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We provide a systematic construction for all n-particle
form factors of the SU(N)2/U(1)N−1-homogeneous Sine-
Gordon model in terms of general determinant formulae for a
huge class of local operators. The ultraviolet limit is carried
out and the corresponding Virasoro central charge together
with the conformal dimensions of various operators are iden-
tified. The renormalization group flow is studied and we find
a precise rule, depending on the relative order of magnitude
of the resonance parameters, according to which the theory
decouples into new cosets along the flow.

PACS numbers: 11.10Hi, 11.10Kk, 11.30Er, 05.70.Jk

I. INTRODUCTION

For most integrable quantum field theories in 1+1
space-time dimensions it remains an open challenge to
complete the entire bootstrap program, i.e. to com-
pute the exact on-shell S-matrix, closed formulae for the
n-particle form factors, identify the entire local opera-
tor content and in particular thereafter to compute the
related correlation functions. Recently we investigated
[1–3] a class of models, the SU(3)2/U(1)2-homogeneous
Sine-Gordon model [4] (HSG), for which this task was
completed to a large extend. In particular we provided
general formulae for the n-particle form factors related
to a huge class of local operators. In order to understand
the generic group theoretical structure of the n-particle
form factor expressions it is highly desirable to extend
that analysis to higher rank as well as to higher level.
One of the main purposes of this manuscript is to do the
former, that is the investigation of the SU(N)2/U(1)N−1

case. This model may be viewed as the perturbation of
a gauged WZNW-coset with Virasoro central charge

cSU(N)2/U(1)N−1 =
N(N − 1)

(N + 2)
(1)

by an operator of conformal dimension ∆ = N/(N + 2).
The theory possesses already a fairly rich particle con-
tent, namely N − 1 asymptotically stable particles char-
acterized by a mass scale mi and N − 2 unstable par-
ticles whose energy scale is characterized by the reso-
nance parameters σij (1 ≤ i, j ≤ N − 1). We relate the
stable particles in a one-to-one fashion to the vertices
of the SU(N)-Dynkin diagram and associate to the link
between vertex i and j the N − 2 linearly independent
resonance parameters σij .

We find that once an unstable particle becomes ex-
tremely heavy the original coset decouples into a direct
product of two cosets different from the original one

lim
σi,i+1→∞

SU(N)2/U(1)N−1 ≡ (2)

SU(i+ 1)2/U(1)i ⊗ SU(N − i)2/U(1)N−i−1 .

Equivalently we may summarize the flow along the
renormalization group trajectory with increasing RG-
parameter r0 to cutting the related Dynkin diagrams at
decreasing values of the σ’s. For instance taking σi,i+1 to
be the largest resonance parameter at some energy scale
the following cut takes place:

✉

α1

✉

α2

σ12
. . .

σi,i+1
✉

αi

✉

↓

αi+1

. . . ✉

σN−2,N−1
✉

αN−1αN−2

✉

α1

✉

α2

. . . ✉

αi

✉

α1

. . . ✉ ✉

αN−i−1

Using the usual expressions for the coset central charge
[5], the decoupled system has the central charge

lim
σi,i+1→∞

cSU(N)2/U(1)N−1 = N − 5 +
6(N + 5)

(N + 2 − i)(3 + i)
. (3)

Our manuscript is organized as follows: In section II
we present the main characteristics of the HSG-scattering
matrix. In section III we systematically construct so-
lutions to the form factor consistency equations, which
correspond to a huge class of local operators. In section
IV we investigate the renormalization group flow of the
Virasoro central charge, reproducing the decoupling (2).
In section V we compute the operator content in terms of
primary fields of the underlying conformal field theory.
In section VI we investigate the RG flow of conformal
dimensions. Our conclusions are stated in section VII.

II. THE S-MATRIX

The prerequisite for the computation of form factors
and correlation functions thereafter is the knowledge of
the exact scattering matrix. The two-particle S-matrix
describing the scattering of two stable particles of type i
and j, with 1 ≤ i, j ≤ N−1, as a function of the rapidity
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θ related to this model was proposed in [6]. Adopted to
a slightly different notation it may be written as

Sij(θ) = (−1)δij

[

ci tanh
1

2

(

θ + σij − i
π

2

)

]Iij

. (4)

