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Information theoretic description of the e-Mid interbank market:

implications for systemic risk

Vasilis Hatzopoulosa, Giulia Ioria

aDepartment of Economics, School of Social Science, City University London, Northampton Square,
London EC1V 0HB, UK

Abstract

In this paper we examine the temporal evolution of the e-Mid interbank market transactions
and quantify topological changes of the resulting credit network at or near events that where
considered pivotal in the 2007-2008 credit crisis. The main question we address is whether
banks behaviour regarding the choice of counter parties in a trade changed before and during
the subprime crisis. In particular, using a network based entropy measure, we assess the
level of randomness in the weights distribution across the links of the credit network. We
interpret this randomness as a proxy of the level of trust among credit institution. Simple
analysis of fundamental properties of the time-ordered set of networks defined over non-
overlapping maintenance periods indicate a shrinking market size. The number of nodes
(banks) present per maintenance period, the number of edges, edge density and average
degree in the system continued to shrink at a roughly constant rate. In order to compare the
evolution of network metrics when the underlying network size changes over time it becomes
crucial to define appropriate network null models against which the statistical significance
of such metrics can be assess. Given the directed and weighted nature of our connections we
construct a randomised ensemble of networks using the edge swap procedure, but conserving
the vertex in-out strength sequence rather then the in-out degree sequence. We compare the
entropy measure in the real networks with the one calculated in reshuffled networks and show
that the interbank market moved at the beginning of the subprime crisis to a less random
structure, with trading concentrated to a few selected counter parties, leading to a poor
liquidity flow. Trust was only recovered after Lehman defaults, following the intervention of
central banks around the world to inject liquidity into the banking system.
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1. Introduction

Interbank markets play a key role in banks liquidity management by allowing credit in-
stitutions to exchange capital to overcome short-term liquidity shocks. The interest rates
determined in this market represent the marginal cost of capital for credit institutions.
Variations in interbank rates are rapidly transmitted to the entire term structure, affecting
borrowing conditions for households and firms. Interbank dynamics thus influence the whole
economic system.
In normal times, interbank markets are among the most liquid in the financial sector. Due
to the short term nature of the exchanged deposits banks have accepted non collateralized
loans and both liquidity and credit risks were perceived as negligible. During the 2007-2008
financial crisis though, liquidity in the interbank market has considerably dried up, even
at short maturities. With the progress of the crisis credit markets experienced not only a
reduction in volumes and number of trades but also an increase in volatility and in dis-
persion of rates paid by different institutions (see Angelini et al. (2010), Gabrielli (2011)
B.Karpar et al. (2012), Gabbi et al. (2012)). Two main explanations have been suggested
for the market freeze during the crisis: liquidity hoarding, and trust evaporation. The first
argument suggests that banks hoard liquidity to anticipate their own unexpected liquidity
shocks (Heider et al. (2005) Acharya and Merrourche (2009)). The second attributes the
increase in liquidity costs to a rise in perceived counter-party risk (Freixas and Jorge (2009)
Afonso et al. (2010) Gale and Yorulmazer (2011)Gabrielli (2011) Cassola et al. (2008)). Pre-
vious studies have also suggested that banks rely more extensively on relationship lending
during a crisis, supporting indirectly the hypothesis that during periods of financial distress,
banks may be less willing to lend and borrow indiscriminately on the interbank market.
In particular Cocco et al. (1948), Affinito (2011), and Brauning (2011) confirmed the pres-
ence of long lasting relationships among credit institutions and estimated the impact of the
strength of a relationship on the interest rate exchanged in a transaction. According to the
authors relationship lending plays an important liquidity insurance role during a crisis and
facilitates the flow of credit between counter-parties.

The suggestion that the chain of relationships developed over time by credit institutions
may affect their trading decisions, and influence the efficient flow of capital in the system, is
at the basis of our study. Rather then focusing on relationship lending, here we attempt to
establish, with a novel approach based on network analysis, to what extent banks trust each
other. As a measure of trust we take how randomly banks distribute their trades with other
banks. We interpret a random choice of conterparties as an indication that banks trust each
other and perform little screening. On the other side, a concentration of trades with a few
selected counter parties provides an indication that the banking system has entered a phase
of trust evaporation, which is likely to generate an inefficient circulation of liquidity, and
possibly a freeze of the credit market with obvious systemic consequences.

