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Abstract

We describe a non-perturbative method for computing the energy band structures of one-dime
models with general point potentials sitting at equally spaced sites. This is done thanks to a Beth
approach and the method is applicable even when periodicity is broken, that is when Bloch’s theore
valid any more. We derive the general equation governing the energy spectrum and illustrate its use
ous situations. In particular, we get exact results for boundary effects. We also study non-perturbati
effects of impurities in such systems. Finally, we discuss the possibility of including interactions be
the particles of these systems.
 2005 Elsevier B.V. All rights reserved.

PACS: 03.65.Fd; 71.20.-b; 71.55.-i

Keywords: Energy band structures; Impurities; Non-perturbative methods; Bethe ansatz

1. Introduction

The study of the so-called point or contact interactions covers an impressively large num
areas ranging from pure mathematics, where the main goal consists in defining and unders
them rigorously, to applied physics, where either they serve as good approximations for p
situations or they are created to control the behaviour of certain quantum systems. One pa
case of such contact interactions, but certainly the most well-known, is theδ potential which
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played a crucial role in two specific areas of special interest for us in this paper: solid
physics and exactly solvable and integrable models (in one spatial dimension). Indeed
first context, theδ potential was used by Kronig and Penney[1] to model a free electron movin
in periodic external potential created by a crystal lattice and is now a standard of textbo
solid state physics[2]. As for the second context, it has become one of the cornerstones of e
solvable and integrable systems through the works of McGuire, Lieb and Liniger and Yang[3–5]
where it was used to describe interactions between identical particles.

These two quantum mechanical problems can be solved to get the energy spectrum
precisely, in the Kronig–Penney model, the periodicity of the potential and of the boundar
ditions on the wavefunction allows to use the famous Bloch’s theorem[6] which actually fixes
the form of the eigenfunctions. In the Lieb–Liniger model, one assumes that the wavefun
can be expanded on plane waves with appropriate coefficients that must be found. Th
proaches combined with the various conditions imposed on the wavefunctions of the p
lead to the allowed energy states of the models. Depending on the context, this gives ris
famous energy band structures or to the famous Bethe ansatz equations[7].

Several generalizations of the two previous problems have been considered over t
decades. For instance, in[8,9], the Kronig–Penney model is extended to the case whereδ
potential is replaced by a more general point potential. In[10], boundary Bethe ansatz equatio
were derived by putting bosons withδ interactions in a box while in[11], impurity Bethe ansat
equations appeared by including a general external contact potential in a system of partic
δ interactions.

With the advent of nanostructures and the ever increasing need for controlling quant
vices, the standard assumption of periodicity is no longer accurate enough. But then, B
theorem no longer applies and, to the best of our knowledge, only approximate metho
used. In this paper, we mainly address the above problem and propose a general me
investigate the energy spectrum in one-dimensional models with equally spaced but oth
arbitrary point potentials. Let us note that the breaking of periodicity can have various o
For example, one can simply imagine that the periodic boundary conditions are repla
Dirichlet or Neumann boundary conditions. Or, one could replace theδ potential at one or mor
sites by a different point potential. We will see that the Bethe ansatz approach brings an
and more general alternative to Bloch’s theorem in order to treat such problems. In all
we reduce the problem to finding roots of polynomials and solving Bethe ansatz equatio
also discuss the possibility of including interactions between bosons moving in such g
potentials.

The paper is organised as follows. In Section2, we discuss the general setup for treat
free particles in an arbitrary equally spaced, external point potential. Then, in Section3, we
validate our method in the context of periodic potentials by deriving a general result
encompasses previous results in the literature and in particular the well-known features
Kronig–Penney model. Section4 illustrates the use of our method in a context where p
odicity is broken by the boundary conditions. This provides non-perturbative results fo
boundary effects. This is further illustrated in Section5 where we introduce impurities at on
or several sites of the potential. Again the results are non-perturbative and this allows
study of the effects of impurities with arbitrary strength. Finally, in Section6, we discuss the
extension of our method to the case of bosons withδ interactions moving in a general poi
potential.
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2. The general problem

