IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Abdallah, S., Benetos, E., Gold, N., Hargreaves, S., Weyde, T. & Wolff, D.
(2017). The digital music lab: A big data infrastructure for digital musicology. Journal on
Computing and Cultural Heritage, 10(1), pp. 1-21. doi: 10.1145/2983918

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/16481/

Link to published version: https://doi.org/10.1145/2983918

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

The Digital Music Lab: A Big Data Infrastructure for
Digital Musicology

Samer Abdallah, University College London
Emmanouil Benetos, Queen Mary University of London
Nicolas Gold, University College London

Steven Hargreaves, Queen Mary University of London
Tillman Weyde, City University London

Daniel Wolff, City University London

In musicology and music research generally, the increasing availability of digital music, storage capacities and computing power
both enable and require new and intelligent systems. In the transition from traditional to digital musicology, many techniques
and tools have been developed for the analysis of individual pieces of music, but large scale music data that are increasingly
becoming available require research methods and systems that work on the collection-level and at scale. Although many relevant
algorithms have been developed during the last 15 years of research in Music Information Retrieval, an integrated system that
supports large-scale digital musicology research has so far been lacking.

In the Digital Music Lab (DML) project, a collaboration between music librarians, musicologists, computer scientists, and
human-computer interface specialists, the DML software system has been developed that fills this gap by providing intelligent
large-scale music analysis with a user-friendly interactive interface supporting musicologists in their exploration and enquiry.
The DML system empowers musicologists by addressing several challenges: distributed processing of audio and other music data,
management of the data analysis process and results, remote analysis of data under copyright, logical inference on the extracted
information and metadata, and visual web-based interfaces for exploring and querying the music collections. The DML system
is scalable and based on Semantic Web technology and integrates into Linked Data with the vision of a distributed system that
enabling music research across archives, libraries and other providers of music data. A first DML system prototype has been
set up in collaboration with the British Library and I Like Music Ltd. This system has been used to analyse a diverse corpus
of currently 250,000 music tracks. In this article we describe the DML system requirements, design, architecture, components,
available data sources, explaining their interaction. We report use cases and applications with initial evaluations of the proposed
system.

CCS Concepts: eInformation systems — Multimedia information systems; Digital libraries and archives; eApplied
computing — Sound and music computing;

Additional Key Words and Phrases: Digital Musicology, Music Information Retrieval, Big Data, Semantic Web

ACM Reference Format:

Samer Abdallah, Emmanouil Benetos, Nicolas Gold, Steven Hargreaves, Tillman Weyde, Daniel Wolff, 2016. The Digital Music
Lab: A Big Data Infrastructure for Digital Musicology. ACM oJ. Comput. Cult. Herit. X, X, Article XXXX (January 2016), 20 pages.
DOI: 0000001.0000001

Equally contributing authors listed in alphabetical order. This work was supported by the UK Arts and Humanities Research
Council-funded projects ‘Digital Music Lab - Analysing Big Music Data’ (grant no. AH/L01016X/1) and ‘An Integrated Audio-
Symbolic Model of Music Similarity’ (grant no. AH/M002454/1). EB is supported by a UK Royal Academy of Engineering Re-
search Fellowship (grant no. RF/128). SH is supported by an Engineering and Physical Sciences Research Council Platform

Grant (grant no. EP/K009559/1).

Author’s addresses: Samer Abdallah and Nicolas Gold, Department of Computer Science, University College London; Emmanouil
Benetos and Steven Hargreaves, Centre for Digital Music, Queen Mary University of London; Tillman Weyde and Daniel Wolff,
Department of Computer Science, City University London.

Permission to make digital or hard copies of all or part of thork for personal or classroom use is granted without feeiged that copies are not made or distributed
for profit or commercial advantage and that copies bear thice and the full citation on the first page. Copyrights fomponents of this work owned by others
than ACM must be honored. Abstracting with credit is peredittTo copy otherwise, or republish, to post on servers oedéstribute to lists, requires prior specific
permission and/or a fee. Request permissions from penis&acm.org.

(© 2016 ACM. 1556-4673/2016/01-ARTXXXX $15.00

DOI: 0000001.0000001

ACM Journal on Computing and Cultural Heritage, Vol. X, No. X, Article XXXX, Publication date: January 2016.



XXXX:2 . The Digital Music Lab

1. INTRODUCTION

Musicology has traditionally relied on data of many kinds, such as scores and recordings representing
music composition and performance as well as representations of other aspects of music, e.g. lyrics
and metadata. Systematic musicology and ethnomusicology have often used quantitative methods, but
typically on small datasets. In the last two decades the digitisation of communication and media has
started an ongoing methodical shift in the humanities, which goes beyond the use of computational
analysis of cultural artefacts and leads to new research questions and practices, generally described
as Digital Humanities [Hughes et al. 2016]l. In this context, Digital Musicology addresses not only the
computational tools for analysing digital audio, scores and metadata but also the methods for musico-
logical research in this context. This development has attracted increasing attention in recent years,
e.g. from the European Science Foundation [Dahlig-Turek et al. 2012], the IMS study group on Digital
Musicologyﬂ in the UK AHRC funded projects Transforming M usicologjﬂ and A Big Data History of
Musid (the latter focusing on printed music), the Oxford Summer School workshop on Digital Musicol-
ogyl as well as publications, e.g. Duval et al. 2015} [Ng et al. 2014].

