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Abstract

We study Ihara’s zeta function for graphs in the context of quivers arising from gauge

theories, especially under Seiberg duality transformations. The distribution of poles is

studied as we proceed along the duality tree, in light of the weak and strong graph versions

of the Riemann Hypothesis. As a by-product, we find a refined version of Ihara’s zeta

function to be the generating function for the generic superpotential of the gauge theory.
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1 Introduction

Quiver gauge theories have over the last two decades become fruitful in the cross-fertilization

between physics and mathematics. As quantum field theories, especially those with supersym-

metry, they are archetypal of those arising from string theory and phenomenology; as finite

graphs, they crystallize the underlying geometry and algebra, especially those with Calabi-

Yau properties. More recently, the dialogue has extended to number theory, in particular to

algebraic numbers and dessins d’enfants as well as to finite fields.

In [18], computations of the zeta-function for finite graphs [1] was initiated for quiver

gauge theories bearing in mind the ultimate hope of finding the relation between properties

such as whether the graph satisfies the analogue of the Riemann Hypothesis and the algebraic

geometry of the Calabi-Yau moduli space of vacua. Perhaps the most remarkable action on

quivers is mutation, where in the physics literature this is a guise of Seiberg duality [19] and in

the mathematics literature this is realized as cluster transformation [29]. It is a beautiful fact

that these were discovered independently, one as a duality between quantum field theories

and another as an isomorphism of quiver representations (and Calabi-Yau geometry). Thus it

is natural to investigate the properties of the zeta function under such a key transformation.

There is therefore a trio of conversations: the physics of the quiver gauge theory, the

geometry of the moduli space of representation (equivalently the vacuum moduli space of

the field theory), as well as the number theory of the zero/pole structure of the graph zeta-

function of Ihara. It is this trio that we wish to analyse.

We begin, in §2, with a recapitulation of the graph zeta function, for directed and undi-

rected cases – though most of our quivers are directed – emphasizing on concepts such as

regularity and Ramanujan. In parallel, in §3, we briefly summarize the rudiments of the

quivers and associated Seiberg dualities in the gauge theory. After examining in detail case

studies of two of the most famous quiver gauge theories, namely those arising from the world
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volume physics of D-branes in the back-ground of affine Calabi-Yau threefolds as cones over

CP2 and CP1 × CP1, in §4 and §5, we delve into a wealth of examples in §6, in order to

see how Seiberg duality influences the Riemann and Ramanujan properties of the Ihara zeta

function and conversely how the latter can be harnessed as a tool to explore the duality tree

of field theories.

In §6.1, we apply a specific graph Riemann Hypothesis for our directed quivers and

summarize the results in Table 3. In due course, we find an interesting fact of how the

zeta-function serves as a generating function for candidate terms in the superpotential by

“refining” it with a multi-variable version in §7. Finally, we conclude with discussion and

prospects in §8.

2 The Ihara Zeta Function

First, let us recall the definitions of Ihara’s graph zeta function, first defined by Ihara [1],

studied extensively in [2,3,5–8], and introduced to the study of quiver gauge theories in [18].

A few graph-theoretic concepts [5], most of which are self-explanatory, are needed before we

give the full definition for the Ihara zeta function, which we include here for completeness

and to set our nomenclature.

• An undirected graph G = (V,E) is a finite non-empty set of vertices V and a finite

multiset E of undirected edges or unordered pairs of vertices. A graph is simple if there

is no loops, i.e., no edges of the form (u, u) ∀u ∈ V and there is only a single edge

between any two vertices.

• A directed graph G = (V,E) is a finite non-empty set of vertices V and a finite

multiset E of arrows or ordered pairs of vertices. For an arrow e = (u, v), u is defined

to be its origin o(e) and v to be its terminus t(r) (sometimes these are also called head

and tail, respectively. However, we will reserve the word tail for a usage to be introduce

shortly). Its inverse arrow ē is defined to be (v, u) by reversing its origin and terminus.

In general, directed graphs do not need to have both arrows and its inverse arrows both

present in E. We make this distinction between undirected and directed graphs because

the form of the zeta-function, as we shall see, is sensitively dependent thereupon. In

the context of the gauge theories which we will soon study, we will primarily, for the

sake of chirality, study directed graphs.

• A cycle c of length n in graph G is a sequence c = (e1, e2, . . . , en) of n arrows in G

such that t(ei) = o(ei+1) for 1 ≤ i ≤ n − 1 and t(en) = t(e1). Cycle c is said to have
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backtrack if ēi+1 = ei for 1 ≤ i ≤ n− 1. In addition, c is said to have tail if ēn = e1.

• The in-degree (respectively out-degree) of any vertex of a graph is simply the number of

in-coming (respectively out-going) arrows, on the other hand, the undirected degree of a

vertex is simply the number of length-1 walks starting from this vertex using undirected

edges only.

• The n-multiple of a cycle c is the cycle formed by traversing c n times. A cycle is

called primitive if it is not some n-multiple of some other cycle for n ≥ 2. For a cycle

c = (e1, e2, . . . , en), the equivalence class [c] is defined to be the cyclic permutations

[c] = {(e1, e2, . . . , en), (e2, e3, . . . , en, e1), . . . , (en, e1, . . . , en−1)},

which simply means cycles are equivalent up to choices of initial and terminal vertices.

Therefore a prime in a graph is primitive cycle that is non-backtracking, tailless and

not a n-multiple cycle.

• We are primarily concerned with graphs which are finite, i.e., finite number of nodes

and edges) and connected, i.e. every node can be reached by traversing along some

combinations of paths.

• The adjacency matrix for a graph with n nodes is an n × n matrix and has its

(i, j)-th entry specifying the number of undirected edges from node i to j with i-

th diagonal entry being twice the number of self-adjoining loops on i-th node. We

emphasize that the adjacency matrix we use here has this convention for the diagonal;

this has deep implications in tune with Cartan matrices, Frobenius eigenvalues and

ADE classifications of Dynkin diagrams [14, 15]. Moreover, any undirected edges in

a graph G can be replaced with a bi-directional arrow, thereby assigning standard

directions onto G.

Now, we are readily for the central definition of our paper. The Ihara zeta function, also

called graph zeta function, was initially defined [1] for graphs G that are finite, undirected,

connected and tailless. Nevertheless, the graph is allowed to have multiple edges between

nodes as well as loops (length 1 cycle). With these conditions, the Ihara zeta function is

defined as:

ζG(z) :=
∏

[P ]∈Prime Cycles

(
1− zl([P ])

)−1
, (1)

where the infinite product is over all prime equivalence classes and l([P ]) is the length of

the prime cycle. This definition is clearly motivated and parallels well that of the famous

Riemann zeta-function, whose Euler-product is ζ(z) =
∏

p∈Primes

(1− p−z)−1 =
∑
n≥1

n−z.
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Indeed, as with all zeta-functions, the interplay between the expression as a product and

as a sum is that between primality and integrality. This is also the case with the graph zeta

function. It is shown in [8] that the Ihara zeta function takes the following closed form for

any partially directed graphs, in which both arrows and edges are allowed [2, 3]:

ζG(z) =
(1− z2)−Tr(Q−I)/2

Det(I −Az +Qz2 + Pz3)
, (2)

where the following clarifications on notation are understood:

• This is the general equation for partially directed graphs, but we only have fully directed

graphs for particular gauge theories.

• A stands for the full adjacency matrix with its entry aij specifying length 1 walk from

i-th node to j-th node using either an edge or an arrow.

• P is the directed adjacency matrix whose entries are composed entirely of arrows.

• Q is the matrix for undirected degrees. The i-th undirected degree is the number of

length 1 walks from i-th node to its neighbours using undirected edges only. Specifically,

it turns out that the exponent in the numerator stands for the number of vertices minus

the number of edges, or simply 1− r with r being the rank of fundamental group of the

graph. For nodes with self-adjoining loops, the undirected degree is counted as 2.

Lastly, the relation between Euler-product and determinant expression of of Ihara zeta func-

tion is discussed in more detail in Appendix A.

2.1 Poles, Regularity and Ramanujan

Some of the initial motivations for defining the zeta function of graphs are, of course, number

theoretical, and in particular in issues such as finding analogues of the Riemann Hypothesis

(cf. [16] for a recent equivalent restatement of the Riemann Hypothesis in string theory).

Here, let us highlight some salient features of Ihara’s zeta function.