We study a one-dimensional system of free particles moving in the interval[−ML,ML],
M � 1 being an integer andL a length scale, with an external point potential sitting at e
sitex0

j = (M − 2j + 1)L, j = 1, . . . ,M . It is sufficient to consider the one-particle Hamiltoni

which takes the following form1

(2.1)H = − d2

dx2
+

M∑
j=1

vj

(
x − x0

j

)
,

where, forj = 1, . . . ,M ,

(2.2)vj (x) = cj δ(x) + 4λj

d

dx
δ(x)

d

dx
+ 2(γj + iηj )

d

dx
δ(x) − 2(γj − iηj )δ(x)

d

dx
,

andcj , λj , γj , ηj ∈ R. These very singular point potentials find their origin in the self-adj

extensions of the free Hamiltonian− d2

dx2 on the spaceC∞
0 (R \ {0}) of C∞ functions with com-

pact support separated from the origin. Written in this way, they are in fact quite formal bu
known that they are equivalent to imposing appropriate boundary conditions on the wavefu
at each sitex0

j parametrized byU(2) matrices (see, for example,[12] and references therein).

In each regionR±
j : (M −2j + 1±1

2 )L < x < (M −2j + 3±1
2 )L, the particle is actually free an

we denote the wavefunction byφ±
j (x) (seeFig. 1). Now the idea is to impose all the bounda

conditions (those corresponding to the potential at eachx0
j and those at the ends of the interv

in a compact form by extending the approach of[11]. To do so, we collect all the pieces of th
wavefunction into a single 2M-component vector defined forx ∈ ]ML − L,ML[

(2.3)Φ(x) =
M∑

j=1

φ+
j

(
x + 2L(j − 1)

)
ej ⊗ ê+ + φ−

j

(−x + 2L(M − j)
)
ej ⊗ ê−,

where{ej | 1 � j � M} is the canonical basis ofCM and {ê+, ê−} is that ofC2. We are now
ready to formulate the problem. As we said, this is just the free problem in each regionR±

j . In
terms ofΦ this reads,

(2.4)− d2

dx2
Φ(x) = EΦ(x), ML − L < x < ML.

Fig. 1. The non-trivial potential lies at the points−(M − 1)L,−(M − 3)L, . . . , (M − 1)L (solid lines). The dashed line
correspond to a trivial potential used for convenience.

1 In this paper, we use units such thath̄ = 1 = 2m.
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Then, following for example[13], theM conditions corresponding to the general point poten
are written as follows

(2.5)(U+ − I)Φ(x) + i(U+ + I)
d

dx
Φ(x) = 0 for x → ML − L,

whereI is the 2M × 2M identity matrix and

(2.6)U+ =
U1

. . .

UM

 .

Each submatrixUj of U+ corresponds to the potentialvj in (2.2). It is a U(2) matrix parame-
trized by

(2.7)Uj = eiξj

(
µj νj

−ν∗
j µ∗

j

)
, ξj ∈ [0,π), µj , νj ∈ C such that|µj |2 + |νj |2 = 1,

where the symbol* stands for complex conjugation. The parameters of the potentialvj given in
(2.2)are related to those in the matrixUj by (see e.g.[9] and references therein)2

(2.8)cj = 2
cosξj − Reµj

sinξj − Imνj

, λj = −1

2

cosξj + Reµj

sinξj − Imνj

,

(2.9)γj = − Imµj

sinξj − Imνj

, ηj = Reνj

sinξj − Imνj

.

Finally, the boundary conditions at the ends of the interval can be written in the same fo
before

(2.10)(U− − I)Φ(x) + i(U− + I)
d

dx
Φ(x) = 0 for x → ML,

where

(2.11)U− =



eiξq µq eiξq νq

0 1
1 0

. . .

0 1
1 0

−eiξq ν∗
q eiξq µ∗

q


.

The four coefficients at the corners ofU− also form aU(2) matrix

(2.12)Uq = eiξq

(
µq νq

−ν∗
q µ∗

q

)
,

with the same constraints as in(2.7). They represent very general boundary conditions enc
passing the usual periodic, anti-periodic and box boundary conditions. These coefficients
the behaviour of the wavefunction on the boundariesx = −ML andx = ML (seeFig. 1). The

2 The case sinξj − Imνj = 0 signals the fact that the parametrization(2.5), (2.7)is slightly more general than th
formal expression(2.2).
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of U− correspond to the dashed lines inFig. 1. They are introduced for mer

convenience in our approach.
It is now obvious that one cannot use Bloch’s theorem to solve this problem as explai

the introduction. The potential, albeit sitting on equally spaced sites, is certainly not period
we impose quite general boundary conditions.

Instead, we formulate aBethe ansatz [7] for Φ

(2.13)Φ(x) = eikxAI + e−ikxAR where

{
AI = ∑M

j=1
∑

ε=± Aε
I,j ej ⊗ êε ,

AR = ∑M
j=1

∑
ε=± Aε

R,j ej ⊗ êε .

