
              

City, University of London Institutional Repository

Citation: Asif, W. (2016). Critical Node Identifcation for accessing network vulnerability, a 

necessary consideration. (Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/16398/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Critical Node Identification for Accessing
Network Vulnerability, A Necessary

Consideration

By
Waqar Asif
120050615

Supervisors
Dr. Muttukrishnan Rajarajan

Dr. Marios Lestas
Dr. Hassaan Khaliq Qureshi

Dr. Veselin Rakocevic

A THESIS SUBMITTED TO THE SCHOOL OF ENGINEERING AND
MATHEMATICAL SCIENCES, CITY, UNIVERSITY OF LONDON IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

(Oct 2016)



City, University of London 
Northampton Square 

  London 
EC1V 0HB 

United Kingdom 
 

 T +44 (0)20 7040 5060 

www.city.ac.uk                                                                                                      Academic excellence for business and the professions 

 
 
 
 
 

THE FOLLOWING CHAPTERS HAVE BEEN PUBLISHED AND HAVE 
BEEN REMOVED FROM THIS THESIS FOR COPYRIGHT REASONS: 
 
pp. 31-37:   Chapter 3. APL. 
Published as:  Asif, W., Qureshi, H.K., Iqbal, A. & Rajarajan, M. (2014) 
"On the Complexity of Average Path Length for Biological Networks and 
Patterns", International Journal of Biomathematics, 7(4). 
doi: 10.1142/S1793524514500387 
 
pp. 39-73: Chapter 4. VRAM. 
Published as: Fiaz, M.,  Yousaf, R., Hanif, M.,  Asif, W.  Qureshi, H.K. & 
Rajarajan, M. (2014), "Adding the Reliability on Tree Based Topology 
Construction Algorithms for Wireless Sensor Networks", Wireless 
Personal Communication, 74 (2), pp 989-1004.  
doi: 10.1007/s11277-013-1334-2 
 
Asif, W , Qureshi, H.K. &  Rajarajan, M.(2013)  "Variable Rate Adaptive 
Modulation (VRAM) for introducing Small-World model into WSNs,"  47th 
Annual Conference on Information Sciences and Systems (CISS), pp.1-
6.  doi: 10.1109/CISS.2013.6552329  
 
pp. 75-112:  Chapter 5. CBDI. 
Published as: Asif, W., Qureshi, H.K., Rajarajan, M. & Lestas, M. 
(2016) "Combined Banzhaf & Diversity Index (CBDI) for critical node 
detection." Journal of Network and Computer Applications 64,  76-88. 
doi: 10.1016/j.jnca.2015.11.025 
 
pp. 114-155: Chapter 6. Optimization based spectral partitioning for 
node criticality assessment. 
Published as: Asif, W., Lestas, M,.  Quereshi, H.K. &  Rajarajan, M. 
(2016)"Optimization Based Spectral Partitioning for Node Criticality 
Assessment", Journal of Network and Computer Applications 75, 279-
292.  
doi: 10.1016/j.jnca.2016.09.003 

 
 
 
 

http://dx.doi.org/10.1142/S1793524514500387
http://dx.doi.org/10.1007/s11277-013-1334-2
https://doi.org/10.1109/CISS.2013.6552329
http://dx.doi.org/10.1016/j.jnca.2015.11.025
http://dx.doi.org/10.1016/j.jnca.2016.09.003


Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in

part for consideration for any degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text. This dissertation

contains fewer than 65,000 words including bibliography, footnotes, tables and equa-

tions and has fewer than 150 figures.

Waqar Asif

i



Acknowledgement

First And foremost, I am immensely thankful to Almighty Allah for letting me pursue

and fulfil my dreams. Nothing could have been possible without His blessings.

I would like to thank my parents for their support throughout my educational

career, specially during my Ph.D years, where their unending financial and moral

support has helped me in completing this work. I would also like to thank my sisters,

my elder brother and my wife for always being their for me at all times. I wish to

express my gratitude to my academic advisors: Dr. Muttukrishnan Rajarajan, Dr.

Marios Lestas, Dr. Hassaan Khaliq Qureshi and Dr. Veselin Rakocevic for guiding

me throughout this work. I specially want to thank Dr. Marios Lestas for being

more of a friend than a supervisor to me and guiding me through in every possible

matter in life and for making my stay in Cyprus one of the best moments. I must

acknowledge Dr. Arshad Ali and Dr. Christos Themistos for their sincere efforts and

for selecting me as an exchange student for Cyprus. Here I would also like to thank

everyone from the coordinating team of Erasmus Mundas Strong Ties who sponsored

my stay in Cyprus and helped me groom both as a person and as a researcher.

