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Abstract

We describe a non-perturbative method for computing the energy band structures of one-dimensional
models with general point potentials sitting at equally spaced sites. This is done thanks to a Bethe ansatz
approach and the method is applicable even when periodicity is broken, that is when Bloch’s theorem is not
valid any more. We derive the general equation governing the energy spectrum and illustrate its use in vari-
ous situations. In particular, we get exact results for boundary effects. We also study non-perturbatively the
effects of impurities in such systems. Finally, we discuss the possibility of including interactions between
the particles of these systems.

0 2005 Elsevier B.V. All rights reserved.

PACS: 03.65.Fd; 71.20.-b; 71.55.-i
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1. Introduction

The study of the so-called point or contact interactions covers an impressively large number of
areas ranging from pure mathematics, where the main goal consists in defining and understanding
them rigorously, to applied physics, where either they serve as good approximations for physical
situations or they are created to control the behaviour of certain quantum systems. One particular
case of such contact interactions, but certainly the most well-known, i§ gegential which
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played a crucial role in two specific areas of special interest for us in this paper: solid state
physics and exactly solvable and integrable models (in one spatial dimension). Indeed, in the
first context, theS potential was used by Kronig and Penrjg}/to model a free electron moving

in periodic external potential created by a crystal lattice and is now a standard of textbooks in
solid state physicR]. As for the second context, it has become one of the cornerstones of exactly
solvable and integrable systems through the works of McGuire, Lieb and Liniger and3¢&5jg
where it was used to describe interactions between identical particles.

These two quantum mechanical problems can be solved to get the energy spectrum. More
precisely, in the Kronig—Penney model, the periodicity of the potential and of the boundary con-
ditions on the wavefunction allows to use the famous Bloch’s thed6mvhich actually fixes
the form of the eigenfunctions. In the Lieb—Liniger model, one assumes that the wavefunctions
can be expanded on plane waves with appropriate coefficients that must be found. These ap-
proaches combined with the various conditions imposed on the wavefunctions of the problem
lead to the allowed energy states of the models. Depending on the context, this gives rise to the
famous energy band structures or to the famous Bethe ansatz eqiiations

Several generalizations of the two previous problems have been considered over the past
decades. For instance, [8,9], the Kronig—Penney model is extended to the case wheré the
potential is replaced by a more general point potentigll0j, boundary Bethe ansatz equations
were derived by putting bosons withinteractions in a box while ifiL1], impurity Bethe ansatz
equations appeared by including a general external contact potential in a system of particles with
§ interactions.

With the advent of nanostructures and the ever increasing need for controlling quantum de-
vices, the standard assumption of periodicity is no longer accurate enough. But then, Bloch’s
theorem no longer applies and, to the best of our knowledge, only approximate methods are
used. In this paper, we mainly address the above problem and propose a general method to
investigate the energy spectrum in one-dimensional models with equally spaced but otherwise
arbitrary point potentials. Let us note that the breaking of periodicity can have various origins.
For example, one can simply imagine that the periodic boundary conditions are replaced by
Dirichlet or Neumann boundary conditions. Or, one could replacé fhatential at one or more
sites by a different point potential. We will see that the Bethe ansatz approach brings an elegant
and more general alternative to Bloch’s theorem in order to treat such problems. In all cases,
we reduce the problem to finding roots of polynomials and solving Bethe ansatz equations. We
also discuss the possibility of including interactions between bosons moving in such general
potentials.

