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Abstract Three meshless methods, including incompress-
ible smooth particle hydrodynamic (ISPH), moving particle
semi-implicit (MPS) and meshless local Petrov–Galerkin
method based on Rankine source solution (MLPG_R) meth-
ods, are often employed to model nonlinear or violent water
waves and their interaction with marine structures. They are
all based on the projection procedure, in which solving Pois-
son’s equation about pressure at each time step is a major
task. There are three different approaches to solving Pois-
son’s equation, i.e. (1) discretizing Laplacian directly by
approximating the second-order derivatives, (2) transferring
Poisson’s equation into a weak form containing only gradi-
ent of pressure and (3) transferring Poisson’s equation into
a weak form that does not contain any derivatives of func-
tions to be solved. The first approach is often adopted in
ISPH and MPS, while the third one is implemented by the
MLPG_R method. This paper attempts to review the most
popular, though not all, approaches available in literature for
solving the equation.

Keywords Nonlinear water waves · ISPH · MPS ·
MLPG_R · Projection scheme · Particle methods · Meshless
methods · Poisson’s equation

1 Introduction

Marine structures are widely used in ocean transportation,
exploitation and exploration of offshore oil and gas, utiliza-
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tion of marine renewable energy and so on. All these are vul-
nerable to harsh weather and so to very violent waves. Under
action of violent waves, they may suffer from serious dam-
ages. Therefore, it is crucial to be able tomodel the interaction
between violent waves and structures for designing safe
and cost-effective marine structures. The available numeri-
cal models for strongly nonlinear interactions between water
waves and marine structures are mainly based on solving
either the fully nonlinear potential flow theory (FNPT) or the
Navier–Stokes (NS) equations. For dealing with the prob-
lems associated with violent waves, the NS model should be
employed.

The NS model may be solved by either mesh-based meth-
ods or meshless methods. The former is usually based on
the Eulerian formulation, but the latter on the Lagrangian
formulation. In the meshless methods, the fluid particles
are largely followed and so the methods are also referred
to as particle methods. The mesh-based methods have been
developed for several decades and mainly based on finite
volume and finite different methods (Greaves 2010; Causon
et al. 2010; Chen et al. 2010; Zhu et al. 2013). The mesh-
less (or particle) methods are of relative new development,
but have been recognized as promising alternative meth-
ods in recent years, particularly for modelling violent waves
and their interaction with structures owing to their advan-
tages that meshes are not required and numerical diffusion
associated with convection terms is eliminated in contrast
to mesh-based methods. Extensive review of all the meth-
ods would divert the focus of this paper. A brief overview
for meshless methods is given below, as this paper is con-
cerned only on topics related to them. For more information
about mesh-based methods, the readers are referred to other
publications, such as Causon et al. (2010) and Zhu et al.
(2013).
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1.1 Overview of meshless methods

Many meshless methods have been developed and reported
in literature, such as the moving particle semi-implicit
method (MPS) (e.g. Koshizuka 1996; Gotoh and Sakai 2006;
Khayyer and Gotoh 2010), the smooth particle hydrody-
namic method (SPH) (e.g. Monaghan 1994; Shao et al.
2006; Khayyer et al. 2008; Lind et al. 2012), the finite
point method (e.g. Onate et al. 1996), the element free
Galerkin method (e.g. Belytschko et al. 1994), the diffusion
element method (Nayroles et al. 1992), the method of fun-
damental solution (e.g., Wu et al. 2006), the meshless local
Petrov–Galerkin method based on Rankine source solution
(MLPG_R method) (e.g. Ma 2008) and so on. Among them,
the MPS, SPH and MLPG_R methods have been used to
simulate violent wave problems.

When themeshless methods are applied tomodel strongly
nonlinear or violent waves, two formulations are employed.
One is based on the assumption that the fluid can be weakly
compressed, while the other just assumes that the fluid is
incompressible. The first one is mainly adopted for SPH, e.g.
Monaghan (1994), Dalrymple and Rogers (2006), Gomez-
gesteira et al. (2010) and so on. More references can be
found in Violeau and Rogers (2016). The second formulation
has been implemented in SPH,MPS andMLPG_Rmethods.
The SPH based on incompressible assumption is called as
incompressible smooth particle hydrodynamic (ISPH). Most
of the publications that employ the three meshless methods
for modelling incompressible flow are based on the projec-
tion scheme developed by Chorin (1968). One of the main
tasks associated with the projection-based meshless methods
is to find the pressure through solving Poisson’s equation.
Various SPH methods have been reviewed very recently by
Violeau and Rogers (2016). All the aspects of ISPH andMPS
have also been discussed byGotoh and Khayyer (2016). This
paper tries to only review the approaches of solving Pois-
son’s equation in the meshless methods for incompressible
flow.

1.2 Mathematical formulation of projection-based
meshless methods

For completeness, the mathematical formulation and numer-
ical procedure of projection-based meshless methods are
summarized in this subsection. The incompressible Navier–
Stokes equation (referred to as NS equation) and continuity
equation together with proper boundary conditions including
the free surface one are applied. In the fluid domain,

∇ · �u = 0, (1)

D�u
Dt

= − 1

ρ
∇ p + �g + υ∇2 �u, (2)

where �g is the gravitational acceleration; �u is the fluid veloc-
ity; ρ and υ are the density and the kinematic viscosity of
fluid, respectively; and p is the pressure. On a rigid boundary,
the velocity and pressure satisfy

�n · �u = �n · �U , (3a)

�n · ∇ p = ρ(�n · �g − �n · �̇U + υ �n · ∇2�u), (3b)

where �n is the unit vector normal to the rigid boundary; �U
and �̇U are the velocity and acceleration of a rigid boundary
whichmay be a part of the structures.When the structures are

floating and freely responding to waves, �U and �̇U need to be
found by solving floating dynamic equations which will not
be discussed here. On the free surface, a dynamic condition
must be imposed, i.e.

p = 0. (4)

If the multiphase flow is considered, the condition on the
fluid–fluid interface needs to be considered. Formore details,
readers may refer to, e.g. Shao (2012) and Hu and Adams
(2007, 2009).

In the projection-basedmeshlessmethods, the above equa-
tions are solved using the following time-split procedure
(Chorin 1968). In the procedure, when or after the veloc-
ity, pressure and the location for each particle at nth time
step (t = tn) are known, one uses the following steps to find
the corresponding variables at (n + 1)th time step.

(1) Calculate the intermediate velocity (�u∗) and position
(�r∗) of particles using

�u∗ = �un + �g�t + υ∇2 �un�t, (5)

�r∗ = �rn + �u∗�t, (6)

where �r is the position vector of particles and the super-
script n represents the n-th time step;�t is the increment
of the time step.

(2) Evaluate the pressure pn+1 using

∇2 pn+1 = �
ρn+1 − ρ∗

�t2
+ (1 − �)

ρ

�t
∇.

→∗
u , (7)

where � is a coefficient taking a value between 0 and 1.
ρn+1 and ρ∗ are the fluid densities at (n + 1) time step
and intermediate fluid density, respectively.

(3) Calculate the fluid velocity and update the position of
the particles using

�u∗∗ = −�t

ρ
∇ pn+1, (8a)
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�un+1 = u∗ + �u∗∗ = �u∗ − �t

ρ
∇ pn+1, (8b)

�rn+1 = �rn + (1 − β)�un+1�t + β �un�t, (9)

where β is often taken as 0 (such as in Ma and Zhou
2009) or 0.5 (such as Cummins and Rudman 1999).

(4) Go to (1) for the next time step.

The above procedure is followed by all the three meshless
methods (ISPH, MPS and MLPG_R) discussed here. These
methods are different in several aspects including estimat-
ing velocities and finding solution for pressure. In this paper,
our attention is focused on discussing how different they are
in solving Eq. (7) for pressure. That is because solving the
equation dominates the cost of the computational time, and
also because the accuracy of the solution for pressure deter-
mines the accuracy of the overall solution for wave dynamic
problems.

It is noted that multiple sub-steps in each time step in
the above procedure may be applied as in Hu and Adams
(2007). No matter howmany sub-steps are used, the solution
of Poisson’s equation is always concerned in the projection-
based meshless methods. Again, as our focus here is on the
approaches for solving Poisson’s equation, readers who are
interested in multiple sub-steps procedure may refer to rele-
vant publications such as Hu and Adams (2007).