In order to compare the evolution of network metrics when the underlying network size
changes over time it becomes crucial to define appropriate network null models against which
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the statistical significance of such metrics can be assess. To this extent we construct a ran-
domised ensemble of networks using a edge swap procedure. In this way we conserve the
total number (or volume) of lending and borrowing transactions performed by each bank,
but, while satisfying this constrains, we allocate them randomly to counter parties. This
allow us to compare the entropy measure in the real networks and in reshuffled networks
with the same number of participants and trades.

The remainder of this article is organized as follows. Section 2 explains the properties
of the e-MID interbank market and describes our dataset. Section 3 provides the definition
of the entropy measures used for the analysis and describes the rewiring methodology used
to assess the significativeness of our measure. Section 4 discusses the empirical findings
obtained from applying these methods to our large dataset. Section 5 concludes.

2. Market mechanism and dataset

Interbank markets can be organized in different ways: physically on the floor, by tele-
phone calls, or on electronic platforms. In Europe, interbank trades are executed in all these
ways. The only electronic market for Interbank Deposits in the Euro Area and US is called
e-MID. It was founded in Italy in 1990 for Italian Lira transactions and became denominated
in Euros in 1999. When the financial crisis started, the market players were 246, members
from 16 EU countries: Austria, Belgium, Switzerland, Germany, Denmark, Spain, France,
United Kingdom, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, and
Portugal.

The number of transactions and the volume increased systemically until the beginning of
the financial crisis, with an average of 450 transactions each day and an exposure of about
5.5 million euros per transaction. According to the European Central Bank, ECB (2011),
e-MID accounted, before the crisis, for 17% of total turnover in unsecured money market in
the Euro Area. The last report on money markets ECB (2011), recorded around 10% of the
total overnight turnovers. Trading in e-MID starts at 8 a.m. and ends at 6 p.m. Contracts
of different maturities, from one day to a year can be traded but the overnight segment
(defined as the trade for a transfer of funds to be effected on the day of the trade and to re-
turn on the subsequent business day at 9 a.m.) represents more than 90% of the transactions.

One distinctive feature of the platform is that it is fully transparent. Trades are public
in terms of maturity, rate, volume, and time. Buy and sell proposals appear on the platform
with the identity of the bank posting them (the quoter may choose to post a trade anony-
mously but this option is rarely used). Market participants can choose their counterparties.
An operator willing to trade can pick a quote and manifest his wish to close the trade while
the quoter has the option to reject an aggression.

The data base is composed by the records of all transactions registered in the period
01/1999–12/2009. Each line contains a code labeling the quoting bank, i.e. the bank that
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proposes a transaction, and the aggressor bank, i.e. the bank that accepts a proposed trans-
action. The rate the lending bank will receive is expressed per year; the volume of the
transaction is expressed in millions of Euros. A label indicates the side of the aggressor
bank, i.e. whether the latter is lending/selling (“Sell”) or borrowing/buying (“Buy”) capi-
tals to or from the quoting bank. Other labels indicate the dates and the exact time of the
transaction and the maturity of the contract. We consider only the overnight (“ON”) and
the overnight long (“ONL”) contracts. The latter is the version of the ON when more than
one night/day is present between two consecutive business day. The banks are reported
together with a code representing their country and, for Italian banks, a label that indicates
their size measured as total assets.