The incidence matrix of the SU(N)-Dynkin diagram is
denoted by I. The parity breaking which is characteris-
tic for the HSG models and manifests itself by the fact
that Sij 6= Sji, takes place through the resonance pa-
rameters σij = −σji and the colour value ci. The latter
quantity arises from a partition of the Dynkin diagram
into two disjoint sets, which we refer to as “+” and “−”.
We then associate the values ci = ±1 to the vertices i
of the Dynkin diagram of SU(N), in such a way that no
two vertices related to the same set are linked together.
Likewise we could simply divide the particles into odd
and even, however, such a division would be specific to
SU(N) and the bi-colouration just outlined admits a gen-
eralization to other groups as well. The resonance poles
in Sij(θ) at (θR)ij = −σij − iπ/2 are associated in the
usual Breit-Wigner fashion to the N − 2 unstable parti-
cles as explained for instance in [7,6,3]. It is important
for us to recall that the mass of the unstable particle
Mc̃ formed in the scattering between the stable particles
i and j behaves as Mc̃ ∼ e|σij |/2. There are no poles
present on the imaginary axis, which indicates that no
stable bound states may be formed.

It is clear from the expression of the scattering ma-
trix (4), that whenever a resonance parameter σij with
Iij 6= 0 goes to infinity, we may view the whole system
as consisting out of two sets of particles which only in-
teract freely amongst each other. The unstable particle,
which was created in interaction process between these
two theories before taking the limit, becomes so heavy
that it can not be formed anymore at any energy scale.

III. FORM FACTORS

We are now in the position to compute the n-particle
form factors related to this model, i.e. the matrix el-
ements of a local operator O(~x) located at the origin
between a multiparticle in-state of particles (solitons) of
species µ, created by Vµ(θ), and the vacuum

FO|µ1...µn
n (θ1 . . . θn) = 〈O(0)Vµ1

(θ1)Vµ2
(θ2) . . . Vµn(θn)〉 .

(5)

We proceed in the usual fashion by solving the form fac-
tor consistency equations [8,9]. For this purpose we ex-
tract explicitly, according to standard procedure, the sin-
gularity structure. Since no stable bound states may be
formed during the scattering of two stable particles the
only poles present are the ones associated to the kine-
matic residue equations, that is a first order pole for
particles of the same type whose rapidities differ by iπ.
Therefore, we parameterize the n-particle form factors as

FO|M(l+,l−)
n (θ1 . . . θn) = HO|M(l+,l−)

n QO|M(l+,l−)
n (X) (6)

×
∏

1≤i<j≤n

F
µiµj

min (θij)
(

x
cµi

i + x
cµj

j

)δµiµj

.

As usual we abbreviate the rapidity difference as θij =
θi − θj . Aiming towards a universally applicable and
concise notation, it is convenient to collect the particle
species µ1 . . . µn in form of particular sets

Mi(li) = {µ |µ = i} (7)

M±(l±) =
⋃

i∈±

Mi(li) (8)

M(l+, l−) = M+(l+) ∪ M−(l−). (9)

The number of elements belonging to the sets Mi,M±

is indicated by their arguments li, l±, respectively. We
understand here that inside the sets M± the order of the
individual sets Mi is arbitrary. This simply reflects the
fact that particles of different species but identical colour
interact freely. However, M is an ordered set since ele-
ments of M+ and M− do not interact freely and w.l.g.
we adopt the convention that particles belonging to the
“+”-colour set come first. The Hn are some overall con-
stants and the Qn are polynomial functions depending on
the variables xi = exp θi which are collected in the sets
X,Xi,X± in a one-to-one fashion with respect to the parti-
cle species sets M,Mi,M±. The functions F

µiµj

min (θij) are
the so-called minimal form factors which by construc-
tion contain no singularities in the physical sheet and
solve Watson’s equations [8,9] for two particles. For the
SU(N)2-HSG model they are found to be

F ij
min(θ) = N Iij

(

sin
θ

2i

)δij

e
−Iij

∞
∫

0

dt
t

sin2((iπ−θ∓σij)
t

2π )
sinh t cosh t/2

.

(10)

Here N = 2
1
4 exp (iπ(1 − ci)/4 + ciθ/4 −G/4) is a nor-

malization function with G being the Catalan constant.
It is convenient also to introduce the function F̃ ij

min(θ) =

(e−ciθ/4F ij
min(θ))Iij . The minimal form factors obey the

functional identities

F ij
min(θ + iπ)F ij

min(θ) =

(

−
i

2
sinh θ

)δij
(

i
2−ci

2 e
θ
2

ci

cosh
(

θ
2
− i π

4

)

)Iij

.

(11)

Substituting the ansatz (6) into the kinematic residue
equation [8,9,1], we obtain with the help of (11) a recur-
sive equation for the overall constants for µi ∈ M+

H
O|M(l++2,l−)
n+2 = il̄i22li−l̄i+1eIijσij lj/2HO|M(l+,l−)

n .

