d| > ε) = P(|Un,d − EUn,d|(n− 1)/n > ε)

≤ 2 exp
(
−Cnα+1/2

)
Define An = {‖Fn − EFn‖∞ ≤ ε}, thus

P(An) ≥ 1−
p−q∑
d=1

P(|Fn,d − EFn,d| > ε) ≥ 1− 2(p− q) exp
(
−Cnα+1/2

)
.

Finally we get that on the set An,

‖z(β̂0)‖∞ ≤ ‖d−1Mc
∗
◦ Fn‖∞ + ‖d−1Mc

∗
◦

n∑
i=1

n∑
j=1

bj
[
ψτ
(
Yt − a∗j − b∗jX>ij β̂0

)
−ψτ

(
Yt − a∗j − b∗jX>ijβ∗

)]
ωijX(0)ij‖∞

≤ O(n1/2+α/λ+ ‖d−1Mc
∗
◦

n∑
i=1

n∑
j=1

∂ Eψτ (vij)bjX
>
(1)ij(β̂(1) − β∗(1))ωtjX(0)ij‖∞),

where vij is between Yi − a∗j − b∗jX>ijβ∗ and Yi − a∗j − b∗jX>ij β̂0. From Lemma 1,

‖β̂0 − β∗(1)‖2 = Op
(
‖d(1)‖+

√
q/
√
n
)
.

Choosing ‖
∑

i

∑
j X(0)ijωijX

>
(1)ij∂ Eψτ (vij)‖2,∞ = Op(n1−α1), q = O(nα2), λ = O(

√
q/n) =
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n−1/2+α2/2, 0 < α2 < 1, ‖d(1)‖ = O(
√
qDn) = O(nα2/2Dn)

n−1‖z(β̂0)‖∞ = O{n−1λ−1(n1/2+α + n1−α1
√
q/
√
n+ ‖d(1)‖n1−α1)}

= O(n−α2/2+α + n−α1 + n−α1+α2/2Dn/λ),

conditions 4 ensures Dn = O(nα1−α2/2λ), and let 0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1,

with rate p = O{exp(nδ)}, then (n)−1‖z(β̂0)‖∞ = Op(1).

Proof of Theorem 1 . The results follows from Lemma 1 and 2.

Proof of Theorem 2. By Theorem 1, β̂τ(1) = β(1) almost surely. It then follows from

Lemma 2 that

‖β̂τ(1) − β∗(1)‖ = Op{(Dn + n−1/2)
√
q}.

This completes the first part of the theorem. The other part of proof follows largely from

Fan et al. (2013).
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Figure 1: log return of J P Morgan (black points), V̂aR (thinner red line), ĈoVaR
TENET

(thicker blue

line), and ĈoVaR
L

(thinner green line) for J P Morgan, τ = 0.05, window size n = 48, T = 266.
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Figure 2: Total connectedness (solid blue line) and average lambda (dashed black line) of 100 financial
institutions from 20071207 to 20130105, τ = 0.05, window size n = 48, T = 266.
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Figure 3: Incoming links for four industry groups. Depositories: solid red line, Insurances: dashed
blue line, Broker-Dealers: dotted green line, Others: dash-dot violet line. τ = 0.05, window size n = 48,
T = 266.
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Figure 4: Outgoing links for four industry groups. Depositories: solid red line, Insurances: dashed
blue line, Broker-Dealers: dotted green line, Others: dash-dot violet line. τ = 0.05, window size n = 48,
T = 266.
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Figure 5: A circular network representation of a weighted adjacency matrix without the thresholding.
Depositories: clockwise 25 firms from WFC to SBNY (upper red), Insurance: clockwise 25 firms from
AIG to HCC (right blue), Broker-Dealers: clockwise 25 firms from GS to CLMS (lower green), Others:
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Figure 6: A circular network representation of a weighted adjacency matrix after the thresholding
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clockwise 25 firms from WFC to SBNY (upper red), Insurance: clockwise 25 firms from AIG to HCC
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Rank From Ticker To Ticker Sum

1 JLL (Jones Lang LaSalle) CBG (CBRE Group) 140.39

2 CBG (CBRE Group) JLL (Jones Lang LaSalle ) 116.86

3 LNC (Lincoln National Corp.) PFG (Principal Financial Group) 96.78

4 PFG (Principal Financial Group) LNC (Lincoln National Corp.) 90.43

5 C (Citigroup) AIG (American International Group) 82.03

6 JNS (Janus Capital Group) WDR (Waddell & Reed Financial) 65.75

7 RF (Regions Financial) HBAN (Huntington Bancshares) 60.86

8 STI (SunTrust Banks) FITB (Fifth Third Bancorp.) 57.95

9 LNC (Lincoln National Corp.) MET (MetLife) 57.35

10 MS (Morgan Stanley) GS (Goldman Sachs Group) 55.98

Table 4: Top 10 directional connectedness from one financial institution to another. The ranking is
calculated by the sum of absolute value of the partial derivatives, τ = 0.05, window size n = 48, T = 266.