3. Network analysis.

The set of banks and the trades between them in a time interval δt can be represented
as a weighted directed network Gδt = {Vδt, Eδt}. In our analysis the edge weights usually
represent the number of transactions or volume between pairs of banks unless otherwise
stated. For a bank i its degree in an interval δt denotes its number of unique trading
partners. The degree is composed of the in-degree and the out-degree, ki = kini + kouti with
the former denoting the number of banks i has borrowed from and the latter the number
of banks i has borrowed to. The time ordered sequence of graphs {Gδt} is then known as a
temporal graph ( P.Holme and Saramaki (2011)). The choice of δt can have a large effect
on the values of various network statistics such as the in/out-degrees and their correlation
or the number of triangles in the network ( Clauset and N.Eagle (2007)). Two ’natural’
timescales in the e-Mid network are set by the maturity of the interbank loans (the large
majority are settled on the next business day) and the monthly deposit of liquidity reserve
with the central banks (around 23 business days-known as a maintenance period). For our
analysis we choose the maintenance period as the time scale to aggregate the trading activity
of banks. Given the high heterogeneity of the system, with some banks trading several times
a day, and others only few times a month, this choice allows us to include most banks in the
analysis.

Some fundamental properties of the time-ordered set of networks defined over non-
overlapping maintenance periods are shown in Fig.( 1). A visualisation of the network
is also provided in Fig.( 2). In accordance with previous work we find that most of the
basic quantities indicate a shrinking market size. The number of nodes (banks) present per
maintenance period seems to have exhibited three phases during the 11 year period. For the
years 1999 and 2000 the number of banks decreased in number, due to several mergers, and
then remained approximately constant till late 2007. Form late 2007 to late 2009 there is
a third phase of rapid contraction which clearly coincides with the occurrence of the credit
crisis. It is interesting that during the whole 11 years the edges, edge density and average
degree in the system continued to shrink in a roughly constant slope. This indicates that
even when the market had a relatively stable number of participants banks traded with
fewer and fewer different partners, strengthening their relationship, or preferential, trading
( Cocco (2009)).
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3.1. Computational rewiring towards null network models.

In order to asses the statistical significance of the values of various network metrics
comparisons are required with appropriate network null models. We are currently using
the edge swap algorithm to generate synthetic data on which are quantities of interest are
averaged and used as null models. The purpose of the edge swapping algorithm is to generate
a degree preserving randomisation of graphs, usually for purposes of acting as a null model
to test against empirical data. An edge swap selects two ordered pairs (x, y),(u, v) and swaps
the endpoints (target nodes) while keeping the sources fixed such that two new pairs will
be inserted in the graph (u, y),(x, v) and the original pairs deleted. Not all edges swaps are
accepted during a rewiring process as some swaps can produce graphs that are not simple,
i.e. contain self loops or parallel edges. If self interactions are permitted edge swapping
can transform any directed matrix to any other directed matrix (see Roberts and Coolen
(2011) and references therein). Such sampling bias is reduced in the limit of large or sparse
graphs. To construct a randomisation a number of edge swaps ≥ 4E are usually required
( Squartini and Garlaschelli (2011)). Furthermore a large number of randomisations have
to be performed for a given network, the quantities of interest calculated and the averaged
over the sample. Although this can be a computationally expensive process in practice we
were able to rewire 133 networks (one per maintenance period) 100 times (a number after
which the variance in the sample remains largely constant) each and calculate a number of
quantities in a matter of hours, so the time cost is not necessarily prohibitive. Quantitities
that are preserved in the randomised ensemble after the randomisation can then be traced
back/explained as purely a consequences of the in and out degrees distributions ( Squartini
et al. (2011a), Squartini et al. (2011b)) and thus the degree distribution assessed in terms
of its information content in the context of the real-world network.