(12)

We introduced here the numbers l̄i =
∑

µj∈M−
Iij lj ,

which count the elements in the neighbouring sets of Mi.

2



The Q-polynomials have to obey the recursive equa-
tions

Q
O|M(2+l+,l−)
n+2 (Xxx) =

s̄i
∑

k=0

x2si−2k+τi+1−ςiσ2k+ςi(IijX̂j)

×(−i)2si+τi+1σ2si+τi(Xi)Q
O|M(l+,l−)(X) (13)

For convenience we defined the sets X
xx := {−x, x} ∪X ,

X̂ :=ieσi,i+1X and the integers ζi which are 0 or 1 depend-
ing on whether the sum ϑ + τi is odd or even, respec-
tively. ϑ is related to the factor of local commutativity
ω = (−1)ϑ = ±1. σk(x1, . . . , xm) is the k-th elemen-
tary symmetric polynomial. Furthermore, we used the
sum convention IijX̂j ≡

⋃

µj∈M
IijX̂j and parameterized

li = 2si + τi, l̄i = 2s̄i + τ̄i in order to distinguish between
odd and even particle numbers.

We will now solve the recursive equations (12) and
(13) systematically. The equations for the constants are
solved by

HO|M(l+,l−)
n =

∏

µi∈M+

isi l̄i 2si(2si−l̄i−1−2τi)e
siIij σijlj

2 HO|τi,l̄i .

(14)

The lowest nonvanishing constants HO|τi,l̄i are fixed by
demanding, similarly as in the SU(3)2-case [1–3], that
any form factor which involves only one particle type
should correspond to a form factor of the thermally per-
turbed Ising model. To achieve this we exploit the ambi-
guity present in (12), that is the fact that we can multiply
it by any constant which only depends on the l−-quantum
numbers.

As the main building blocks for the construction of the
Q-polynomials serve the determinants of the (t+s)×(t+
s)-matrix

Aν+,ν−

2s+τ+,2t+τ−(X+, X̂−)ij =

{

σ2(j−i)+ν+ (X+),1 ≤ i ≤ t

σ2(j−i+t)+ν− (X̂−) , t < i ≤ s + t

(15)

for ν±, τ± = 0, 1 which were introduced in [2]. The deter-
minant of A essentially captures the summation in (13)
due to the fact that it satisfies the recursive equations

detAν+,ν−

2+l,2t+τ−(X xx
+ , X̂−) =

(

t
∑

p=0

x2(t−p)σ2p+ν−(X̂−)

)

× detAν+,ν−

l,2t+τ−(X+, X̂−) (16)

as was shown in [2]. Analogously to the procedure in
[2] we can build up a simple product from elementary
symmetric polynomials which takes care of the pre-factor
in the recursive equation (13). Defining therefore the
polynomials

QM(l+,l−)
n (X+,X−) =

∏

µi/k∈M+/−

detAνi,ςi

2si+τi,l̄i
(Xi, IijX̂j) (17)

×σ2si+τi(Xi)
2si+τi−2s̄i−1−ςi

2 σl̄i(IijX̂j)
ν̄i−1

2 σlk(X̂k))
1−lk

2

it follows immediately with the help of property (16) that
they obey the recursive equations

Q
M(2+l+,l−)
2+n (Xxx

+ ,X−) = QM(l+,l−)
n (X+,X−)σ2si+τi(Xi)

×
s̄i
∑

p=0

x2(si−p)+τi+1−ςiσ2p+ςi(IijX̂j) . (18)

Comparing now the equations (13) and (18) we obtain
complete agreement. Notice that the numbers ν̄i are not
constrained at all at this point of the construction. How-
ever, by demanding relativistic invariance, which on the
other hand means that the overall power in (6) has to be
zero, we obtain the additional constraints

νi = 1 + τi − ν̄i and τiςi = τ̄i(ν̄i − 1) . (19)

Taking in addition the constraints into account which are
needed to derive (16) (see [2]), this is most conveniently
written as

τiςi + τ̄iνi = τiτ̄i, 2 + ςi > τ̄i, 2 + νi > τi . (20)

For each µi ∈ M+ the equations (20) admit the 10 fea-
sible solutions found in [2]. However, one should notice
that the individual solutions for different values of i are
not all independent of each other. We would like to stress
that despite the fact that (17) represents a huge class of
independent solutions, it does certainly not exhaust all
of them. Nonetheless, many additional solutions, like the
energy momentum tensor, may be constructed from (20)
by simple manipulations like the multiplication of some
CDD-like ambiguity factors or by setting some expres-
sions to zero on the base of asymptotic considerations
(see [2]) for more details. For many applications we wish
to carry out in the next section we require the form fac-
tors for the trace of the energy momentum Θ, the first
non-vanishing terms read