Rank Ticker of IN IN-Sum Rank of MC (Value)

1 AGM (Federal Agricultural Mortgage) 235.55 89 (3.52E+08)

2 AIG (American International Group) 230.46 8 (4.82E+10)

3 HIG (Hartford Financial Services Group) 225.46 37 (9.24E+09)

4 CBG (CBRE Group) 221.86 32 (1.28E+10)

5 FITB (Fifth Third Bancorp) 202.00 30 (1.31E+10)

6 STI (SunTrust Banks) 199.85 29 (1.44E+10)

7 HBAN (Huntington Bancshares) 196.29 51 (5.23E+09)

8 BAC (Bank of America Corp.) 192.11 3 (1.05E+11)

9 C (Citigroup) 191.50 3 (1.05E+11)

10 LNC (Lincoln National Corp.) 189.59 43 (6.67E+09)

Table 5: Top 10 financial institutions ranked according to Incoming links calculated by the sum of
absolute value of the partial derivatives, and the rank of market capitalization (MC) in this 100 financial
institutions list in 2012 is also shown in this table, τ = 0.05, window size n = 48, T = 266.
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Rank Ticker of OUT OUT-Sum Rank of MC (Value)

1 LNC (Lincoln National Corp.) 1129.38 43 (6.67E+09)

2 C (Citigroup) 1097.93 3 (1.05E+11)

3 MS (Morgan Stanley) 626.12 37 (9.24E+09)

4 CBG (CBRE Group) 597.83 32 (1.28E+10)

5 RF (Regions Financial) 568.71 36 (9.30E+09)

6 JNS (Janus Capital Group) 558.06 76 (1.57E+09)

7 CLMS (Calamos Asset Management) 514.80 99 (1.94E+08)

8 HIG (Hartford Financial Services Group) 499.04 37 (9.24E+09)

9 ZION (Zions Bancorp.) 472.18 63 (3.72E+09)

10 AGM (Federal Agricultural Mortgage) 349.11 90 (3.52E+08)

Table 6: Top 10 financial institutions ranked according to Outgoing links calculated by the sum of
absolute value of the partial derivatives, and the rank of market capitalization (MC) in this 100 financial
institutions list in 2012 is also shown in this table, τ = 0.05, window size n = 48, T = 266.

Rank Ticker SRR Rank of MC (Value)

1 JPM (J P Morgan Chase & Co) 4.63E+21 2 (1.55E+11)

2 C (Citigroup) 3.13E+21 3 (1.05E+11)

3 WFC (Wells Fargo & Company) 3.03E+21 1 (1.75E+11)

4 BAC (Bank of America) 2.90E+21 3 (1.05E+11)

5 AIG (American International Group) 1.15E+21 8 (4.82E+10)

6 GS (Goldman Sachs Group) 1.00E+21 8 (5.53E+10)

7 USB (U.S. Bancorp) 8.57E+20 6 (6.03E+10)

8 MS (Morgan Stanley) 8.29E+20 12 (3.21E+10)

9 AXP (American Express Company) 7.71E+20 5 (6.26E+10)

10 COF (Capital One Financial Corp.) 6.64E+20 10 (3.39E+10)

Table 7: Top 10 financial institutions ranked according to the index of Systemic Risk Receiver (SRR),
the rank of market capitalization (MC) and their values (in brackets) of this 100 financial institutions in
2012 are also shown in this table.
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Rank Ticker SRE Rank of MC (Value)

1 C (Citigroup) 1.18E+22 3 (1.05E+11)

2 BAC (Bank of America) 3.89E+21 3 (1.05E+11)

3 MS (Morgan Stanley) 2.11E+21 12 (3.21E+10)

4 WFC (Wells Fargo & Company) 1.37E+21 1 (1.75E+11)

5 AIG (American International Group) 7.01E+20 8 (4.82E+10)

6 COF (Capital One Financial Corp.) 6.18E+20 10 (3.39E+10)

7 LNC (Lincoln National Corp.) 5.10E+20 43 (6.67E+09)

8 RF (Regions Financial Corp.) 4.10E+20 36 (9.30E+09)

9 STI (SunTrust Banks, Inc.) 4.03E+20 29 (1.44E+10)

10 CBG (CBRE Group, Inc.) 3.73E+20 32 (1.28E+10)

Table 8: Top 10 financial institutions ranked according to the index of Systemic Risk Emitter (SRE),
the rank of market capitalization (MC) and their values (in brackets) of this 100 financial institutions in
2012 are also shown in this table.

Average p-value of CaViaR test ĈoVaR
TENET

ĈoVaR
L

The overall period 0.63(0.33) 0.37(0.41)

The crisis Period 0.72(0.24) 0.51(0.42)

Table 9: The average p-values of CaViaR test in overall and crisis periods for ĈoVaR
TENET

, and the

ĈoVaR
L

, the standard deviations are given in the brackets.
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Figure 9: Left: the estimated link function (ĈoVaR
TENET

of J P Morgan) (solid line) with h = 0.05,
and the estimated index (points), time period: 20081003-20090828. Right: the estimated link function

(ĈoVaR
TENET

of J P Morgan) (solid line) with h = 0.03, and estimated the index (points), time period:
20100604-20110506. τ = 0.05, window size n = 48, 95% confidence bands (dashed lines).