Digital datasets in music are smaller than in some other domains, and according to [Burgoyne et al. 2016,
of the openly accessible music datasets only the Million Song Datasetf] qualifies as “truly ‘big” with
280GB of feature data extracted from 1 million audio tracks. However, the quantity of music data is
growing and even the smaller data sets available now are big in the sense that the traditional mu-
sicological method, where the researcher closely inspects every work, is no longer applicable. In the
Humanities in general, claims that velocity and volume do not have the same role or
requirements (respectively) as in the natural sciences or economics, but that the key shift is in the
methodological change from studying individual artefacts to collection-level analysis. This position is
well-characterised by Moretti’s distant reading paradigm [Moretti 2013], i.e. the use of reduction and
abstraction by quantitative analysis to understand culture, as if watching from a distance to observe
large-scale structure. The work reported here might be considered a kind of ‘distant audition’ wherein
music itself is not audited but instead features derived from it are analysed. This approach views not
the details of individual works, but selections of pieces with respect to their aggregated properties, and
compares similarities and differences between selections by specific aspects. Examples of these aspects
of music are keys or chords frequencies, harmonic progression patterns, or similarity structures, which
can enable the understanding of commonalities, differences and trends in data collections across his-
toric, geographic and cultural dimensions. An important aspect in this context is the goal of analysing
music from multiple libraries and archives, as specific recordings are often only available in specific in-
stitutions, which will lead to joint datasets significantly larger than what is currently available. Since
scholars in the Humanities are typically not trained in the development or even the use of computing
technology, there is a gap to bridge in order to make systems accessible to music researchers and to
enable scholars to develop questions and seek answers that can be approached with the growing digital
datasets and computational tools.

In this paper we present the Digital Music Lab (DML) system, which addresses this gap by provid-
ing an environment for musicologists to explore and analyse large-scale music data collections, offering
a range of tools and visualisations. We bring computation to the data, in order to enable the remote
analysis of copyright-restricted material, and enable scalable interactive processing with large-scale

Thttp://ims-international.ch/content/index.php/study-groups/digital-musicology
2http://www.transforming-musicology.org
3https://www.royalholloway.ac.uk/music/research/abigdatahistoryofmusic/home.aspx
4http:/dhoxss.humanities.ox.ac.uk/2015/digitalmusicology.html
Shttp://labrosa.ee.columbia.edu/millionsong/
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parallelisation. The DML system is available as open source softwareﬁ, so that additional installa-
tions can be set up and connected via Semantic Web interfaces to created a distributed musicological
research environment across institutions. Our first installation has access to a collection of over 1.2
million audio recordings from multiple sources (cf. Section ] for details) across a wide range of musical
cultures and styles, of which over 250,000 have been analysed so far, producing over 3 terabytes of
features and aggregated data. Although the DML framework has been developed for musicology, it can
be extended to digital data in other areas such as of visual arts or multi-modal linking and indexing of
cultural artefacts. A preliminary version of the DML system is described in [Abdallah et al. 2016].
This paper presents requirements, design and technical architecture, as well as an implementation
and initial evaluation of the DML system, showing how it addresses the needs of musicologists. Specif-
ically, we make the following novel contributions:
— A set of requirements for music analysis as elicited from musicologists
— A system architecture for distributed analysis of large music collections
— A multi-level computation management system enabling interactive data exploration
— A system implementation that is available as open source software
— An installed and publicly available system
— Initial results from technical and user-based evaluations
The remainder of this paper is organised as follows: Section [2] describes related existing work. Sec-
tion [3] introduces the requirements and concepts of the DML system. Section [4] gives an overview of
the system architecture. Section [5] describes the middle-tier information management and gives some
performance results. Section [6] provides information on the back-end compute service. Section [7]intro-
duces the front-end interface and Section [8] describes the user evaluation and applications. Section
discusses achievements and challenges and Section [I0] presents the conclusions of this article.

2. RELATED WORK

In order to develop Digital Musicology, research and technology from Music Information Retrieval
(MIR) should be highly relevant. However, MIR has mostly focused on commercial use cases, and there
has been relatively little interaction between musicology and MIR as shown by citation analysis of
ISMIR papers [Neubarth et al. 2011[]. On the other hand, musicology has applied computational meth-
ods for decades (e.g. see [Hewlett and Selfridge-Field 1991]], [Volk et al. 2011l]), typically on encoded
musical scores, such as CCARH’s kern and musedata collectiond]. The use of MIR at different scales
for musicology has been addressed by [Rhodes et al. 2010[] in the context of an experimental system
which is no longer available. Larger amounts of data are nowadays stored in the collections of major
libraries or commercial vendors, particularly audio, video and scanned documents, but these data are
not normally accessible for academic analysis due to copyright restrictions.

For analysing large datasets the parallelisation approaches of MapReduce [Dean and Ghemawat 2008]
and more recently in-memory and graph-based computing [Zaharia et al. 2012] have become widely
used. This approach has proven popular as it provides a good trade-off between ease of development,
efficiency of processing, and cost of setting up and running a system. For interoperability between mul-
tiple systems over the Internet, a natural approach is the Semantic Web [Berners-Lee et al. 2001]. The
development of semantic tools and standards enables the description and linking of music information
in the Semantic Web, e.g. see [Abdallah et al. 2006]. In projects like OMRAS 2 [Cannam et al. 2010],
efforts were made to provide Semantic Web technology to music information systems. The OMRAS 2
project was working “Towards a Distributed Research Environment for Music Informatics and Com-

6See: http:/dml.city.ac.uk/code
“http:/kern.ccarh.org) http://www.musedata.org
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Table I. High priority requirements of music researchers.