Now, a graph is called a (q+1)-regular graph if all of its nodes are connected to other q+1

nodes through length one walks. In addition, a directed regular graph must satisfy a stronger

condition that all the nodes must have their in-degrees and out-degrees equal (see page 29

of [17]). A (q+1)−regular graph is called Ramanujan if the maximum of the absolute value

of eigenvalues of the adjacency matrix A, excluding q+ 1 itself, is bounded by 2
√
q. In short,

max{|λ| : λ ∈ Spec(A), |λ| 6= q + 1} ≤ 2
√
q . (3)
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While the original motivation to study Ramanujan graphs was because they have maximal

gaps in their spectrum, it turns out, as we now see, that they play a key role in a graph version

of the Riemann Hypothesis. The Ihara zeta function of a (q+ 1)−regular undirected graph is

said to satisfy Riemann Hypothesis if, in complete analogy with the number-theoretic case,

for 0 < Re(s) < 1, the zeros of ζG(q−s)−1 lie on the Re(s) = 1
2 line. Here, as is customary

with definitions of zeta-functions, we define the exponentiated variable

z := q−s . (4)

Note, however, the parameter q is natural for regular graphs whereas for irregular ones more

work is needed to extract a similar quantity. In addition to the above definition for Riemann

Hypothesis for undirected regular graphs, it also can be shown [5] that a (q + 1)-regular

undirected graph satisfies Riemann Hypothesis if and only if it is Ramanujan.

Apart from the aforementioned property, Ramanujan graphs have diverse connections

with various fields, such as expander graphs in Communication Network Theory that revolves

around extremal problems, Number Theory, Representation Theory and Algebraic Geometry.

For more comprehensive surveys, we refer the readers to [5,9,10,12,13]. A more recent survey

concentrating on connection between Graph Theory and automorphic representation can be

found in [11].

In more generality, we also have a definition of the Graph Theory Riemann Hypothesis

for irregular undirected graphs as follows:

1. ζG(z) is pole free for

RG < |z| <
√
RG, (5)

where RG is the radius of convergence of ζG(z), i.e., the position of nearest pole to

origin.

2. There is a weaker version of the above, requiring ζG(z) to be pole free in

RG < |z| <
1
√
q
, (6)

where q is the largest degree of vertices.

These two definitions are motivated by the fact that if z is substituted by RsG, all poles

of ζG(z) are then located within the “critical strip”, 0 < Re(s) < 1, with poles at s = 0 (i.e.,

z = 1) and s = 1 (i.e., z = RG). Importantly, as is central to the study of any zeta function,

there is an underlying functional equation. It can be shown [5] that the functional equation
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for Ihara’s zeta function for undirected graphs can take the form

ΛG(z) := (1− z2)r−1+
n
2 (1− q2z2)

n
2 ζG(z) = (−1)nΛG(

1

qz
), (7)

where r is the rank of fundamental group with n being the number of vertices. With substi-

tution z = q−s, it is obvious that the above equation is symmetric with respect to s = 1
2 .

Since irregular graphs do not have a functional equation relating f(s) and f(1− s), it is

natural to define a pole free region for 1
2 < Re(s) < 1, therefore motivating (5). The weak

version in this sense simply shrinks the size of the pole free region.

It should be noted that the formulation of Riemann Hypothesis in terms of Ihara zeta

function is based on the fact that the adjacency matrix of an undirected regular graph is

symmetric and we can find a functional equation f(s) which is symmetric with respect to

s = 1
2 . However, for the case we will consider shortly, especially in the context of Seiberg

duality in N = 1 supersymmetric gauge theories, we will be primarily concerned only with

directed graphs. Since the adjacency matrix in these theories are rarely symmetric and the

form of Ihara zeta function is very different from the undirected case, it is not possible to

construct a functional equation similar to that of (7), thus we can not construct a direct

analogue of Riemann Hypothesis for directed graphs.

3 Four-Dimensional Quiver Gauge Theories

Having recapitulated the relevant ingredients from the study of graphs and Ihara’s zeta

function, we now turn to our protagonist, the finite (generically directed) graphs which are

realized as quivers associated to four-dimensional, N = 1 supersymmetric gauge theories.

Briefly, quivers are finite, labelled, directed graphs. In addition to these properties, they are

also allowed to have loops, bi-directional arrows and self-adjoining loops. On the vertices we

have gauge groups and the corresponding gauge theory has product gauge group in the from

of
∏
U(Ni) with i-th vertex contributing a single gauge group factor. In the infra-red, the

U(1) subgroups of each of the U(Ni) factor become frozen and we have an effective gauge

group of products of special unitary groups. However, from the quiver representation point

of view, it is important to retain the U(Ni) as labels of the nodes. The matter content of

the theories are represented as bi-fundamentals between gauge groups, so each arrow from

i-th vertex to j-th vertex transforms as (Ni, N j) representation of the factor gauge group

SU(Ni) × SU(Nj). Gauge theories with only undirected edges in their quivers are non-

chiral and i-th vertex should be associated to a vector space CNi with arrows being maps in

Hom(CNi ,CNj ).
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Furthermore, the matter content of the theories must be anomaly free. This condition

ensures that the corresponding quantum field theory is well-defined. When translated into

quivers, this constraint has the following form:

(aij − aji)ni = 0, (8)

where aij is the full adjacency matrix of the quiver with ni being the vertex rank vector

encoding the list of integers Ni. This condition will become important when we discuss the

zeta function of our quivers, and certain Diophantine equations dictating their possible rank

assignments.

3.1 Seiberg Duality and Cluster Mutations

Modern studies of N = 1 supersymmetric gauge theory lead to Seiberg’s discovery of IR

duality between two QCD-like theories [19], where the duals have same Nf fundamental

chiral flavors of quarks, but different gauge groups SU(Nc) and SU(Nf −Nc). The duality

predicts that the two theories have the same supersymmetric moduli space and ’t Hooft

anomaly matching condition. In extending the duality to other N = 1 theories [20–22], the

most suggestive method is via the Hannany-Witten suspended brane construction [23]. In

such constructions, we obtain a D-dimensional gauge theory by extending a set of Dirichlet

branes in D dimensions, i.e. the embedding in the transverse 10−D dimensions determines

the spectrum and other properties of the theory. Therein, the D-branes are strings probing the

transverse space, with one or both ends on the NS5-branes. If we take Nc finite length strings

between 5-branes, a U(Nc) pure world-volume gauge theory is produced. By introducing Nf

strings with semi-infinite length, Nf quarks are produced.

In this stringy context, Seiberg duality is obtained through moving one 5-brane to ex-

change its position with others, while reversing the orientation of the finite strings. Within

the context of Nf ≥ Nc, the movement and reconnection of strings produce a dual theory with

Nf semi-infinite and Nf −Nc strings [24]. Moreover, since the inverse coupling is identified

with the length of the string, the duality arises if we vary the gauge coupling through infinity

via variation of a moduli field. Since the embedding of gauge theories into string theory is

not unique, the field-theoretic duality is interpreted as different brane configurations that

give dual low-energy physics.

Before we discuss Seiberg duals for specific theories, it is worthwhile to look at the rules

for Seiberg transformation on gauge theories. We summarize that the prototype [19] is a pair,

within the conformal window 3
2Nc ≤ Nf ≤ 3Nc, (1) direct electric theory with Nc colours
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with Nf flavours and (2) dual magnetic theory with Nf −Nc colours also with Nf flavours:

SU(Nc) SU(Nf )L SU(Nf )R

Q 1

Q′ 1

SU(Nf −Nc) SU(Nf )L SU(Nf )R

q 1

q′ 1

M 1

W = 0 W = Mqq′

(9)

In the above, the quarks Q and Q′ are transformed to the dual quarks q and q′ and a Seiberg

dual meson M together with superpotential Mqq′ is generated. It was recognized in [25–28]

that, when applied to one node of any N = 1 quiver, Seiberg duality is the following graphical

rule:

Seiberg

f Nf

Nc

Q Q’

Nf Nf

NcNf −

q q’

M W = M q q’

N

A truly remarkable fact is that around about the same time, mathematicians have indepen-

dently noticed the importance of this graphical rule in the study of cluster variables [29] and

the above was called cluster mutation (though at the time, the role of the superpotential was

not yet appreciated in the mathematics). That Seiberg duality as an equivalence of quan-

tum theory should be the same as cluster mutation generating an equivalence in the derived

category of coherent sheafs on Calabi-Yau manifolds is a deep result in mathematical physics.

From an algorithmic point of view, one can think of the duality/mutation as the following

transformation, for a quiver gauge theory with adjacency matrix aij and n vertices or gauge

group factors, on aij and rank vector ni. Indeed, there are n choices to perform Seiberg

transformation at any stage and the arrows and ranks will be changed while n will always

remain fixed. Suppose, we dualized on node i0, then the transformation is:

1. Define Iin to be the nodes having arrows coming into i0, Iout to be those having arrows

coming from i0 and Ino to be those unconnected to i0.