The paper is organised as follows. In Sect®ynwe discuss the general setup for treating
free particles in an arbitrary equally spaced, external point potential. Then, in S8ctiam
validate our method in the context of periodic potentials by deriving a general result which
encompasses previous results in the literature and in particular the well-known features of the
Kronig—Penney model. Sectiof illustrates the use of our method in a context where peri-
odicity is broken by the boundary conditions. This provides non-perturbative results for the
boundary effects. This is further illustrated in Sectlbwhere we introduce impurities at one
or several sites of the potential. Again the results are non-perturbative and this allows for a
study of the effects of impurities with arbitrary strength. Finally, in SecBpwe discuss the
extension of our method to the case of bosons withteractions moving in a general point
potential.
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2. Thegeneral problem

We study a one-dimensional system of free particles moving in the inter@lL, M L],
M > 1 being an integer and a length scale, with an external point potential sitting at each
sitex;’ =M -2j+1)L,j=1,..., M. ltis sufficient to consider the one-particle Hamiltonian

which takes the following forrh

2 J 0
]:

where, forj=1,..., M,

d d o .d : d
vj(x) = cj8x) +4r;-=8(x) o+ 2y +ing) 8 () — 2y — inj)E) (2.2)

andcj, A;, yj, n; € R. These very singular point potentials find their origin in the self-adjoint
extensions of the free Hamiltonianﬁ on the spac€:°(R \ {0}) of C* functions with com-
pact support separated from the origin. Written in this way, they are in fact quite formal but it is
known that they are equivalent to imposing appropriate boundary conditions on the wavefunction
at each sitex? parametrized by/ (2) matrices (see, for exampld,2] and references therein).

In each regioeri: (M =2+ L <x < (M—2j+ 3L, the particle is actually free and
we denote the wavefunction bgﬁt(x) (seeFig. 1). Now the idea is to impose all the boundary
conditions (those corresponding to the potential at en?cﬁnd those at the ends of the interval)

in a compact form by extending the approacif]. To do so, we collect all the pieces of the
wavefunction into a single®-component vector defined fare ML — L, ML

M
®(x) = Z¢j+(x +2L(j—D)e; ®és +¢; (—x +2L(M — j))e; ® -, (2.3)
j=1

where{e; | 1 < j < M} is the canonical basis &M and{é,,é_} is that of C2. We are now
ready to formulate the problem. As we said, this is just the free problem in each rkj@ldlm
terms of® this reads,

d2
—ﬁcb(x):E(D(x), ML—-L<x<ML. (2.4)
X

-ML —(M-1)L —(M-3)L (M-DL ML

Fig. 1. The non-trivial potential lies at the pointsM — 1)L, —(M —3)L, ..., (M — 1)L (solid lines). The dashed lines
correspond to a trivial potential used for convenience.

1 In this paper, we use units such thiat 1 = 2m.
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Then, following for exampl¢l3], the M conditions corresponding to the general point potential
are written as follows

d
(u+—H)q>(x)+i(u++ﬂ)d—q>(x)=o forx > ML — L, (2.5)
X
wherel is the 2 x 2M identity matrix and
Ui
Ut = ) (2.6)

Uu

Each submatrixU; of U™ corresponds to the potentia) in (2.2). It is a U (2) matrix parame-
trized by

U,-:eiéf(fl{* :J> £;€l0,7m), nj,v;eC suchthaiu; >+ v;?=1 (2.7)
J J

where the symboal stands for complex conjugation. The parameters of the potentgiven in
(2.2) are related to those in the matilik; by (see e.g[9] and references therefn)

o= 2cos§,~ —Repy; __1cosEj +Rep; 2.8)
7T Tsing; —Imy; 7T 2singj —Imy; '
Imp; Rev;
. L B Y 2.9)
sing; —Imvy; sing; —Imvy;

Finally, the boundary conditions at the ends of the interval can be written in the same form as
before

(L{‘—H)@(x)+i(b1‘+]1)%d>(x):0 forx - ML, (2.10)
where
eiSq/Lq e'éa Vg
0 1
10
U = . (2.11)
0 1
10
L V;; eiéquz;

The four coefficients at the cornersidf also form al/ (2) matrix

U, = e ( Ha “q), 2.12

T g @1
with the same constraints as(®.7). They represent very general boundary conditions encom-
passing the usual periodic, anti-periodic and box boundary conditions. These coefficients encode
the behaviour of the wavefunction on the boundaxies —M L andx = ML (seeFig. 1). The

2 The case sif; — Imv; = 0 signals the fact that the parametrizati@5), (2.7)is slightly more general than the
formal expressioif2.2).
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submatrice %) of U~ correspond to the dashed linesHiy. 1 They are introduced for mere

convenience in our approach.