User Interface

[Finding different ways to browse big music data collections

IA user interface to define parameters (location, time, genre, etc.)
[Usability for non-experts in technology

Metadata

|Availability of metadata and annotations including genre tags

lAnalysis

Big data analysis of trends over time
Big Data analysis of styles
Similarity metrics

Harmonic analysis

putational Musicology”[Dixon et al. 20101, which, although not realised as an integrated system for
humanities scholars, resulted in a set of technologies, several of which are used in the DML. An
earlier approach to a distributed audio analysis and music information retrieval was proposed by
[Al-Shakarchi et al. 2006] using peer-to-peer networking with a local application interface. Although
technically interesting, this approach did not attract much support and web interfaces have generally
been seen as a more effective way of providing interfaces to distributed systems.

More recently, several systems have been developed for presenting music collections, particularly of
ethnomusicological recordings, on the web. The Telemeta system [Fillon et al. 2014]] provides a function-
rich framework for presenting music audio archives on the web. A similar approach is followed by the
Dunya system, which supports browsing one of several collections in specific music cultures, each with
a specific interface [Porter et al. 2013]. These systems are focused on searching and viewing audio
recordings individually rather then analysing collections of recordings. For analysing data, the Acous-
ticBrainz project [Porter et al. 2015]] uses a crowdsourcing approach collecting feature data from audio
tha]tﬁ private contributors have on their computers. The extracted features are accessible via an online
APIS.

3. REQUIREMENTS AND CONCEPTS OF THE DIGITAL MUSIC LAB

An initial workshop was held within the DML project on 19th March 2014, in which 48 musicologists
and music researchers with varying degrees of computational expertise participated, discussing and
collecting research questions and requirements for Big Data systems in musicology. Generally this was
perceived as a novel topic for musicology, which was reflected in the diverse range of approaches and
subjects suggested and discussed during the workshop. Table[[lists the main points that musicologists
brought up in the discussion: the user interface that is needed to use the system, the metadata that
enables formulation of hypotheses and queries, and the content analysis that is required to answer the
queries. Use cases that emerged in the workshop include the analysis of

— historical developments (e.g. tonality, chord progressions, tuning levels)

— music reception (e.g. playlists, concert programs, ‘Hit Song Science’)

— style analysis of players, composers, and genres

The discussion at the workshop included more specific topics, e.g. the analysis of the relation between
guitar technology and guitar sounds or the relation between audio recordings and related texts (liner
notes, reviews). The breadth of these topics indicated that the requirements are not yet specific enough
to be immediately testable, but they were used as guidance in development over several iterations with
musicologists, and evaluated toward the end of the project in a second workshop.

3.1 Big Data Collection Analysis

Based on the user input we developed our approach for the analysis of large music collections. In the
following we describe the main concepts we used throughout the development and in this paper.

8http:/acousticbrainz.org
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Fig. 1. Overview of the DML system. The web front-end (VIS) is connected to one or more information and computation man-
agement systems (ICMS) which request and store metadata as well as analysis results that have been computed by the back-end
compute servers.

3.1.1 Content. The content accessible through the DML system is organised into libraries, works
and recordings. The library information identifies the provider of the data, such as the British Library
(BL), which may also provide physical access or further information, e.g. if the access is restricted by
copyright. A work reflects a composition, which may have a digital score or other information associ-
ated with it. Works can be associated with one or more digital audio recordings, which are currently
the main objects of analysis in the DML system. The DML manages internal files as needed and pro-
vides, if available, URLs for public download or streaming of audio. Based on metadata, recordings are
grouped by the user into collections, which form the basis for analysis and inspection. Users can create
collections by different criteria, e.g. music from Uganda vs. Ethiopia, and compare the analytic results.

3.1.2 Analysis. In the DML system we distinguish recording-level analysis (RLA) and collection-
level analysis (CLA). An analysis on either level is defined as a triple of perspective, parameters and
target. The target to be analysed can be either a recording or a collection. The perspective specifies a
transformation of this data which may be based on multiple sub-transformations. If a transformation
supports parameters, their values are defined with each instance of the transformation. Default values
are used if no parameter information is provided. The triple of perspective, parameters and target
identifies each analysis for storage and retrieval of previously computed results.

Even if the collections may not be as big as in some other domains, there are challenges caused by
their size: first, each audio recording consists of millions of data points with needed to be analysed
for their musical content, e.g. by automatic music transcription, which needs approximately as much
processor time as the duration of the recording. Second, the data is richly structured: there is not just
one analysis needed, but several different ones, e.g. for melody, harmony, rhythm, timbre, similarity
structure, etc. These create a rich set of relations within and between works and collections, that is
more complex than for instance typical textual data.

ACM Journal on Computing and Cultural Heritage, Vol. X, No. X, Article XXXX, Publication date: January 2016.
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4. THE DML SYSTEM
4.1 Architectural Overview

As displayed in Figure[d] the DML system consists of three main components: the Analytical Compute
Servers (CS) and the Information and Computation Management Systems (ICMS) in the back-end and
the Visualisation Interface (VIS) in the front-end.