In this form,Φ(x) is automatically a solution of(2.4)with

(2.14)E = k2.

Inserting the ansatz in(2.5) and (2.10), we find thatΦ is the eigenfunction we look for if an
only if the 4M amplitudesAε

I,j andAε
R,j satisfy the following relations

(2.15)AR = e2ik(M−1)LZ+(−k)AI ,

(2.16)AR = e2ikMLZ−(−k)AI ,

where

(2.17)Z±(k) = −[
U± − I − k(U± + I)

]−1[U± − I + k(U± + I)
]
.

These 2M × 2M matrices characterize the type of potential and boundary conditions one i
sidering. Requiring a non-trivial solution for the wavefunction, one finds the following equ

(2.18)det
(
Z+(−k) − Z−(−k)e2ikL

) = 0.

This type of equation is usually called Bethe ansatz equations. To our knowledge, it is th
time that the Bethe equations have been established in this context. They impose con
on the allowed values ofk which incorporate the effect of the potential and of the bound
conditions. Solving ink as a function of the parameters controlling the potential and the boun
conditions allows one to determine the energy spectrum and to study how one can modi
tuning these parameters. As we will see, this has consequences on the energy band str
the associated model.

The above Bethe ansatz equations together with the method to get them for the very
model we are considering constitute the main result of this paper. They replace Bloch’s th
when periodicity is broken and provide a non-perturbative means to get the energy spec
such situations.

3. Periodic potential

Before exploring some applications of our method to more complicated cases in the follo
we first show in this section that our approach consistently reproduce well-known resu
periodic potentials and in particular for the Kronig–Penney model. We also obtain inform
on the bound states which are less studied. Finally, we compute the spectrum for an asym
potential which, to our knowledge, is not studied in the literature.
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3.1. General case

In our language, a periodic potential with periodic boundary conditions is obtained by s

(3.1)U1 = · · · = UM = eiξ

(
µ ν

−ν∗ µ∗
)

≡ U and

(3.2)Uq =
(

0 1
1 0

)
.

In this case, the Bethe equations(2.18)reduce to

(3.3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R+ T + −e2ikL

T − R− −e2ikL

−e2ikL R+ T +
T − R− −e2ikL

. . .

T − R− −e2ikL

−e2ikL R+ T +
−e2ikL T − R−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where, forµ = µR + iµI andν = νR + iνI (µR , µI , νR , νI ∈ R)3

R+ = (cosξ + µR)k2 − 2iµI k − cosξ + µR

(cosξ + µR)k2 + 2ik sinξ + cosξ − µR

,

(3.4)T + = −2νk

(cosξ + µR)k2 + 2ik sinξ + cosξ − µR

,

R− = (cosξ + µR)k2 + 2iµI k − cosξ + µR

(cosξ + µR)k2 + 2ik sinξ + cosξ − µR

,

(3.5)T − = 2ν∗k
(cosξ + µR)k2 + 2ik sinξ + cosξ − µR

.

The determinant can be seen as a polynomial ine2ikL of order 2M whose roots are functions o
k of the form

X±
p = 1

2

[
ω∗p

T + + ωpT − ±
√(

ω∗pT + − ωpT −)2 + 4R+R−
]
,

(3.6)p = 0, . . . ,M − 1,

whereω = e
2iπ
M is theM th root of unity. ForM = 1, we recover the result given in[11]. To get

the spectrum, one has to solve ink the following equations

(3.7)e2ikL = X±
p , p = 0, . . . ,M − 1.

Let us introduce the shift operator̂Pf (x) = f (x + 2L). In the case under consideration, t
operator commutes with the Hamiltonian and can therefore be diagonalized in the sam

3 In comparison with the notation of[11], R+ = R+(−k), T + = T +(−k), R− = R−(k) andT − = T −(k).
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When acting onΦ, this operator is represented by the following 2M × 2M matrix

(3.8)P̂ =



1
1

. . .

1

1
1


.

Let us note that the eigenfunctions(2.13)constrained by relation(3.7) for a givenp are actually
common eigenfunctions ofH andP̂ as one can see from

(3.9)P̂Φ(x) = ωpΦ(x).