It is now obvious that one cannot use Bloch’s theorem to solve this problem as explained in
the introduction. The potential, albeit sitting on equally spaced sites, is certainly not periodic and
we impose quite general boundary conditions.

Instead, we formulate Bethe ansatz [7] for @

M .
Ar=2"1212 =1 A7 j¢j ®éc,

D(x) = A; + e ™ Ag  where ) (2.13)
Ag = Zﬁil De—i AR j€j ®Ce.
In this form, @ (x) is automatically a solution q.4) with
E—=k2 (2.14)

Inserting the ansatz ifR.5) and (2.1Q)we find that® is the eigenfunction we look for if and
only if the 4M amplitudesA;j andAjw. satisfy the following relations

Ag = 2*M=DL 74 _jy A, (2.15)

Ag =&ML 7= () Ay, (2.16)
where

ZE) = —[U*F =T —k@U* +D] U —T+kU* +D)]. (2.17)

These 21 x 2M matrices characterize the type of potential and boundary conditions one is con-
sidering. Requiring a non-trivial solution for the wavefunction, one finds the following equation

det(Zt(—k) — 2™ (~k)e?*) = 0. (2.18)

This type of equation is usually called Bethe ansatz equations. To our knowledge, it is the first
time that the Bethe equations have been established in this context. They impose constraints
on the allowed values of which incorporate the effect of the potential and of the boundary
conditions. Solving irk as a function of the parameters controlling the potential and the boundary
conditions allows one to determine the energy spectrum and to study how one can modify it by
tuning these parameters. As we will see, this has consequences on the energy band structure o
the associated model.

The above Bethe ansatz equations together with the method to get them for the very general
model we are considering constitute the main result of this paper. They replace Bloch’s theorem
when periodicity is broken and provide a non-perturbative means to get the energy spectrum in
such situations.

3. Periodic potential

Before exploring some applications of our method to more complicated cases in the following,
we first show in this section that our approach consistently reproduce well-known results for
periodic potentials and in particular for the Kronig—Penney model. We also obtain information
on the bound states which are less studied. Finally, we compute the spectrum for an asymmetric
potential which, to our knowledge, is not studied in the literature.
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3.1. General case

In our language, a periodic potential with periodic boundary conditions is obtained by setting

i V
U1=-~'=UM=el§<—/t* pL*)EU and G
0 1
0= (2 3). 62
In this case, the Bethe equatiof2s18)reduce to
R+ T+ _eZikL
T— R™ _EZikL

_eZikL Rt T+
T R™ _eZikL

-0, (3.3)
T— R™ _eZikL
kL pt T+
_eZikL T— R~
where, fOrM =ur+ins andv =vg +iv; (MR, Wi, VR, V] € R)g
Rt (COSE + pup)k? — 2ijurk — COSE + g
" (COSE 4+ up)k? 4 2ik sing + cost — g’
4 —2vk (3.4)
" (COSE + pp)k2 4 2ik sing + cost — g’ '
_ (CoSE + puRr)k? + 2iprk — COSE + g
 (COSE + fup)k2 + 2ik SINE 4 COSE — g’
2v*k
T- s (3.5)

- (COSE + pup)k? + 2ik sinE + cost — g

The determinant can be seen as a polynomiafitf of order 21 whose roots are functions of
k of the form

1
X =2 o T 40T +J(@rT+ - oPT)? +4RVR- |,
p=0,... M-1, (3.6)

wherew = ¢ is the Mth root of unity. ForM = 1, we recover the result given jal]. To get
the spectrum, one has to solvekithe following equations

A =Xt p=0...M-1 (3.7)

Let us introduce the shift operatdt f (x) = f(x + 2L). In the case under consideration, this
operator commutes with the Hamiltonian and can therefore be diagonalized in the same basis.