2. Change the rank of node i0 from Nc to Nf − Nc, where Nf =
∑

i∈Iin ai,i0Ni =∑
i∈Iout ai0,iNi. This changes the rank of the gauge group of the dualized node.

3. adualij = aji if either i, j = i0. In field theory context, this translates to the statement

that the quarks of SU(Nf −Nc) gauge group are in complex conjugate representation

to the quarks of original SU(Nc) group.

4. adualαβ = aαβ − ai0αaβi0 for α ∈ Iout and β ∈ Iin. This is equivalent to adding Seiberg

meson into the dual theory. Any bi-directional arrow corresponds to a quadratic mass

term and can be integrated out.
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4 Illustrative Example: Cone over P2

Having presented the necessary mathematics in terms of graph zeta functions and associated

statements pertaining to their Riemann Hypotheses, as well as the physics in terms of four-

dimensional N = 1 quiver gauge theories and their Seiberg duality, it is illustrative to start

with an archetypical example to see the interplay of the two sides.

4.1 dP0: Cone over P2

Perhaps the most well-studied quiver is the one presented in Figure 1. If we write the 3

multi-arrows as Xi, Yi, Zi, it has an accompanying superpotential W = εijkX
iY jZk. This

quiver gauge theory comes from taking the quotient of N = 4 super-Yang-Mills theory by a

Z3-subgroup of SU(3) to preserve N = 1 supersymmetry. Geometrically, since the moduli

space of the parent N = 4 SYM is simply the affine Calabi-Yau 3-fold C3, the moduli space

here is C3/Z3 as a complex cone over P2 (and whose resolution can be seen as the total space

of the anti-canonical bundle OP2 over P2). Thus, historically, the theory is called the P2 or

dP0 theory.

N1
c

N2
c N3

c

3

3

3

Figure 1: Quiver for P2, vertices have SU(Nc) factor gauge groups and the number of arrows

between each pair of vertices is 3.

4.2 Adjacency Spectra and Poles

Since this quiver is fully directed, its Ihara zeta function has a particular simple form [3,18]:

ζG(z) =
1

Det(I −Az)
, (10)
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where A is the adjacency matrix for digraph G. We see therefore that the reciprocal of

zeta function for directed graphs is none other than the characteristic polynomial of the

adjacency matrix A,

χA(λ) = Det(λI −A) ∼ Det(I −Aλ−1) =
1

ζG(λ−1)
. (11)

Therefore the behaviour of poles (those z that make ζG(z) singular) in Ihara zeta function is

inversely proportional to the distribution of eigenvalues (those λ that make χA(λ) vanish) of

adjacency matrix for each Seiberg dual quiver.

Let us call the quiver in Figure 1 Q0 and hence the adjacency matrix and the Ihara zeta

function are

A0 =

 0 3 0

0 0 3

3 0 0

 , ζQ0(z) =
1

1− 27z3
. (12)

The above will be our “basic case” from which we will perform repeated Seiberg duals on

different nodes. Using rules from Section 3.1 to dualize on node N1
c , we have following results

as presented in Figure 2.

N1
c

N2
c N3

c

3

3

3

Dualize on

node N1
c

N1
f −N1

c

N2
c N3

c

3

6

3

Figure 2: Quivers for P2 and its Seiberg dual on node N1
c .

The reciprocals of their zeta functions are readily seen to be 1 − 27z3 and 1 − 54z3

respectively. Hence the poles lie on the lines of third roots of unity with |z| = 1/ 3
√
|c3| where

c3 is the coefficient of z3 term in the reciprocal. Let us perform duality to a few levels, picking

any of the three nodes each time. This has been well-known [32,33,35] to exhibit a dendritic

behaviour and can be drawn as a duality tree where each node in the branching corresponds

to a new quiver (i.e., this is a tree in the space of theories). For reference, the tree for dP0

is included in part (a) of Figure 3, where the same colours correspond to the same quiver,

reflecting the 3-fold symmetric in the problem.
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(a) (b)

-�/� �/�

��[�]

- 1

2 3

1

2 3

��[�]

Figure 3: P2 duality tree and the position of the poles on the complex plane for the Ihara zeta

function for all the dual quivers, up to 5 levels. NB: Colors of leaves in part (a) and the colors of

dots in part (b) are not related. As we delve deeper into the duality tree, the lengths of poles, on

a whole, get shorter, as the poles accumulate toward the origin. This can be seen from Table 1.

Now, let us compute the poles of the zeta function, for the various dual phases. Numeri-

cally, we see that their length (i.e., distance to the origin on the complex plane) are as shown

in Table 1. In fact, all the Seiberg duals have their zeta function poles sitting on the lines

Level in duality tree All possible pole lengths

1 1/3

2 0.26

3 0.15

4 0.083, 0.050

5 0.044, 0.016, 0.014, 0.0084

6 0.023, 0.0048, 0.0040, 0.0024, 0.0014, 0.0012, 0.00080, 0.00043

Table 1: Lengths of poles in first 6 levels. By length we simply mean the distance of the pole to

the origin in the complex plane.

of cube roots of unity for P2 quiver (see Figure 3) and this can be derived analytically as

follows.

If we denote (u, v, w) as the number of bi-fundamental arrows between the 3 nodes, a tree

of branching integer triplets can be obtained by successive dualization. These triplets in turn

describe all possible solutions of the P2 quiver under Seiberg duality. Furthermore, for all

dual solutions to be anomaly free, the Diophantine equation [30–35]:

u2 + v2 + w2 = uvw (13)
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has to be satisfied. This is the famous Markov equation and it is well-known that all its

solutions can be generated from the basic solution (3, 3, 3) by performing ad infinitum the

following three transformations [37] (the proofs are gathered in Appendix B for the readers’

reference),

(u, v, w) → (u, v, uv − w) ,

(u, v, w) → (u, uw − v, w) ,

(u, v, w) → (vw − u, v, w) . (14)

One can see that the above transformations are similar to Seiberg transformations per-

formed on quiver arrows (see rule 3 and 4 at the end of Section 3.1). To be specific, the

Seiberg transformation rule on arrow numbers are,

(u, v, w) → (−u,−v, w − uv) ,

(u, v, w) → (−u, v − uw,−w) ,

(u, v, w) → (u− vw,−v,−w) , (15)

which differ from (14) only by a common factor −1. This common factor can be interpreted

as a reversal in the arrow directions. So we can say, a Seiberg transformation generates a

new quiver whose arrow number combination is another solution to Markov equation which

means this new quiver theory is automatically anomaly free. Since (14) generates all possible

solutions, we can conclude that Seiberg transformation generates all possible anomaly free

dual quiver theories.

On the other hand, since Seiberg transformation reverses arrows, if we choose the basic

quiver to be Q0 whose cycles are all anti-clockwise as shown in Figure 1, then all its descen-

dants have their cycles being either clockwise or anti-clockwise. Due to this fact all adjacency

matrix A will have one of the following two forms, 0 u 0

0 0 v

w 0 0

 ,

 0 0 u

v 0 0

0 w 0.

 (16)

In either case we have the same Ihara Zeta function ζ(z),

ζ−1(z) = det(I −Az) = 1− (uvw)z3. (17)

Thus the poles of P2 Zeta function are

1
3
√
uvw

,
1

3
√
uvw

e±i
2π
3 . (18)
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This explicitly demonstrates that all poles after Seiberg transformation lie on lines of third

roots of unity (see Figure 3). Moreover, since we have all the information on poles for all

Seiberg transformed quivers in this particular case, according to equation (11), we can see

that all adjacency spectrum of each transformed quiver should also lie on the same lines as

the poles.

It is interesting to remark that since the original P2 quiver already has arrows between

every pairs of nodes, Seiberg transformation does not connect any previously unconnected

nodes to generate any new loops of length other than 3. As a consequence of this, the

reciprocal of Ihara Zeta functions of all duals only have cubic terms in the complex variable.

Indeed this property of Ihara Zeta function is rather general and how it gathers information

in terms of simple cycles in a graph will be discussed in detail in Section 7.

4.3 Ramanujan Condition for P2 and its Seiberg Duals

Due to the fact that Ihara zeta function only has the analogue of Riemann Hypothesis for

undirected graphs, i.e. for (q + 1)-regular undirected graph G, ζG(z) satisfies the Riemann

Hypothesis if and only ifG is Ramanujan, and quivers under consideration being fully directed

graph, it is only possible to check if the graph is Ramanujan. It should be noted that

Ramanujan condition for directed graph has an extra constraint. In addition to the definition

in section 2, the adjacency matrix of directed graphs should be diagonalizable by unitary

matrices. See [36] for more details in the definition.