The computation of feature data is distributed to the CS servers, which are placed at the content
providers for in-place processing. The CS instances extract features from media data and pre-compute
aggregate statistics as far as possible. This model reduces network load and addresses copyright restric-
tions so that analysis of copyrighted audio material can be conducted, which has rarely been possible
so far even in public libraries such as the BL.

An ICMS organises the available media and related information. It addresses data diversity with
the use of Semantic Web technology and links the local contents to a graph of related internal and
external data. Extracted features and aggregate data become part of this information graph. The ICMS
schedules the computation and makes efficient use of existing information.

The VIS visualisation provides an end-user interface to define musicological queries and explore
music datasets. It focuses on collection-level analysis, and presents individual and comparative per-
spectives of distinct collections to the user. For an analysis perspective requested via the VIS interface,
a RESTful API call is made to an ICMS system (described in Section [B). This returns data that has
been computed before or the ICMS determines the necessary analysis steps and triggers the corre-
sponding computations on the CS server. In the latter case, the VIS notifies the user about the ongoing
computation and displays the result when it becomes available. The CS performs the recording-level
and collection-level analysis in parallelised processes. The result is returned to the ICMS which saves
it to an RDF triple-store and forwards it to the requesting client interface.

The DML system supports scaling with the number of users and queries, the size of music collections
and the number of connected DML installations. The client-side JavaScript implementation of the DML
visualisation reduces the load on the server side. Multiple CS, each using multi-core processing, can
analyse audio in different locations, and feed into the ICMS. A core contribution of the DML system
is that it combines these parallelisation techniques with a fine-grained result caching system in the
ICMS that allows the reuse of intermediate results amongst multiple queries. This feature together
with multi-level caching enables visualisation response times of a few seconds for analyses that have
previously been requested and reduced response times for queries requiring new computation.

4.2 The DML installation

We have <created a running installation of the system, publicly available at
http://dml.city.ac.uk/vis, with the CS components hosted at the BL and I Like Music Ltd (ILM) and
the ICMS at City University London. The CS at ILM is not permanently connected for security rea-
sons; pre-computed low-level features are extracted and regularly synchronised with the ICMS at City.
The technical components are described in more detail in Sections 5 and [6l

4.3 Datasets and Music Collections

Four collections of audio recordings have been integrated to our DML installation, spanning many
music cultures and genres, with scope to include more collections as the project grows. Over 250,000
recordings are currently available.

The BL holds over 3 million music recordings, of which approximately 10% are digitized, and over
49,000 were imported so far, which mostly originate from the Classical Music collection (~19k record-
ings) and World and Traditional Music Collection (~29k recordings). Each recording is also accompa-
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nied by a metadata file in METS/XML format, which contains several identifiers on title, collection ID,
composer, performer, recording date, geographic information, as well as audio file information. For a
subset of these recordings the BL Sounds website provides audio streams, which can be listened to in
the VIS interface.

The CHARM database [Beardsley and Leech-Wilkinson 2009|E. was published by the AHRC Re-
search Centre for the History and Analysis of Recorded Music. It contains digitised versions of 4,882
copyright-free historical recordings of classical music transferred from 78rpm discs, dated between
1902-1962, as well as metadata describing both the provenance of the recordings and the digitisation
process.

The Mazurka databasd was created in the UK AHRC-funded ‘Mazurka Project’, and contains 2,732
recorded performances for 49 Mazurkas by Frédéric Chopin, ranging from 1902 until recent years. The
collection is accompanied with metadata on opus, key, performer, year, duration, and recording label.

I Like Music[™ has a repertoire of over 1 million commercial music recordings, of which we have yet
analysed a selection of 6 music genres: jazz, rock & roll, reggae, classical, blues, and folk. Recording
dates span from 1927, with the vast majority from the last two decades. We have so far analysed
216,523 audio recordings. The largest subset consists of folk music (approx 62k recordings), followed
by jazz (approx 39k recordings). The collection metadata includes title, artist name, album title, genre,
and release year.

5. THE INFORMATION AND COMPUTATION MANAGEMENT SYSTEM

The information and computation management (ICMS) sub-system of the DML has the job of organis-
ing and keeping track of the recordings, their metadata, and the details of any computations done on
them. Its API serves results and the status of the computation to the interactive Vis interface. In ad-
dition, it is responsible for triggering new computations when required, and so must keep information
about the functions available for application in new computations. These requirements are realised
using a relational data model based on Semantic Web technologies [Berners-Lee et al. 2001]] combined
with a system for managing computations based on memoisation [Norvig 1991]. The approach derives
from previous work on knowledge representations for music analysis and logic based systems for music
analysis [Abdallah et al. 2006} [Pastor et al. 2008]l, but supports web-interaction, collaborative working,
and the essential building blocks for distributed data and computation. By integrating the DML data
into the Semantic Web and it’s conventions for e.g. representation of entities such as artists, the ICMS
can not only scale to multiple ICMS instances, but is also able provide or draw information from ex-
ternal sources such as Musicbrainz or DBpedi. In the digital humanities we find it a typical case
that data is distributed, making such integration across services and sites necessary to scale to large
datasets spanning multiple data sources.