3 In comparison with the notation ¢£1], R* = R (—k), TT =TT (=k), R~ =R~ (k) andT~ =T~ (k).
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When acting ond, this operator is represented by the followinyf & 2M matrix

1
1

p= | (3.8)

Let us note that the eigenfunctio(s13) constrained by relatio(8.7) for a givenp are actually
common eigenfunctions dff and P as one can see from

Po(x) =P (x). (3.9)

This relation allows us to give a simple physical interpretationpfdndeed p is the usual crystal
momenturft carried by the particle. In the usual approach, it labels the Bloch’s functions and we
recover here by our different approach that it is indeed a good quantum number for a very general
periodic potential. We also remark that E§.7)is M-periodic in terms ofp. This statement is
equivalent to the standard restriction of the range of the crystal momentum to the first Brillouin
zone.

3.2. Kronig—Penney model

We now turn to the Kronig—Penney model to show that @q7) consistently reproduce the
standard equations of this model. In this case, albif®are given by & potential with the same
coupling constant. This is obtained fron¢3.1) by taking

_ iz ( cog§) isiné)
U=re (isin(s) cos)
Therefore, we get

), £el0,7) and tamg):g. (3.10)

Cc

ik tan(€) 1

Tt=T"=—">"_ and R*" =R =—— . (3.11)
1+ iktan€) 1+ iktang)
After some algebra, we see that £8.7) become, forp =0, ..., M — 1 and reak
. 2ntp
2kL 2kL) = — ). 3.12
coS2kL) + Ktan®) Sin(2kL) cos< i ) ( )

These are the equations obtained by using Bloch’s theorem (see, for exgtiplEhey give the
well-known plots that we show iRig. 2° The plots represent the energy spectrum in terms of the
crystal momentunp (restricted to the first Brillouin zone) for various valuestofhereM = 32

andL = 1). For& = 0 (circle onFig. 2), the coupling constant, tends to+oco and the energy

does not depend op. The states are localized in the regiaRis ; U R, j=2,...,M,which

are separated by purely reflecting walls (there is no transmission). The éheieg/2 (box on

Fig. 2) correspond to another particular case where the coupling constant vanishes. The states are
delocalized and this is just the free particle model. The energy varies like the squarearfan
intermediate case, hefe= 0.2 (cross orFig. 2), the well-known energy band structure appears.

4 We choose the units so thiat= 1.
5 All the numerical resolutions and plots are realized with Maple.
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Let us stress that in order to find H8.12) we assumed real. However, to study the possible
bound states we have to look for purely imaginary solution@af) of the typek = ik, k; € R.

In this case, we are led to solve the following equationspfer0, ..., M — 1
2% L 2rp 2 . of21p
(1+ k; tang)e? 1L = k; tang co - ) * 1— k?tar? £ sir? ) (3.13)

Fig. 3 shows the solutions of this equation (for= 2.3 (cross); 2.5 (diamond); 2.7 (circle))
which gives negative energy levels. We represent also the lowest positive energy levels solution
of (3.12) The bound states appear only whes /2 (i.e.c < 0). Foré — 7 —, the coupling
constant tends te-co and the states are localized around the po&ﬁts

3.3. Asymmetric potential
In this section, we study the periodic potential characterized by
0 el .
U= (_eém 0 ) wheree = —1 (respectively e = 1). (3.14)

This particular form ofU for e = —1 (respectivelye = +1) is obtained fron(3.1) by setting
n=0,& =0andv =¢'* (respectivelyu = 0, v = 1 andé¢ = ). In this case, one gets

k2 -1 :FZke:I:ia
+=—=R_ and Ti=7 315
k2+1 k2+1 (3.15)
. k2 —1 2k

respectivelyRt = =R™ and T*= )

< Pectvely R = 2 iktana +1 Cosa (k2 + 2ik tana + 1))
(3.16)

Fork e R, Eq.(3.7)reduces to
2

(k? + 1) sin(2kL) = 2k sin(% - a> (3.17)

2
<respectively4(k2 + 1) cosa sin(2k L) + 2k sina cog2k L) = 2k sin(%)). (3.18)
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Fig. 4. Lowest positive energy levels in terms pf Fig. 5. Lowest positive energy levels in terms pf
(e = —1) for @ = 0 (circle); /2 (cross);z (box) (e =+1) for @ = 0 (circle); /4 (cross);z/2 (box).