This relation allows us to give a simple physical interpretation forp. Indeed,p is the usual crysta
momentum4 carried by the particle. In the usual approach, it labels the Bloch’s functions an
recover here by our different approach that it is indeed a good quantum number for a very
periodic potential. We also remark that Eq.(3.7) is M-periodic in terms ofp. This statement is
equivalent to the standard restriction of the range of the crystal momentum to the first Br
zone.

3.2. Kronig–Penney model

We now turn to the Kronig–Penney model to show that Eq.(3.7) consistently reproduce th
standard equations of this model. In this case, all thevj ’s are given by aδ potential with the same
coupling constantc. This is obtained from(3.1)by taking

(3.10)U = −eiξ

(
cos(ξ) i sin(ξ)

i sin(ξ) cos(ξ)

)
, ξ ∈ [0,π) and tan(ξ) = 2

c
.

Therefore, we get

(3.11)T + = T − = ik tan(ξ)

1+ ik tan(ξ)
and R+ = R− = −1

1+ ik tan(ξ)
.

After some algebra, we see that Eq.(3.7)become, forp = 0, . . . ,M − 1 and realk

(3.12)cos(2kL) + 1

k tan(ξ)
sin(2kL) = cos

(
2πp

M

)
.

These are the equations obtained by using Bloch’s theorem (see, for example,[2]). They give the
well-known plots that we show inFig. 2.5 The plots represent the energy spectrum in terms o
crystal momentump (restricted to the first Brillouin zone) for various values ofξ (hereM = 32
andL = 1). Forξ = 0 (circle onFig. 2), the coupling constant,c, tends to+∞ and the energy
does not depend onp. The states are localized in the regionsR−

j−1 ∪ R+
j , j = 2, . . . ,M , which

are separated by purely reflecting walls (there is no transmission). The choiceξ = π/2 (box on
Fig. 2) correspond to another particular case where the coupling constant vanishes. The s
delocalized and this is just the free particle model. The energy varies like the square ofp. For an
intermediate case, hereξ = 0.2 (cross onFig. 2), the well-known energy band structure appea

4 We choose the units so thath̄ = 1.
5 All the numerical resolutions and plots are realized with Maple.
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Fig. 2. Lowest positive energy levels in terms ofp for
ξ = 0 (circle); 0.2 (cross);π/2 (box).

Fig. 3. Bound states and lowest positive energy level
terms ofp for ξ = π/2 (box); 2.3 (cross); 2.5 (diamond
2.7 (circle).

Let us stress that in order to find Eq.(3.12), we assumedk real. However, to study the possib
bound states we have to look for purely imaginary solutions of(3.7)of the typek = ikI , kI ∈ R.
In this case, we are led to solve the following equations, forp = 0, . . . ,M − 1

(3.13)(1+ kI tanξ)e2kI L = kI tanξ cos

(
2πp

M

)
±

√
1− k2

I tan2 ξ sin2
(

2πp

M

)
.

Fig. 3 shows the solutions of this equation (forξ = 2.3 (cross); 2.5 (diamond); 2.7 (circle
which gives negative energy levels. We represent also the lowest positive energy levels s
of (3.12). The bound states appear only whenξ > π/2 (i.e. c < 0). Forξ → π−, the coupling
constant tends to−∞ and the states are localized around the pointsx0

j .

3.3. Asymmetric potential

In this section, we study the periodic potential characterized by

(3.14)U =
(

0 eiα

−eεiα 0

)
whereε = −1 (respectively, ε = 1).

This particular form ofU for ε = −1 (respectively,ε = +1) is obtained from(3.1) by setting
µ = 0, ξ = 0 andν = eiα (respectively,µ = 0, ν = 1 andξ = α). In this case, one gets

(3.15)R+ = k2 − 1

k2 + 1
= R− and T ± = ∓2ke±iα

k2 + 1

(3.16)

(
respectively,R+ = k2 − 1

k2 + 2ik tanα + 1
= R− and T ± = ∓2k

cosα(k2 + 2ik tanα + 1)

)
.

For k ∈ R, Eq.(3.7) reduces to

(3.17)
(
k2 + 1

)
sin(2kL) = 2k sin

(
2πp

M
− α

)
(3.18)

(
respectively,

(
k2 + 1

)
cosα sin(2kL) + 2k sinα cos(2kL) = 2k sin

(
2πp

))
.

M
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Fig. 4. Lowest positive energy levels in terms ofp

(ε = −1) for α = 0 (circle);π/2 (cross);π (box)
Fig. 5. Lowest positive energy levels in terms ofp

(ε = +1) for α = 0 (circle);π/4 (cross);π/2 (box).