5.1 Data Representation

The Semantic Web has at its core the Resource Description Framework (RDF): a data model built
from sets of ¢riples, which are simple logical statements of the form ((Subject), (Predicate), (Object)),
such as ((J. S. Bach), (composed), (The Goldberg Variations)). The entities, or resources, referenced in
these particular triples are not literal text, but atomic unique global identifiers, called uniform resource
identifiers or URIs, denoting various entities such as people, events, places, musical works, etc.

9http://www.charm.kcl.ac.uk/sound/sound_search.html
19http:/www.mazurka.org.uk/
Hhttp://www.ilikemusic.com

12http:/musicbrainz.org, http:/wiki.dbpedia.org
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For example, using real URIs, the resource (http:/ /dbpedia.org /resource/Sun_Ra), is described by
other triples, such as (now using standard prefix abbreviations)

((dbr:Sun_Ra), (rdf:type), (foaf:Person)),
((dbr:Sun_Ra), (foaf:name), “Sun Ra”),
((dbr:Sun_Ra), (foaf:givenName), “Herman Poole Blount”),
((dbr:Space Is_The_Place_(album)), (dbo:artist)(dbr:Sun_Ra)),
where “Sun Ra” and “Herman Poole Blount” are literal character strings, and (foaf:Person) is a resource
denoting a class of entity. Even the predicates (sometimes called ‘properties’) themselves can be de-
scribed by other triples, such as
({(dbo:artist), (rdfs:domain), (dbo:MusicalWork)),
((dbo:artist), (rdfs:range), (dbo:Agent)),
which indicate that the ‘artist’ property links musical works to agents (such as people or groups). In
this way, a complex self-describing knowledge representation can be built up, as a collection of triples,
referred to as an RDF database or a triple store. Because a triple can be thought of as a labelled edge
connecting two nodes, an RDF database is also called a graph. A set of triples describing the classes
and predicates for a particular application domain is an ontology; for example, the Music Ontology and
Event Ontology [Raimond et al. 2007]] define a broad range of terms useful for describing music, includ-

ing many classes of entity involved (people, works, recordings, composition and performance events,
etc.) and their relationships and are thus used throughout the ICMS.

5.2 Implementation framework

The ICMS is implemented in Prolog, a language whose data representation and programming model

makes it a very effective match for managing relational data, avoiding the so-called ‘object-relational

impedance mismatch’ [Ireland et al. 2009]]. Furthermore, the implementation we used, SWI Prolog

[Wielemaker et al. 2012], provides a substantial set of libraries for managing an RDF database, commu-

nicating with external databases, and building websites [Wielemaker et al. 2008]]. ClioPatria [Wielemaker et al. 2015],
is a Semantic Web application framework written in Prolog and brings together many components re-

quired to build a semantic web application into a modular and extensible system. The DML ICMS

is written as a ClioPatria add-on package that provides many facilities for managing, exploring, and

presenting music-related data.

5.3 Data import

The first step in making a music library available to the DML system is the translation of its metadata
and audio files to a set of triples in the RDF database. To this end, a set of importers was written
to handle the METS/XML metadata (BL), MySQL databases supplied with CHARM
and ILM data,] and the SQLite database created by the beetd™ music library management tool, and
reference records in the Humdrum file format for symbolic scores where available. In most cases, the
original metadata consists of plain text representations of recordings, artists, works, dates etc. rather
than unique identifiers; for example, the CHARM library refers to the composer ‘Bach’, which, without
further information, could refer to J. S. Bach, J. C. Bach, C. P. E. Bach, or indeed any other ‘Bach’. In
the interests of fidelity and to avoid the need for user intervention during the import process, such
metadata is imported as is, without any attempt to resolve the names of artists and works to unique

13http:/beets.radbox.org/
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Fig. 2. Local RDF graph surrounding a recording of Eckstein’s I want to talk about you’ performed by the John Coltrane
Quartet. Each node (except the recording date) represents an RDF resource that can be clicked on to find more information
about that entity.

identifiers. Although such an automatic entity resolution (or alignment [Crawford et al. 2014])) process
could be made relatively reliable in some cases (e.g. the names of classical music composers), it would
in general require an inferential process based on all the information available about a recording,
potentially followed by a user-guided review and correction process. This will be the subject of future
work.

The one exception to this is the beets library importer: it can make use of audio fingerprinting and
metadata matching to identify certain commercially available recordings and to match them to Mu-
sicBrainz (see Sec.[5.4) identifiers.

5.4 Musicbrainz-Music ontology integration

MusicBraind™ is a large online database of information about commercially available recordings. It
uses a relational data model, with unique identifiers for all the main entities, such as artists, recordings,
albums and works. Given a Musicbrainz identifier of a recording, the DML-ICMS can dynamically
retrieve information surrounding that recording and add it to the RDF database using Music Ontology
vocabulary. This includes detailed information about the recording such as dates, the roles of the people
involved, who played what instrument, which musical works were recorded, etc. For example, a DML

14http:/musicbrainz.org
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page describing a recording of Billy Eckstein’s ‘I want to talk about you’ by John Coltrane contains the
derived triples and a graphical view of the RDF graph surrounding this resource (see Fig.[2lor onlindT).
The graph can be used to reach (via the ‘mo:performance_of” predicate) the DML page for the musical
work ‘I Want To Talk About You’ and a complex graph showing all known recordings of if'8. These data
can be programmatically accessed through the SPARQL, Pengine and API endpoints of the ICMS.
The system for dynamically obtaining information from Musicbrainz is supported by an extension to
ClioPatria, which also supports obtaining information from public SPARQL endpoints, such as Linked-
Brainz (http://linkedbrainz.org/), or by dereferencing URIs that conform to Linked Open Data stan-
dards [Yu 2011, such as those published by DBpedia, the Semantic Web version of Wikipedia [Auer et al. 2007].