Rank Ticker of IN IN-Sum Value of MC

1 FRE (Freddie Mac) 43.95 2.20E+10

2 OCN (Ocwen Financial Corp.) 40.12 3.87E+08

3 NDAQ (The NASDAQ OMX Group) 39.54 6.69E+09

4 FNM (Fannie Mae) 34.07 3.80E+10

5 CACC (Credit Acceptance Corp.) 32.97 5.39E+08

6 KEY (KeyCorp) 32.49 7.98E+09

7 EV (Eaton Vance Corp.) 30.58 3.73E+09

8 PRAA (Portfolio Recovery Associates) 30.07 5.92E+08

9 HBAN (Huntington Bancshares) 29.92 3.36E+09

10 PJC (Piper Jaffray Companies) 29.66 5.75E+08

Table 10: Pre-Crisis analysis. Top 10 financial institutions ranked according to Incoming links calcu-
lated by the sum of absolute value of the partial derivatives, the values of market capitalization (MC) in
2008 are also shown in this table, τ = 0.05, window size n = 48, T = 41.
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Rank Ticker of OUT OUT-Sum Value of MC

1 FNM (Fannie Mae) 252.43 3.80E+10

2 CBG (CBRE Group, Inc.) 157.93 4.04E+09

3 FRE (Freddie Mac) 144.44 2.20E+10

4 WRLD (World Acceptance Corp.) 89.05 5.11E+08

5 CLMS (Calamos Asset Management) 81.13 3.79E+08

6 NEWS (NewStar Financial) 80.71 2.91E+08

7 LEH (Lehman Brothers) 75.73 3.50E+10

8 NNI (Nelnet, Inc.) 70.79 6.03E+08

9 PRAA (Portfolio Recovery Associates) 69.84 5.93E+08

10 C (Citigroup) 68.79 1.03E+11

Table 11: Pre-Crisis analysis. Top 10 financial institutions ranked according to Outgoing links calcu-
lated by the sum of absolute value of the partial derivatives, the values of market capitalization (MC) in
2008 are also shown in this table, τ = 0.05, window size n = 48, T = 41.

Rank Ticker Received link from Transmitted link to

1 FRE (Freddie Mac) FNM, NS, OCN FNM, FNF, SEIC

2 FNM(Fannie Mae) FRE, CBG, HBAN FRE, LEH, WB

3 LEH (Lehman Brothers) FNM, WRLD, PJC AGM, PJC, KEY

4 MER (Merrill Lynch) FNM, LEH, NEWS AVHI, JPM, MS

5 WB (Wachovia Corp.) FNM, C, CMA CMA, BEN, C

Table 12: Pre-Crisis analysis. The five defaulted firms are ranked randomly, the received links from
other firms and transmitted links to other firms are shown correspondingly. Note that only the first three
most influential firms are listed for each ticker, τ = 0.05, n = 48, T = 41.
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Rank Ticker Value of SRR Value of MC

1 WFC (Wells Fargo & Company) 8.47E+22 1.24E+11

2 C (Citigroup) 8.01E+22 1.03E+11

3 WB (Wachovia Corp.) 6.61E+22 7.30E+10

4 JPM (J P Morgan Chase & Co) 5.26E+22 1.48E+11

5 BAC (Bank of America) 4.20E+22 1.54E+11

6 FRE (Freddie Mac) 3.67E+22 2.20E+10

7 AIG (American International Group) 3.58E+22 3.71E+09

8 MER (Merrill Lynch) 2.81E+22 6.40E+10

9 FNM (Fannie Mae) 2.74E+22 3.80E+10

10 AXP (American Express Company) 2.60E+22 1.79E+10

11 GS (Goldman Sachs Group) 2.41E+22 6.73E+10

12 LEH (Lehman Brothers) 1.80E+22 3.50E+10

Table 13: Pre-Crisis analysis. Top 12 financial institutions ranked according to the index of Systemic
Risk Receiver, the values of market capitalization (MC) in 2008 are also shown in this table.

Rank Ticker Value of SRE Value of MC

1 FNM (Fannie Mae) 2.61E+23 3.80E+10

2 C (Citigroup) 1.29E+23 1.03E+11

3 WB (Wachovia Corp.) 9.68E+22 7.30E+10

4 FRE (Freddie Mac) 8.97E+22 2.20E+10

5 LEH (Lehman Brothers) 5.71E+22 3.50E+10

6 CBG (CBRE Group, Inc.) 3.40E+22 4.04E+09

7 COF (Capital One Financial Corp.) 2.85E+20 1.69E+10

8 MER (Merrill Lynch) 2.32E+22 6.40E+10

9 RF (Regions Financial Corp.) 7.37E+21 1.04E+10

10 CMA (Comerica Inc.) 5.29E+21 4.79E+09

Table 14: Pre-Crisis analysis. Top 10 financial institutions ranked according to the index of Systemic
Risk Emitter, the values of market capitalization (MC) in 2008 are also shown in this table.
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