Fig. 4 (respectively,Fig. 5) shows the behavior of the solutions of Eq.(3.17) (respectively,
Eq.(3.18)). Let us remark that, for a genericα, these potentials break the symmetry of the sp
trum under the transformationp → −p. We also remark that the behaviors of the two spe
are completely different. Forε = −1, the gaps between the energy bands are independent
parametersα whereas, forε = +1, they decrease whenα increases.

4. Dirichlet or Neumann conditions

In this section, we want to study the behavior of the energy band structure when we m
the boundary conditions. To illustrate this on a simple example we take the same potenti
(3.1)and simply changeUq in (3.2) to

(4.1)Uq = ε

(
1 0
0 1

)
whereε = −1 (respectively,ε = +1).

This implements the Dirichlet (respectively, Neumann) boundary condition:

(4.2)φ(0) = 0= φ(L)
(
respectively,φ′(0) = 0= φ′(L)

)
,

and breaks the periodicity of the model. This constitutes a basic example where our meth
holds while Bloch’s theorem breaks down. In this case the Bethe equations given in(2.18)are
equivalent to

(4.3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R+ − εe2ikL T +
T − R− −e2ikL

−e2ikL R+ T +
T − R− −e2ikL

. . .

T − R− −e2ikL

−e2ikL R+ T +
T − R− − εe2ikL

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Again, this determinant is a polynomial of order 2M in e2ikL whose roots read

(4.4)Y±
q = √

T +T − cos

(
πq

M

)
±

√
R+R− − T +T − sin2

(
πq

M

)
, 1� q � M − 1,

(4.5)Y± = 1

2

[
−ε(R+ + R−) ±

√
(R+ − R−)2 + 4T +T −

]
.

The Bethe equations governing the spectrum then read

(4.6)e2ikL = Y±
q , 1� q � M − 1,

(4.7)e2ikL = Y±.

Let us make a few remarks before showing the influence of the boundary on the energy sp
for a particular example. First, the parameterq cannot be interpreted as the crystal momen
any more (the shift operator̂P does not commute with the Hamiltonian). It does not label all
energy states since it is absent from Eq.(4.7). On the other hand, only Eq.(4.7)depends on th
parameterε characterizing the type of boundary conditions under consideration. We also
that, although they look different, the roots in(3.6)and those in(4.4)can be written in the sam
form provided one replacesM by M/2 in (4.4) and relabelsq appropriately. From all this, w
conclude that Eq.(4.7) give the energy states arising from the presence of the boundary
the rest of the spectrum will be identical to that of the periodic case. In particular, the bou
effects become negligible asM becomes large.

Example
We take once again the matrixU given by(3.10)to define the potential at each site but now,

impose Neumann boundary conditions. The Bethe equations(4.6) and (4.7)become respectivel
(for k real)

(4.8)cos(2kL) + 1

k tanξ
sin(2kL) = cos

(
πq

M

)
, for 1� q � M − 1,

(4.9)cos(2kL) − k tan(ξ)sin(2kL) = 1.

OnFig. 6below, we plot solutions of Eqs.(4.8) and (4.9)for M = 16 andξ = 0.2. The solutions
of (4.8) are represented by circles and those of(4.9) by boxes which we displayed atq = 0

Fig. 6. Lowest positive energy levels in terms ofq for ξ = 0.2.
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andq = 16 for convenience. To make the comparison even easier, we have also represe
energy band structure of the periodic case forM = 32 (crosses onFig. 6). We see that for the firs
and third energy band, the allowed energy levels coincide with the periodic case as the so
of (4.9)nicely complete those of(4.8). However, the effect of the boundary conditions shows
in the second energy band where two states are “missing” with respect to the periodic cas

5. Impurities

So far, we have considered homogeneous potentials in the sense that the potential
same at each site. As illustrated above, even with non-periodic boundary conditions, th
not deviate drastically from the periodic case as only local boundary effects arise.

In this section, we want to explore very different situations which cannot be approach
perturbing the periodic case and therefore, show the advantages of our approach. Such s
occur when one modifies the potential at only one or several sites. Thus, these sites ap
what we call impurities. These models can be useful for describing localized defects in ma
with one dimensional behavior (nanowires, etc.).

We illustrate this in the following by considering one such impurity and then a subs
equally spaced identical impurities in a given periodic potential.