5.5 Computation management

Computation management in the ICMS is based on the idea that the relational data model is ideal
for recording information about each computation performed by the system: a relational tuple or set
of triples describing information about a computation can record which function was used, what each
input parameter was set to, what output or outputs were produced, and metadata about the computa-
tion, such as whether or not it was successful, any error information, and its time and duration. When
computation results are requested, the database can be checked to see if the result is already known.
This process is known as memoisation, and the memo database contains all the information needed for
a full exploration and further analysis of the results.

The memoisation process is augmented with a multi-threaded job control system to enable parallel
asynchronous memoisation. If the results of a computation are required, the memo database is con-
sulted to see if that particular computation (function+parameters) has been done before. If so, the
result is returned. If not, the job control system is consulted to see if that computation is already in
progress, in which case the status of the job, possibly including progress information and partial results
computed on the basis of items processed so far, is returned. Finally, if the computation is not found,
then a new job is submitted. On completion, the results of a job are recorded in the memo database. If
the computation fails, information about that failure is recorded in the memo database. Thus, if a re-
quest is made for a previously failed computation, information about the failure is available and there
is an option to retry the computation in case the implementation has been changed in the meantime.

Computations done using the VAMP system of audio analysis plugins [Cannam et al. 2006] are man-
aged using the RDF database, as VAMP plugins are already described by RDF documents (e.g., the
Silvet transcription plugin is described herd!’. Information about which VAMP plugins are available
on the current system is obtained from Sonic Annotator (a program for running VAMP plugins). A
VAMP ‘transform’ is a binding of a plugin to some specific parameter values. For example, thidd is a
page for a particular transcription transform which includes at the bottom a table of all the computa-
tions that were done using it. The resources in this table can be followed to find out more about the
computation and its result.

The bulk of the VAMP analysis results currently in DML were pre-computed off-line using general
purpose parallelisation frameworks (see Section[6) and imported into the ICMS. This approach is use-
ful for low-level feature extraction on large collections which can take significant amounts of processing
time. However, if the result of applying a particular transform to a particular recording is not avail-
able, then the computation is triggered automatically: the system manages the files involved in an

15http://dml.city.ac.uk/pub/JOCCH16/cpl.htm
16http:/dml.city.ac.uk/pub/JOCCH16/cp2.htm
7http://dml.city.ac.uk/pub/JOCCH16/cp3.htm
18http:/dml.city.ac.uk/pub/JOCCH16/cp4.htm
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invocation of Sonic Annotator, puts the results file in a managed directory tree, and adds an entry to a
dedicated VAMP memo database so that the results can be retrieved in future. Any memoised compu-
tations are furthermore accessible to other systems via the ICMS public interfaces described in Section
0.6

Other analysis functions, mainly those that rely on the results of the primary VAMP-based analysis,
can be written in several languages: Prolog, Matlab, R, or Python. The results are memoised in a
persistent Prolog database, which is more suitable for computations that may have many input and
output arguments. A table of all such memoised functions in the DML is available online, and the
results of previous computations can be viewedH.

Access to Matlab is provided via the Prolog-Matlab interface library plm, which uses the Matlab
Engine API to start and communicate with a long-running separate Matlab process. Access to Python is
via a separate invocation of the Python executable, with data exchange in JSON format over standard
input and output. Access to R is via the Prolog-R interface library Real [Angelopoulos et al. 2013,
which uses the R API to run an embedded instance of R within the same process and memory space as
SWI Prolog itself. These mechanisms are used to implement a variety of secondary analysis methods
that use the results of the various VAMP computations, both at the recording and collection levels (see
Sec.[6.2).

Most computation is run in external processes such as Python, Sonic Annotator, Matlab, sox, lilypond,
fluidsynth (see below for details about the latter), which means that in the event of an error, those
processes can crash without bringing down the central server. This is an important consideration for
a service which is expected to be available continuously. In contrast, computations in R (using the
Real Prolog package) use an embedded R instance—this process is faster but leaves the server more
vulnerable to errors generated by the R subsystem. Therefore R is preferred for smaller computation
tasks, such as collection level statistics, as the overheads for invocation and data exchange are far lower
than for comparable computations with the Matlab or Python interfaces, which are preferred for lower
level task running of VAMP output or audio files.

5.6 Supported APIs for Presentation and Distributed Processing

The ICMS supports several web APIs for providing access to the information it contains to other sys-
tems and users. We use web APIs for obtaining rendered Matlab and R graphics, for obtaining audio
streams in several formats, for obtaining symbolic scores in several formats including standard music
notation rendered using the music typesetting system Lilypond, and for obtaining synthetic perfor-
mances of symbolic scores using the fluidsynth MIDI synthesis program.

To support the VIS web application, the ICMS provides a RESTful web API for defining and manag-
ing datasets, obtaining information about recordings, and for requesting results for analysis on both
recording and collection level. This API interacts with the asynchronous memoisation system and can
retrieve progress information and partial results from computations in progress.