The right hand side of Eq. (7) is the source term of the
Poisson’s equation combining the terms of density invari-
ant and velocity divergence. The appropriate choice of the
� value has been discussed for achieving relatively more
ordered particle distribution and more smoothing pressure
field by, e.g. Ma and Zhou (2009), Gui et al. (2014, 2015). In
addition, attempts are also made by improving the source
term. Khayyer et al. (2009) replaced the source term by
a higher-order source term, while Kondo and Koshizuka
(2011), Khayyer and Gotoh (2011), Khayyer and Gotoh
(2013), Gotoh and Khayyer (2016) and Gotoh et al. (2014)
introduced an error-compensating term (including a high-
order main term and two error-mitigating terms multiplied
by dynamic coefficients). The higher-order source and the
error-compensating terms help to enhance the pressure field
calculation, volume conservation and uniform particle dis-
tributions throughout the simulation that minimizes the
perturbations in particle motions. As the work related to
improving the formulation and evaluation of the source term
has been well covered by the cited papers, further details will
not be given in this paper. This review hereafter focuses on
the ways to deal with the Laplacian on the left hand side of
Eq. (7).

Another issue in solving Eq. (7) is related to the bound-
ary conditions satisfied by pressure on the free surface, rigid
(fixed or moving) wall and arbitrary boundaries (also called

in/outlets) introduced for computation purpose. To numer-
ically implement the boundary condition on the rigid wall,
several approaches havebeen suggested, including, for exam-
ple, addition of dummy particles (e.g. Lo and Shao 2002;
Gotoh and Sakai 2006) and unified semi-analytical wall
boundary condition (e.g. Leroy et al. 2014). To numerically
implement the boundary condition on the free surface, the
key issue is how to identify the particles on it. There are sev-
eral approaches for doing so, such as detecting if the density
(particle number density) is smaller than a specified value
(e.g. Lo and Shao 2002; Gotoh and Sakai 2006), mixed par-
ticle number density and auxiliary function method (Ma and
Zhou 2009) and an auxiliary condition proposed by Khayyer
et al. (2009). For implementing in/outlet conditions and other
more details about the treatment of boundary conditions, the
readers are referred to the recent review papers by Violeau
and Rogers (2016) and Gotoh and Khayyer (2016).

2 Approaches of ISPH in solving Poisson’s
equation

As far as we know, most publications based on the ISPH
method adopt an approach that is to discretizePoisson’s equa-
tion directly. In such an approach, discretization of Laplacian
is a key. Various different formulations of Laplacian dis-
cretization for the ISPHmethod are discussed in this section.

Use of the ISPH method appears to start in Cummins and
Rudman (1999), which just gave the results for 2D problems
irrelevant to water waves. In that paper, they employed the
following approach to approximate the Laplacian in Eq. (7),
i.e.

LP-SPH01:

∇ ·
(∇ p

ρ

)
i
=

∑
j

m j

ρ j

4

ρi + ρ j

pi j �r i j .∇wi j∣∣�ri j ∣∣2 + η2
, (10)

where ri j =
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2, pi j =
pi − p j , m j is the mass of a particle and Wi j = W (�ri j )
is the weight function or kernel function. One of the typical
definitions for the kernel function is

w(|�ri j |) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 6
( |�ri j |

h

)2 + 8
( |�ri j |

h

)3
−3

( |�ri j |
h

)4
0 ≤ |�ri j |

h ≤ 1

0 |�ri j |
h ≤ 1

,

(11)

where h is the smoothing length. In the above equation, η is a
small number introduced to keep the denominator non-zero
and often taken as h/10 (e.g. Lo and Shao 2002). LP-SPH01
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may be obtained using the expression for estimating viscous
stresses in Morris et al. (1997).

The above formulation was followed by Lo and Shao
(2002), which considered the water waves propagating near
shore. In their work, the Laplacian in Eq. (7) was approxi-
mated by

LP-SPH 02:

∇ ·
(∇ p

ρ

)
i
=

∑
j

m j
8

(ρi + ρ j)2
pi j ri j .∇wi j∣∣�ri j ∣∣2 + η2

. (12)

This approximation was also employed by many other
researchers, e.g. Shao et al. (2006),Rafiee et al. (2007),Ataie-
Ashtiani and Shobeyri (2008), Ataie-Ashtiani et al. (2008)
and Khayyer et al. (2008). It is noted here that the density
in Eqs. (10) and (12) may be numerically estimated at the
intermediate step even for incompressible fluids (e.g. Lo and
Shao 2002; Gui et al. 2015). In these cases, ρi �= ρ j , though
theymay be quite close to each other except on the boundary.
The densitymay also be specified as the physical density (e.g.
Asai et al. 2012; Lind et al. 2012; Leroy et al. 2014) and thus
should be the same at all particles, i.e. ρi = ρ j . If it is, the
above two expressions become exactly the same. Actually,
if the fact is taken into account, both approximations are
equivalent to

LP-SPH03:

(∇2 p)i = 2

ρ

∑
j

m j
pi j �ri j .∇wi j∣∣�ri j ∣∣2 + η2

, (13)

whichwas employed byLee et al. (2008) andXu et al. (2009).
This one is the same as that given by Jubelgas et al. (2004)
if η = 0, which was derived using the idea employed by
Brookshaw (1985). In their derivation, Jubelgas et al. (2004)
expanded a function into a Taylor series ignoring all third-
or higher-order terms. Following the same line, Schwaiger
(2008) showed that

∇2 p(ri ) ≈ �βγ p,βγ (�ri ) ≈ 2
∫




(p(�r)

−p(�ri )) (�ri j)α
W , a∣∣�ri j ∣∣2 d


−2
∫




W ,α p(�ri )d
, (14)

where the subscripts indicate the components of coordinates;
the repeated subscripts such as α denote summation over it;
p,α(�ri ) is the partial derivative of the function with respect

to a coordinate and �βγ = ∫


(�ri j )β(�ri j )γ (�ri j )αw,α

|�ri j |2 d
. In

his paper, the equation was given in terms of a general
function. Here, it is written specifically for pressure to be
consistent with other equations. As he indicated, if the

weight function is symmetric and the support domain is
entire, �βγ = δβγ (δβγ = 1 if β = γ ; otherwsie zero) and∫


W ,α f,α(�ri )d
 = 0, and so Eq. (14) will be the same

as that given by Jubelgas et al. (2004) and its discretized
form will be LP-SPH03 with η = 0. Corresponding to his
formulation, Schwaiger (2008) gave the following discrete
Laplacian:

LP-SPH04:

∇2 p(�ri ) ≈ �−1ββ

κ

×
{
2
∑

j

m j

p j
(p(�r j ) − p(�ri )) (�ri j)α

W , a∣∣�r i j ∣∣2 ,

− 2p, α(�ri ).
[∑

j

m j

p j
W, α

]}
, (15a)

∇2 p(�ri ) ≈
∑
j

m j

p j
(p(�r j ) − p(�ri ))CαβW ,β (15b)

Cαβ =
[∫




(�ri j )αW ,β d


]−1

, (15c)

where κ is the number of dimensions, e.g. κ = 2 for 2D cases.
The sizes of�−1

αβ andCαβ are both 2× 2 for 2D cases and 3×
3 for 3D cases, and only the trace of �−1

αβ is required. Com-
pared to others, this formulation requires inverse matrixes
�−1

ββ and Cαβ at each particles and so may bear extra compu-
tational costs. It was employed for solving thermal diffusion
problem without a free surface in Schwaiger (2008), but
extended and tested by Lind et al. (2012) to solve water wave
problems.

Hu and Adams (2007) suggested the following approxi-
mation by considering particle-averaged spatial derivative:

LP-SPH05:

∇ ·
(∇ p

ρ

)
i
= 2σi

∑
j

1∣∣�ri j ∣∣
∂wi j

∂
∣∣�ri j ∣∣

[
1

σ 2
i

+ 1

σ 2
j

]
pi j

ρi + ρ j
,

(16)

where σi = ∑
j Wi j and ρi = miσi . If ρi = ρ j and σi = σ j

with the entire support domain, LP-SPH05 becomes equiv-
alent to LP-SPH03 (with η = 0) as discussed above. That
means that they are largely in the same order of accuracy.