F
Θ|µiµi

2 = −2πim2 sinh(θ/2)

F
Θ|µiµiµjµj

4 =

πm2(2 +
∑

i<j

cosh(θij))
∏

i<j

F̃
µiµj

min (θij)

−2 cosh(θ12/2) cosh(θ34/2)

F
Θ|µiµiµiµiµjµj

6 =

πm2(3 +
∑

i<j

cosh(θij))
∏

i<j

F̃
µiµj

min (θij)

4
∏

1≤i<j≤4 cosh(θij/2)

F
Θ|µiµiµkµkµjµj

6 =

πm2(3 +
∑

i<j

cosh(θij))
∏

i<j

F̃
µiµj

min (θij)

4 cosh(θ12/2) cosh(θ34/2)

for Iij 6= 0 and Ikj 6= 0 . When considering the RG flow
in the next section, it will be important to note that from
limσi,i+1→∞ F

µiµi+1

min (θ) ∼ exp(−σi,i+1/4) follows

lim
σi,i+1→∞

FΘ|µiµi+1...
n (θ) = 0 . (21)

Having determined the form factors, we are in princi-
ple in the position to compute the two-point correlation

3



function between two local operators in the usual way by
expanding it in terms of n-particle form factors

〈O(r)O′(0)〉 =

∞
∑

n=1

∑

µ1...µn

∞
∫

−∞

dθ1 . . . dθn

n!(2π)n
e−r E (22)

× FO|µ1...µn
n (θ1, . . . , θn)

(

FO′|µ1...µn
n (θ1, . . . , θn)

)∗

.

We abbreviated the sum of the on-shell energies as E =
∑n

i=1mµi cosh θi. Now we want to evaluate the expres-
sion (22) in several different applications in order to com-
pute various quantities of interest.

IV. RENORMALIZATION GROUP FLOW

Renormalization group methods have been developed
originally [10] to carry out qualitative analysis of regions
of quantum field theories which are not accessible by per-
turbation theory in the coupling constant. In particular
the β-function provides an inside into various possible
asymptotic behaviours and especially it allows to identify
the fixed points of the theory. We now want to employ
this method to check our solutions and at the same time
the physical picture advocated for the HSG-models.

For this purpose we want to investigate first of all the
renormalization group flow, in a similar spirit as for the
SU(3)2/U(1)2-case in [3], by evaluating the c-theorem
[11].

c(r0) =
3

2

∞
∫

r0

dr r3 〈Θ(r)Θ(0)〉 . (23)

In particular for r0 = 0 the function c(r0) coincides with
∆c = cuv − cir, i.e. the difference between the ultra-
violet and infrared Virasoro central charges. Comput-
ing the correlation function for the trace of the energy-
momentum tensor Θ in (23) by means of (22) and using
the form factor expressions of the previous section the
individual n-particle contributions turn out to be

∆c(2) = (N − 1) · 0.5 (24)

∆c(4) = (N − 2) · 0.197 (25)

∆c(6) = (N − 2) · 0.002 + (N − 3) · 0.0924 (26)
6
∑

k=2

∆c(k) = N ∗ 0.7914− 1.1752 . (27)

Apart from the two particle contribution (24), which is
usually quite trivial and in this situation can even be
evaluated analytically, we have carried out the multidi-
mensional integrals in (22) by means of a Monte Carlo
method. We use this method up to a precision which is
higher than the last digit we quote. For convenience we
report some explicit numbers in table 1.

N c ∆c(2) ∆c(4) ∆c(6)
∑6

k=2 ∆c(k)

3 1.2 1 0.197 0.002 1.199
4 2 1.5 0.394 0.096 1.990
5 2.857 2 0.591 0.191 2.782
6 3.75 2.5 0.788 0.285 3.573
7 4.6̄ 3 0.985 0.380 4.365
8 5.6 3.5 1.182 0.474 5.156

Table 1: n-particle contributions to the c-theorem versus

SU(N)2/U(1)N−1 -WZNW coset model central charge.

The evaluation of (24)-(27) illustrates that the series
(22) converges slower and slower for increasing values of
N , such that the higher n-particle contributions become
more and more important to achieve high accuracy. Our
analysis suggests that it is not the functional dependence
of the individual form factors which is responsible for
this behaviour. Instead this effect is simply due to the
fact that the symmetry factor, that is the sum

∑

µ1...µn
,

resulting from permutations of the particle species in-
creases drastically for larger N .