ii



List of Abbreviations

CBDI . . . . . Combined Banzhaf & Diversity Index

WSN . . . . . Wireless Sensor Network

CDS . . . . . Connected Dominating Set

APL . . . . . Average Path Length

VRAM . . . . Variable Rate Adaptive Modulation

NAW . . . . . Neighbour Avoiding Walk

HILPR . . . . Hybrid Interactive Linear Programming Rounding

QAM . . . . . Quadrature Amplitude Modulation

BFS . . . . . . Breath First Search

SNR . . . . . Signal to Noise Ratio

BER . . . . . Bit Error Rate

RF . . . . . . Radio Frequency

WFB . . . . . Wireless Flow Betweenness

CSMA/CA . Carrier Sense Multiple Access with Collision Avoidance

iii



iv

NS3 . . . . . . Network Simulator 3

OLSR . . . . Optimized Link State Routing

Cont . . . . . Controllability of complex networks

NUM . . . . . Network Utility Maximization

LHS . . . . . Left Hand Side

RHS . . . . . Right Hand Side

SSD . . . . . . Sum Squared Difference

NSSD . . . . Normalized Sum Squared Difference

SPNC . . . . Spectral Partitioning for Node Criticality



List of Notations/Symbols

G(V,E) . . . . Graph with V vertices and E edges

l . . . . . . . . Average Path Length

d(v, w) . . . . Geographic distance between v and w

N . . . . . . . Number of nodes

CC(v) . . . . . Closeness centrality of v

σuv . . . . . . . Shortest path between u and v

κuv(x) . . . . . Betweenness centrality of node x

Fsal . . . . . . maximum power flowing from s to d through node a

Fsl . . . . . . . maximum power flowing from source s to destination l

CB(a) . . . . . Flow betweenness

λ1 . . . . . . . First Eigenvalue

vt . . . . . . . Eigenvector corresponding to node t

Pf . . . . . . . Packet forwarding probability

R(Pf , l) . . . . Packet delivery reliability

v



vi

A . . . . . . . Adjacency matrix

L . . . . . . . Laplacian matrix

Gd(v, w) . . . . Minimum distance between nodes v and w in graph G

Pb . . . . . . . Probability of bit error

b . . . . . . . . Constellation size

M . . . . . . . Modulation constellation

N0 . . . . . . . Noise power

γb . . . . . . . average signal to noise ratio

Es . . . . . . . Symbol energy

Eb . . . . . . . Bit energy

α . . . . . . . Drain efficiency

d16 . . . . . . . Distance covered by 16 QAM modulation

d64 . . . . . . . Distance covered by 64 QAM modulation

Dd(x) . . . . . Variation in link length of node x

Tx . . . . . . . Transmission radius of node x

N(x) . . . . . Neighbours of node x

Dn(x) . . . . . Weighted node degree of node x

H(x) . . . . . Diversity index of node x

I . . . . . . . . Set of all source destination pairs



vii

w(i, j) . . . . . Source destination pair node i and j

Sp(w) . . . . . Set of nodes participating in the shortest path for pair w

Ck . . . . . . . Banzhaf power index

δ(G) . . . . . . Diagonal degree matrix

N(G) . . . . . Incidence matrix

Dmin . . . . . . Minimum node degree

Dmax . . . . . Maximum node degree

P (u, v) . . . . Probability of having a link between u and v

ζ . . . . . . . . Probability of having an edge between any two nodes

ξ . . . . . . . . Ratio of long distance to short distance nodes

χ . . . . . . . Distance between two nodes

al . . . . . . . Column matrix

µ(L) . . . . . . Algebraic connectivity of L

Lo . . . . . . . Laplacian matrix of the original network

hk . . . . . . . Column matrix of the node k being removed

xk . . . . . . . Boolean variable

Us(xs) . . . . . Utility function assigned to the used xs

Lk(s) . . . . . Set of links associated with source s

~yl . . . . . . . Unit vector associated with link l



viii

nl . . . . . . . Cardinality of l

~is . . . . . . . Unit vector along the direction of xs



Abstract

Timely identification of critical nodes is crucial for assessing network vulnerability

and survivability. This thesis presents two new approaches for the identification of

critical nodes in a network with the first being an intuition based approach and the

second being build on a mathematical framework. The first approach which is referred

to as the Combined Banzhaf & Diversity Index (CBDI) uses a newly devised diversity

metric, that uses the variability of a node’s attributes relative to its neighbours and

the Banzhaf power index which characterizes the degree of participation of a node

in forming the shortest path route. The Banzhaf power index is inspired from the

theory of voting games in game theory whereas, the diversity index is inspired from the

analysis and understanding of the influence of the average path length of a network on

its performance. This thesis also presents a new approach for evaluating this average

path length metric of a network with reduced computational complexity and proposes

a new mechanism for reducing the average path length of a network for relatively

larger network structures. The proposed average path length reduction mechanism

is tested for a wireless sensor network and the results compared for multiple existing

approaches. It has been observed using simulations that, the proposed average path
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length reduction mechanism outperforms existing approaches by reducing the average

path length to a greater extent and with a simpler hardware requirement.

The second approach proposed in this thesis for the identification of critical nodes

is build on a mathematical framework and it is based on suboptimal solutions of two

optimization problems, namely the algebraic connectivity minimization problem and a

min-max network utility problem. The former attempts to address the topological as-

pect of node criticality whereas, the latter attempts to address its connection-oriented

nature. The suboptimal solution of the algebraic connectivity minimization problem

is obtained through spectral partitioning considerations. This approach leads to a

distributed solution which is computationally less expensive than other approaches

that exist in the literature and is near optimal, in the sense that it is shown through

simulations to approximate a lower bound which is obtained analytically. Despite

the generality of the proposed approaches, this thesis evaluates their performance on

a wireless ad hoc network and demonstrates through extensive simulations that the

proposed solutions are able to choose more critical nodes relative to other approaches,

as it is observed that when these nodes are removed they lead to the highest degrada-

tion in network performance in terms of the achieved network throughput, the average

network delay, the average network jitter and the number of dropped packets.
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Chapter 1

Introduction

The importance of Graph theory was first recognized by Euler in 1736. He used it to

identify a suitable path with which a single person could pass through seven bridges

in the city of Königsberg exactly once and return to the starting point [?]. Euler

not only proved that such a path does exist, but also gave a general solution that

could be applied to any arbitrarily arranged landmass and bridge structure. He also

identified that the physical distance and the geographical locations of the bridges were

not important for identifying the correct solution and what matters is the geometric

position of the bridges.

A graph is a mathematical representation of a network which comprises of inter-

connected components known as nodes with the links between these nodes known

as edges. A graph can be represented in a number of different ways: an undirected

graph depicts no directional information to the connections whereas, a directed graph

denotes the direction of flow of information through the links. Moreover, in binary

1
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graphs, the presence of an edge is denoted by a one and the absence of an edge is

denoted by a zero, whereas, in a weighted graph the interconnection strength is quan-

tified as weights of the links. Furthermore, the density of connections can range from

fully connected graphs which are also referred to as completely connected graphs to

very sparse graphs.

A graph can easily depict an abstraction of the reality and this is why graph

theory methods have been widely used for understanding a wide range of systems.

In a graph theoretic representation, network components are represented in terms of

nodes and edges that connect these nodes. In a transport geography most networks

have an obvious spatial foundation, namely the road and rail networks, which tend

to be defined more by their links than by their nodes. This is not necessarily the

case for all transportation networks. For instance, maritime and air networks tend

to be more defined by their nodes than by their links since links are often not clearly

defined. A telecommunication system can also be represented as a network, while

its spatial expression can have limited importance and would actually be difficult

to represent. Mobile telephone networks or the internet, possibly the most complex

graphs to be considered, are relevant cases of networks having a structure that can

be difficult to symbolize. However, cellular phones and antennas can be represented

as nodes while the links could be individual phone calls. Routers, the core of the

internet, can also be represented as nodes within a graph while the physical infras-

tructure between them, namely fiber optic cables, can act as links. Consequently, all

transport/communication networks can be represented by graph theory in one way
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or the other.