Fig. 4 (respectively,Fig. 5 shows the behavior of the solutions of H§.17) (respectively,
Eq.(3.18). Let us remark that, for a generig these potentials break the symmetry of the spec-
trum under the transformatiop — —p. We also remark that the behaviors of the two spectra
are completely different. Far= —1, the gaps between the energy bands are independent of the
parameters whereas, foe = +1, they decrease whenincreases.

4, Dirichlet or Neumann conditions

In this section, we want to study the behavior of the energy band structure when we modify
the boundary conditions. To illustrate this on a simple example we take the same potential as in
(3.1)and simply chang#, in (3.2)to

Us=e <é 2) wheree = —1 (respectivelyg = +1). (4.1)

This implements the Dirichlet (respectively, Neumann) boundary condition:

$(0)=0=¢(L) (respectivelyp’(0)=0=¢'(L)), (4.2)

and breaks the periodicity of the model. This constitutes a basic example where our method still
holds while Bloch’s theorem breaks down. In this case the Bethe equations gij2i&)are
equivalent to

Rt — EeZikL T+

T R™ _eZikL
_eZikL Rt T+
T R™ _eZikL
=0.
T— R~ _€2ikL
_Q2kL  pt T+
T R — 8€2ikL

(4.3)
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Again, this determinant is a polynomial of orde¥2n %L whose roots read
vE=vT+T—cod L) £ [R+R— —T+7-sit(ZL), 1<q<M—1  (4.4)
4 M M
1
Yt = E[—e(R+ YR £V (RF—R )24+ 4T+T- ] (4.5)
The Bethe equations governing the spectrum then read
A =yE 1<g<M -1, (4.6)
2l =y, (4.7)

Let us make a few remarks before showing the influence of the boundary on the energy spectrum
for a particular example. First, the paramejetannot be interpreted as the crystal momentum
any more (the shift operatd? does not commute with the Hamiltonian). It does not label all the
energy states since it is absent from 7). On the other hand, only E4.7) depends on the
parametee characterizing the type of boundary conditions under consideration. We also stress
that, although they look different, the roots(B16) and those ir{4.4) can be written in the same

form provided one replace®” by M /2 in (4.4) and relabelg; appropriately. From all this, we
conclude that Eq(4.7) give the energy states arising from the presence of the boundary while
the rest of the spectrum will be identical to that of the periodic case. In particular, the boundary
effects become negligible d¢ becomes large.

Example

We take once again the matiixgiven by(3.10)to define the potential at each site but now, we
impose Neumann boundary conditions. The Bethe equafdbésand (4.7pecome respectively
(for k real)

g

coS2kL) + Sin(2kL) = cos(W), forl<g<M—1, (4.8)

ktang
Coq2kL) — ktan(&¢) sin(2kL) = 1. (4.9

OnFig. 6below, we plot solutions of Eq$4.8) and (4.9For M = 16 ands = 0.2. The solutions
of (4.8) are represented by circles and thosg4B) by boxes which we displayed at= 0

Energy

20 ®

Fig. 6. Lowest positive energy levels in termsqofor § = 0.2.
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andq = 16 for convenience. To make the comparison even easier, we have also represented the
energy band structure of the periodic caseMbe 32 (crosses ohig. 6). We see that for the first

and third energy band, the allowed energy levels coincide with the periodic case as the solutions
of (4.9) nicely complete those ¢#.8). However, the effect of the boundary conditions shows up

in the second energy band where two states are “missing” with respect to the periodic case.

5. Impurities

So far, we have considered homogeneous potentials in the sense that the potential was the
same at each site. As illustrated above, even with non-periodic boundary conditions, this does
not deviate drastically from the periodic case as only local boundary effects arise.