Having confirmed the expected ultraviolet central
charge, we now study the RG-flow by varying r0 in (23).
We expect to find that whenever we reach an energy scale
at which an unstable particle can be formed, the model
will flow to a different coset. This means following the
flow with increasing r0 we will encounter a situation in
which certain σi,i+1 are considered to be large and we ob-
serve the decoupling into two freely interacting systems
in the way described in (2). For instance for the situ-
ation σ12 > σ23 > σ34 > . . . we observe the following
decoupling along the flow with increasing r0:

SU(N)2/U(1)N−1

↓
SU(N − 1)2/U(1)N−2 ⊗ SU(2)2/U(1)

↓

SU(N − 2)2/U(1)N−3 ⊗ (SU(2)2/U(1))
2

↓
...
↓

(SU(2)2/U(1))
N−1

We can understand this type of behaviour in a semi-
analytical way. The precise difference between the central
charges related to (2) is

cSU(i+1)2/U(1)i⊗SU(N−i)2/U(1)N−i−1 = (28)

cSU(N)2/U(1)N−1 −
2i(N + 5)(N − i− 1)

(N + 2)(i+ 3)(N − i+ 2)
.

Noting with (21) that we loose at each step all the con-

tributions F
Θ|µiµi+1...
n (θ) to ∆c, we may collect the val-

ues (24)-(26), which we have determined numerically and
find

lim
σi,i+1→∞

∆c(σi,i+1, . . .) = (29)

∆c(σi,i+1 = 0, . . .) − 0.2914Ii,i+1−0.0924Ii,i−1

4



Similarly as for the deep UV-region we find a relatively
good agreement between (28) and (29) for small values
of N . The difference for larger values is once again due
to the convergence behaviour of the series in (22).

For r0 = 0 qualitatively a similar kind of behaviour
was previously observed, for the two particle contribution
only, in the context of the roaming Sinh-Gordon model
[12]. Nonetheless, there is a slight difference between
the two situations. Instead of a decoupling into different
cosets in these type of models the entire S-matrix takes
on the value −1, when the resonance parameter goes to
infinity. The resulting effect, i.e. a depletion of ∆c, is
the same. However, we do not comply with the interpre-
tation put forward in [12], namely that such a behaviour
should constitute a “violation of the c-theorem”. The
observed effect is precisely what one expects from the
physical point of view and the c-theorem.

We present our full numerical results in figure 1, which
confirm the outlined flow for various values of N.

Figure 1: RG flow for the Virasoro central charge.

We observe that the c-function remains constant, at a
value corresponding to the new coset, in some finite inter-
val of r0. In particular, we observe the non-equivalence of
the flows when the relative order of magnitude amongst
the different resonance parameters is changed. ForN = 5
we confirm (we omit here the U(1)-factors and report the
corresponding central charges as superscripts on the last
factor)

σ12 > σ23 SU(5)
20
7

2
σ23 > σ12

ւ ց

SU(4)2 ⊗ SU(2)
5
2

2 SU(3)2 ⊗ SU(3)
12
5

2

ց ւ

SU(3)2 ⊗ SU(2)2 ⊗ SU(2)
11
5

2

↓
SU(2)2 ⊗ SU(2)2 ⊗ SU(2)2 ⊗ SU(2)22

The precise difference in the central charges is ex-
plained with (29), since the contribution 0.0924Ii,i−1 only
occurs for i = 1.

To establish more clearly that the plateaus admit in-
deed an interpretation as fixed points and extract the def-
inite values of the corresponding Virasoro central charge
we can also, following [11], determine a β type func-
tion from c(r). The β-function should obey the Callan-
Symanzik equation [13]

r
d

dr
g = β(g) . (30)

The “coupling constant” g := cuv − c(r) is normalized
in such a way that it vanishes at the ultraviolet fixed
point. Whenever we find β(g̃) = 0, we can identify c̃ =
cuv−g̃ as the Virasoro central charge of the corresponding
conformal field theory. Hence, taking the data obtained
from (23), we compute β as a function of g by means of
(30). Our results for various values of N are depicted in
figure 2, which allow a definite identification of the fixed
points corresponding to the coset models expected from
the decoupling (2).

Figure 2: The β-function.

For SU(4)2 we clearly identify from figure 2 the four
fixed points g̃ = 0, 0.3, 0.5, 2 with high accuracy. The
five fixed points g̃ = 0, 0.357, 0.657, 0.857, 2.857, which
we expect to find for SU(5)2 are all slightly shifted due
to the absence of the higher order contributions.