Hu and Adams (2009) suggested another approximation
with double summations:

LP-SPH06:

∇ ·
(∇ p

ρ

)
i

= − 1

σi

∑
j

∇Wi j ·
⎡
⎣ 1

mi

∑
k

∇Wik

(
pi
σ 2
i

+ pk
σ 2
k

)

− 1

m j
l
∑

l
∇W jl

(
p j

σ 2
j

+ pl
σ 2
l

)]
. (17)
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In Hu and Adams (2009), LP-SPH06 was only used for the
calculation of intermediate pressure for particle density cor-
rection. For full step velocity updating, they still used the
pressure obtained by LP-SPH05. As far as we know, the use
of LP-SPH06 has not been found in other publications. It is
not clear if it can be employed alone.

Hosseini and Feng (2011) used the following approxima-
tion, which was derived to ensure that the gradient of a linear
function is accurately evaluated as proposed by Oger et al.
(2007).

LP-SPH07:

(∇2 p)i = 2

ρ

∑
j

m j
pi j r i j.C(�ri j ).∇Wi j∣∣�ri j ∣∣2 (18a)

C(�ri j ) =
⎛
⎝

∑
Vj (x j − xi )

∂Wi j
∂x

∑
Vj (x j − xi )

∂Wi j
∂y∑

Vj (y j − yi )
∂Wi j
∂x

∑
Vj (y j − yi )

∂Wi j
∂y

⎞
⎠

−1

.

(18b)

where Vj = m j
ρ j

denotes the volume occupied by a particle.
The expression of Matrix C here, the discrete form of Eq.
(15c), is only for two-dimensional (2D) problems. For three-
dimensional (3D) problems, it will be a 3× 3matrix (see, e.g.
Schwaiger 2008). Khayyer et al. (2008) suggested a similar
correction to the kernel gradient and applying it to estimating
internal viscous force calculation to preserve both linear and
angular momentum, but not for solving Poisson’s equation.

Gotoh et al. (2014) derived the following expression using
the divergence of the pressure gradient,

LP-SPH08:

(∇2 p)i =
∑
j �=i

m j pi j
ρ j

(
1∣∣�ri j ∣∣

∂wi j

∂
∣∣�ri j ∣∣ − ∂2wi j

∂
∣∣�ri j ∣∣2

)
. (19)

The definition of pi j here is slightly different from that in
Gotoh et al. (2014) and so the equation appears to be different
but it is actually the same.

Apart from these forms described above, another discrete
Laplacian was formed by Chen et al. (1999, 2001). In the
scheme, all the second derivatives are found by solving the
set of following equations:

Bηξ Fξ = Φη (20a)

�η =
∑
j

V j
(
p(�r j ) − p(�ri )

)
W,λγ

−p,α(�ri )
∑
j

V j (�ri j )αW,λγ , (20b)

Bηξ = (1 − δαβ/2)
∑
j

V j (�ri j )α(�ri j )βW,λγ , (20c)

where Fξ = p,αβ = ∂p/∂rα∂rβ with correspondence
between ξ and αβ being 1 ↔ 11, 2 ↔ 22, 3 ↔ 33, 4 ↔ 12,
5 ↔ 23, 6 ↔ 13, as between subscripts η and λγ . After
solving for all the second derivatives of pressure, the dis-
crete Laplacian can be formed by summing up of p,αα . This
Laplacian discretization is named as corrective smoothed
particle method (CSPM) following Schwaiger (2008). Fatehi
and Manzari (2011) derived a new scheme (they called it as
Scheme 4) using error analysis. Careful examination reveals
that their new scheme is almost the same as the CSPM.
The only difference is that Bηξ in their scheme contains a
correction to the leading error caused by approximation to
the gradient. The correction may not play a very significant
role if the gradient used in Eq. (20) is accurately estimated.
Therefore, the scheme by Fatehi and Manzari (2011) may be
considered as one with the similar accuracy as CSPM. As
indicated by Chen et al. (1999), the solution of the equation
theoretically gives the exact value of the second derivatives
for any particle distribution if the pressure is a constant, lin-
ear or parabolic field and if p,α(xi ) equals the exact value of
the first derivatives of the pressure. None of other approxima-
tions (LP-SPH01 to LP-SPH08) have such a good property.
In view of this fact, this formulation can be considered as the
most accurate one among all those discussed above. How-
ever, when this approach is employed for solving Poisson’s
equation about pressure, �η is not evaluable, as it contains
the pressure itself. One must form the matrix and work out
its inversion before it is used for discretising Poisson’s equa-
tion. Clearly, it is the most time-consuming one (Schwaiger
2008), as it requires finding the inversion of two matrixes for
every particle. One is Bηξ , which is 3 × 3 for 2D cases and
6 × 6 for 3D cases, and the other is matrix C , which is 2 × 2
for 2D cases and 3× 3 for 3D cases. In addition, the property
of matrixes is sensitive to distribution of particles and to the
number of particles falling in the region characterized by the
smoothing length. More discussions about this will be given
in the section about the patch tests.

3 Approaches of MPS in solving Poisson’s equation

Moving-particle semi-implicit (MPS) method was proposed
by Koshizuka et al. (1995) and Koshizuka (1996). In this
method, Poisson’s equation (Eq. 7) is solved also by directly
approximating the Laplacian. In the cited papers, the Lapla-
cian was approximated by

LP-MPS01:

(∇2 p)i = 2κ

λ0σ0

∑
i �= j

(p j − pi )wi j , (21)

where κ is the same as before, σ0 is the initial value of σi , λ0
are defined by
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λ0 =
∫
V

∣∣�ri j ∣∣2 W (�ri j )dV/

∫
V
W (�ri j )dV .

To stabilize the pressure calculation, an improved Laplacian
discretization was proposed by Khayyer and Gotoh (2010).

LP-MPS02:

(∇2 p)i = 1

σ0

∑
i �= j

pi j

(
1∣∣�ri j ∣∣

∂wi j

∂
∣∣�ri j ∣∣ − ∂2wi j

∂
∣∣�ri j ∣∣2

)
. (22)

This equation was derived by applying the same principle
as that for LP-SPH08 and is applicable for 2D simulations.
The extension to 3D has also been developed byKhayyer and
Gotoh (2012), in which the first term in the bracket of Eq.
(22) disappears. Here, there is no term of

m j
ρ j

or Vj in the sum-

mation like in the SPH formulations. However, if
m j
ρ j

or Vj is
constant and taken as their initial value, i.e. 1/σ0, LP-SPH08
becomes exactly the same as LP-MPS02. As the authors of
the cited papers indicated, the LP-MPS02 gave better results
than LP-MPS01. Nevertheless, simple tests show that LP-
MPS02 cannot give an exact value of Laplacian even if the
pressure is a simple function like p = x2 and the particles are
uniformlydistributed,whileLP-MPS01cangive a right value
in such a situation. This is probably because the normaliza-
tion (λ0) is conducted for LP-MPS01, but not for LP-MPS02
which leads to 0th order consistence of LP-MPS02 as pointed
out by Tamai et al. (2016). If it is the case, it is easily rectified.
An alternative formation was proposed by Ikari et al. (2015)
with an aim to improve LP-MPS02 and given by

LP-MPS03:
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The expression of C in Eq. (23b) is written only for 2D
problems, though it can be straightforwardly extended to 3D
problems. Theoretically, LP-MPS03 should be reduced to
LP-MPS02 if C is a unit matrix, but actually it is not. The
reason is perhaps attributed to the approximation adopted
when deriving the LP-MPS03. Interested readers can find
more details about this from the cited papers. Very recently,
Tamai et al. (2016) proposed another formation given by

LP-MPS04:

∇2 p(�ri ) ≈ tr

⎧⎨
⎩2M−1

∑
j

(
p(�r j ) − p(�ri )

− p(�ri j )α p,α(�ri )
)
wi j qi j

⎫⎬
⎭ , (24)

whereqi j is a vector of order 3 for 2D cases and order 6 for 3D
cases, requiring inversion of another matrix associated with
first-order derivatives. M is a matrix based on qi j , also with
a size of 3 × 3 for 2D cases and 6 × 6 for 3D cases. For the
detailed definition of the matrixes, readers are referred to the
cited paper. The derivation of the formulation is analogous
to CSPM (Eq. 20) and Fatehi and Manzari (2011). However,
the content of matrix M is different from Eq. (20c), in that a
term associated with the first derivative is involved in M,like
in Fatehi and Manzari (2011).