For directed and weighted representations we can construct a randomisation using the
edge swap procedure (that now conserves the vertex in-out strength sequence but not the
in-out degree sequence) in the following way. Each weighted directed edge with weight wuv
is further inserted wuv−1 times in the network and all edges have their weights set to 1. The
resulting multigraph is then rewired as a directed unweighted graph where each edge now
indicates a single transactions and the number of edges between u and v correspond to their
number of transactions. The rewired multigraph is then collapsed to a directed weighted
graph via the reverse procedure (i.e. all m directed and unweighted edges between u and
v are collapsed into a single edge with weight m) and the quantities of interest are then
computed in this final graph. Note that as it stands this process only works for graphs with
integer weights, and the procedure does not conserve the degree of nodes. Note that this
algorithm does not preserve the in and out degree of nodes but only their strengths. This is
because in order to redistribute the integer weights evenly between pairs a number of edges
must be created. This off course would not be the case if all weights were equal in value. In
fact we use the equilibrium number of edges as a criterion to stop the rewiring algorithm.
In practice we find that 217 edge swaps are sufficient for this to happen. Finally let us also
note that in the near future we also plan to generate null network models using some other
recently proposed analytic models (Squartini et al. (2011a), Squartini et al. (2011b),Pretti
and Weigt (2006)).
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3.2. Information-theoretic description of networks.

3.2.1. Background.

Studying ecological food webs in the 1970’s Rutledge et al. (1976) proposed an analogy
between directed networks and the receiver-transmitter systems that formed the basis of
Shannon’s information theory Shannon (1948). Although other ecologists like Pahl-Wolst
(1955) and Ulanowicz (1955) examined this framework, it was only recently that Wil-
helm and J.Holunder (2007) generalised it to arbitrary networks. Shannon quantified the
information content of a transmitter-receiver system as follows. Let {li} be the string(set)
of symbols over the transmitters alphabet and {bi} the set of symbols captured by some
receiver. The information content of the transmitters signal can be quantified by its entropy

H(L) =
∑
i

p(li) log p(li) where p(li) is the probability of symbol li being transmitted. The

amount of information between the two parties is measured by the mutual information, i.e.

the joint entropy I =
∑
i

∑
j

p(li, bj) log p(li, bj).

Given the above the transmitter-receiver analogy over directed networks works as follows.
Let w̃ij =

wij∑
i

∑
j

wij
be the normalised weight, or flux, from node i to node j. The network

analogue of the probability of a symbol at the transmitter site is then p(li)→ p(w̃i) =
∑
j

w̃ij.

Equivalently for the receiver we have p(bj) → p(w̃j) =
∑
i

w̃ij. These expressions calculate

the probability of observing activity on a directed link coming out of node i and into node
j respectively. The expressions p(li|bj) = w̃ij/w̃j and p(bj|li) = w̃ij/w̃i are the conditional
probabilities of i being the source given that j is the target and j being the target given that
i is the source. Finally the joint probability of i being the source and j begin the sink is
p(li, bj)→ p(w̃i, w̃j) = w̃ij. In the specific case of the interbank lending network senders are
the providers of liquidity (lenders) and receivers are those that request liquidity (borrowers),
and the wij the number of times liquidity flows along a link. Finally note that, although of
little concern to us at present, unweighted or undirected networks arise as special cases of
whereby the weight values are uniform across all edges or all existing edges are bidirectional.
Armed with these basics we can then calculate the following:

Lender Entropy:

H(L) = −
∑
i

∑
j

w̃ij log
∑
j

w̃ij (1)

Borrower Entropy:

H(B) = −
∑
j

∑
i

w̃ij log
∑
i

w̃ij (2)

Lender Entropy given the borrower is known:
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H(L|B) =
∑
j

p(bj)H(L|bj) = −
∑
i

∑
j

w̃ij log
w̃ij∑
k w̃kj

(3)

Borrower Entropy given the lender is known:

H(B|L) =
∑
i

p(li)H(B|li) = −
∑
i

∑
j

w̃ij log
w̃ij∑
k .w̃ik

(4)

Joint Entropy:

H(L,B) = −
∑
i

∑
j

w̃ij log w̃ij (5)

Mutual Information:

I(L,B) = H(L,B)−H(L|B)−H(B|L) (6)

On an individual bank level it is also interesting to look at the following conditional entropies:

Lender entropy given that the borrower is node j:

H(L|bj) = −
∑
i

w̃ij∑
k w̃kj

log
w̃ij∑
k w̃kj

(7)

Borrower Entropy given that the lender is node i:

H(B|li) = −
∑
j

w̃ij∑
k w̃ik

log
w̃ij∑
k w̃ik

(8)

The maximum values for all of the above quantities are log(N) except for H(L,B)max =
2 log(N). The above equations give us either an individual-based( 7- 8) or systemic( 3- 6)
picture of the network trading behaviour when lending or borrowing separately.