First of all, a quiver being Ramanujan requires this quiver to be a regular graph (that

is, all vertices have the same in-degree and out-degree d). Since only the singular solutions

to (13) can have same numbers and only the basic solution has its three numbers the same,

obviously only the basic quiver is a regular graph. Thus none of the other quivers can be

Ramanujan. We then check whether this basic quiver, denoted earlier as Q0, is so. We see

that here all the eigenvalues λ have |λ| = 3, which means Q0 cannot be Ramanujan and thus

violates the graph Riemann hypothesis.

5 Example: Cone over the Zeroth Hirzebruch Surface

Another well-studied example in both the physics and mathematics literature (independently)

is the quiver which corresponds to the cone F0 over the zeroth Hirzebruch surface, F0 :=

P1 × P1, which is a toric variety. The archtypal F0 quiver (we shall call it the basic quiver)
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can be visualized in Figure 4.

1

2 3

4

2

2

2

2

Figure 4: Basic quiver for P1 × P1, vertices are labeled with 1, 2, 3, 4.

A series of quivers – we shall call them general F0 quivers – are generated by Seiberg

dualizing on different vertices for a number of times and they are pictured in Figure 5;

indeed, this is the most general form of a 4-node quiver. We use the convention that a

positive integer denotes a multiple of arrows while a negative means the same, but in the

reverse direction. Perhaps the most famous dual quiver to the (a, b, c, d, e, f) = (2, 2, 2, 0, 0, 2)

basic case is (a, b, c, d, e, f) = (2,−2,−2, 4, 0, 2) on dualizing on node 1, because both these

quivers afford rank vectors which are all 1, i.e., they are both toric.

1

2 3

4

e

d

c

a

f

b

Figure 5: General quiver emerging from dualizing the basic quiver.

The antisymmetric adjacent matrix q can be read off from this general quiver as

q =


0 c −e −b
−c 0 a −d
e −a 0 f

b d −f 0

 . (19)

On the one hand, to guarantee that the kernel of q is not null so that one could have a
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sensible rank-vector according to anomaly cancellation in (8) we should impose the following

condition (cf. [35])

det q = (ab+ de− cf)2 = 0. (20)

On the other hand, as a consequence of gauge anomaly cancellation, a Diophantine equation

is found [34],

a2 + b2 + c2 + d2 + e2 + f2 + bcd+ bef = ace+ adf + abcf. (21)

Physically one would expect every Seiberg dual theory of the basic quiver is an anomaly free

theory, i.e., each edge number combination in these dual quivers forms a solution to the above

two equations (20) and (21).

Yet, we seem to find that the converse proposition also holds. That is, all positive even

solutions to these two equations can be generated by Seiberg duality starting from the basic

quiver. By “positive even solution” we mean all variables in this solution take positive

and even integer values. Indeed this a very complex set of multi-variable and non-linear

Diophantine equations and we need to use (20) to get rid of one of the variables. Firstly, it

is easy to see that no solution can have c = 0. Suppose we have a solution with c = 0, then

a or b and d or e would have to be 0, the only possible non-trivial combination has to satisfy

b = c = e = 0, a2 + d2 + f2 = adf , (22)

which reduces to the P2 quivers discussed above and is not the case we want to discuss here.

With this restriction, we have f = (ab + de)/c from (20) and equation (21) then reduces to

a 5-variable Diophantine equation,

0 = a2b2 + a2c2 + b2c2 + c2d2 + c2e2 + d2e2 + c4 − a2b2c2 + bc3d

−ac3e+ ab2ce− a2bcd+ 2abde− acd2e+ bcde2 − abc2de. (23)

Instead of solving this equation analytically which is beyond our reach we seek to find as

many solutions as possible with computer power and use these solutions to test our conjecture.

The basic algorithm is as follows.

1 Generate all combinations of (a, b, c, d, e) with any of the variables being a positive even

integer within the range [0, N ];

2 Test each combination and select those that solve equation (23).

The result is, we have found all solutions with N = 800 and all of them can be found in

the theories of general quivers. This is the analogue of the statement that Seiberg duality
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generates all solutions to the Markov equation and it would be nice to have an analytic proof

of this fact. For more detailed reference of our argument, we have put all results and the

source code at GitHub1.

5.1 Ramanujan Condition for F0 and its Seiberg Duals

As with the dP0 case, we can check explicitly if all the dual quivers generated from the basic

P1×P1 quiver are Ramanujan. First, let us check the basic case. The adjacency matrix there

is

Q0 =


0 2 0 0

0 0 2 0

0 0 0 2

2 0 0 0

 , (24)

and the poles are computed explicitly to be ±1
2 and 1

2 e
±iπ

2 , and the modulus of all eigenvalues

are thus seen to be |λ| = 2. Therefore the basic case is again not Ramanujan.

For the Seiberg duals generated from P1×P1, it is also checked in 23 that the only regular

graphs are those with the same Ihara zeta function, (1 − 16z4)−1. This is equivalent to say

that the only regular graphs in P1 × P1 and its duals are P1 × P1 itself and the one that has

all its arrow in opposite direction compared to P1 × P1.

6 Zeta Poles and Gauge Theories: A Plethora of Examples

With our experience now in the dP0 and F0 examples, we can proceed to study the plethora

of quiver gauge theories known to the literature. We will present pole plots generated from

Seiberg duals of F0, dP1, dP2 and dP3 quivers. Since an analytical result for poles of dP0

and its duals was obtained in section 4.2, it is omitted here. These Hirzebruch and del

Pezzo theories [25] have since become canonical examples of studying (toric) quiver gauge

theories and for the reader’s convenience we tabulate the relevant (basic toric) quivers and

their associated Ihara zeta functions here (cf. [18]) in Table 2.

1https://github.com/dayzhou/Seiberg-Diophantine.
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Gauge Theory Toric Phases Ihara Zeta Function

P2

A

B C

3

3

3
ζ−1(z) = 1− 27z3

P1 × P1

A B

CD

2

2

2

2 ζ−1(z) = 1− 16z4

A B

CD

2

2

2

2 4
ζ−1(z) = 1− 32z3

dP1

A B

DC

1

1

1

2

3

2 ζ−1(z) = 1− 12z3 − 12z4

dP2

A

B

CD

E 31
2

2

11

2

1

1

ζ−1(z) = 1− 16z3 − 12z4

A

B

CD

E

1
2

11

1

1

1

2

1

ζ−1(z) = 1− 5z3 − 12z4 − 4z5

Continued on next page →
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Gauge Theory Toric Phases Ihara Zeta Function

dP3

F

A C

B

DE

1

111

2

1

11

1

1

1

1

1

ζ−1(z) = 1− 8z3 − 12z4 − 4z5

F

A C

B

DE

1

11

11

1

1

1

1

1

1

1

ζ−1(z) = 1− 2z3 − 9z4 − 6z5

F

A C

B

DE

2

2 1
1

1

1

2

1

1

1

1

ζ−1(z) = 1− 8z3 − 16z4

F

A C

B

DE

2

2 3
1

1

1

2

3

1

1

1

ζ−1(z) = 1− 36z3

Table 2: Ihara zeta functions for various toric phases of del Pezzo and Hirzebruch quivers.

While in the above table we have distinguished the toric phases because they are most

popular, there is no reason to restrict to them here. Indeed, we compute all the zeta functions

along the duality tree for all the above geometries and study the pole structure thereof at
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(a) Pole plot for P1 × P1 quiver and its duals.
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(b) Pole plot for dP1 quiver and its duals.
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(c) Pole plot for dP2 quiver and its duals.
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(d) Pole plot for dP3 quiver and its duals.

Figure 6: Ihara zeta function pole plots for F0, dP1, dP2 and dP3 quivers and their Seiberg duals.

once. These are presented in Figure 6. The figure is generated by dualizing on every vertex

of the original quivers and then repeating the process for every dual quivers generated from

the previous stage, following along the complicated duality trees (See [33]). Furthermore,

due to the fact that the coefficients of the inverse Ihara zeta functions of dual quivers get

very large very quickly (e.g. for P2, Don Zagier conjectured that the nth Markov number is

asymptotically given by mn = 1
3e
C
√
n+O(1) with C = 2.3523 . . .) we only look at dual quivers

with arrow number smaller than 80.