V. OPERATOR CONTENT OF SU(N)2/U(1)N−1

We now want to identify the operator content of our
theory by carrying out the ultraviolet limit and match-
ing the conformal dimension of each operator with the
one in the SU(N)2/U(1)N−1-WZNW-coset model. For
this purpose we have to determine first of all the entire
operator content of the conformal field theory.

According to [14] the conformal dimensions of the
parafermionic vertex operators are given by

∆(Λ, λ) =
(Λ · (Λ + 2ρ))

(4 + 2N)
−

(λ · λ)

4
. (31)
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Here Λ is a highest dominant weight of level smaller or
equal to 2 and ρ = 1/2

∑

α>0 α is the Weyl vector, i.e.
half the sum of all positive roots. The λ’s are the cor-
responding lower weights, which may be constructed in
the usual fashion (see e.g. [15]): Consider a complete
weight string λ + nα, . . . , λ, . . . , λ − mα, that is all the
weights obtained by successive additions (subtractions)
of a root α from the weight λ, such that λ + (n + 1)α
(λ− (m+1)α) is not a weight anymore. It is then a well
known fact that the difference between the two integers
m,n is m− n = λ ·α for simply laced Lie algebras. This
means starting with the highest weight Λ, we can work
our way downwards by deciding after each subtraction
of a simple root αi whether the new vector, say χ, is a
weight or not from the criterion mi = ni + χ · αi > 0.
With the procedure just outlined we obtain all possible
weights of the theory. Nonetheless, it may happen that a
weight corresponds to more than one linear independent
weight vector, such that the weight space may be more
than one dimensional. The dimension of each weight vec-
tor nΛ

λ is computed by means of

nΛ
λ =

∑

α>0

∑∞
l=1 2nλ+lα((λ + lα) · α)

((Λ + λ+ 2ρ) · (Λ − λ))
. (32)

For consistency it is useful to compare the sum of all these
multiplicities with the dimension of the highest weight
representation computed directly from the Weyl dimen-
sionality formula (see e.g. [15])

∑

λ

nΛ
λ = dim Λ =

∏

α>0

((Λ + ρ) · α)

(ρ · α)
. (33)

To compute all the conformal dimensions ∆(Λ, λ) accord-
ing to (31) in general is a formidable task and therefore
we concentrate on a few distinct ones for generic N and
only compute the entire content for N = 4.

Noting that λi · λj = K−1
ij , with K being the Cartan

matrix, we can obtain relative concrete formulae from
(31). For instance

∆(λi, λi) =
4
∑N−1

l=1 K−1
il −NK−1

ii

8 + 2N
. (34)

Similarly we may compute ∆(λi + λj , λi + λj), etc. in
terms of components of the inverse Cartan matrix. Even
more explicit formulae are obtainable when we express
the simple roots αi and fundamental weights λi of SU(N)
in terms of a concrete basis. For instance we may choose
an orthonormal basis {εi} in R

N (see e.g. [16]), i.e. εi ·
εj = δij

αi = εi − εi+1, λi =

i
∑

j=1

εj −
i

N

N
∑

j=1

εj , i = 1, . . .N − 1 .

Noting further that the set of positive roots is given by
{εi − εj : 1 ≤ i < j ≤ N}, we can evaluate (31), (32) and
(33) explicitly. This way we obtain for instance

∆(λi, λi) =
i(N − i)

8 + 4N
and ∆(2λi, 2λi) = 0. (35)

Of special physical interest is the dimension of the per-
turbing operator. As was already argued in [3], it cor-
responds to ∆(ψ, 0), with ψ being the highest root, and
moreover it is unique. Noting that for SU(N) we have
ψ = λ1 + λN−1, we confirm once more

∆(ψ = λ1 + λN−1, 0) =
N

N + 2
. (36)

Other dimensions may be computed similarly.

A. The SU(4)/U(1)3 example

For SU(4)/U(1)3 we present the result of the compu-
tation of the entire operator content in table 2. In case
the multiplicity of a weight vector is bigger than one, we
indicate this by a superscript on the conformal dimen-
sion.