Every graph differs from the other based on the attributes of its individual nodes

and edges, where for example, attributes of a node comprise of the nodes location

and the attributes of an edge incorporates its length and capacity. These individual

components of a network influence their individuality upon the other thus enabling

researchers to analyse carefully the characteristics of a network by only monitoring

one set of components, either nodes or edges. The interconnectivity of these individ-

ual components defines the structure of a network and in the past a lot of research

has been done in identifying prominent/vital network structures [?][?][?]. For exam-

ple, in a multihop Wireless Sensor Network (WSN), nodes can be connected using

various edges, each having a smaller length, compared to a conventional WSN, for the

reduction in transmission energy consumption for the network. Nodes in a network

are evaluated based on both their geographical location and the combined influence

of all the edges that are connected to that node. The geographical location of a node

helps approximate the traffic flow rate through nodes as it is established that a nodes

close to the center of the network will experience a higher traffic flow compared to

nodes close to the edge of a network. The later, on the other hand has its own impor-

tance, such as, a node with a higher number of edges is neighbour to a larger number

of nodes in the network and therefore, it is critical for ensuring connectivity of the

network. More elaboration of this phenomenon is explained later in this thesis.

The combined affect of both the aforementioned attributes defines the importance

of a node in a network. Due to these attributes, there are a few nodes in a network
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which when removed result in disconnecting a chunk of the network and thus affect

the performance of a network. These nodes are referred to as the articulation points.

Figure 1.1: Difference in articulation points and critical node.

In the sample network of Fig ??, we represent the articulation points in grey

color. It is clear from the figure that, removal of any of these articulation points will

render the network disconnected, where we use the term disconnected for a network

in which every node is not accessible by every other node in the network. A few of

these articulation points have shown to report a higher reduction in the performance

of the network and these points which are coloured in black are referred to as the

critical nodes of a network.

The aforementioned example is a special case in point where critical nodes are also

articulation points, researchers have defined critical nodes in many different ways in
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literature, Wehmuth et al. in [?] refer to a node as critical based on how much affect

it has on the notion of network centrality, a node that has a higher network centrality,

is referred to as a critical node in a network. On the other hand, Ashwin et al. in [?]

and Mario et al. in [?] refer to nodes as critical based on the affect they have on the

pair-wise connectivity of the network upon there removal. Moreover, Nasiruzzaman

et al. in [?] refer to a node as critical if it has maximum network traffic flow through

it, the removal of such a node will reduce the network traffic flow to the minimum

and is thus referred to as the most critical node in the network. In this thesis, we

combine the above stated definitions and form a new definition that is used in this

work. We refer to a node as critical if its removal has the highest influence on the

performance of the network and we evaluate the performance of a network in both

aspects, the connectivity of a graph and the network traffic flow that it is observing,

therefore, according to the above stated definition, a node is referred to as critical

if by its removal, the network observes maximum dis-connectivity and the network

traffic flow observes the highest amount of decrease.

The identification of these critical nodes is vital for assessing the vulnerability of a

network and this is the main motivation behind this thesis. The next section explains

in detail the motivation.

1.1 Motivation

Evaluation of node criticality is significant in various complex networks. A few nodes

in the network which are referred to as the critical nodes have been shown in literature
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to have a higher impact on the performance of a network [?][?][?]. This initiates the

need for timely identification of these critical nodes for the purpose of timely rectifi-

cations and avoidance of any unexpected/unwanted network performance changes.

The importance of critical node identification was reignited when a Georgian

woman in march 2011 disconnected 90% of Armenia from the access to the inter-

net by accidentally sabotaging an optical fiber that was passing by her house [?]. She

was scavenging for copper to sell as scrap when she came across this cable. Coin-

cidently she had cut the only fiber cable that was connecting 3.2million Armenian

people, thus depriving them from the access to the internet for continuous 5 hours.

This highlighted the fact that despite the looks of the internet as depicted in Fig ??

the removal of a single critical node can have a high affect on the performance of the

network.

The influence of critical nodes is not only limited to the internet, but it is also

reflected in other fields such as a Peer to Peer Gnutella Network which reported a

major network fragmentation after a removal of 4% of the most critical nodes of a

network [?] and the North American power grid network which reported a 60% loss

of network connectivity upon the removal of only 4% of the nodes in the network [?].

Similarly, in transportation networks [?], the need to identify critical nodes has

increased with the ever increasing population which provokes the need for having

a better and reliable network. These transportation networks, are prone both to

the predictable human intervention and the unpredictable natural disasters such as

hurricanes, floods and earthquakes. The more predictable human interventions can
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Figure 1.2: Partial map of the Internet based on the data found on January 15, 2005
[?].

cause network blockages due to two broadly defined reasons, either a regular network

edge between two critical points is observing blockage due to limited link capacity

or the transportation network observes occasional network blockages, as for example

near a couple of famous touristic spots (critical nodes) in the network. In the former

scenario, an efficient critical node detection algorithm will help in identifying such

a critical link and thus to avoid the blockage, an alternate re-route can be designed

that avoids the identified link. In the later scenario, the need of an extra special edge

across all the critical nodes of the network can be avoided by efficiently re-routing

traffic through edges that are not commonly used by various critical nodes of the

network, thus avoiding network blockage. Regarding the the unpredictable nature of

the natural disasters, proactive measures can also help in improving the pace of the
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rescue and recovery processes [?]. The proactive identification of critical nodes such

as schools and hospitals can aid the rescuers to act quickly by using the shortest and

the most affective paths and similarly for the reconstruction of an area that has been

hit by a natural disaster such as a hurricane, the identification of critical nodes will

aid the authorities in deciding as to which roads should be built first.