The plots of F0 and dP1 are very similar and it can be explained due using results from

section 7. Since the coefficients of the zn term in the inverse of Ihara zeta function expansion

counts (we will return to discuss this point in detail in the following section) the number of

length n simple cycle if there does not exist smaller disjoint simple cycles with length n1 and
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n2 such that n = n1+n2. Hence in the F0 and dP1 dual quivers, the highest order term in the

inverse of zeta function is z4 as there are only 4 vertices in total and it not possible to form

length-5 simple cycle or higher length simple cycle using disjoint lower length simple cycles.

Therefore the inverse of their Ihara zeta functions should all have the form 1 + az3 + bz4,

where a, b ∈ Z. The solutions to these equations therefore reflects the shape of pole plots of

F0 and dP1. Similarly, dP2 can not have term of order higher than 5 in their expansions and

dP3 can not have term of order higher than 6 as well.

Since all of these toric phases can be obtained from Seiberg transformation, their poles

are also plotted in figure 6. It is also interesting to note that the second Phase of dP3 is

the only regular graph in all of Seiberg duals of dP3. However, its adjacency matrix is not

diagonalizable by a unitary matrix, and it is therefore not Ramanujan.

6.1 A Numerical Experiment on Graph Riemann Hypothesis

As we saw in the introductory sections that the Ramanujan property is intimately linked to

the graph Riemann Hypothesis. In this subsection, we shall explore certain possibilities in

applying both strong and weak Graph Riemann Hypothesis (RH) to our toric phases of del

Pezzo quivers. Even though there is no immediate definition of RH pertaining to directed

graphs due to our lack of an functional equation with reflection symmetry about s = 1
2 , it is

still interesting to see how certain setups of RH for undirected graphs select special theories

from Seiberg duals of del Pezzo quivers. In this perspective, we have the following setup:

1. The degree q + 1 is defined to be the maximum degree among all in-degrees and out-

degrees of all vertices. This definition is in analogous spirit to that of Eq. (6), where

the definition of weak RH is given for undirected irregular graph.

2. Dual quivers are selected if they satisfy either strong or weak RH.

3. We then look at distinct prime factors for each term in ζ−1 for each dual quivers

satisfying either two versions of RH. Especially if they form any interesting prime

sequences.

4. Finally we look at how RH selects dual quivers in the duality tree.

First let us consider P2 case, since it was shown in section 4 that all of its Seiberg duals

have poles lying on lines of cubic root of unity or having same modulus, we immediately see

that both versions of RH are trivially satisfied.
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Base Quiver Level ζ−1 RH Duals Prime Sequence

P1 × P1 5

1− 16z4, 1− 32z3,

1− 96z3, 1− 1056z3,

1− 480z3, 1− 14432z3,

1− 2720z3, 1− 28320z3,

1− 68640z3, 1− 200736z3

z3: 2,3,5,11,13,17,41,59

dP1 5 None N/A

dP2

Toric Phase 1 5

1− 35z3 − 80z4 − 25z5,

1− 528z3 − 3082z4 − 2480z5,

1− 366z3 − 1594z4 − 700z5,

1− 984z3 − 8536z4 − 12040z5

z3: 2,3,5,7,11,41,61

z4: 2,5,11,23,67,97,797

z5: 2,5,7,31,43

dP2

Toric Phase 2 5

1− 35z3 − 80z4 − 25z5,

1− 366z3 − 1594z4 − 700z5,

1− 528z3 − 3082z4 − 2480z5,

1− 732z3 − 5328z4 − 5994z5

z3: 2,3,5,7,11,61

z4: 2,3,5,23,37,67,797

z5: 2,3,5,7,31,37

dP3

Toric Phase 1 4

1− 36z3, 1− 25z3 − 61z4 − 30z5 − 4z6,

1− 8z3 − 64z4, 1− 72z3,

1− 180z3, 1− 12z3 − 92z4 − 40z5,

1− 173z3 − 523z4 − 96z5, 1− 792z3,

1− 205z3 − 806z4 − 531z5 − 90z6,

1− 77z3 − 169z4 − 90z5

z3: 2,3,5,11,41,173

z4: 2,13,23,31,61,523

z5: 2,3,5,59

z6: 2,3,5

dP3

Toric Phase 2 5

1− 36z3, 1− 25z3 − 61z4 − 30z5 − 4z6,

1− 8z3 − 64z4, 1− 72z3,

1− 180z3, 1− 12z3 − 92z4 − 40z5,

1− 205z3 − 806z4 − 531z5 − 90z6,

1− 173z3 − 523z4 − 96z5, 1− 792z3

z3: 2,3,5,11,143,173

z4: 2,13,23,31,61,523

z5: 2,3,5,59

z6: 2,3,5

dP3

Toric Phase 3 4

1− 36z3, 1− 180z3,

1− 25z3 − 61z4 − 30z5 − 4z6,

1− 8z3 − 64z4, 1− 72z3,

1− 320z3 − 1688z4 − 1612z5 − 280z6,

1− 12z3 − 92z4 − 40z5,

1− 173z3 − 523z4 − 96z5,

1− 2520z3, 1− 792z3

z3: 2,3,5,7,11,173

z4: 2,23,61,211,523

z5: 2,3,5,13,31

z6: 2,5,7

dP3

Toric Phase 4 3

1− 30z3, 1− 186z3,

1− 9z3 − 18z4, 1− 6z3 − 12z4,

1− 51z3, 1− 4z3 − 14z4 − 6z5,

1− 6z3 − 6z4 − 12z5,

1− 2703z3, 1− 16z3 − 44z4 − 12z5,

1− 22z3, 1− 31z3 − 80z4 − 36z5,

1− 543z3, 1− 42z3 − 130z4 − 28z5,

1− 5z3 − 9z4 − 7z5 − 2z6

z3: 2,3,5,7,11,
17,31,53,181

z4: 2,3,5,7,11,13

z5: 2,3,5,7

z6: 2

Table 3: Prime sequences in this table are produced for each term in ζ−1 expansion. Level

specifies the level in duality tree up to which the dualization is performed.
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We move on to the higher del Pezzo quivers and tabulate the relevant experimental results.

In Table 3, we see that toric phases have similar prime factor sequences for each term in ζ−1.

This should be expected as toric phases can be reached by Seiberg transformation from each

other. The difference in this case can be due to the fact that the dualization started from

different quiver and if this process is continued long enough, sequences of different toric phases

should converge to the same one. Specifically, the dual P1 × P1 quivers that satisfy RH are

those with z3 terms only in its inverse Ihara zeta functions. This is also expected as those

with only z3 terms reduce to P2 case, which trivially satisfies both RHs.

It is more illustrative to look at how RH selects quivers in the P1×P1 duality tree, which

we include from [33] for reader’s convenience.
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(a) Duality tree for P1 × P1 theory.
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(b) Quiver Rules for P1 × P1 duality tree.

Figure 7: Duality tree and corresponding quiver rules for F0.

Since we have all our P1 × P1 dual quivers satisfying RH to contain terms in z3 only in

table 3. It can be seen from figure 7 that in our setup, RH only chooses the node without

repetition of colors. In our plot, this corresponds to a path that takes the sequence of colors

such as blue → cyan → purple → green → grey.
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7 Ihara Zeta Function, Quivers and Superpotentials

In this section we focus on a proof of a proposition presented below, which reinterprets

coefficients of the inverse of Ihara zeta function in terms of simple cycles. In terms of gauge

theories, this translates to generic superpotentials that can be generated from certain quivers.

Proposition 7.1. For a fully directed quiver G with no self-adjoint loops, the reciprocal of

its Ihara zeta function is the generator for simple loops in the sense that

ζ−1G (z) =
n∑
k=0

 ∑
{j1,··· ,jk}

∑
∑
i li=k

∏
a

(−[a])

 zk , (25)

where [a] is the number of ways to walk through a simple cycle in a particular vertex sequence.

Proof. As we saw in the previous sections, the reciprocal of the Ihara zeta function for a fully

directed graph G with no self-adjoint loops is simply

ζ−1G (z) = Det(In −Az), (26)

where A is the adjacency matrix with entries denoted by aij . Let us define Z as the matrix

in the above determinant expression,

Z := In −Az =


1 −a12z · · · −a1nz

−a21z 1 · · · −a2nz
...

...
. . .

...

−an1z −an2z · · · 1

 . (27)

Now, Eq. (26) can be expanded as

ζ−1 = DetZ =
∑
i1···in

εi1···inZ1i1 · · ·Znin , (28)

where we have omitted the subscript G and argument z on the left for convenience. Obviously

the right hand side is a finite polynomial of z in which no term has its power higher than n.