In this section, we want to explore very different situations which cannot be approached by
perturbing the periodic case and therefore, show the advantages of our approach. Such situations
occur when one modifies the potential at only one or several sites. Thus, these sites appear as
what we call impurities. These models can be useful for describing localized defects in materials
with one dimensional behavior (nanowires, etc.).

We illustrate this in the following by considering one such impurity and then a subset of
equally spaced identical impurities in a given periodic potential.

5.1. Oneimpurity

We restrict ourselves to the case of periodic boundary conditions and we imagine that the
impurity is sitting at site 1 with a potentiah given as in(2.2) while all the other sites have the

same potentiab; = - - - = vy = v. This model is obtained in our language by taking
_ g M1 V1 . it M v
Up=e (‘VI MT) Uy = Uy=U-=e (—v* M*) and
01
0= (2 Y) 51

whereU1 and U characterize respectivelyy andv. In this case, the Bethe equations given in
(2.18)reduce to

Rl+ T1+ . _eZikL
Tl_ RI _eZIkL
_EZIkL Rt T+
T— R~ _eZikL
=0 (5.2)
T* R™ _eZikL
_p2kL g+ T+
_EZikL T— R~

WhereRf, Tl+, T, andR; are given by relationg3.4) and (3.5pubstitutingt, © andv by &,
w1 andvi, respectively.

To simplify the expression of these Bethe equations, we consider the case of symmetric poten-
tialsie.R"=R™=R,T* =T~ =T, R} =R =Ry andT;" = T] = T1. In this particular
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Fig. 7. Energy levels of the first band in terms&ffor  Fig. 8. Energy levels of the second band in termé;afor
£=0.2. £=0.2.

case, relatiorf.2)is equivalent to the following equations

2ikL 1 1 2 2 2
262k y+3 T+ y=3 T2+ 4R (5.3)

wherey is any root of one of the following polynomials

T2(T1 F R)(y?*M +1) + T(R? — T? — R — TZ £ 2T1R)yM
M-1 '
+R(2T1(R — R1) £ (R— R £ TE £ T7) Y y?. (5.4)
j=1

Note that we consistently recover the periodic case wkes R andTy = T since the polyno-
mials (5.4) simply reduce tqy™ — 1)2.

Example

We imagine that both the impurity and the bulk potential are given byatential but with
different coupling constants (i.e. the matridésand U; are given by(3.10) with parameteg
andéi, respectively). We study the behavior of the spectrum when the coupling constant of the
impurity is varied whilet is kept fixed (we choose hege= 0.2).

Figs. 7 and &how the behavior of the energy levels of the first and second positive energy
bands as functions @&f for M = 8. In the case wherg = £ = 0.2, we remark a degeneracy as
the impurity becomes identical to the bulk potential. The corresponding energy levels coincide
with those represented by crossesHig. 2 Generally speaking, the effect of the impurity is far
from being trivial. We see that in each band, two energy levels are severely modified depending
on the strength of the impurity. This can have strong consequences on the corresponding system
(if we think of conducting or insulating materials, for instance).

5.2. N identical impurities
Here, we introduce periodically identical impurities € N) in a given periodic potential.

From now on, letM be a multiple of N i.e. M = M1 N with M; > 1. The impurities have
potentialv; and the bulk potential is. In this case, the matricds; take the following particular
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form
i v
Ur=Umpyr="--=Un-pms1=¢" <_Mv11‘ Mli) -9
; vV
U2=:UMl=UM1+2=:U(N_l)Ml_,’_z::UM:elé(_lf)* M*> (56)

As before, we restrict ourselves to the case of symmetric potentials for simplitity( R~ =
R,TY =T~ =T,Rf =R = R1andT;" = T] = T1). The Bethe equations take the form

2ikL 1 2 1 2 2
2e =T y—l—; +./T y—; + 4R%. (57)