Likewise, in Telecommunication networks [?], the need to identify these critical

nodes has never been more important than now. These days, with the introduction

of smart phones for the purpose of increasing connectivity between people and for

making life easier, we have also increased the risk of sabotaging our privacy by cre-

ating nodes (such as cellphones and tablets) that have all our vital information. A

single virus that reaches our smart device can extract vital information such as our

credit card details, our home address, can have access to our email and the list goes

on. These viruses/bugs travel through our telecommunication network and thus to

prevent the spread of such viruses, it is essential to timely identify the critical nodes

and suppress their communication and thus avoid spreading these viruses and also

maintain normal functionality for the rest of the customers [?]. Similarly, in biolog-

ical networks [?], the detection of critical nodes can aid in neutralizing potentially

harmful organisms such as bacteria and viruses. The interaction of protein with other

proteins in a network can be represented in terms of graph theory and it is generally

referred to as the protein-protein interaction network. These structures provide vital

information for understanding biological structures and thus are widely used for de-

signing drugs [?]. In particular, drugs are designed to affect the minimum cardinality
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set of proteins (the critical node set of a graph) whose removal will destroy the pri-

mal interaction and thus help neutralize the potentially harmful organism. The next

section, explains in detail the problem statement of this thesis.

1.2 Problem Definition

Critical node identification plays a vital role in accessing network vulnerability and

multiple approaches exist in literature that can be used for identifying critical nodes

in a network. Some of the existing algorithms are based on intuition, whereas oth-

ers are based on mathematical abstractions of networks of arbitrary topology and are

thus characterized by properties which can be verified analytically prior to implemen-

tation. Most of these approaches either identify critical nodes based on the affect of

a node on the traffic flow pattern of the network or they use the topological structure

of the network to identify these critical nodes. To the best of our knowledge, no such

algorithm exists in literature that identifies critical nodes based on both the topolog-

ical structure and the traffic flow pattern of the network. To address this problem,

this thesis proposes two metrics, the first is based on intuition and it uses a newly

defined node diversity metric which incorporates the weighted node degree and the

variation in link length capability of a node to address the topological properties of a

network. The weighted node degree metric is a slight variant of the well know degree

centrality metric [?], the major difference lies in the evaluation of the degree of a

node based on the number of new nodes that are introduced by a particular node if

it is accessible in the network. The variation in link length metric originates from [?]
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which evaluates the affect of Average Path Length (APL) of a network. The variation

in link length metric evaluates the diversity of a network by using the difference in

path length that a node is maintaining, the intuition behind this approach is that a

node that connects multiple nodes at varying distances is highly likely acting as a

bridge node among various nodes in the network thus, it is probable that by removing

that node the network will report a higher degradation in performance. The traffic

flow pattern on the other side is incorporated in this critical node evaluation metric

with the use of the Banzhaf power index, it is a slight variant of the well known

betweenness centrality metric [?] and was previously used for weighted voting games.

The second metric is based on pure mathematical abstraction where we formulate

the critical node identification problem in the form of an optimization problem where

the objective is to identify a node that when removed has the highest impact on

both, the algebraic connectivity of the network and the maximum traffic flow of the

complete network. Here, the first part of the optimization problem deals with the

topological properties of the network and the second part deals with the traffic flow

of the network, thus addressing both sides of the problem. More detail on both these

metrics are explained in Chapter ?? and ?? respectively.

1.3 Research Objectives

The objective of this research is to develop a new model that can correctly identify

critical nodes in a network. The identified node, upon its removal, should:

• Increase the average path length of the network, thus increasing the time taken
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for nodes to communicate with each other.

• Reduce the Algebraic connectivity of the network, which means that the net-

work is loosely connected and the removal of a few nodes will result in network

partitioning. These few nodes that are holding the network together are the

ones that will create bottleneck for the complete network.

• Increase network congestion and probability of collision thus reducing the net-

work throughput and increasing per packet delay of the network.

Furthermore, the objectives include:

• The design of a distributed algorithm that can correctly identify the most critical

node of a network without the need of a centralized monitoring body. This will

aid in implementing this algorithm in complex networks such as, Wireless Sensor

Network (WSN), Road networks, Communication networks and various other

large sized complex network for the assessment of network vulnerability.

• The distributed critical node identification algorithm should be computationally

less complex, thus increasing the possibility of its implementation in computa-

tionally complex networks.

1.4 Research Method

In order to identify the most critical node in a network, it is essential to identify the

right metric that can comprehend the cumulative influence of most of the individual
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attributes of a node in a network. This thesis uses the node attributes in a network

to evaluate various metrics. This selection is based on the consideration that the edge

attributes are reflected in the node attributes of the nodes that are connected through

that edge. A well known metric that reflects the node attributes of a network is known

as the Average Path Length metric. The Average Path Length metric reflects the

average time it takes a message to move from one node to any other node in the

network. This thesis first emphasises on the existing approaches for estimating the

Average Path Length of a network as it is known to be one of the major influencing

factor for node criticality and then proposes a new approach that reduces the time

complexity of calculating the Average Path Length (APL) of complex networks.

Later, this thesis considers a Wireless Sensor Network (WSN) as a special case

example to highlight the affects of changing the Average Path Length of a network and

proposes a new methodology for its reduction. The new methodology uses a Variable

Rate Adaptive Modulation (VRAM) scheme on top of a Neighbour Avoiding Walk

(NAW) mechanism for reducing the Average Path Length using the same transmission

power. This helps in building an intuition based metric for the identification of

critical nodes in a network. The intuition based critical node identification metric

is referred to as the Combined Banzhaf & Diversity Index (CBDI). The Diversity

index in CBDI originates from the Neighbour avoiding walk mechanism discussed in

the APL reduction mechanism and the Banzhaf Power index in CBDI is a variant of

the well known betweenness centrality metric. The CBDI mechanism is tested using

simulations and it is shown to perform well in identifying critical nodes in a network.
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The intuition based CBDI metric lacks in providing mathematical ground about

the way that it works and for this a new critical node identification metric is proposed

that is the resultant of the suboptimal solutions of two optimization problems. The

critical node identification metric originating from these suboptimal solutions is tested

through simulations and analysis. These suboptimal solutions have shown to perform

well in identifying the most critical node in the network and they are used to formulate

a critical node identification algorithm which is also among the contributions of this

thesis.