All terms have several 1’s and several −aijz terms, therefore a general term with (n− k) 1’s

would look like

εi1···in(−aj1ij1z) · · · (−ajkijk z) = (−1)kεi1···inaj1ij1 · · · ajkijk z
k. (29)

Written in this way, we should note that we do not sum over all i-indices any more. The

reason is that once we have chosen some combination of {j1, · · · , jk}, say {1, · · · , k}, then

the 1’s automatically take other indices, i.e. k + 1 to n. Since all 1’s are coming from the
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diagonal entries, which means Zk+1,k+1 = · · · = Znn = 1 or im = m for m > k. For this

specific combination, this term simplifies to

(−1)kεi1···ik(k+1)···na1i1 · · · akikz
k = (−1)kεi1···ika1i1 · · · akikz

k, (30)

which indicates only i1 to ik are summed indices. We can then rewrite (28) as

ζ−1 =

n∑
k=0

ckz
k,

ck = (−1)k
∑

{j1,··· ,jk}

∑
{ij1 ,··· ,ijk}

ε···ij1 ···ijk ··· aj1ij1 · · · ajkijk ,

= (−1)k
∑

{j1,··· ,jk}

∑
{i1,··· ,ik}

εi1···ikaj1i1 · · · ajkik , (31)

where the first summation in ck sums over all possible unordered combinations of {j1, · · · , jk}
and the second sums over all permutations of {j1, · · · , jk}, and it is understood that εi1···ik = 1

if i1 < · · · < ik. One can easily see that c0 = 1 from the above expression. Next we want to

find out the graphical meaning of other coefficients.

For clarity, we define some terms to make later analysis easier.

• Simple Loop: we call a monomial a simple loop if the indices of its components can

be written in a cyclic pattern: aijajl · · · apqaqi and each index appears exactly twice,

once as a row index and once as a column index. We say a monomial with its indices

written in such cyclic form is in its standard form. We use square brackets to denote

the standard form:

[a]ij···li := aij · · · ali,

where the subscripts keep track of the vertex sequence in this loop.

• Equivalent Loops: we say two loops are equivalent if their index sequences are different

rotations of the same sequence given that both terms are written in standard forms.

E.g., a12a23a31 = a23a31a12. Obviously equivalent loops have equal values.

• Disjoint Loops: we say two loops are disjoint if their corresponding monomials use

different (disjoint) sets of indices, e.g., a12a23a31 and a45a54. In terms of graph theory,

they do not share same vertices.

Now we claim that every term in the summation of (31) can be split into several (or 1)

disjoint loops. This is due to the fact that for any term in the expansion of a determinant

each index should appear exactly twice. Then we can start from an arbitrary aij and select

ajk to be the next entry. By repeating this procedure we would complete searching for all
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simple loops in this term with no entries left. With such statement, we can rewrite (31) as

summation over products of disjoint simple loops,

ck = (−1)k
∑

{j1,··· ,jk}

∑
εi1···ik([a]ip···ip) · · · ([a]iq ···iq), (32)

where the second summation sums over all possible inequivalent simple loop combinations

whose lengths add up to k and whose indices/vertices il are chosen only from the set

{j1, · · · , jk}.

Now let us focus on the second summation to see if we can extract more graphical infor-

mation therein. First of all we shall assume without loss of generality that the k vertices have

already been chosen to be {1, 2, · · · , k}. Second we would rewrite the Levi-Civita symbol ε

as products of shorter ε’s each of which is associated with one simple loop. This can be most

easily seen by a concrete example,

ε34521a13a24a35a42a51 = ε351ε42(a13a35a51)(a24a42) = (ε351[a]1351)(ε42[a]242). (33)

Generally, we have

εi···la1i · · · akl = (εi···[a]1i···1) · · · (εj···[a]···j···). (34)

Then we can rewrite the second summation in (32) as∑
∑
i li=k

∏
i

(
(−1)liεji···pi [a]···ji···pi···

)
, (35)

where li is the length of the i-th simple loop in one combination of loops whose lengths add

up to k.

We want to prove that in the above product: (I) (−1)liεji··· = −1, (II) [a]···ji··· is the

number of ways travelling through these vertices in this simple loop. The second proposition

can be readily understood by the fact that aij is the number of arrows from i to j which

means there are aij ways to walk from i to j, so the number of ways going through all vertices

are their product. The proof of the first proposition is slightly tricky and we need to take

advantage of symmetric groups.

Suppose we have l vertices labeled with {j1, j2, · · · , jl} where j1 < j2 < · · · < jl. If there

is a loop going through j1, j2, · · · , jl successively, then there will be a term in the product,

(−1)lεj2j3···jlj1aj1j2aj2j3 · · · ajlj1 = (−1)lε23···l1aj1j2aj2j3 · · · ajlj1 = (−1)lε(σ)aj1j2aj2j3 · · · ajlj1 ,(36)

where σ is an element of the symmetric group Sl,

σ =

(
1 2 · · · l − 1 l

2 3 · · · l 1

)
. (37)
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On the right hand side of this equation we have used the signature (parity) function ε which

takes value 1 if the group element is an even permutation and takes value −1 otherwise.

Obviously ε(σ) = (−1)l−1 which gives an overall factor −1 in (36). For a generic loop going

through j1 to jl but not necessarily in an ascending order, what is the overall factor? We

have mentioned that equivalent loops differ only on which vertex is the starting vertex. So

we can safely set all inequivalent loops to start at j1, then any simple loop can be written as

(−1)l(εji2 ···)aj1ji2aji2ji3 · · · ajilj1 . (38)

Now the problem is how to determine other subscripts of ε. To determine the p-th subscript

we need to know which of these aij has its first subscript being jp and then the second

subscript would be the p-th subscript of ε. We first define another element of the same

symmetric group,

τ =

(
1 2 · · · l

1 i2 · · · il

)
, (39)

and its inverse element

τ−1 =

(
1 i2 · · · il

1 2 · · · l

)
. (40)

Through this permutation operator we can find out which aij has its first subscript equal to

jp, that is jp = jτ(τ−1(p)) = jiτ−1(p)
. So the second script would be jiτ−1(p)+1

= jiστ−1(p)
=

jτστ−1(p). Therefore the ε in (38) can be explicitly calculated

εjτστ−1(1)···jτστ−1(l)
= ετστ−1(1)···τστ−1(l) = ε(τστ−1) = ε(σ) = (−1)l−1. (41)

Thus we proved our first proposition that (−1)lεj··· = −1. Then (32) simplifies to ck =∑
{j1,··· ,jk}

∑∑
i li=k

∏
a(−[a]) and we come to conclusion in the Proposition 7.1.

7.1 A Generic Formula for Superpotential

From the aforementioned, we observed that the inverse of Ihara zeta function of fully directed

quivers without self-adjoining loops can be explained by the number of disjoint simple cycles

in the graph. In this setting, the inverse of Ihara zeta function is therefore a finite polynomial.

More importantly, the inverse only looks at simple cycles in the quiver, which are simply terms

in a generic superpotential. Therefore the Ihara zeta function, which is an infinite expansion

of a finite polynomial, itself simply collects all possible combination of simple cycles of various

lengths.

While (25) is the general conclusion, we would like to use this formula to calculate the

reciprocal of Ihara zeta functions in a special case, where any two inequivalent loops share at
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least one point, so in (25) there will be no product since there is no disjoint loops according

to this special setup. Therefore here we would have

ck = −
∑

length k cycles

[a]. (42)

That is, ck is the negative of the number of all inequivalent simple cycles of length k in the

corresponding graph. Note that traversing the same vertex sequence but through different

arrows is considered as traversing different cycles.

In this perspective, the Ihara zeta function gives the most generic superpotential when

given information on the quiver alone (of course, in obtaining Calabi-Yau moduli spaces for

certain theories one needs specific couplings). We now introduce a refinement of the Ihara

zeta function, i.e, coefficients of the monomials in expansion will be more than just one

complex variable z but one for each arrow in the quiver. To give some illustrative examples,

let us consider the dP0 and F0 (cones over P2 and P1 × P1) cases separately.