Apart from these, Tamai and Koshizuka (2014) proposed
a scheme based on a least square method, but Tamai et al.
(2016) pointed out that this scheme needed inversion of a
larger size matrix (an order of 5 for 2D cases and 9 for 3D
cases) and also a larger support domain (or smoothing length)
to keep the matrix invertible. More discussions can be found
in the cited papers.

4 Patch tests on different discrete Laplacians

To investigate the behaviours of different forms of Lapla-
cian discretization, a few papers carried out patch tests. In
some patch tests, a Laplacian discretization is applied to esti-
mate the value of Laplacian for a specified function, which
is defined on a specified domain, giving the exact evaluation
of the error. This section will summarize these tests available
in published papers.

Schwaiger (2008) investigated several discrete Lapla-
cians, including CSPM, LP-SPH04 and LP-SPH03 with
η = 0 (unless the ri j ∼ 0, a small value of η in LP-SPH03
does not play a significant role). He considered functions of
xm + ym and xm ym defined on a 2D domain of 2 < x < 3
and 2 < y < 3 with m = 2, 3, 4, 5 and 6, and calculated the
value of discrete Laplacians, respectively. Two particle con-
figurations were considered, one with uniform distribution
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at a distance S between particles and the other with random
perturbation of |ε| ≤ 0.4S (i.e. the distance between particles
is determined by S + ε) in x- and y-directions on the basis
of uniform distribution. They found that for uniform particle
distribution, the results of LP-SPH04 and CSPM were very
similar at the interior particles away fromboundarieswith the
error at a level of the machine error. LP-SPH03 can also give
quite a good estimation at these particles, though its error
is larger. However, at the particles close to boundaries, all
approximations can produce large errors, though the relative
errors of LP-SPH04 and CSPM are smaller in most cases.
Even for them, the relative error close to the boundaries can
reach the level of 70 % as observed in Fig. 1 of Schwaiger
(2008).

For irregular or disorderly particle distributions, the
behaviour of discrete Laplacians also depend on how to
choose the smoothing length. Schwaiger (2008) studied two
options, one is h = 1.2S and the other is h = 0.268

√
S.

Based on the relative errors in the region 2.25 < x < 2.75
and 2.25 < y < 2.75 without accounting for the particles
near the boundaries, they found that for h = 1.2S, both LP-
SPH04 andCSPMdid not show a fully convergent behaviour,
but remained at a fairly constant relative error,reducing the
average particle distance. They also found that LP-SPH03
became divergent, i.e. the relative error increasing with
reducing the particle distance. CSPM should give converged
results even for irregular particle distribution. The reason it
did not do so is perhaps because there were no sufficient
number of particles within the region of size h = 1.2S, due
to irregular shifting of particle positions, yielding that the
property of matrixes involved in the CSPM became worse,
and so leading to non-convergent results. For h = 0.268

√
S,

they showed in Fig. 5 of their paper that all approxima-
tions exhibited convergent behaviour and that LP-SPH04 and
CSPM results convergedmuch faster, with the rate being near
the second order, while LP-SPH03 results converged much
slower with its convergent rate being less than first order. The
reason forLP-SPH04 andCSPMresults to be in second-order
convergent rate in this case is perhaps because 0.268

√
S is

much larger than 1.2S, and so there were always sufficient
number of particles involved in the cases studied. Schwaiger
(2008) mentioned that the smoothing length h was often set
proportional to S, but the divergence behaviour correspond-
ing to the case is perhaps troubling.

Lind et al. (2012) carried out similar investigations by
comparing LP-SPH03 with LP-SPH04 for the functions of
xm + ym with m = 1, 2 and 3 defined on the same domain
as that by Schwaiger (2008). They just confirmed that the
relative error of LP-SPH04 could reach 70 %, while LP-
SPH03 yielded an error of 4000 % on the boundary. At the
row next to the boundary, the relative error of LP-SPH04
reduced to 4 %, while that of LP-SPH03 remained to be
500 %.

Lind et al. (2012) also carried out investigations by solv-
ing the equation of (∇2 p)i = 1 for 1D problem with the
boundary conditions of dp/dy = 10 at y = 0 and p = 1 at
y = 1 using LP-SPH04. For this purpose, they employed
both uniform and non-uniform particle configurations. The
latter was produced by specifying different small random
perturbations of (±0.1 ∼ ±0.5)S to the particle distance
for uniform distribution. They particularly indicated that the
relative error of the solution became larger with increased
random perturbation: 1.5 % corresponding to (±0.1)S, but
17% to (±0.5)S. They also demonstrated that the LP-SPH04
may lead to resultswith a convergent rate of 1.2–1.3 (less than
2 as shown for h = 0.268

√
S by Schwaiger 2008) with the

particle shifting scheme to maintain the particle orderliness.
Zheng et al. (2014) performed similar tests, but used the

function of f (x,y) = cos(4πx + 8πy) defined in the region of
2 ≤ x ≤ 3 and 2 ≤ y ≤ 3. This function is closer to the real
pressure inwaterwaves than xm+ym and xm ym . The discrete
Laplacian they considered also included the LP-SPH03 and
LP-SPH04. In their tests, the domain was first divided into
small squared elements with �x = �y = S. The particles
were then redistributed according to�x ′ and�y′ determined
by S[1+k(Rn−0.5)], where Rn is a randomnumber between
0 and 1.0 and different for �x ′ and�y′, and k is a constant.
Clearly, k = 0 leads to regular distribution of particles. k > 0
makes the distribution of particles irregular or disorderly. As
k increases, the disorderliness increases. The accuracy of the
Laplacian approximations is quantified in a similar way to
that in Schwaiger (2008), by evaluating the average relative
errors

Er =
√√√√ N∑

i=1

(∇2 fi,c − ∇2 fi,a
∇2 fi,a,m

)2

Vi , (25a)

where ∇2 fi,a is the analytical value of Laplacian with
∇2 fi,a,m being its magnitude, e.g. ∇2 fi,a,m = 80π2, for
f (x, y) = cos(4 π x + 8 π y); and ∇2 fi,c is the values of
discrete Laplacian. When estimating the error, only the par-
ticles within the region of 2.2 ≤ x ≤ 2.8 and 2.2 ≤ y ≤ 2.8
are considered as in Schwaiger (2008). The accuracy of the
Laplacian approximations is also quantified by estimating
their maximum relative errors given as

Ermax = max

(∣∣∣∣∇
2 fi,c − ∇2 fi,a

∇2 fi,a,m

∣∣∣∣
)

, i = 1, 2, 3 . . . N .

(25b)

In their tests, S = 0.1, 0.05, 0.02, 0.0125, 0.01, 0.08 and
k = 0, 0.2, 0.4, 0.8, 1.0, 1.2 were considered. Some of their
results are reproduced in Figs. 1, 2, and 3. Figure 1a presents
the average relative errors for different values of S with a
value of k being fixed to be 0.8, i.e. with the random shift
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Fig. 1 Variation of errors with changes of particle distances (originally presented in Zheng et al. 2014): a mean error; b maximum error

Fig. 2 Variation of errors with changes of randomness (originally presented in Zheng et al. 2014): a mean error; b maximum error

up to ±0.4S, the same as that in Schwaiger (2008). From the
figure, one can see that the average error of LP-SPH04 is con-
sistently reduced with reduction of S. This trend is similar
to the results of Schwaiger (2008) for a function of xm + ym

obtained using h = 0.268
√
S, but different from those of

Schwaiger (2008) obtained using h = 1.2S which is shown
to be constant with the reduction of S in their papers. The rea-
son is perhaps because the smooth length used in Zheng et al.
(2014) was larger, though it was still proportional to S. The
average errors of LP-SPH03 can increase with the reduction
of S, which is a divergent behaviour. Figure 1b demonstrates
that the maximum error of LP-SPH04 consistently decreases
until S = 0.0125 or Log(S) ≈ −1.9, but increase with
increasing the resolution of the particles after that. In addi-
tion, the smallest value of the error is Log(Ermax) > −0.6,
corresponding to Ermax = 25%,which is considerably larger
than the average errors for the same case (Fig. 1a) and may
be considered to be significant as the error occurs inside the

domain. Again, the maximum error of LP-SPH03 shows a
divergent behaviour when S < 0.05 (Log(S) < −1.3). It
is noted that overall, the accuracy of numerical methods are
controlled by the maximum error, and not the average error.