An alternative approach to quantify the randomness of individual links in a network
has been proposed recently by Tumminello et al. (2011a). In Tumminello et al. (2011b) the
authors use their statistical method to validate the co-occurrence of trading actions in Nokia
stocks among heterogeneous investors.

3.2.2. Results: Systemic description.

Results presented below are provided for the crisis period 2006-2009. The beginning
of the crisis, normally located at 2007-08-09, and the Lehman default on 2008-09-14 are
indicated in the plots by dashed vertical lines. The three periods delimited by these dates
are denoted as in table 1 below:

We start with the lender and borrower entropies Eqs(1-2). Low values of lender entropy
indicate that loans tend to originate from a small subset of banks, while low values of bor-
rower entropy means that borrowers prefer certain lenders. On the other hand when these
entropies are high the distribution of transactions among banks approaches randomness. In
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start end
pre-crisis (p1) 2006-01-01 2007-08-08
subprime (p2) 2007-08-09 2008-09-14
Lehman (p3) 2008-09-15 2009-10-21

Table 1: The three periods in yyyy-mm-dd format.

Fig( 3) we see H(L), H(B) for the three periods p1 − p3 and normalised by their maximum
value of H(X)max = 2 log(N) for X ∈ {L,B}. The quantities for the reshuffled ensemble are
not shown here as, by the conservation of strength constraint, in the rewiring process each
bank keeps its borrowing and lending number of transactions resulting in these entropies
being the same. It is interesting to compare this plot with the time series for the number
of nodes in the system shown in the top left panel of Fig.(1) as this is the N argument in
the maximum entropy expression. More specifically from the beginning of p1 in 2006 to the
begging of p3 in 2009 both the participants in the market as well as entropy decreased indi-
cating that during this period, in a shrinking market, loans became increasingly traceable to
a subsample of banks. However, as the market continued to shrink through 2009, the ran-
domness in the lender and borrower identities increased sharply reflecting an increased trust
among the remaining lenders and borrowers. This was possibly a consequence of the implicit
guarantees provided by governments, after Lehman collapse, not to let other systemically
important players to default, and the introduction of quantitative easing measures.

We continue with the conditional entropies, Fig(4), for the whole system as calculated
by Eqs (3-4). Firstly we can see that H(L|B) > H(B|L) always. This means that lenders
trade less randomly than borrower than vice versa, which is to be expected given that
lenders are expose dot credit risk. Secondly between the start and end of period p2 both
entropies fall and remain largely constant only to recover in p3. Notably the sharp entropy
fall is not observed in the reshuffled networks suggesting that it is not a consequence of the
possibly different composition of the market, following its shrunk, but the result of a real
reorganisation of the trades. Finally observe that the conditional entropies calculated in
the randomised sample are always greater than those on the empirical networks. This is to
be expected as the rewiring diffuses highly weight links to other parts of the system whilst
conserving the strengths. For the sake of completeness we also plot the joint entropy in
Fig( 5) which shows a similar behaviour to the marginal and conditional entropies.

We can now look at another well known concept, the mutual information I(X, Y ) =
H(X)−H(X|Y ) = H(Y )−H(Y |X), Fig.(6), which is a measure of the mutual dependence
between two random variables, in our case the identity of lender and borrower partners in an
interbank transaction. When the lender and borrower identities are completely uncorrelated
the mutual information takes its minimum value of 0. This quantity shows a clear peak
followed by a declining trend at the p1 − p2 boundary (the beginning of the sub-prime
crisis), furthermore this peak is completely absent in the randomised sample, therefore
not being a consequence of the joint lending and borrowing transaction distribution. This
suggests that as banks feared a crisis approaching well defined pairs emerged as stable
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trading partnerships. On the contrary the rise of mutual entropy after the Lehman default,
showing a similar trend in the real and reshuffled network, is likely driven by the changing
joint lending and borrowing transaction distribution following the departure of several small
credit institution from the market. Finally, and in contrast to all the other quantities, the
mutual information for the randomised sample is bellow that of the real-world system as the
randomisation destroys any correlation or preference that might exist between the trading
pairs.