For dP0, we have 9 fields Ψ1,...,9 and we shall replace the entries in the adjacency matrix

with these fields:

Q′P2 =

 0 Ψ1 + Ψ2 + Ψ3 0

0 0 Ψ4 + Ψ5 + Ψ6

Ψ7 + Ψ8 + Ψ9 0 0

 . (43)

So we have the inverse of Ihara zeta function as

ζ−1
Q′

P2
= 1− (Ψ1 + Ψ2 + Ψ3)(Ψ4 + Ψ5 + Ψ6)(Ψ7 + Ψ8 + Ψ9)z

3

= 1− (Ψ1Ψ4Ψ7 + Ψ2Ψ4Ψ7 + Ψ3Ψ4Ψ7 + Ψ1Ψ5Ψ7 + Ψ2Ψ5Ψ7 + Ψ3Ψ5Ψ7

+ Ψ1Ψ6Ψ7 + Ψ2Ψ6Ψ7 + Ψ3Ψ6Ψ7 + Ψ1Ψ4Ψ8 + Ψ2Ψ4Ψ8 + Ψ3Ψ4Ψ8

+ Ψ1Ψ5Ψ8 + Ψ2Ψ5Ψ8 + Ψ3Ψ5Ψ8 + Ψ1Ψ6Ψ8 + Ψ2Ψ6Ψ8 + Ψ3Ψ6Ψ8

+ Ψ1Ψ4Ψ9 + Ψ2Ψ4Ψ9 + Ψ3Ψ4Ψ9 + Ψ1Ψ5Ψ9 + Ψ2Ψ5Ψ9 + Ψ3Ψ5Ψ9

+ Ψ1Ψ6Ψ9 + Ψ2Ψ6Ψ9 + Ψ3Ψ6Ψ9)z
3.

(44)

Here we have all possible cubic superpotential terms that can be constructed from the quiver,

however the true full superpotential for dP0 theory is (e.g., see the catalogue in [38])

WP2 = Ψ1Ψ4Ψ7 −Ψ1Ψ6Ψ8 −Ψ2Ψ4Ψ9 + Ψ2Ψ5Ψ8 −Ψ3Ψ5Ψ7 + Ψ3Ψ6Ψ9. (45)

Therefore, the expansion of Ihara zeta function in terms of bi-fundamental fields will give

the most generic superpotential of a specific quiver gauge theory, where the constant 1 in the

expansion should be removed as well as changing the signs of non-constant in ζ−1. Moreover,

we can also interpret z3 as the coupling for all the terms in superpotential. The moduli space
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here would be trivially a point since the F-terms have as many non-trivial constraints as

there are number of fields. In other words, the Jacobian ideal of the generic superpotential

is trivial.

Next, let us consider a Seiberg dual phase for the F0 theory. We have its adjacency matrix

in the following form:

Q′P1×P1 =


0 0 0

∑6
n=1 Ψn∑8

n=7 Ψn 0 0 0

0
∑10

n=9 Ψn 0 0

0
∑18

n=11 Ψn
∑24

n=19 Ψn 0

 . (46)

With this adjacency matrix, we have its Ihara zeta function to be

ζ−1
Q′

P1×P1
= 1−

6∑
n=1

Ψn

8∑
n=7

Ψn(z

18∑
n=11

Ψn + z2
10∑
n=9

Ψn

24∑
n=19

Ψn)z2, (47)

where it is obvious that all possible combinations of cubic and quartic terms are generated,

and upon inverting, we have an infinite polynomial generated from the above finite one.

7.2 Adjoint Fields and Bi-Directional Arrows

While most of our N = 1 gauge theories consist only of directed arrows, there are some

that have self-adjoint loops (adjoint fields) as well as bi-directional arrows, such as the SPP

theory and the dual phases of Laba theories. For these, the form of the Ihara zeta function

are more complicated since we can replace each pair of directed arrows between nodes by a

single undirected edge and it would be interesting to see the difference between treating these

edges as directed and treating them as undirected. In the following, we will take SPP case

as an example to illustrate this difference.

The SPP quiver [39,40] is shown in Figure 8 from which we can easily read off its adjacency

matrix,

A =

 2 1 1

1 0 1

1 1 0

 . (48)

There are several different ways to view its edges:

1 All edges are considered to be directed, thus a fully directed graph. We then can still

use (10) to compute Ihara zeta function.
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1

2 3

Figure 8: SPP Quiver. All arrows are bi-directional and graphically they can be replaced by

undirected edges.

2 All edges are considered to be undirected, then it is an undirected graph. We then need

to utilize an undirected version of formula (2),

ζ(z) =
(1− z2)−Tr(Q−I)/2

Det(I −Az +Qz2)
, (49)

to compute the zeta function.

3 Only the self-adjoint loop is considered as undirected, thence we get a partially directed

graph. In this case we have to use Eq. (2) itself to compute Ihara zeta function.

In the first perspective, the Ihara zeta function is extremely simple,

ζ−1(z) = (1 + z)(1− 3z). (50)

It can be readily seen that there are only two poles z = −1 and z = 1/3 both being real. For

the above second case, we have Q = diag{3, 1, 1} and the zeta function follows immediately,

ζ−1(z) = (1− z)2(1 + z)(1 + z + z2)(1− 2z + 2z2 − 3z3). (51)

The poles of this function are plotted in Figure 9 as green and blue points. In the last case,

Q only counts undirected degrees and P is only responsible for directed edges, so we find

Q = diag{1,−1,−1} and

P =

 0 1 1

1 0 1

1 1 0

 . (52)

Then the resulting zeta function reads

ζ−1(z) = (1− z)(1 + z)(1− 2z − z2 − 2z3). (53)
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Figure 9: Poles of Ihara zeta function for the SPP quiver. The green and blue points are poles

when we see all the edges as undirected ones, whereas the red and blue points are poles when we

take SPP quiver as a partially directed graph.

The poles in this case are also plotted in Figure 9 as red and blue points.

From the above example, one can see that the behaviors of poles for Ihara zeta function

are quite different when we treat a graph with self-adjoint loops and bi-directional arrows

from different perspectives.

Next we turn to the refined Ihara zeta function in which the adjacency matrix A takes

fields as its entries other than just the number of arrows/edges/loops. For the first case

viewing all edges as arrows, we have

A =

 2φ Ψ1 Ψ2

Ψ3 0 Ψ4

Ψ5 Ψ6 0

 ,

which results in the Ihara zeta function

ζ−1SPP (z) = 1− 2φz − (Ψ1Ψ3 + Ψ2Ψ5 + Ψ4Ψ6)z
2 − (Ψ1Ψ4Ψ5 + Ψ2Ψ3Ψ6 − 2φΨ4Ψ6)z

3. (54)

Therefore we still have the refined Ihara zeta function as the generating function of generic

superpotentials. However, for the second and third cases, we have to face the problem of

how to define the Q and P matrices. Since Q is in the power, we would assume it remains to

be a matrix of numbers, whereas P can be assumed to comprise of either numbers or fields.

Nonetheless, in either assumption the final Ihara zeta function cannot be thought of as a

superpotential generating function.
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8 Conclusions and Prospects

In this paper, we have investigated the Ihara zeta function associated to quiver gauge theories,

especially under the action of Seiberg duality. Aid by a multitude of explicit examples, we

have learnt many lessons.

In the P2 case, the Seiberg dual theories are well-known to be in one-to-one correspondence

to solutions of the Markov Diophantine equation and we proved that all poles of the Ihara

zeta functions are on the lines of cubic roots of unity. For P1 × P1 theories, there is also

an underlying Diophantine equation of a so-called 3-block structure [34, 35]. Due to the

complexity here, we adopted a numerical approach and found that every (even) solution with

its components being even and less than 800 corresponds to some quiver theory that is a

Seiberg dual phase.

Inspired by the graph version of the Riemann Hypothesis, We studied the distribution

of poles of the Ihara zeta function along the Seiberg duality tree of the various theories,

including the various del Pezzo and Hirzebruch geometries. The results are shown in figure

6 where we can see that in all cases, the poles are concentrated in strip areas on or near the

coordinate axes, which shows an axial symmetry about the horizontal axis. While there is

yet to be a formulation for the Riemann Hypothesis for irregular digraphs as in our quivers,

it is still reasonable to speculate that all poles should be constrained within some area other

than randomly distributed everywhere in the complex plane.

Nevertheless, we can still use the definitions of strong and weak versions of the graph

Riemann Hypothesis (cf. Eqs.(5) and (6)) with certain choice of (max) degree q to see how it

acts on Seiberg duals. Numerical results are summarized in §6.1. It is interesting to observe

how this RH setup selects certain quivers in the duality tree and hence produce specific prime

sequences in the coefficients of the zeta function.

As a interesting by-product, we find a graph-theoretic interpretation for the reciprocal of

Ihara zeta function which is summarized in (25) and which has gauge theoretic repercussions.

As a consequence of this formula, it is immediate to conclude that a refined version of the

Ihara zeta function is a generating function for the generic superpotential (with couplings in

powers of z) for the quiver gauge theory.