1.5 Contribution

In this thesis, a new mathematical model is presented that evaluates the Average

Path Length of a tree structured network. This is an advancement upon the existing

approaches that require tedious computation of all the possible paths in a network

for the approximation of the average path length of a network. This contribution is

also accompanied by a new approach for the reduction of the average path length of a

network which can be used in various network scenarios for the introduction of small

world network phenomenon into comparatively large networks.

The contribution of this thesis also incorporates the introduction of a network

distributed critical node identification metric which is the outcome of the suboptimal

solutions of two well known optimization problems. This thesis also presents a mathe-

matical formulation that identifies the algebraic connectivity of the resultant network

after critical nodes are removed from the network. Along with this, a deviation of the
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degree centrality metric is also proposed which is referred to as the weighted degree

centrality metric and is shown through analysis and simulation that it is a better

metric than the conventionally used degree centrality metric.

1.6 Thesis Structure

Chapter 1: Introduction This chapter provides information on the context of

the research in hand along with the focus of the research work. It also highlights the

aims and objectives of the research work.

Chapter 2: Related Work This chapter explains in detail the existing work

that relates to the work in this thesis and highlights the deficiencies of the existing

work that had initiated the need for this work.

Chapter 3: Average Path Length Calculation For Complex Tree Struc-

tures This chapter describes the conventional approaches used for calculating the

APL of a complex topology and then proposes a simpler approach, that reduces the

computational complexity of calculating the APL of a complex structure.

Chapter 4: Average Path Length and Network Performance This chapter

highlights the affects of changing the APL of a network and in it we propose a new

mechanism for reducing the APL.

Chapter 5: Intuition Based Critical Node Identification Approach This

chapter elaborates on the importance of critical node detection and propose a new

intuition based metric for identifying the most critical node in the network.

Chapter 6: Optimization Based Spectral Partitioning for Node Crit-
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icality Assessment This chapter discusses the use of optimization theory for the

identification of critical nodes in a network and with the aid of this theory we propose

a new algorithm that can identify critical nodes in any arbitrary network.

Chapter 7: Conclusion and Future Work This chapter concludes this thesis

and presents the future direction of work of this domain.



Chapter 2

Related Work

2.1 Introduction

A number of approaches have been proposed in literature for the identification of the

critical nodes in a network. These approaches can be broadly categorized into two

categories namely the connection based approach and the topology based approach,

where the former uses the information flow pattern of the network to identify the most

critical node and the later uses the topological structure of the network to identify

the most critical node in the network.

2.2 Connection based schemes

The connection based approaches identify the criticality of a node based on the in-

formation flow pattern of a network. The information flow pattern in a network

highlights the data flow rate through each individual node and also enables in identi-

16
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fying the node that can be the cause of a potential bottleneck in the network. Both

of these parameters play a key role in identifying node criticality and a number of

approaches exist in literature that use the information flow pattern of a network to

identify the criticality of a node. This section highlights a few well known approaches

that are later referred to as the connection based approaches in this thesis.

2.2.1 Average Path Length metric

The average path length metric is among the very widely used metrics and it is also

referred to as the characteristic path length metric of a network [?]. This metric uses

the sum of the shortest path of every node to every other node in the network for

the identification of the most critical node in the network. In a graph G = (V,E),

where V is the set of vertices and E is the set of edges, the characteristic path length

is defined by:

l =
1

N(N − 1)

∑
v∈V

∑
w 6=v∈V

d(v, w) (2.1)

where, d(v, w) is the geodesic distance between v and w with v, w ∈ V , i.e., the

cumulative distance of all the edges that lie in the shortest path between the two

nodes and the factor 1/N(N −1) is the one over the total number of pairs of vertices.

In such a network, a larger value of l represents a relatively larger time for the message

to be disseminated inside a network whereas, a smaller value of l denotes a tightly

bonded network where nodes are placed close to each other. The average path length

metric identifies such a node as the most critical node which has the highest influence
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on the average path length of the complete network. It is easily relateable that the

node with the shortest path length to every other node in the network, will have

the highest influence on average path length of the network where, the average is

computed using eq ??.

Figure 2.1: Weighted sample network for accessing shortest path length metric.

The sample network in Fig ?? shows an undirected weighted network of six nodes

where, the weights represent the length of an edge. The shortest path length metric

calculates the distance of every node to every other node in the network and then the

node that has the shortest path length among the whole network is referred to as the

most critical node in the network. The shortest path lengths for the sample network

are shown in the symmetric matrix of table ??.

It is clear from the table that node B has a shortest distance of 14 units from all

the nodes in the network, thus it is assumed to be in the center of the network and

the most accessible node in the network. Removing such a node will thus increase

the average path length of the network and this makes it the most critical node in
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Table 2.1: Path length matrix for Fig ??
A B C D E F

A - 4 2 7 5 6

B 4 - 1 4 2 3

C 2 1 - 5 3 4

D 7 4 5 - 6 7

E 5 2 3 6 - 1

F 6 3 4 7 1 -

the network according to this average path length metric.

2.2.2 Closeness Centrality metric

Another well known approach that has been in consideration for a long time is the

closeness centrality metric [?]. This metric identifies the criticality of a node by

analysing the total distance of one node with all the nodes in the network and thus a

node that has the lowest total distance and therefore is closer to all the nodes in the

network is thus considered as critical in the network. The phenomenon behind the use

of this metric is that a node closer to all the other nodes in the network will eventually

have the highest network traffic flow through it, as it can reach maximum nodes in

the network with the shortest distance. In order to calculate the closeness centrality

of a node, researchers use the reciprocal of the total distance from a particular node

to all other nodes in a network [?]:

CC(v) =
1∑

u∈V d(v, u)
(2.2)

Unlike the average shortest path metric which is defined as the average distance

of the whole network, the closeness centrality metric is a node specific metric, it
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identifies how close each individual node is to the rest of the network nodes. Fig ??

shows a sample network of 34 nodes where the criticality of the node is represented

with both color and size of the node. A bright red node with the biggest size is

considered as the most critical node in the network. As expected from the definition

of the closeness centrality metric, the nodes close to the center of the network have a

higher closeness centrality among all the nodes in the network.

Figure 2.2: Sample network representing nodes with the highest closeness centrality
[?].