The DML system can be scaled with multiple ICMS using the Pengine (Prolog Engine) interface that
allows several instances to interact using high-level Prolog language and consistent representation of
data entities. This way, potentially pre-aggregated information for a specific analysis can be drawn
from several sources before final aggregation in a single ICMS.

The integrated SPARQL endpoint provides a basis for data access by external clients and systems as
well as other ICMS. The ClioPatria SPARQL endpoint supports this scenario with Federated Queries,
which integrate queries on multiple remote service endpoints - in our case ICMS - and combine their

19http://dml.city.ac.uk/pub/JOCCH16/cp5.htm) http:/dml.city.ac.uk/pub/JOCCH16/cp6.htm
20http://www.swi-prolog.org/pack/list?p=plml
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Fig. 3. Relationship between collection size and computation duration for collection level analyses, grouped by implementation
language.

results. This further provides potential of scaling and allows for a strong interoperability with the
Semantic Web.

5.7 Collection level performance statistics

Fig[3lshows some statistics summarising the performance of the ICMS running on the server based at
City University over a total of 1918 collection level analyses (CLAs), implemented in Prolog, Python,
Matlab and R. The data for this plot was gathered from the computation memo database which in-
cludes information about the times and duration of each computation. Most of the computations were
triggered during the final DML workshop, where over 40 participants used the visualisation front end
concurrently. The CLAs depend on RLAs which may or may not have been pre-computed and the RLA
may have been implemented in a different language than the CLA. The small number of computations
performed in R is due to the fact that support for R was added after the workshop, and so the statistics
for these computations are not as informative as for the other languages.

Fig. Bl shows the relationship between collection size and computation duration. From this we can
see that the overhead for computations implemented in Prolog is very much lower than for the other
languages. Analysis done in Python requires the starting of new operating system processes and the
communication of input and output data over Unix streams. Computations done in Matlab or R must
be serialised due to the inherently single-threaded nature of both the Matlab engine API and the
embedded R API. The results thus show that the strategy of integrating feature extraction into the
database query system helps reduce time for data channelling and initialisation of the Python, R, or
Matlab environments. However, they also show that the system is flexible enough to incorporate a
range of analysis implementation languages, allowing for quick prototyping using existing code, with
the option to improve performance by re-implementation subsequently.

6. BACK-END PROCESSING

A prerequisite for performing collection-level analysis (see Section [6.2), is the extraction, by means of
VAMP plugins, of low and mid-level audio features (see Section [6.1) for the audio recordings under
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consideration. This process, carried out using the batch tool Sonic Annotator], takes mostly a few
seconds up to a few minutes for a typical audio file. In order to speed up the process for large collections,
this back-end processing is parallelised. We used one server physically located at the premises of ILM
(24 cores @2.4GHz, 128GB RAM, 14TB HDD) and a second at the BL (20 cores @3 GHz, 128GB RAM,
14TB HDD). This in-place access to data is at the core of the DML system design, enabling analysis on
datasets that cannot be copied off-site due to copyright and licensing.

Lists of audio file URIs are sent in batches to the parallelisation engine, which calls sonic-annotator
with a set of VAMP transform definitions to extract audio features. We tested different approaches and
found Apache Spark@ to provide flexibility for multiple servers and distributed multi-level analyses
(e.g. including collection level analysis) using the map-reduce architecture. Processing the ILM dataset
with 7 VAMP transforms using 20 CPU cores on the ILM server took 30 days.

6.1 Feature Extraction

A primary goal of the back-end system is to automatically extract and store low- and mid-level descrip-
tors from individual audio recordings. The following list shows the low and mid-level features extracted
in the DML (information on VAMP plugins is available online?J):

(1) Spectrograms provide time-frequency content of the recordings, using the short-time Fourier trans-
form or the constant-Q transform[Schorkhuber and Klapuri 2010].

(2) Mel-frequency Cepstral Coefficients (MFCCs) offer a compact representation of the frequency con-
tent of an audio signal; 20 MFCCs per time frame were extracted using the QM Vamp Plugin Set.

(8) Chroma projects the entire spectrum onto 12 semitone bins. Two implementations were used: QM
Chromagram and NNLS Chroma Vamp [Mauch and Dixon 2010].

(4) Onsets represent the beginning of a musical note or other sounds in an audio signal using the QM

Onset plugin [Bello et al. 2005].

(5) Speech | music segmentation on ethnographic and radio recordings was done using the BBC Speech/Music
Segmentation plugir@.

(6) Chords provide a concise description of musical harmony; we used the Chordino Vamp Plugin

[Mauch and Dixon 2010].

(7) Beats were extracted using: Beatroot [Dixon 2007], Marsyas [Tzanetakis and Cook 2000], and Tem-
potracker [Davies and Plumbley 2007]|.

(8) Tempo following is strongly related to beats. We use the Tempotracker [Davies and Plumbley 2007]
and Tempogram [Grosche et al. 2010].

(9) Keys are detected (in a Western tonal music context) with the QM Key plugin [Noland and Sandler 2007].
(10) Melody is estimated by the MELODIA Vamp plugin [Salamon and Gomez 2012]

(11) Note transcription from audio to music notation uses the Silvet vamp plugin [Benetos and Dixon 2012
two different settings: 12-tone equal temperament (for Western tonal music), and 20 cent resolution
(for World & Traditional music).