One of the immediate challenges is to have a reasonable generalization of the graph

Riemann Hypothesis for directed quivers. While there is a lack of functional equation in such

a case, we have seen in our cases that the distribution of the poles is not random and that

under Seiberg duality, they remain in constrained regions.
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In section 7.2, we have seen that the refined Ihara zeta function cannot be a generating

function of the SPP quiver. So another interesting work is to find a closed form (may not

be a Ihara zeta type function) for generic superpotentials of undirected quivers or partially

directed quivers comprised of directed edges and undirected self-loops. After all, these two

kinds of quivers both have significant meanings in quiver gauge theories.
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Appendices

A Ihara Zeta Function: Determinants and Euler-Product

In [4], another zeta function called edge zeta function is constructed to give a determinant

form of Ihara zeta function for undirected graph. Before giving the full definition of this zeta

function, we need a few other definitions:

• The edge matrix W of size 2m×2m for an undirected graph with m undirected edges

has entries wij . The (i, j)-th entry of W , wij , is a complex variable if the edge ei is

connected with edge ej with ej 6= e−1i , and the entry is 0 if otherwise.

• For a closed path C in an undirected graph X written as a sequence of edges C =

e1e2 · · · es, the edge norm of C is

NE(C) = w12w23 · · ·ws1.

33



With the above definitions in hand, we can define the edge zeta function as follows

ζE(W,X) =
∏

[P ]∈Prime Cycles

(1−NE(C))−1.

It is clear from this definition that if wij is set to z ∈ C, we recover the original Ihara zeta

function such that

ζG(z) = ζE(W1, G),

where W1 is the edge matrix when all non-zero entries set to z.

Furthermore, we have the following theorem (cf. Chapter 3 of [5])

Theorem A.1.

ζE(W,G) = Det(I −W )−1.

Proof. By taking logarithm of Euler-product, we have

−logζE(W,G) =
∑
[P ]

∑
j≥1

1

j
NE(P )j ,

where Taylor expansion of logarithm is used. As we have l(P ) elements in the prime equivalent

class [P ], hence

−logζE(W,G) =
∑
m≥1
j≥1

1

jm

∑
P

l[P ]=m

NE(P )j .

The sum now is over all prime paths. This is equivalent to sum over all paths of the form

C = P j with length jm. It then follows that

−logζE(W,G) =
∑
C

1

l[C]
NE(C).

Since we also gave the following∑
C

1

l[C]
NE(C) =

∑
m≥1

1

m
Tr(Wm) = −Trlog(I −W ) = −logDet(I −W )−1,

where the first equality can be understood as the trace over Wm is collecting all cycles of

various length, then we have ζE(W,G) = Det(I −W )−1.

Before we give proof to the determinant formula for Ihara zeta function, some matrix

identities are needed. Proofs of these identities are given in Chapter 3 of [5]. The following

definitions are needed in the proof:
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First set J =

(
0 Im

Im 0

)
. Then the n × 2m start matrix S and the n × 2m terminal

matrix T are defined as

Sve =

1, if v is the starting vertex of edge e,

0, otherwise,

and

Tve =

1, if v is the terminal vertex of edge e,

0, otherwise.

With the above definitions, we have the following identities

1. SJ = T and TJ = S.

2. If A is the adjacency matrix of graph G, and Q + In is the undirected degree matrix

whose j-th diagonal entry specifies the degree of j-th vertex in G. Then we have

A = ST T and Q+ In = SST = TT T .

3. The edge matrix W1 obtained by setting all non-zero entries of W to z has the identity

W1 + J = T TS. Here MT is the usual notation for matrix transpose.

Now we come to the proof of determinant formula of Ihara zeta function for undirected

graphs, i.e., ζG(z) = (1 − z2)−Tr(Q−I)/2Det(I − Az + Qz2)−1. This proof is elaborated in

more details in [4]. First consider a graph with m undirected edges and n vertices, we have

following matrix equation from previous identities(
In 0

T T I2m

)(
In(1− z2) Sz

0 I2m −W1z

)
=

(
In −Az +Qz2 Sz

0 I2m + Jz

)(
In 0

T T − ST z I2m

)
.

In the above equation, all matrices are of (n+ 2m)× (n+ 2m), and we take determinant on

both sides of equation to give

(1− z2)nDet(I −W1z) = Det(In −Az +Qz2)Det(I2m + Jz).

With the observation that

I + Jz =

(
I Iz

Iz I

)
implies (

I 0

−Iz I

)
(I + Iz) =

(
I Iz

0 I(1− z2)

)
,
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we obtain Det(I + Jz) = (1− z2)m. Therefore it is clear that

Det(I −W1z) = Det(In −Az +Qz2)Det(1− z2)m−n,

where the LHS is now ζG(z)−1 from theorem A.1. Since m− n = Tr(Q− I)/2, we have the

determinant formula of Ihara zeta function.

For the details of proof of (2) that gives determinant expression of Ihara zeta function

for partially directed graphs, see [8].

B Solutions to the Markov Equation

Most of the following proofs can be found in the book [37], we nonetheless rephrase them

here for the purpose of integrality of our logic flow in Section 4.2. However, in order to

conform with our underlying physics context, instead of using the original definition of Markov

equation

u2 + v2 + w2 = 3uvw , (55)

we define it here as

u2 + v2 + w2 = uvw , (56)

which is essentially the same. Since in physics we are only interested in positive solutions,

the positivity of solutions are always presumed in following deductions.

Lemma B.1. If (a, b, c) is a solution to eq. (56), (bc − a, b, c) is also a solution as well as

(a, ac− b, c) and (a, b, ab− c).

Proof. It is readily seen that eq. (56) is symmetric under permutation of variables (u, v, w),

it is therefore sufficient to prove one of these combinations satisfies eq. (56).

(bc− a)2 + b2 + c2 = (bc− a)bc+ (a2 + b2 + c2 − abc) = (bc− a)bc.

Comparing this with the Seiberg duality rules in Section 3.1, one would see that (a, b, c)→
(bc−a, b, c) is exactly of Seiberg duality type apart from a common factor −1. Thus we shall

call this operation on solutions “Seiberg transformation”. There are two obvious solutions,

(3, 3, 3) and (3, 3, 6) (of course, (3, 6, 3) and (6, 3, 3) are considered as the same solutions as
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(3, 3, 6) due to the symmetry under permutation). These two are dubbed singular solutions

because there are equal numbers in both solutions. Non-singular solutions are then defined

as solutions with three distinct numbers.

Lemma B.2. All solutions to Markov equation except the above two are non-singular.

Proof. Suppose we have a singular solution (a, b, c), without loss of generality, we shall assume

a = b, then 2a2 + c2 = a2c ⇒ c2 = (c − 2)a2. This indicates
√
c− 2 = c/a is a rational

number, which means c − 2 has to be a perfect square, say d2 where d is an integer. Hence

with c = ad, we have 2a2 + a2d2 = da3 ⇒ 2 = d(a− d), which means d = 1 or 2. In either

case we will have a = 3. Then c = ad = 3 or 6. Thus the two solutions (3, 3, 3) and (3, 3, 6).

Any other solutions would have u, v, w being distinct.

Now for all non-singular solutions, we can write them in a manner such that each has its

components in ascending order — (u, v, w) with u < v < w.

Lemma B.3. If we have a non-singular solution (a, b, c) with a < b < c, then ab− c < b and

bc− a > ac− b > c.

Proof. Consider the quadratic function

f(x) = x2 − abx+ a2 + b2 , (57)

which has two zero points, c and ab− c. Also we can evaluate f(x) at x = b,

f(b) = a2 − (a− 2)b2 ≤ a2 − b2 < 0 , (58)

where in the second step we have used the fact that a ≥ 3. Now that f(x) is an upwards

concave parabola, what immediately follows is that ab− c < b < c. With the same trick we

can prove ac− b > c and by definition we have bc− a > ac− b.

Now assuming a < b < c, we shall call (a, b, c)→ (ab− c, a, b) descending transformation

and the other two ascending transformation. The above lemma tells us that by Seiberg trans-

forming any non-singular solution, we would end up with a “bigger” or “smaller” solution

depending on which node (or which arrows) your are dualizing on. As for singular solutions,

if we Seiberg transform (3, 3, 6) we would get (3, 3, 3) (which is smaller) or a non-singular

solution (which is bigger), and if we Seiberg transform (3, 3, 3) we can only get (3, 3, 6). Fol-

lowing this logic, if we we have a non-singular solution, then by repeatedly apply descending

transformation, we will constantly get smaller solutions until there are no smaller ones, that

is, it will stop at (3, 3, 3). This also means that we can reverse all transformation steps to

generate any non-singular solution from (3, 3, 3). Thus we have:
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Theorem B.4. All positive solutions of Markov equation can be generated from (3, 3, 3) by

Seiberg transformation.

The solutions generated from a given solution are called adjacent solutions. For example,

(3yz − x, y, z) is called the adjacent solution to (x, y, z) with respect to x.
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