Figure 2 plots the average and maximum errors for dif-
ferent values of k with S = 0.01. One can see from the
figures that the errors of both approximations (LP-SPH03
and LP-SPH04) increase with the increase of k values, i.e.
with particle being more disorderly, which is consistent with
observation of Lind et al. (2012). Furthermore, themaximum
error inside the domain can become very large, for example,
Log(Ermax) > −0.4, corresponding to Ermax > 40 %, at
k > 0.8 even for LP-SPH04.

To demonstrate if there is a significant number of parti-
cles with a large error, Zheng et al. (2014) plotted a figure
similar to Fig. 3. In this figure, the horizontal axis shows
the different ranges of relative error, e.g. [20, 30 %], while
the vertical axis shows the number of particles whose error

123



J. Ocean Eng. Mar. Energy (2016) 2:279–299 287

Fig. 3 The number of particleswith an error larger than a certain values
for S = 0.01 and k = 1.2 (originally presented in Zheng et al. 2014)

lies in a range. For example, in the range of [20, 30 %],
there are about 230 particles for the LP-SPH04. The relative
error at each individual particle used in this figure is esti-

mated by Eri =
∣∣∣∇2 fi,c−∇2 fi,a

∇2 fi,a,m

∣∣∣ (i = 1, 2, 3 . . . N ). This

figure demonstrates that a quite large relative error (>20 %)
can happen at a considerable number of particles for the
approximations even when they are applied to computing the
Laplacian of the quite simple function, though the number
for the LP-SPH04 is much smaller than for the LP-SPH03.

In most of the above tests (except for some cases in
Schwaiger 2008), the value of S/h is fixed with the smooth-
ing length varying and sometimeswith different randomness.
Quinlan et al. (2006) discussed the theoretical convergence
of approximating the gradient of a function used in SPH.
They showed that the error caused by numerical approxima-
tions to the gradient did not only depend on the smoothing
length and randomness (non-uniformity), but also on the
ratio S/h. Specifically speaking, the error increases with the
larger randomness and can be proportional to 1/h if S/h is
not small enough, which is consistent with that observed in
the above results. When S/h is small enough, the conver-
gent behaviour of the approximation to the gradient can be
improved. Graham and Hughes (2007) particularly investi-
gated the behaviour of LP-SPH03 with η = 0 by varying the
value of S/h. They studied the pressure-driven flow between
parallel plates with a constant pressure gradient with the dif-
fusion term estimated by LP-SPH03 (η = 0) for three values
(1, 1/1.25 and 1/1.5) of S/h. They showed that the method
was not convergent in several cases they studied and that
random particle configurations could have a dramatic effect
on the accuracy of the SPH approximations. More specially,
the results are divergent if their random factor is larger than
0.25, and their best results are these obtained by using S/h =

1/1.5 with the particles fixed, among which the error reduces
at a rate less than first order when their random factor is rela-
tively small. Fatehi and Manzari (2011) also carried out tests
by varying S/h from 1/1.5 to 1/3.5 on a scheme similar to
LP-SPH03with η = 0 and their new schemewhich is similar
to CSPM (discussed above) by solving a thermal diffusivity
problem defined on a unit square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,
which has a similar equation to the problem with the zero
pressure gradient considered by Graham and Hughes (2007)
. In their tests, regular and irregular particle distributionswere
considered, and the relative errors of numerical results to the
analytical ones at a time near steady state were presented
in their paper. The random perturbation they employed was
|ε| ≤ 0.05S or |ε| ≤ 0.1S, much less than |ε| ≤ 0.4S used
by Schwaiger (2008). Their results showed that the scheme
LP-SPH03 with η = 0 had a convergent rate of first order at
the best, and that their new scheme similar to CSPM had a
convergent rate of second order. However, they indicated that
the scheme did not work when smoothing length was 1.5S,
consistent with the analysis of Quinlan et al. (2006). This is
perhaps because the number of neighbouring particle is not
sufficient, which may make the matrixes involved in CSPM
invertible. It is not sure if the convergent rate would maintain
when the random perturbation is larger.

Gotoh et al. (2014) presented some convergent test results
on LP-SPH08. For this purpose, the approximation was
used together with their error-compensation term to sim-
ulate a pressure field caused by a modified gravitational
acceleration. Their results showed that for irregular parti-
cle distributions (the initial distribution randomly altered and
half of the fluid particles displaced by ±0.02S), the normal-
ized root mean square error reduced with decrease of the
initial particle distance, a convergent behaviour. According
to the cited paper, the errors are 0.108, 0.068 and 0.065 corre-
sponding to S = 0.004, 0.003 and 0.002, respectively, which
gives an average convergent rate at about 0.7, though it is
about 1.6 from 0.004 to 0.003.

Ikari et al. (2015) tested the discrete Laplacians (LP-
MPS02 and LP-MPS03) for the MPS method. Their results
are summarized here. The first case they presented was about
the computation of a pressure field due to a sinusoidal dis-
turbance to gravitational acceleration. The particles were
randomly shifted by ±0.05S on the basis of uniform dis-
tribution. As they indicated, the results of LP-MPS03 were
better than those of LP-MPS02. They also showed that there
were some spurious fluctuations in the pressure time histories
fromLP-MPS02 on reducing the particle distance. Their sec-
ond case was similar to their first case except for a difference
that the sinusoidal disturbance was multiplied by an expo-
nential growing factor. The results for this case also showed
the outperformance of LP-MPS03 compared to LP-MPS02.
They pointed out that the clear convergence of results from
LP-MPS03 was not observed in terms of root mean square
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error of numerical results relative to the analytical solution
for the case. The third case they investigated was about a
2D diffusion problem on a square domain. For this case,
the performances of both LP-MPS02 and LP-MPS03 were
satisfactory, though LP-MPS03 was slightly better. The con-
vergent trend was not, however, exhibited. For example, the
root mean square error of LP-MPS03 is 19.2850, 30.8089
and 24.2292 corresponding to the mean particle distance of
10, 5 and 2.5 mm. The convergent property of LP-MPS02
with a higher-order source term on the right hand side of
Eq. (7) was also examined by Khayyer and Gotoh (2012),
showing an improved and more stabilized (without fast fluc-
tuation) pressure for the similar case (but in 3D here) to that
in Gotoh et al. (2014) discussed above. In this test, the ini-
tial distribution of particles is randomly altered and half of
the fluid particles are displaced by ∓0.05S, similar to that
in Ikari et al. (2015). The results demonstrated that the nor-
malized root mean square error reduced with decrease of the
initial particle distance. In otherwords, convergent behaviour
was observed. The specific information is that the errors are
0.241, 0.228 and 0.192 corresponding to S = 0.012, 0.010
and 0.008, respectively. The average convergent rate is near
0.8.

Tamai et al. (2016) carried out tests using the discrete
Laplacians to estimate the values of Laplacian for a given
function on a square domain 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
This is similar to the method used by Schwaiger (2008) and
Zheng et al. (2014) discussed above, but Tamai et al. (2016)
used a sum of four exponential functions. In their tests, the
random distribution of particles was also achieved by ran-
domly shifting the particle position on the basis of uniform
distribution. The random disturbance was given by a normal
distribution with zero expectation and standard deviation of
0.1. The degree of randomness was higher than Gotoh et al.
(2014) andKhayyer andGotoh (2012), in the same level as in
Fatehi and Manzari (2011), but not as large as in Schwaiger
(2008). The smoothing length they used was not less than
2.7S, quite large compared to the tests mentioned above. The
results of the tests in Tamai et al. (2016) indicated that (a) the
maximum errors of LP-SPH03, LP-MPS01 and LP-MPS02
grew with reduction of mean particle distance (S), i.e. show-
ing a divergent behaviour, similar to Fig. 1b given by Zheng
et al. (2014) and (b) the convergent rate of LP- MPS04 is
about 2, which is similar to the observation on CSPM by
Schwaiger (2008) and Fatehi and Manzari (2011).

In summary, the above tests are clearly not extensive to
cover all Laplacian approximations, but they indeed cover
some best approaches available so far in literature. Their
main features and typical behaviours observed in the tests
described above are outlined in Table 1. In the table, the
approximations are classified into three types for the conve-
nience of discussion here. Type 1 includes those without the
need ofmatrix inversion, such as LP-SPH03, Type 2 includes

those with one matrix inversion, while Type 3 refers to those
with the need of two matrix inversions. According to the
results, one may find that the schemes can be improved in
the following aspects.