5.1. One impurity

We restrict ourselves to the case of periodic boundary conditions and we imagine th
impurity is sitting at site 1 with a potentialv1 given as in(2.2)while all the other sites have th
same potentialv2 = · · · = vM = v. This model is obtained in our language by taking

U1 = eiξ1

(
µ1 ν1
−ν∗

1 µ∗
1

)
, U2 = · · · = UM = U = eiξ

(
µ ν

−ν∗ µ∗
)

and

(5.1)Uq =
(

0 1
1 0

)
whereU1 andU characterize respectivelyv1 andv. In this case, the Bethe equations given
(2.18)reduce to

(5.2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R+
1 T +

1 −e2ikL

T −
1 R−

1 −e2ikL

−e2ikL R+ T +
T − R− −e2ikL

. . .

T − R− −e2ikL

−e2ikL R+ T +
−e2ikL T − R−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

whereR+
1 , T +

1 , T −
1 andR−

1 are given by relations(3.4) and (3.5)substitutingξ , µ andν by ξ1,
µ1 andν1, respectively.

To simplify the expression of these Bethe equations, we consider the case of symmetric
tials i.e.R+ = R− = R, T + = T − = T , R+ = R− = R1 andT + = T − = T1. In this particular
1 1 1 1
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Fig. 7. Energy levels of the first band in terms ofξ1 for
ξ = 0.2.

Fig. 8. Energy levels of the second band in terms ofξ1 for
ξ = 0.2.

case, relation(5.2) is equivalent to the following equations

(5.3)2e2ikL =
(

y + 1

y

)
T ±

√(
y − 1

y

)2

T 2 + 4R2

wherey is any root of one of the following polynomials

T 2(T1 ∓ R1)
(
y2M + 1

) + T
(
R2 − T 2 − R2

1 − T 2
1 ± 2T1R

)
yM

(5.4)+ R
(
2T1(R − R1) ± (R − R1)

2 ± T 2
1 ∓ T 2)M−1∑

j=1

y2j .

Note that we consistently recover the periodic case whenR1 = R andT1 = T since the polyno
mials(5.4)simply reduce to(yM − 1)2.

Example
We imagine that both the impurity and the bulk potential are given by aδ potential but with

different coupling constants (i.e. the matricesU andU1 are given by(3.10)with parameterξ
andξ1, respectively). We study the behavior of the spectrum when the coupling constant
impurity is varied whileξ is kept fixed (we choose hereξ = 0.2).

Figs. 7 and 8show the behavior of the energy levels of the first and second positive e
bands as functions ofξ1 for M = 8. In the case whereξ1 = ξ = 0.2, we remark a degeneracy
the impurity becomes identical to the bulk potential. The corresponding energy levels co
with those represented by crosses onFig. 2. Generally speaking, the effect of the impurity is
from being trivial. We see that in each band, two energy levels are severely modified dep
on the strength of the impurity. This can have strong consequences on the corresponding
(if we think of conducting or insulating materials, for instance).

5.2. N identical impurities

Here, we introduce periodicallyN identical impurities (N ∈ N) in a given periodic potentia
From now on, letM be a multiple ofN i.e. M = M1N with M1 > 1. The impurities have
potentialv1 and the bulk potential isv. In this case, the matricesUj take the following particula
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(5.5)U1 = UM1+1 = · · · = U(N−1)M1+1 = eiξ1

(
µ1 ν1
−ν∗

1 µ∗
1

)
,

(5.6)U2 = · · · = UM1 = UM1+2 = · · · = U(N−1)M1+2 = · · · = UM = eiξ

(
µ ν

−ν∗ µ∗
)

.

As before, we restrict ourselves to the case of symmetric potentials for simplicity (R+ = R− =
R, T + = T − = T , R+

1 = R−
1 = R1 andT +

1 = T −
1 = T1). The Bethe equations take the form

(5.7)2e2ikL = T

(
y + 1

y

)
±

√
T 2

(
y − 1

y

)2

+ 4R2.

Again,y is any root of one of the following polynomials, for 0� q � N − 1

(5.8)4γ 2qP +
q (y)P −

q (y) + y2M1
(
γ q − 1

)2(
γ q + 1

)2
T 2(R2 − T 2 + T 2

1 − R2
1

)2
,

where we have introduced

P ±
q (y) = T 2(T1 ∓ R1)

(
y2M1 + 1

) + 1

2

(
γ q + 1

γ q

)
T

(
R2 − T 2 − R2

1 − T 2
1 ± 2T1R

)
yM1

(5.9)+ R
(
2T1(R − R1) ± (R − R1)

2 ± T 2
1 ∓ T 2)M1−1∑

j=1

y2j ,

andγ = e
2iπ
N is theN th root of unity. The presence ofγ accounts for the inclusion ofN identical

impurities. In the caseN = 1, one hasγ = 1 and the set of coupled equations(5.7), (5.8)reduces
to (5.3), (5.4).