2.2.3 Betweenness Centrality metric

The betweenness centrality metric was originally proposed by Freeman in his seminal

paper [?] and since then it has been used by various researchers for identifying critical

nodes in a network [?][?][?]. This is also a shortest path enumeration based metric

and it identifies the most critical node based on the number of shortest paths that a

node participates in, a node that participates in the highest number of shortest paths
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will have the highest influence on the performance of the network upon its removal

and thus it is considered as the most critical node in the network. Let κuv(x) denote

the fraction of shortest paths between node u and v that pass through node x, then

[?]:

κuv(x) =
σuv(x)

σuv
(2.3)

The betweenness centrality of a vertex x is then defined as [?]:

BC(x) =
∑

u6=v 6=t∈V

κuv(x) (2.4)

Figure 2.3: Sample network representing nodes with the highest betweenness central-
ity [?].

The betweenness centrality of a node measures the control of a node on the overall

communication in a network, and it is therefore used to identify critical nodes in a

network. A higher centrality index indicates that a node lies on a large number of
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shortest path routes and thus by its removal the network will face a greater decrease in

the average network traffic flow rate. Fig ?? shows in red the nodes that participate

in maximum shortest path routes in a network of 34 nodes. The size of the node

reflects its importance in the network and therefore the node with the largest size

and the brightest red color is referred to as the most critical node in the network

based on the betweenness centrality metric.

2.2.4 Ego centrality metric

A slight variant of the betweenness centrality is the ego centrality metric [?][?]. The

ego centrality metric was designed for a special class of graphs that are known as

the centred graphs [?], these graphs are in a star structure and thus restrict nodes

from either having a direct link with the neighbour or a path of 2 hops between

any two nodes in the network. The ego centrality metric takes benefit of this graph

structure and determines the criticality of a node based on the number of times a node

participates in forming this two hop path between any two nodes. This definition is in

line with the previously defined betweenness centrality metric but the major difference

lies in the network structure type. As the ego centrality metric was mainly defined

for the star network, thus the maximum length between two nodes of a graph cannot

exceed two hop counts [?].
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2.2.5 Network traffic flow metric

Nasiruzzaman et al. [?] on the other hand believe that it is not necessary that all

real life networks use the shortest path routes to relay traffic/messages. Instead they

propose a new metric which is build on the phenomenon that the traffic flow pattern is

a better estimation metric for the evaluation of critical nodes in a network. Therefore,

their proposed approach considers a node to be critical if it observes a higher traffic

flow through it. Let Fa be the net maximum power flowing through node a in the

network with source node s ∈ S and load node l ∈ L. Then Fsal is defined as:

Fsal =
∑
s∈S

∑
l∈L

F sl
a (2.5)

where s 6= l 6= a. Also let, Fn be the net maximum power flowing through the

network with the source node s ∈ S and load node l ∈ L, then Fsl is defined as:

Fsl =
∑
s∈S

∑
l∈L

F sl
n (2.6)

The ratio of these two powers could be used to measure the importance of a node

and this ratio is called the flow betweenness. This flow betweenness is defined as:

CB(a) =
Fsal
Fsl

(2.7)

With this approach, a node that has a relatively higher flow betweenness in the

network is then considered as the most critical node in the network.
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Figure 2.4: Sample network representing nodes with the rank of each node in the
network [?].

2.2.6 The Rank matrix

Another approach that exists in literature is the rank matrix approach [?][?]. This

matrix uses the traffic that passes through a node to form a V ×V matrix to evaluate

the most critical nodes in the network. Unlike previous approaches, this metric iden-

tifies a set of critical nodes whereas, the previously stated approaches can identify a

single most critical node in the network. In this approach, the minimum number of

nodes that report a full rank of V ×V matrix of the network are reported as the most

critical nodes. Here the V ×V matrix represents the traffic on the link between nodes

in the network. Fig ?? represents a network with multiple nodes where, the size of a

node represents the degree whereas, the color represents the criticality. Nodes in red

are the ones that have the highest influence on the rank of the network. As per the

rank matrix, the node that has the highest degree and has the most influence on the
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rank of the matrix is considered as the most critical node in the network, this means

that the larger red nodes are the most critical nodes in the network.

2.3 Topology based schemes

The topology of a network refers to the arrangement of nodes and their interconnec-

tion through edges. These topology based schemes have always been of keen interest

to researchers when it comes to networks where there is no relative traffic flow such as,

social networks. To tackle this phenomenon of network structure and to understand

node criticality based on this structure, various approaches have been proposed in

the literature. This subsection highlights a few of these approaches that are highly

relevant to the work presented.

2.3.1 Degree Centrality metric

Among all the topology based approaches, the most widely used approach is the

degree centrality metric [?][?]. The degree centrality metric as obvious from the

name, uses the degree of a node to identify the most critical node of a network. The

node that reports the highest node degree is thus referred to as the most critical

node of the network. The key idea here is that, a node with a higher node degree is

neighbours to more nodes in the network and thus by removing that particular node

a higher number of non-neighbouring nodes will loose connection with each other.

Fig ?? shows a graph of 34 nodes with the size and color of a node representing the

criticality of a node in a network based on the degree centrality metric. It is evident
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from the definition of the degree centrality metric that the most critical node will lie

in the center of the network and that is also depicted in Fig ??.

Figure 2.5: Sample network representing nodes with the degree of each node in the
network [?].

2.3.2 Bonachich metric

Bonachich et al. in [?] improvised on the degree centrality by proposing a new power

measure and then connecting it with a modified degree centrality measure to obtain

a better centrality metric. Bonachich metric is build on the phenomenon that the

neighbours of a node play a vital role in determining its importance in a network. A

node whose neighbours are connected to less neighbours makes the particular node

more powerful as it is likely that the node under consideration is the reason that its

neighbours are connected to multiple nodes in the network. Therefore, a node whose

neighbours are less connected makes that node more powerful as, by its removal the

neighbouring nodes will lose connectivity. On the other hand, if you are connected
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to more neighbouring nodes then this makes you more central and less powerful thus,

the identification of node criticality requires a trade off between node power and

centrality. Fig ?? shows a network of 34 nodes with the colors and size of the nodes

representing the criticality of a node. It is worth mentioning that the modifications

that Bonachich et al. proposed identifies a different node as compared to the one

pointed out by the degree centrality metric.