λ\Λ λ1 λ2 2λ1 2λ2 λ1 + λ2 λ1 + λ3

dim Λ 4 6 10 20 20 15

Λ 1/8 1/6 0 0 1/8 1/6

Λ − α1 1/8 1/2 1/8 1/6

Λ − α2 1/6 1/2 1/8

Λ − α3 1/6

Λ − α1 − α2 1/8 1/6 1/2 1/2 5/82 1/6

Λ − α2 − α3 1/6 1/2 1/8 1/6

Λ − α1 − α3 1/6

Λ − 2α1 0

Λ − 2α2 0

Λ − 2α1 − 2α2 0 0

Λ − 2α2 − 2α3 0

Λ − 2α1 − α2 1/2 1/8

Λ − α1 − 2α2 1/2 1/8

Λ − 2α2 − α3 1/2

Λ − α1 − α2 − α3 1/8 1/6 1/2 1/2 5/82 2/33

Λ − 2α1 − α2 − α3 1/2 1/8 1/6

Λ − α1 − 2α2 − α3 1/6 12 5/82 1/6

Λ − α1 − α2 − 2α3 1/6

Λ − 2α1 − 2α2 − α3 1/2 1/2 5/82 1/6

Λ − α1 − 2α2 − 2α3 1/2 1/8 1/6

Λ − 2α1 − 2α2 1/8

Λ − 2α1 − 2α2 − 2α3 0 0 1/8 1/6

Λ − α1 − 3α2 − 2α3 1/2

Λ − α1 − 3α2 − α3 1/2

Λ − 2α1 − 3α2 − α3 1/2 1/8

Λ − 2α1 − 3α2 − 2α3 1/2 1/8

Λ − 2α1 − 4α2 − 2α3 0

Table 2: Conformal dimensions for O∆(Λ,λ) in the

SU(4)2/U(1)3 -WZNW coset model.

The remaining dominant weights of level smaller or
equal to 2, namely Λ = λ3, 2λ3, λ2 + λ3, including their
multiplicities may be obtained from table 2 simply by the
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exchange 1 ↔ 3, which corresponds to the Z2-symmetry
of the SU(4)-Dynkin diagram.

Summing up all the fields corresponding to different
lower weights, i.e. not counting the multiplicities, we
have the following operator content

O2/3,O1, 14 ×O0, 8 ×O5/8, 18 ×O1/6, 24 ×O1/2, 32 ×O1/8,

that is 98 fields.

VI. OPERATOR CONTENT OF HSG

We will now turn to the massive model and evaluate
the flow of the conformal dimension [3]

∆O(r0) = −
1

2 〈O(0)〉

∞
∫

r0

dr r 〈Θ(r)O(0)〉 . (37)

Here O is a local operator which in the conformal limit
corresponds to a primary field in the sense of [17]. In
particular for r0 = 0, the expression (37) constitutes the
delta sum rule [18], which expresses the difference be-
tween the ultraviolet and infrared conformal dimension
of the operator O.

We start by investigating the operator which in the
case when all particles in (5) are of the same type cor-
responds to the disorder operator µ in the Ising model.
Using the fact that we should always be able to reduce
to that situation, we consider the solution corresponding
to τi = τ̄i = νi = ςi = 0 for all i. Then the ∆-sum rule
(37) yields for the individual n-particle contributions

∆µ(2) = (N − 1) · 0.0625 (38)

∆µ(4) = (2 −N) · 0.0263 (39)

∆µ(6) = (N − 2) · 0.0017 + (3 −N) · 0.0113 (40)
6
∑

k=2

∆µ(k) = 0.0266 +N ∗ 0.0206 . (41)

We assume that this solution has the conformal dimen-
sion ∆(λ1, λ1) in the ultraviolet limit. For comparison we
report a few explicit numbers in table 3.

N ∆(λ1, λ1) ∆µ(2) ∆µ(4) ∆µ(6)
∑6

k=2 ∆µ

3 0.1 0.125 −0.0263 0.0017 0.1004
4 0.125 0.1875 −0.0526 −0.0079 0.1270
5 0.143 0.25 −0.0789 −0.0175 0.1536
6 0.156 0.3125 −0.1052 −0.0271 0.1802
7 0.16̄ 0.375 −0.1315 −0.0367 0.2068
8 0.175 0.4375 −0.1578 −0.0463 0.2334

Table 3: n-particle contributions to the ∆-theorem versus

conformal dimensions in the SU(N)2/U(1)N−1 -WZNW coset

model.

As we already observed for the c-theorem, the series
converges slower for larger values of N . The reason for

this behaviour is the same, namely the increasing sym-
metry factor. Note also that the next contribution is
negative.