• The discretization of Laplacians can be a notable issue
at particles near a boundary, especially for disordered
particle distributions, such aswater surface,without addi-
tional appropriate treatment. This may not be a big issue
in some applications where the solution near the bound-
ary is not mainly concerned, but would be a critical issue
for modelling water waves and their interaction with
structures in marine or coastal engineering, in which
the accuracy of pressure near the water and body sur-
face is important. The corrected Laplacian operator in
integral formulation (Souto-Iglesias 2013) improves the
Laplacian evaluation near the boundary and gives con-
vergent solutions of Poisson’s equation with boundary
conditions which is also applied to evaluate the curva-
ture in Khayyer et al. (2014). This may suggest that the
discretization schemes of Laplacians discussed above
should be employed together with the correction to
improve their behaviour near boundaries.

• The error of discrete Laplacians can become larger when
the degree of particle disorderliness is higher or results
converge slower even inside computational domains. In
the cases for violent water waves, the particle distribu-
tion always becomes highly disordered even though they
are uniformly and regularly located initially. More effort
may be required to make them less sensitive to particle
disorderliness.

• It is observed that Type 1 Laplacian approximations may
not converge for a high degree of particle distribution ran-
domness (or disorderliness), but they may converge at a
rate less than first order for a low degree of particle distri-
bution randomness (or disorderliness). That means that
the results obtained from approximations may become
worse with reduction of particle distance or increase of
the number of particles used when particle distribution
randomness level is high. Type 2 may have similar prob-
lem, though it may bemore accurate for the same number
of particles.

• Type 3 has a convergent rate of 2nd order if the random
level of particle distribution is not very high, but the rate
may become lower with the increase of the random level.
The computation costs of the type are high comparedwith
others. In addition, the number of neighbouring particles
must always be high enough to ensure the matrixes to
be invertible. This is not necessarily guaranteed when
modelling violent water waves as the configuration of
particles can dramatically and dynamically vary during
simulation, which is not a priori predictable.
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Table 1 Summary of the main features of different discrete Laplacians

Scheme Type Number of matrix inversion Typical behaviours observed in tests described above

LP-SPH01 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH02 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH03 1 NO
Schwaiger (2008), Zheng et al. (2014) and Tamai
et al. (2016) showed it is divergent for severe
randomness of particle distribution if smoothing
length is proportional to the particle distance;
Schwaiger (2008) and Lind et al. (2012) showed a
very large error near the boundaries; Schwaiger
(2008) showed it converged at a rate less than first
order when using a smooth length proportional to
the square root of the particle distance; Fatehi and
Manzari (2011) and Graham and Hughes (2007)
also showed it converged at a rate less than first
order when the randomness of the particle
distribution is not very severe

LP-SPH04 3 2, their sizes are 2 × 2 for 2D cases
and 3 × 3 for 3D cases

Error near the boundary can be large if the random
level of particle distribution is high; second-order
convergent rate is observed by Schwaiger (2008)
but can be much less than second order shown by
Lind et al. (2012), and depending on the
randomness of particle distribution (Zheng et al.
2014). The error inside the domain can also be
large when the level of the randomness of particle
distribution is very high (Zheng et al. 2014)

LP-SPH05 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH06 1 NO but double summation Not popular; patch tests not available

LP-SPH07 2 1, its size is 2 × 2 for 2D cases and
3 × 3 for 3D cases

Patch tests not available

LP-SPH08 1 NO Convergent at a rate less than first order for a lower
level of irregularity of particle distribution shown
by Gotoh et al. (2014)

CSPM 3 2, one with a larger size of 3 × 3
for 2D cases and 6 × 6 for 3D
cases

Error near boundary can be large if random level of
particle distribution is high; computational cost is
high, though second-order convergent rate is
observed in Schwaiger (2008)

LP-MPS01 1 NO Not convergent for a higher level of irregularity of
particle distribution shown by Tamai et al. (2016)

LP-MPS02 1 NO Convergent at a rate less than first order for a lower
level of irregularity of particle distribution shown
by Khayyer and Gotoh (2012); not convergent for a
higher level of irregularity of particle distribution
shown by Tamai et al. (2016)

LP-MPS03 2 1, its size is 2 × 2 for 2D cases and
3 × 3 for 3D cases

Clear convergent behaviour is not observed for
random particle distribution, though its results are
better than LP-MPS02 in Ikari et al. (2015)

LP-MPS04 3 2, one with a larger size of 3 × 3
for 2D cases and 6 × 6 for 3D
cases

Computational cost is high; though second-order
convergent rate is observed shown by Tamai et al.
(2016). As it is just suggested recently, its
behaviours need to be confirmed by more
applications
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These issues associated with larger errors and divergent
behaviours observed in the tests on Type 1 and 2 Laplacian
approximations as indicated in Table 1 do not mean that the
methods using the approximations could not give acceptable
results. Actually, a large body of literature has provided abun-
dant evidence that the ISPH (e.g. Lo and Shao 2002; Lind
et al. 2012) and MPS (e.g. Khayyer and Gotoh 2010, 2011,
2012, 2013) based on the schemes are successful in many
applications. These issuesmainly imply that researchers need
to make much effort in determining the right number of par-
ticles to be used to achieve acceptable results. If their number
of particles is not right, their solutions bear a large error. It
may also imply that to achieve results with a specified accu-
racy requires a large number of particles.

These results demonstrate that although a lot of effort
has been undertaken to develop better approximations to the
Laplacian discretization, it still needs to be improved, in par-
ticular for modelling violent water waves where the water
particles can become severely disordered. To improve the
accuracy of computation, one may adjust the distribution of
particles as done by Xu et al. (2009) to reduce the disorder-
liness of particles. The other way to circumvent the issues
is by avoiding the direct discretization of Laplacian. This
approach will be discussed in the next section.

5 Approaches of MLPG_R in solving Poisson’s
equation

Bonet and Kulasegaram (2000, 2002) adopted a varia-
tional formulation to solve Possion’s equation for their ISPH
method. In their basic formulation, only the gradient was
involved, and second-order derivativeswere avoided entirely.
The discrete gradient in the formulation was involved and so
the inversion of a matrix had to be performed for each of
all particles, similar to that in LP-SPH07 and LP-MPS03.
They, however, showed that the analytical gradient of a lin-
ear function with a constant gradient could not be guaranteed
to be correctly evaluated even with a correction in their basic
variational formulation. They then introduced an integration
correction factor that is actually a vector. The factor was
indeed effective to overcome the problem associated with
basic variational formulations. However, to estimate the fac-
tor, they needed iterations which involve summation and
multiplication of matrixes at each of all particles, requiring
significant extra computational costs. Another problem with
their variational formulation arises also fromevaluating func-
tion gradients, so-called ‘spurious modes’, i.e. the nonzero
gradient of a function being perhaps estimated numerically as
zero, which exists even with the use of the integration correc-
tion factor. To eliminate the spurious modes, they introduced
a least-square stabilization method by adding a stabiliza-
tion potential to the variational formulation. The stabilization

Integration 
domain at node I

Support domain 
at node J

JI
rJ

Fig. 4 Illustration of integration and support domains for MLPG_R
method

procedure requires the evaluation of the Laplacian (i.e. the
second-order derivatives) of the solution function. As they
discussed, a special correction had to be applied to ensure
that the evaluation of Laplacian was correct for linear or
quadratic functions. One can see that the use of the varia-
tional formulation does not only require extra computational
costs, but also actually still require dealing with the Lapla-
cian. Thatwould be perhaps the reasonwhy it has not become
popular in the SPH community.

Ma (2005a) started to employ the MLPG method to solve
water wave problems. In this method, the Poisson’s equation
(Eq. 7 with � = 0 without loss of generality in this paper)
is first integrated over a circle in 2D (Fig. 4) and a sphere in
3D cases to give

∫

I

[
∇2 p − ρ

�t
∇ · �u(∗)

]
ϕd
 = 0, (26)

where
I is the integration domain centred at node I and ϕ is
a test function, which can be arbitrarily chosen. Ma (2005a)
employed a Heaviside step function as the test function and
arrived at MLPGR-01:

∫
∂
I

�n · ∇ pdS = ρ

�t

∫
∂
I

�n · �u∗dS, (27)

where ∂
I is the boundary of 
I and �n is the normal vec-
tor of ∂
I , pointing out of the integration domain. In this
formulation, the pressure and its gradient are estimated by

p(�x) ≈
N∑

J=1

�J (�x) p̂J and ∇ p(�x) ≈
N∑

J=1

∇�J (�x) p̂J , (28)

where �J (�x) is a shape function formulated by moving the
least square (MLS) method and using a local weight func-
tion defined on a support domain (Fig. 4), similar to the one
used in SPH or MPS, e.g. Eq. (11); p̂J is the presentative
pressure, which may not be equal to the real pressure at the
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point concerned. This formulation is similar to that of Bonet
and Kulasegaram (2000) in the sense that only gradients, no
second-order derivatives, are directly involved.