Figure 2.6: Sample network representing nodes with the highest bonachich centrality
[?].

2.3.3 Eigenvector Centrality metric

Another approach that exists in literature is the eigenvector centrality [?][?]. Eigen-

vector centrality is a measure of the influence of a node in a network. It assigns

relative scores to all the nodes in a network based on the concept that connections to

high scoring nodes contributes more to the score of a node when compared to equal

connections of low scoring nodes. For a given graph G = (V,E) the adjacency matrix
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A = (ax,t) will have ax,t = 1 if node x is linked to node t and zero otherwise. The

centrality score of node x is defined as:

vx =
1

λ

∑
t∈M(x)

vt (2.8)

where, vt is the eigenvector of the node t that belongs to the neighbour set M(x)

of node x with λ being a constant. With a small rearrangement this can be rewritten

in a vector notation as the eigenvector equation:

Av = λv (2.9)

In general, there will be many different eigenvalues λ for which an eigenvector

solution exists but considering the additional requirement of all positive eigenvectors

only the highest eigenvalue reports the desired result.

Figure 2.7: Sample network representing nodes with the highest eigencentrality. [?].
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Fig ?? reflects the most critical node in the network with aid of size and color. the

brightest red coloured node with the biggest size is represented as the most critical

node in the network.

2.3.4 The HILPR metric

In the Hybrid Interactive Linear Programming Rounding (HILPR) algorithm [?] Yilin

et al. propose a different approach of defining node criticality based on the pairwise

connectivity of the resultant network after the node removal. They emphasise that

the node pair whose removal leads to the most balanced disconnected components and

ensures the non-existence of giant components will result in the highest degradation

in the performance of the network and thus should be ranked as the most critical

node of the network. A similar approach is followed in the GREEDY Critical Node

Detection Problem approach (GREEDY-CNDP) [?] and the β − disruptor approach

[?], both of which propose an efficient algorithm to minimize pairwise connectivity

upon removal of k nodes from the network. Another approach that exists in literature

is the algebraic connectivity metric [?][?][?], which is also the focus of this work and

is explained in detail in later chapters. The phenomenon here is that the algebraic

connectivity is known to be a well defined connectivity metric for a network, therefore

to identify a critical node, it is vital to identify the node that reports the highest

reduction in the algebraic connectivity of the network. The node that reports the

highest reduction in the algebraic connectivity of the network will thus be identified

as the most critical node of the network.



Chapter 3

Average Path Length Calculation

For Complex Tree Structures

3.1 Introduction

Among all the critical node identification approaches highlighted in this thesis, one of

the key approach that exist in literature is the Average Path Length (APL) metric.

APL is defined as the mean of the shortest path lengths between all pair of vertices

and it represents the closeness and consequently, how quickly information transfer

takes place in a network [?] and this makes it as one of the key metric in evaluating

the criticality of a node in a network. A node is deemed critical if by its removal the

Average Path Length of a network increases and as a resultant information transfer

takes a longer time. Most real world networks unexpectedly have short average path

lengths, as popularized by six degree of freedom play. This property is known as
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Chapter 4

Average Path Length and Network

Performance

4.1 Introduction

Average Path Length (APL), node criticality and network reliability are three closely

connected features. A network that has a higher APL would have nodes located at

a farther distance and thus a few selected nodes will be responsible for relaying most

of the data through the network, making these nodes critical. Moreover, the larger

the distance between nodes (a larger APL) the lower will be the network reliability

[?]. This chapter focuses on elaborating on the connection between the APL of a

network and network reliability and also proposes a new approach for reducing the

APL of a network which is adopted from the Small-World phenomenon used in Social

Networks. In the end this chapter highlights how the APL of a network affects network
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Chapter 5

Intuition Based Critical Node

Identification Approach

5.1 Introduction

Critical node discovery is an important process for understanding network vulnera-

bility. A node is deemed as critical, if it plays a vital role in maintaining network

performance and by removing that node, the overall performance deteriorates and in

some cases leads to network partitioning [?] which is highly undesirable. Evaluating

the criticality of nodes is significant in various complex networks. In Wireless Sensor

Networks (WSNs) employing geographical routing, for example, malicious attack or

malfunction of a few beacon nodes leads to fallacious node discovery for the remaining

nodes in the network, thus jeopardizing the stable operation of the routing protocol

[?]. Moreover, in [?] it was observed that removal of 4% of the nodes in a Peer to Peer
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Chapter 6

Optimization Based Spectral

Partitioning for Node Criticality

Assessment

6.1 Introduction

The identification of critical nodes is vital for accessing network vulnerability and

security [?]. The failure of a few critical nodes can have an adversarial effect on net-

work performance varying from slight degradation in the Quality of Service up to the

complete breakdown of the network [?]. The significance of critical nodes has been

highlighted in a number of examples most of which are explained in chapter ?? & ??.

Some of these algorithms are based on intuition, whereas others are based on mathe-

matical abstractions of networks of arbitrary topology and are thus characterized by
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Chapter 7

Conclusion and Future Work

This chapter provides the conclusion of the work presented in this thesis along with

a brief overview of a future direction of research.

7.1 Conclusion

The change in APL of a network upon removal or addition of a node is among the

key considerations when dealing with critical node identification or accessing network

vulnerability. This thesis, addressed this critical node identification problem by first

identifying the parameters that affect the APL of a network, which is shown in litera-

ture to be computed using the complete knowledge of the network, where each nodes

computes its distance from every other node in the network. This tedious approach

is replaced by a much simpler and computationally less expensive approach in this

thesis where, the network is broken down into branch and leaf nodes and then the

APL approximated. The proposed approach when tested against existing approaches
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using extensive simulations was shown to outperform existing approaches in terms of

computational complexity.