3.2.3. Results: Individual-based description.

We are now going to examine banks individually with the aid of equations Eq.(7) and
Eq.(8). For the bank-specific quantity H(A|bj) large values indicate that when acting as
borrower the bank distributes its transactions more or less evenly between its trading part-
ners, while small values that the borrower prefers to transact with a specific partner. When
on the lending side large values of conditional entropy H(B|ai) indicate that as a lender
i distributes its loans evenly across partners and small values indicates a concentration of
loans to a smaller subset of other banks.

There is large variance in individual bank behaviour both on the lending and borrow-
ing side. Fig.( 7) shows, for each bank, the averages, over the three maintenance periods
separately, of Eq( 8) vs Eq( 7)

In Fig( 8) we present time series of H(B|ai) for a few select banks for a time period
spanning p1 − p3. Starting with the top panel we can distinguish various different types of
behaviour. The bank represented by the red line seems to have been unaffected by the crisis
in its lending behaviour. Looking at the green line we see a bank that reached a minimum in
uncertainty at the start of p2 and recovered gradually to reach levels similar to its pre-crisis
behaviour during the final period. Notice how this bank was already decreasing its entropy
for two maintenance periods before it hit its lowest point. Finally the bank represented by
the blue line did not change its lending entropy right until the end of p2 at which point it
decreased it rapidly only to partially recover at the end. In the lower panel of the same figure
we see two other examples. With the green line we see a bank that gradually decreased the
volatility in its lending entropy but not so much the level, while in the red line we see a
bank with a rapid decrease near the p2− p3 boundary followed by a similarly rapid recovery
within two maintenance periods.

We can also examine the borrowing side of the bank-specific entropy in Fig( 9). At the
top panel we see a bank that seems to to exhibit the opposite behaviour than the system
as a whole, increasing its entropy as a borrower in the middle period. Perhaps this bank
was perceived as a safe borrower and was able to expand the number of its credits when
borrowing during the crisis. In the bottom panel of the figure we see two different banks,
one whose entropy decreases in p3 (blue) and another bank which exhibits a decrease in
entropy volatility as well as a entropy increase throughout the 3 time periods.

3.3. Discussion

In this paper we have looked at the applications of information-theoretic quantities to
a systemic and individual-based description of the eMid interbank lending market for a
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time span encompassing the 2007 − 2008 credit crisis. Different quantities show different
behaviour during the crisis and point to different features of market reorganisation. On
an individual bank level it is clear that our quantities highlight different bank behavioural
trading profiles and strategies. It would be interesting to correlate these with the rates
banks where able to obtain credit in the market. It would benefit our analysis to examine
the information-theoretic concepts on smaller timescales, on both the individual and system
levels to probe whether these quantities can be used as useful crisis early warning indicators.
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5. Figures
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Figure 1: Number of nodes(top left), number of edges(top right), average degree (bottom left) and edge
density(bottom right ) for the set of networks defined on non-overlapping intervals of δt = 1 maintenance
period.
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Figure 2: Visualization of the trading network composed over a monthly period just before the collapse of
Lehman brothers. Foreign banks (brown) can be seen to trade largely within themselves.
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Figure 3: Entropies for lender and borrower normalised by H(X)max = log(N).
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Figure 4: Conditional entropies. Left panel: entropy of borrower given lender on empirical networks and
randomised sample(squares) both normalised by their maximum possible values. Right panel: same as left
for entropy of lender given borrower.
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Figure 5: Joint entropy.
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Figure 6: Mutual information, squares(empirical), triangles (randomized sample). Information about sender
if receiver is known and vice versa. I(A,B) = H(A)−H(A|B) = H(B)−H(B|A)
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