This formulation was soon enhanced into the MLPG
method based on rankine source solution (shortened as
MLPG_Rmethod) byMa (2005b). In the MLPG_Rmethod,
the solution of the Rankine source is taken as the test func-
tion, i.e. the function ϕ satisfies∇2ϕ = 0 in
I except for the
centre and ϕ = 0 on ∂
I with a radius of RI . The expression
of the solution for Rankine source is proposed to be

ϕ = 1

4π
(1 − RI /r)for 3D cases (29a)

ϕ = 1

2π
ln(r/RI )for 2D cases, (29b)

where r is the distance between the concerned point and the
centre of 
I . Based on this test function, the integration of
Eq. (26) can be changed into

MLPGR-02:

∫
∂
I

�n · (p∇ϕ)dS − Rκ−2
I pI =

∫

I

ρ

�t
�u(∗) · ∇ϕ d
, (30)

where κ is the number of dimensions, κ = 2 for 2D cases
and κ = 3 for 3D cases, as defined in previous sections.
The MLPGR-02 formulation is similar to MLPGR-01 in the
sense that only the boundary integral on the left hand side is
involved. However, it is distinct from the latter and also from
the variational formulation of Bonet andKulasegaram (2000)
in the sense that it is the pressure, rather than pressure gradi-
ent, that is dealt with in the MLPGR-02. Therefore, there are
no issues associated with evaluating the pressure gradient,
such as integration correction factor and spurious modes as
discussed byBonet andKulasegaram (2000).Apart from this,
there is of course no issue related to Laplacian discretization.

It is noted that the right hand side of MLPGR-02 is a vol-
umetric integration, i.e. the integration domain is a sphere in
3D and a circle in 2D cases, rather than a surface integra-
tion as in MLPGR-01. Use of normal numerical integration
techniques, like Gaussian quadrature, may need a significant
amount of computational time for estimating the term. To
overcome this problem, Ma (2005b) and Zhou et al. (2010)
developed semi-analytical techniques for 2D and 3D cases.
With use of these techniques, the computational costs for
evaluating the right hand term in MLPGR-02 is similar to
that for evaluating the right hand term in MLPGR-01.

It is also noted that a special interpolation technique was
developed by Ma (2008) for discretizing pressure and veloc-
ity in Eq. (30). For completeness, it is given below in terms
of the pressure.

p(�r0) =
N∑

J=1

�J (�r0; �rI )p(�rJ ), (31a)

�J (�r0; �rI ) = w(|�rJ − �r0|)∑N
J w(|�rJ − �r0|)

− (1 − δI J )B0,J (�rI )

+ δI J

N∑
J �=I

B0,J (�rI ), (31b)

B0,J (�rI ) = �R0 · �AI J , (31c)

�AI J =
[
nI,y BI J,x − n̄ I,xy BI J,y

nI,xnI,y − n̄2I,xy
,

= nI,x BI J,y − n̄ I,xy BI J,x

nI,xnI,y − n̄2I,xy

]T

, (31d)

�R0 =
∑N

J (�rJ − �r0)w(|�rJ − �r0|)∑N
J w(|�rJ − �r0|)

, (31e)

BI J,xm = (�rJ,xm − �rI,xm )

|�rJ − �rI |2
w(|�rJ − �rI , |) (31f)

nI,xm =
N∑

J=1,J �=I

(�rJ,xm − �rI,xm )2

|�rJ − �rI |2
W (|�rJ − �rI |)

(m = 1 or 2), (31g)

n̄ I,xy =
N∑

J=1,J �=I

(�rJ,xm − �rI,xm )(�rJ,xk − �rI,xk )
|�rJ − �r0|2

w(|�rJ − �rI |)

(m = 1 or 2, k = 1 or 2,m �= k), (31h)

Fig. 5 Variation of mean error with changes of particle distance
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δI J =
{
1 I = J
0 I �= J

, (31i)

where �rI,xm is the component of �r in xm (m = 1, 2, or 3)
direction. The set of equations is obtained by replacing Eq.
(12) inMa (2008) for estimating the gradientwithEq. (15) for
2D cases in that paper. It can be straightforwardly extended
to 3D cases using Eq. (15) for 3D cases in Ma (2008). When
working out the gradient, one needs inversion of a matrix
which has a size of 2 × 2 for 2D cases and 3 × 3 for 3D
cases similar to that for Type 2 discrete Laplacians. In other
words, the MLPG_R scheme based on Eq. (31) in this paper
needs about the same level of computational costs of that
based on Type 2 discrete Laplacians, but the inversion of

L

d

Fig. 6 Sketch of sloshing tank (d = 0.5 m, L = 2d , a0 = 0.001 d)

such a higher order matrix will be much more efficient than
Type 3 discrete Laplacians as the latter requires the version
of two matrixes, the larger one with a size of 3 × 3 for 2D
cases and 6 × 6 for 3D cases, respectively.

6 Patch tests of MLPGR-02 and comparative
studies

Two cases are considered in this section. One is that the
MLPGR-02 scheme is applied to solve Poisson’s Equa-
tion about a simple problem defined by ∇2 p = 0 with
p(0, y) = 0, p(1, y) = 0, p(x, 0) = 0, p(x, 1) = sin(πx),
solely for this paper. The analytical solution for this case is
p(x, y) = sinh(πy)sin(πx). It is the steady-state solution
of the case studied by Fatehi and Manzari (2011). To solve
the case, the domain is first divided into small squared ele-
ments (�x × �y with �x = �y = S). The particles are
then redistributed according to �x ′ and�y′ determined by
[1+kϑ]S, where ϑ is a random number between−0.5∼ 0.5
and different for�x ′ and�y′, and k is a constant factor, in the
same way as in Zheng et al. (2014). Clearly, as k increases,
the disorderliness becomes higher as discussed by Zheng
et al. (2014). Particularly, the random factor |ε| ≤ 0.1S
employed by Fatehi and Manzari (2011) corresponds to
k = 0.2.

Fig. 7 Wave time histories and
convergent behaviour of
different methods, originally
presented in Zheng et al. (2014).
a Wave time histories on the left
wall obtained by different
methods, b error of numerical
results
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The errors estimated by Er p =
√∑Nt

i=1

∣∣pi − pi,a
∣∣2/√∑Nt

i=1

∣∣pi,a∣∣2 for k = 0.2 and 0.3 are shown in Fig. 5,where
pi is the numerical results, while pi,a is the analytical solu-
tion. From this figure, one can see that the convergent rate is
close to the second order. Compared with the methods using
Type 1 and Type 2 Laplacians which converge at a lower rate,
the convergent properties of the MLPGR-02 scheme is much
better. Compared with these adopting the Type 3 Laplacian,
the computational efficiency of the MLPGR-02 scheme is
higher as the inversion of a matrix with a size of 3x3 for 2D
cases and 6x6 for 3D cases is required by the Type 3 Lapla-
cian, but the inversion of such a higher order matrix is not
needed in the MLPGR-02 scheme.

Fig. 8 CPU times used by three numerical methods corresponding to
different number of particles, originally presented in Zheng et al. (2014)

The second case was considered by Zheng et al. (2014)
who developed a hybrid method. In the hybrid method,
pressure is solved using MLPGR-02 and all others are the
same as ISPH. They named the hybrid method as incom-
pressible smoothed particle hydrodynamics based on Rankin
source solution (ISPH_R)method. They applied the ISPH_R
method together with the ISPH method based on LP-SPH04
(named as CISPH) and with the traditional weakly com-
pressible SPH (named as SPH) to simulate the sloshing
waves in a tank (Fig. 6) that is subject to the motion
Xs = a0
/

√
gd(1 − cos
t). The error of the numeri-

cal solution against the analytical solution is evaluated by

Erη =
√∑Nt

i=1

∣∣ηi − ηi,a
∣∣2/

√∑Nt
i=1

∣∣ηi,a∣∣2, where ηi is the
numerical result at the time instant, Nt is the total time steps
in the simulation duration of t̃ = t

√
L/g = 50.0, and ηi,a

is the analytical solution at i th time step, given by Faltinsen
(1976).