6. N bosons with contact interaction

In this section, the general method of Section2 is extended toN bosons withδ-interaction in
presence of the potential defined in(2.1), (2.2). We restrict ourselves to the case of bosons
the sake of clarity but a treatment analogous to that in[5,11], where the statistics is not given
priori, is possible. Our aim is to derive the corresponding Bethe ansatz equations which
used then as above to get information on the energy spectrum of the model. However,
not go into the details of exploring particular cases as the essential features of our approa
already been discussed in the previous sections. Instead, we trust that the interested pe
adapt the general equations to their specific needs in order to study the influence of inter
in particular models with point potentials.

We first need some definitions and notations. LetSN andWN denote the permutation grou
and the Weyl group associated to the Lie algebraBN , respectively. The groupSN consists of
N generators: the identityId andN − 1 elementsT1, . . . , TN−1 satisfying

(6.1)TjTj = Id, TjT� = T�Tj for |j − �| > 1,

(6.2)TjTj+1Tj = Tj+1TjTj+1.

In particular, the last relation gives rise to the famous Yang–Baxter equation[5,14]. For conve-
nience, we denote a general transposition ofSN by Tij , i < j , given by

(6.3)Tij = Tj−1 · · ·Ti+1TiTi+1 · · ·Tj−1.
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The Weyl groupWN contains 2NN ! elements generated byId , T1, . . . , TN−1 andR1 satisfying
(6.1), (6.2)and

(6.4)R1R1 = Id,

(6.5)R1T1R1T1 = T1R1T1R1,

(6.6)R1Tj = TjR1 for j > 1.

Let us define alsoRj , j = 2, . . . ,N , as

(6.7)Rj = Tj−1 · · ·T1R1T1 · · ·Tj−1.

Let x1, . . . , xN be the positions of the particles. Like in the previous case without interac
the wavefunction is not defined at the sitesx0

j . Here, in addition, it is not defined at the poin
where the interaction takes place. As we shall see, it satisfies the boundary conditions de
the external potential and conditions describing the point interaction between two particle
natural generalization of(2.3) leads to represent the wavefunction as follows

(6.8)φ(x1, . . . , xN ) = φ
ε1,...,εN
j1,...,jN

(x1, . . . , xN )

in the regions, for 1� k �N ,

(6.9)

(
M − 2jk + εk + 1

2

)
L < xk <

(
M − 2jk + εk + 3

2

)
L.

Then, forx1, . . . , xN two by two different, one defines the following(2M)N -component vecto

Φ(x1, . . . , xN )

(6.10)=
∑

1�j1,...,jN �M

ε1,...,εN =±

φ
ε1,...,εN
j1,...,jN

(
f

ε1
j1

(x1), . . . , f
εN
jN

(xN )
)
ej1 ⊗ êε1 ⊗ · · · ⊗ ejN ⊗ êεN

where, for 1� k �N ,

(6.11)f ±
k (x) = ±(x + 2kL − L − ML) − L + ML.

As before, the advantage of the vectorΦ(x1, . . . , xN ) is that it contains all the information on th
wavefunction forx1, . . . , xN running only in the interval]ML−L,ML[ of lengthL. This allows
to impose all the conditions for interactions between particles and with the external poten
a very compact form.

Given a tensor product of spaces,(C2M)⊗N , we define the action of a matrixA ∈ End(C2M)

on thekth space by

(6.12)A[k] = I ⊗ · · · ⊗ I︸ ︷︷ ︸
k−1

⊗A ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−k

.

We are now in position to write all the conditions the wavefunction of the problem has to sa

• Shrödinger equation: forxi ∈ ]ML − L,ML[ andx1, . . . , xN two by two different

(6.13)−
N∑

k=1

∂2
xk

Φ(x1, . . . , xN ) = EΦ(x1, . . . , xN ).
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• External point potential: for 1� k �N

(6.14)
[
(U+ − I)[k] + i(U+ + I)[k]∂xk

]
Φ(x1, . . . , xN ) = 0 for xk → ML − L,

(6.15)
[
(U− − I)[k] + i(U− + I)[k]∂xk

]
Φ(x1, . . . , xN ) = 0 for xk → ML.