The APL of a network, as established in this thesis, plays a major role in ap-

proximating the average time it takes for a message to be transferred throughout the

network and extensive research has been done in order to reduce the APL of a net-

work. Existing approaches achieve this goal by either equipping nodes with special

high power antennas that would cover a longer distance or equip nodes with special

directed antennas for a directed beam forming or rely on the addition of a dedicated

wire, connecting different nodes for increasing the connectivity of the network. This

thesis eliminated this requirement of adding special hardware by proposing a new

Variable Rate Adaptive Modulation (VRAM) scheme, that changes the modulation

schemes to achieve long distance communication. The proposed approach reduces the

APL of a network and improves the communication between nodes. It was observed

here that, the proposed approach reported an average improvement of 41% in reduc-

ing the APL of a network and it reported an average 21% increase in the average

node degree of the network when compared to existing approaches. The increase in

average node degree is evidence to the fact that more nodes are directly connected

with each other and thus message sharing among distant nodes in a network will take

a shorter amount of time. This led to the deduction that a critical node will be the

one that would increase the APL of a network upon its removal and will therefore

increase the time taken for communication between nodes in the network. Numerous

approaches exist in literature that work on identifying critical nodes in a network.
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A number of approaches that exist in literature mainly deal with the geographic

location of nodes or the networks traffic flow pattern to identify these critical nodes

of a network whereas, this thesis proposes two approaches, the first being an intu-

itive approach, that identifies critical nodes of a network (nodes that result in the

highest decrease in the performance of the network upon their removal), based on

a newly defined diversity index which is combined with an existing Banzhaf power

index approach. The newly defined diversity index comprises of the diversity in the

link length capability of a node and is referred to as the variation in link length metric

and the diversity in weights of the node degree which is referred to as the weighted

node degree. The combined affect of the diversity index and the banzhaf power index

has been reported in this thesis to outperform existing approaches in identifying crit-

ical nodes in a network. The identification of these critical nodes will aid in timely

adaptation of the network so that their influence on the performance of the network

can be mitigated. The proposed approach reported a 7% and 18% percent increase

in average path length of the random and WaxMan network topology respectively

took place and a total paths elimination for the small world network topology when

the identified critical nodes were removed from the network. Furthermore, it was also

reported that a prominent decrease of 13%, 28% and 68% took place in the average

node degree for the random, WaxMan and Small World network topologies respec-

tively which means that the identified/removed node was connected to multiple node

in the network thus breaking multiple connections upon its removal. The proposed

approach also outperformed existing approaches in terms of increasing the number
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of isolated nodes in a network. The increase in number of isolated nodes is the ev-

idence to the fact that the network has been partitioned into multiple disconnected

components. The proposed approach reported a 150%, 400% increase in the number

of isolated nodes in the random and Small World network topologies respectively

and a small increase of 0.8% decrease in the number of isolated nodes in a WaxMan

network topology. This small increase is negligible when it comes to really large net-

works. The proposed approach was also tested against other approaches for analysing

the connectivity and the affect it had on the performance of the network and it was

observed that the critical nodes identified by the proposed approach when removed

from the network result in a decrease in the algebraic connectivity of a network by

58% whereas, as for the performance of the network, the throughput of the network

degraded by 22% for the random network topology and it was backed by an increase in

the average delay, average jitter and average number of dropped packet by 33%, 45%

and 75% respectively. These all are evidence to the fact that the identified critical

node is vital for maintaining normal network functionality and upon its removal the

network undergoes major performance degradations.

In order to justify the claims made in the aforementioned work, a mathemati-

cal framework was also built which uses suboptimal solutions for two optimization

problems, namely the algebraic connectivity minimization and the network utility

maximization problem. The resultant solution of these optimization problems when

used to identify critical nodes in a network has been shown to outperform existing

work in identifying critical nodes in a network. In this thesis, a lower bound on
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the algebraic connectivity is also calculated that identifies the affect on the algebraic

connectivity of the network when a certain node is removed from the network. The

critical node identified using this mathematical abstraction resulted in a reduction in

the algebraic connectivity of the network by 22% which denotes that the network is

loosely connected and the removal of a few more nodes can easily partition the net-

work. It is also reported in this thesis that, the loosely connected network formed after

removing the identified critical node results in a bottleneck close to the center of the

network which increases the network congestion, reduces network throughput by 16%

and increases the average per packet delay, the average number of dropped packets

and the average jitter experienced in the network by 6%, 4% and 6% receptively. The

proposed approach is complimented in this thesis with a distributed implementation

that is computationally less complex and can be implemented in complex networks.

It was observed that the proposed approach reduces the average computation time

of a network by 36% when compared to existing approaches in the network. These

statistics clearly state that the proposed approach outperforms existing approaches

in identifying critical nodes in a network and that these nodes when removed result

in a higher degradation in performance of the network, thus, in order to maintain

normal network functionality, it is necessary to timely identify these critical nodes

and take appropriate measures.
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7.2 Future Direction of Research

This thesis proposes solutions to two major problems, the first being the estimation

of the average path length of a network and the second being the identification of

critical nodes in a network. In the first problem, the underlying assumption is of

reducing an arbitrary network into a tree structure and it uses a simple tree structure

of a single stem with only one set of leaf nodes, the elimination of this assumption

will lead to multiple open problems and this can be used as a future direction of work.

The second problem that is being addressed by this thesis initiates its own set of

problems that can be addressed in the future. The first being that, as a conventional

approach the vulnerability of a network is estimated for a particular instance when

the most critical node is removed from the network, but in real life scenarios, most of

the networks have a recovery mechanism with the aid of which they adapt and change

the network structure to regain maximum network utility. A new direction of research

in this domain would be of finding a particular critical node, who’s removal will have

an impact that cannot be recovered by the network with the aid of a conventional

recovery mechanism.

Along with this, another open problem that originates from this thesis is the design

of an efficient distributed critical node identification mechanism that is scalable to

large sized networks. The proposed approach uses a flooding approach for identifying

critical nodes in a network and it is believed that an efficient approach if used would

reduce the computation time to a greater extent and thus will be appropriate for

use in large sized networks. This thesis also proposes a distributed mechanism for



CHAPTER 7. FUTURE WORK 162

identification of critical nodes but it relies only on the sign of the Fiedler vector

elements that correspond to each node in the network. It was observed during this

thesis that, the magnitude of the Fiedler values decreases as one moves to a node

close to the center of the network (the sign cut region) and it increases as one moves

away from this region. As a future direction of research, the use of this change

in magnitude along with the change in sign would help in forming a more efficient

distributed critical node identification mechanism.
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