To simulate the case, the particles are uniformly distrib-
uted at start, but can become disorderly during simulation as
they are moving together with waves, though the disordered
level is not very high as the motion of waves is not very big
in this case. Figure 7a depicts the wave time histories on the
left wall obtained by different methods and compared with
the analytical solution of Faltinsen (1976). It can be seen
from Fig. 7a that the results of the SPH has a good agree-
ment with the analytical solution at the first three periods, but
in the later stage numerical dissipation in the wave ampli-
tude becomes evident. In addition, in the time range (such as
t/
√
g/L = 35–40) of short and small waves, the traditional

SPH method cannot catch the details correctly. In contrast,
the results from the CISPH and ISPH_R method can well
catch the details of short and small waves and do not show

Fig. 9 Pressure distribution of
violent sloshing at two instants
of time [CISPH (upper row) and
ISPH_R (lower row), originally
presented in Zheng et al.
(2014)]. a t̃ = 20.8, b t̃ = 29.6

P: 0.01 0.03 0.04 0.05 0.07 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.19 0.20

(a) (b)
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visible dissipation. Figure 7b presents the errors of numerical
results from the SPH, CISPH and ISPH_R methods relative
to the analytical solution corresponding to different numbers
of particles employed, originally presented in Zheng et al.
(2014). It clearly shows that the convergent rate of results
from the ISPH_Rmethod is about second order and the error
is considerably smaller than those of SPH and CISPH meth-
ods. In other words, to achieve any specified accuracy, the
ISPH_R method needs much less number of particles (or
larger particle sizes) than others. For example, corresponding
to Log(Erη) ≈ −3.55, the particle size required by ISPH_R

and CISPH are Log(S) ≈ −1.70 and −2.08, or S = 0.02
and 0.008, respectively. In addition, the ISPH_R can lead to
a low level of error, such as Log(Erη) = −4, but CISPH
cannot yield a result with such a low error.

To explore the properties of the methods in another way,
Fig. 8 depicts the CPU time spent by all the methods corre-
sponding to different numerical errors on the same computer,
which is also originally presented in Zheng et al. (2014). One
can see from Fig. 8 that the ISPH_Rmethod needs much less
CPU time to achieve the same level of accuracy. For exam-
ple, corresponding to Log(Erη) ≈ −3.545, the CPU times

Fig. 10 Comparison of
pressure time histories obtained
by using different methods a
SPH, b CISPH (CISPH2 in
Zheng et al. 2014) and c
ISPH_R, originally presented in
Zheng et al. (2014)

(a)

(b)

(c)
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spent by the ISPH_R and CISPH are Log(CPU_t) ≈ 2.97
and 4.02, corresponding to CPU_t ≈ 925 and 10,531 (about
11 times of the former) seconds, respectively. It is noted that
the CPU time for running a case may depend on the choice
of solver and preconditioner for solving the system of linear
algebraic equations resulting from the discretized equations.
As far as we know, the results in Fig. 8 were obtained by
a solver combining the GMRES with Gauss–Seidel method.
At each time step, they firstly run theGauss–Seidel procedure
for a specified number of iterations and then run the GMRES
if necessary. If different procedure would have been used,
the CPU time would be different.

To further show the performance of different methods in
cases involving violent waves, Fig. 9 presents the pressure
distribution at two time instants for sloshing in a rectangular
tank shown in Fig. 6, but with the parameters of L = 0.6 m,
d = 0.12 m = 0.2 L, a0(moiton amplitude) = 0.05 m and
T0(moiton peirod) = 1.5 s. Figure 10 depicts the pressure
time histories recorded at a point on the left wall with a height
of 0.1667L, resulting from three approaches (SPH, ISPH_R
and CISPH defined above). The results are also compared
with Kishev and Kashiwagi (2006).

Gotoh et al. (2014) presented some results for the same
cases as in Figs. 9 and 10, which are produced using
CISPH-HS and CISPH-HS-HL-ECS. LP-SPH02 together
with a higher order source term was used in CISPH-HS.
LP-SPH08 was employed in CISPH-HS-HL-ECS together
with the error-compensating source (ECS) term. Their orig-
inal figures for pressure fields and pressure time histories
at the same point as in Fig. 10 are duplicated in Figs. 11
and 12, respectively. As they indicated, the pressure trace
by CISPH-HS is characterized by frequent and, relatively,
large-amplitude unphysical oscillations, while the results of
CISPH-HS-HL-ECS are much smoother. If comparing the
results in Figs. 10 and 12, one may find that the pressure
time histories produced by ISPH_R andCISPH-HS-HL-ECS
have a similar level of smoothness and agreement with the
experimental data. This indicated that the ECS term is quite
effective, because there are still visible unphysical oscil-
lations if it is not applied as shown in Fig. 4 of Gotoh
et al. (2014). It may be interesting to see more compar-
isons of different approaches to improve their performance
further.

Fig. 11 Qualitative comparison of pressure field obtained by CISPH-HS (left), experiment (center) and CISPH-HS-HL-ECS (right) at t = 0.1,
0.2, 0.3 and 0.4 T0, originally presented in Gotoh et al. (2014)
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Fig. 12 Time histories of
pressure obtained by
CISPH-HS, experiment and
CISPH-HS-HL-ECS, originally
presented in Gotoh et al. (2014)

7 Conclusions

This paper has reviewed the approaches to solve Pois-
son’s equation for pressure involved in incompressible
smoothed particle hydrodynamic (ISPH), moving particle
semi-implicit (MPS) and meshless local Petrov–Galerkin
method, based on Rankine source solution (MLPG_R)meth-
ods for simulating nonlinear or violentwaterwaves assuming
fluids are the incompressible. As summarized in Table 2,
there are three different approaches, i.e. discretizing Lapla-
cian directly (DLD) by approximating the second-order
derivatives, transferring Poisson’s equation into a weak form
containing only gradient of pressure (WCG) and transferring
Poisson’s equation into a weak form that does not contain
any derivatives of functions to be solved (WCF). The first
approach DLD has been employed by most publications
related to ISPH andMPS, while the third approachWCF has
been implemented by the MLPG_R method for modelling
water waves.

For effectively implementing the first approach DLD,
three types of discrete Laplacians have been proposed as
summarized in Table 1. Type 1 does not need inversion of
matrix and so is relatively computationally efficient. How-

ever, the patch tests available have shown that this type of
discrete Laplacians may converge at a rate less than first
order for random (or disorderly) particle distribution. Type
3 is the most accurate one, but it requires the inversion of
two matrices (one of them with a size of 3 × 3 for 2D cases
and 6 × 6 for 3D cases) for each particle and so is relatively
computationally inefficient. Patch tests discussed above have
demonstrated that the convergent rate of this type can reach
to second order.

Type 1 discrete Laplacians in the DLD approach is rela-
tively easier to implement and have been the most popular
one so far, particularly in the community which employs the
ISPH andMPSmethods. Their performance can be improved
by applying the error-compensating term on the right hand
side of Poisson’s equation, by reducing the randomness of
particle distribution and by adding a correction term near
the boundaries. More efforts may be made to improve their
performance by enhancing the convergent rate.

The third approach (WCF) adopted by the MLPG_R
method does not need to deal with any derivative and so
has no issue related to discretizing derivatives when solv-
ing Poisson’s equation for pressure. Using relatively simple
approximation (requiring only inversion of one matrix with
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a size of 2 × 2 for 2D cases and 3 × 3 for 3D cases) to
the pressure, one can achieve the second-order convergent
rate in patch pests, as that achieved by using Type 3 discrete
Laplacians in the first approach, and also in solving the slosh-
ing waves with small amplitudes. In addition, limited tests
in literature available demonstrate that the ISPH based on
the third approach (WCF) requires less CPU time to achieve
the results with the same accuracy compared to ISPH based
on the first approach (DLD) for simulating sloshing waves.
Nevertheless, the WCF approach is currently less popular
than others, perhaps because it is relatively new as it has just
started to be used since 2005.

More comparative studies are encouraged, in particular
for applying all the schemes to the same cases. The studies
should compare convergent rate, accuracy and computational
efficiency of different approaches. Such studies help fully
understand the behaviours of the different approaches and
select the best for modelling water waves in general cases.
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