Following now the RG-flow for the conformal dimen-
sion (37) by varying r0, we assume that the ∆(λ1, λ1)-
field flows to the ∆(λ1, λ1)-field in the corresponding new
cosets. Similar as for the Virasoro central charge we may
compare the exact expression

∆(λ1, λ1)SU(i+1)2/U(1)i⊗SU(N−i)2/U(1)N−i−1 = (42)

∆(λ1, λ1)SU(N)2/U(1)N−1 +
i(N + 5)(N − i− 1)

4(N + 2)(i+ 3)(N − i+ 2)
.

with the numerical results. The contributions (38)-(40)
yield

lim
σi,i+1→∞

∆µ(σi,i+1, . . .) = (43)

∆µ(σi,i+1 = 0, . . .) + 0.0359Ii,i+1 + 0.0113Ii,i−1.

Once again we find good agreement between the two com-
putations for small values of N . Our complete numerical
results are presented in figure 3, which confirm the out-
lined flow for various values of N.

Figure 3: RG flow for the conformal dimension of µ.

Notice by comparing the figures 3 and 1, that, as we
expect, the transition from one value for ∆ to the one in
the decoupled system occurs at the same energy scale t0
at which the value of the Virasoro central charge flows to
the new one.

In analogy to (30) we may now define a function “β′”
and demand that it obeys the Callan-Symanzik equation

r
d

dr
g′ = β′(g′) . (44)

The “coupling constant” related to β′ is normalized
in such a way that it vanishes at the ultraviolet fixed
point, i.e. g′ := ∆(r) − ∆uv, such that whenever we

find β′(g̃′) = 0, we can identify ∆̂ = g̃′ − ∆uv as the
conformal dimension of the operator under consideration
of the corresponding conformal field theory. From our
analysis of (37) we may determine β′ as a function of g′

by means of (44). Our results are presented in figure 4.
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Figure 4: The β′-function .

Once again, for SU(4)2 the accuracy is very high and
we clearly read off from figure 4 the expected fixed points
g̃′ = −0.125, 0, 0.0375, 0.0625. The SU(5)2-fixed points
g̃′ = −0.1429, 0, 0.0446, 0.0821, 0.1071, are once again
slightly shifted.

Figure 5: Rescaled correlation function G(R)=〈Θ(R)Θ(0)〉 as

a function of R = rm.

Unfortunately, whenever the correlation function be-
tween O and Θ is vanishing, or when we consider an

operator which does not flow to a primary field, we can
not employ the delta sum rule (37). Alternatively, we
may exploit the well known relation

lim
r→0

〈O(r)O(0)〉 ∼ r−4∆O

. (45)

near the critical point in order to determine the confor-
mal dimension. To achieve consistency with the proposed
physical picture we want to identify in particular the con-
formal dimension of the perturbing operator. Recalling
that the trace of the energy momentum tensor is propor-
tional to the perturbing field we analyse 〈Θ(R)Θ(0)〉 for
this purpose.

According to (45), we deduce from figure 5 ∆ =
2/3, 5/7 for N = 4, 5, respectively, which coincides with
the expected values.

VII. CONCLUSIONS

One of the main deductions from our analysis is that
the scattering matrix proposed in [6] may certainly be
associated to the perturbed gauged WZNW-coset. This
is based on the fact that we reproduce all the predicted
features of this picture, namely the expected ultraviolet
Virasoro central charge, various conformal dimensions of
local operators and the characteristics of the unstable
particle spectrum.

Our construction of general solutions to the form factor
consistency equations certainly constitutes a further im-
portant step towards a generic group theoretical under-
standing of the n-particle form factor expressions. The
next natural step is to extend the investigation towards
higher level algebras [20].

Concerning the computation of correlation functions,
our results also indicate that the “folkloristic belief” of
the fast convergence of the series expansion of (22) has
to be challenged. In fact, for large values of N , this is
not true anymore. It would be highly desirable to have
more concrete quantitative criteria at hand.

Despite the fact of having identified some part of the
operator content, it remains a challenge to perform a def-
inite one-to-one identification between the solutions to
the form factor consistency equations and the local oper-
ators. It is clear that we require new additional technical
tools to do this, since the ∆-sum rule (37) may not be
applied in all situations and (45) does not allow a clear
cut deduction of ∆.

In comparison with other methods to achieve the same
goal, we should note that in principle we could obtain,
apart from conformal dimensions different from the one
of the perturbing operator, the same qualitative picture
from a TBA-analysis [19]. However, in the latter ap-
proach the number of coupled non-linear integral equa-
tions to be solved increases with N , which means the
system becomes extremely complex and cumbersome to
solve even numerically. Computing the scaling function
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with the help of form factors only adds more terms to
each n-particle contribution, but is technically not more
involved. The price we pay in this setting is, however,
the slow convergence of (22).

We conjecture that the “cutting rule” which describes
the renormalization group flow also holds for other
groups. This is supported by the general structure of
the HSG-scattering matrix.
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