Again, y is any root of one of the following polynomials, fordg < N — 1

4y P ()P () + 2 (y1 — 1% (v + 1)°T2(R? — T2 4 T2 — R2)?, (5.8)

where we have introduced

1 1
PF(y)=T*T1F R)(y*™M + 1) + = <y’1 + W)T(RZ —T?— R} — T# £ 2T1R)y™

2
My1—1
+ R(2T1(R — R1) £ (R — R)? £ T{ £T%) >y, (5.9)
j=1

andy = ¢ is theNth root of unity. The presence gfaccounts for the inclusion @¥ identical
impurities. In the cas®& = 1, one hay = 1 and the set of coupled equatiqBs7), (5.8)reduces
to (5.3), (5.4)

6. N bosonswith contact interaction

In this section, the general method of Sectis extended tgV bosons withs-interaction in
presence of the potential defined(ih1), (2.2) We restrict ourselves to the case of bosons for
the sake of clarity but a treatment analogous to th§bjhl], where the statistics is not given a
priori, is possible. Our aim is to derive the corresponding Bethe ansatz equations which can be
used then as above to get information on the energy spectrum of the model. However, we will
not go into the details of exploring particular cases as the essential features of our approach have
already been discussed in the previous sections. Instead, we trust that the interested people will
adapt the general equations to their specific needs in order to study the influence of interactions
in particular models with point potentials.

We first need some definitions and notations. &gt and2 »r denote the permutation group
and the Weyl group associated to the Lie algeBxa, respectively. The grouf® s consists of
N generators: the identityd and N — 1 elementd, ..., Tar_1 satisfying

T,T; =1d, TiTe=T¢T; for|j —£] > 1, (6.1)
TiTjaT; =Tj41TiTjq1. (6.2)

In particular, the last relation gives rise to the famous Yang—Baxter eqyatibf]. For conve-
nience, we denote a general transpositio®gf by T;;, i < j, given by

Tj=Tj-1-- TiaTiTiva- - Tjo1. (6.3)
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The Weyl groupi »r contains #' Nt elements generated by, 71, ..., Tar—1 andR1 satisfying
(6.1), (6.2)and

RiR1=1d, (6.4)
RiTiRiT1 =TiR1T1Ra, (6.5)
R1T; =TjRy forj>1. (6.6)

Let us define als®;, j=2,...,N, as
Ri=Tj-1---T1R1T1---Tj1. (6.7)

Letx1, ..., xn be the positions of the particles. Like in the previous case without interactions,
the wavefunction is not defined at the sités Here, in addition, it is not defined at the points
where the interaction takes place. As we shall see, it satisfies the boundary conditions describing
the external potential and conditions describing the point interaction between two particles. The
natural generalization ¢R.3)leads to represent the wavefunction as follows

P(x1, ey XN) = G5 N (X1 ) (6.8)
in the regions, for K k <N,
1 3
(M—ij—i-ek;_ )L<xk<<M—2jk+€k;_ )L. (6.9)

Then, forxy, ..., xar two by two different, one defines the foIIowir(gM)N—component vector

D(x1,...,XN)
= Y eI N GN))e ®eq @ ey ®écy  (6.10)

where, for 1< k < N,
fE)=+(x+2kL—-L—-ML)—L+ML. (6.11)

As before, the advantage of the veatdfx1, . .., xar) is that it contains all the information on the
wavefunction forxy, . .., xor running only in the intervalM L — L, M L[ of lengthL. This allows
to impose all the conditions for interactions between particles and with the external potential in
a very compact form.