• Interactions between particles: forQ ∈ SN and 1� i �N − 1,

(6.16)Φ(x1, . . . , xN)|xQi=x+
Q(i+1)

= Q̃T̃iQ̃
−1Φ(x1, . . . , xN)|xQi=x−

Q(i+1)
,

(6.17)

(∂xQi
− ∂xQ(i+1)

)Φ(x1, . . . , xN)|xQi=x+
Q(i+1)

= Q̃T̃iQ̃
−1[(∂xQi

− ∂xQ(i+1)
) + 2g

]
Φ(x1, . . . , xN)|xQi=x−

Q(i+1)
,

whereQ̃ is the usual representation of the elementQ ∈ SN on (C2M)⊗N . Namely, denoting by
Eij , i, j = 1, . . . ,2M , the matrices with 1 at position(i, j) and 0 elsewhere, one has

(6.18)T̃j =
2M∑

k,�=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
j−1

⊗Ek� ⊗ E�k ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−j−1

.

Then usingT̃iTj = T̃i T̃j and(6.3), it is easy to getQ̃ for anyQ ∈ SN since an arbitrary permu
tation can always be decomposed in transpositions.

For bosons, the wavefunctionφ(x1, . . . , xN ) should be symmetric under the exchange of
two particles. In terms ofΦ, this reads, for 1� i < j � N ,

(6.19)Φ(x1, . . . , xi, . . . , xj , . . . , xN ) = T̃ijΦ(x1, . . . , xj , . . . , xi, . . . , xN ).

Therefore, we can order the positions of the particles without loss of generality. In the follo
we takeML − L < x1 < · · · < xN < ML. The ansatz consists in representingΦ by

(6.20)Φ(x1, . . . , xN ) =
∑

P∈WN

ei(kP1x1+···+kPN xN )AP ,

where

(6.21)AP =
∑

1�j1,...,jN �M

ε1,...,εN =±

A
ε1,...,εN
P,j1,...,jN

ej1 ⊗ êε1 ⊗ · · · ⊗ ejN ⊗ êεN

and, for anyv = (v1, . . . , vN ),

(6.22)vTi
= (v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vN ),

(6.23)vR1 = (−v1, v2, . . . , vN ).

We need to determine the 2NN !(2M)N parametersAε1,...,εN
P,j1,...,jN

to find the solution of our
problem. Inserting the ansatz(6.20)in conditions(6.14) and (6.15), one gets

(6.24)APR1 = (
Z+(−kP1)

)[1]
e2ikP1(M−1)LAP ,

(6.25)APRN = (
Z−(−kPN )

)[N ]
e2ikPN MLAP ,

whereZ± is given by(2.17). Similarly, from conditions(6.16) and (6.17), we get, for 1� j �
N − 1,

(6.26)APTj
= y(kPj − kP(j+1))AP ,
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where

(6.27)y(k) = k − ig

k + ig
.

Since our construction is based onWN , the Bethe ansatz is consistent if and only ify(k) satisfies
the Yang–Baxter equation[5,14]andZ+(k) andy(k) satisfy the reflection equation[15,16](see,
for example[11], for details). These relations hold true by direct computation, implying the e
solvability of the model.

The non-vanishing of the wavefunction implies the following constraints, for 1� j �N ,

(6.28)det

[(
Z+(−kj )

)[1] −
∏
m �=j

y(kj + km)y(kj − km)
(
Z−(−kj )

)[N ]
e2ikj L

]
= 0.

These relations are the Bethe equations associated to our problem. We recover the result[11]
by settingM = 1 andUq = ( 0 1

1 0

)
. As in the previous section, to get the spectrum of a g

model withδ interaction, one chooses the corresponding matricesUj andUq and solves thes

equations inkj . The energy of the corresponding state is given byE = ∑N
j=1 k2

j .

7. Conclusions

In this paper, we have presented a general method to address the question of the ene
trum for a large class of one-dimensional models with equally spaced point potentials. W
described how to extend the method to the case where particle interactions are present. T
results consist in Bethe ansatz equations which allow a non-perturbative treatment of these

We have illustrated the method in various typical situations of interest and have obtaine
results on the effects of boundaries and impurities in such models. In view of the importa
the Kronig–Penney model in solid state physics, we believe that our method will serve as a
toolbox to treat even more realistic situations which now occur in experimental situation
the advent of the “quantum technology”.
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