Given a tensor product of spacé@zM)®N, we define the action of a matrix € End(C2M)
on thekth space by

AM=1®...IRARI®---®1. (6.12)
T TN
k—1 —

We are now in position to write all the conditions the wavefunction of the problem has to satisfy:

e Shrodinger equation: for; e IML — L, ML[ andx, ..., x) two by two different

N
=Y 2B (x1.... xn) = EQ(x, ... x). (6.13)
k=1
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o External point potential: for X k <N

[« =DM +i@wt + Do, |@(xe, ..., xp) =0 forxy — ML —L, (6.14)
[« =DM+ i@ +DMa, | (x1, ..., xp) =0 forx — ML. (6.15)
o Interactions between particles: fore G- and 1<i <N —1,
POLs e ANt = 0T, 07 @ (x1,..., M kgimgrn (6.16)
(Oxg; — Oxgyn)P (XL, ..o, xN)|in:x5(l_+l)
=0T, 0 H(3vy — rgien) +28]P(x1, ..., xN)'xw=x§<,»+1)’ (6.17)

where( is the usual representation of the elem@nt S 7 on (C2My&N Namely, denoting by
E;;,i,j=1,...,2M, the matrices with 1 at positiof, j) and O elsewhere, one has

oM
= E I QIQFEQEu®I®---Q1. (6.18)
—_——— ———
k=1 0 N-j-1

Then usingl; T; = 7;T; and(6.3), it is easy to gep for any Q € & since an arbitrary permu-
tation can always be decomposed in transpositions.

For bosons, the wavefuncti@n(x, ..., xn7) should be symmetric under the exchange of any
two particles. In terms o®, this reads, for Ki < j <N,

D(x1,...,x% xj,...,x/\/)zf}jé(xl,...,xj,...,xi,...,x/\/). (6.19)

Therefore, we can order the positions of the particles without loss of generality. In the following,
wetakeML — L <x1 <--- <xn < ML. The ansatz consists in representidpy

DXL, ... xXN) = Z gi(kP1X1+'--+kPNXN)AP’ (6.20)
PeWnr
where
Ap = Z A;@l’j"l'f_’jNejl Qe ® - ®ejy Qéey (6.21)
I<jt NSM
€1,....,eN =%

and, for any = (v1, ..., vnr),

vy, = (UL, - o0y Vim1, Vi1, Vis Vit 2y« -5 UN), (6.22)
VR, = (—v1, 02, ..., UN). (6.23)

We need to determine theNZ\/'(ZM)N parametersA to find the solution of our

P, ]1
problem. Inserting the ansaf.20)in conditions(6.14) and (6 15)0ne gets
-APRl (Z+( kp ))[l] 2ikp1(M— l)LA (6.24)
Apry = (Z_(_kPN)) L2k ML 4, (6.25)

whereZ* is given by(2.17) Similarly, from conditiong6.16) and (6.17)we get, for 1< j <
N -1,

Apr; = y(kpj —kp(j+1)Ap, (6.26)
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yk) = —2. (6.27)
8

Since our construction is based 9/, the Bethe ansatz is consistent if and only(i£) satisfies
the Yang—Baxter equatidb,14]andZ ™ (k) andy (k) satisfy the reflection equatidgh5,16](see,
for examplg11], for details). These relations hold true by direct computation, implying the exact
solvability of the model.
The non-vanishing of the wavefunction implies the following constraints, fgrjl< A,

det[(Z+(—kj))[l] — T yk; +km)yk; — km)(Z_(—kj))[N]EZikjL:| =0. (6.28)
m#j

These relations are the Bethe equations associated to our problem. We recover the rddljlts of
by settingM =1 andU, = (2 (1)) As in the previous section, to get the spectrum of a given
model with§ interaction, one chooses the corresponding matiiteand U, and solves these

equations irk;. The energy of the corresponding state is giverEby Z]A-il ka
7. Conclusions

In this paper, we have presented a general method to address the question of the energy spec-
trum for a large class of one-dimensional models with equally spaced point potentials. We also
described how to extend the method to the case where particle interactions are present. The main
results consist in Bethe ansatz equations which allow a non-perturbative treatment of these issues.

We have illustrated the method in various typical situations of interest and have obtained exact
results on the effects of boundaries and impurities in such models. In view of the importance of
the Kronig—Penney model in solid state physics, we believe that our method will serve as a useful
toolbox to treat even more realistic situations which now occur in experimental situations with
the advent of the “quantum technology”.
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