21http:/vamp-plugins.org/sonic-annotator/
2%http://spark.apache.org
23http://www.vamp-plugins.org
24https:/github.com/bberd/bbe-vamp-plugins
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6.2 Collection-Level Analysis

Based on the low and mid-level features listed above, the DML system computes collection-level fea-
tures for large-scale musicological analysis as shown below.

(1) Key-relative chord sequences combine information from the chord and key extraction features, ex-
tending [Barthet et al. 2014] to sequential pattern mining (CM-SPADE) on key-relative chord se-
quences.

(2) Mean tempo curve summarises tempo changes over the duration of a recording. The curve displays
average normalised tempo vs. the normalised track length.

(8) Pitch class histogram summarises detected pitches from the (semitone-scale) Note Transcription in
a histogram with octave-equivalent pitch classes 0-11 (C-B). The individual histograms are aver-
aged across the collection based on the notes’ duration. A tonic-relative variant of the pitch class
histogram is also available.

(4) Pitch histogram aggregates all detected pitches over a collection of recordings, (without the octave-
wrapping of the pitch class histogram). Information from Note Transcription is used in two versions:
semitone resolution histogram (pitch on MIDI scale 0-127) and fine resolution, a fifth semitone (20
cent) summarised in 200 bins.

(5) Similarity matrix contains the pairwise feature similarity of the recordings in a collection, using a
distance metric (Euclidean as in or normalised compression distance [Li et al. 2004]).
The user can select any combinations of the following features: chords, chromagram, MFCCs.

(6) Similarity plane arranges recordings on a two-dimensional pane according to their similarity: sim-
ilar recordings more closely together, dissimilar recordings farther apart. The spatial arrangement
is determined using Multidimensional Scaling (MDS) [Borg and Groenen 2005] on the basis of the
Similarity Matrix.

(7) Tempo histogram summarised all tempi detected using the QM tempo tracker Vamp plugin across
the entire collection.

(8) Tonic histogram shows the tonic (i.e. key for Western tonal music) over all recordings as estimated
by the QM key detector. In tonal music the last tonic detected is considered a good estimate for the
entire piece.

(9) Tuning stats summarise the reference pitch distribution based on the 20 cent resolution Note Tran-
scription feature in a histogram plus average and standard deviation. The tuning frequency is
estimated per recording based on the precise FO for all detected A, E and D notes.

7. FRONT-END INTERFACES
7.1 Data-Management Web Interface

ClioPatria provides a web interface for browsing and managing the RDF database. The core RDF
concepts of triples, resources, predicates and classes are exposed, so that users can see all the triples
for a given subject, or for a given predicate, and traverse the RDF graph by following links associated
with resources, predicates, or literal values.

For example, a recording of ‘Blackthorn Stick’ is described in a page@, which lists the predicate-
object pairs for that subject as shown in figure. Clicking on the word ‘Irish’ next to the property
(de:language) retrieves all the recordings with that value of the language property. Clicking on the
property (marcrel:Performer) yields information about the definition of that term, and scrolling down

25http:/dml.city.ac.uk/pub/JOCCH16/cp7.htm
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Fig. 4. Screenshot of the VIS interface: Analysis on user-defined collections (specified through the menu on the top). Three
perspectives (list view, tuning statistics and tonic histogram) are shown as rows.

and clicking on the number under ‘#Distinct objects’ in the ‘Predicate statistics’ table yields all of the
values of the performer property@. From there, one can find all the recordings featuring a given per-
former.

ClioPatria also provides several hooks by which the display of information can be customised. We
use them to enhance the presentation of music-related data in several ways. For example, if the audio
data for a recording is available, then the page describing that recording is extended with an audio
spectrogram, (computed and rendered dynamically in Matlab). If the audio is available publicly, then
references to that resource are decorated with an HTML5 audio player. References to symbolic scores
are decorated with an audio player and a link to a pag displaying the score in standard music
notation (created dynamically using Lilypond), and an interface that allows the score to be played back
with control over tempo and transposition (using the synthesis program fluidsynth). Similarly, the page
representing the results of an automatic transcription is augmented with a sonification interface and
a piano-roll view of the transcription?d.

7.2 Collection-level Visual Interface (VIS)

Our VIS interface supports musicologists in exploratory data analysis on the collection level. The VIS
interface is publicly availabld® and a screenshot is shown in Figure[l The VIS interface runs in a web
browser, and the visualisations are created using an array of state-of-the-art web technologies.

26http://dml.city.ac.uk/pub/JOCCH16/cp8.htm
2"http:/dml.city.ac.uk/pub/JOCCH16/cp9.htm
28http://dml.city.ac.uk/pub/JOCCH16/cp10.htm
29http:/dml.city.ac.uk/vis
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From a systems perspective, this approach makes heavy use of processing in the browser, which
reduces the central system load and makes it, together with HT'TP level caching using NGINX, more
scalable and responsive than server-based visualisation.

The VIS design is based on a grid of collections in the columns and analyses in the rows. In each
cell of the grid, a visual representation, such as a bar chart, graph or histogram, is shown, including
tool tips for individual values at mouse point. The user defines collections by selecting libraries and
providing search terms in metadata fields at the top of the screen. Analyses are selected from a list
and parametrised on the left. A comparison visualisation can be generated between columns to view
differences between collections, e.g. composers or regional styles. Further discussion of the specifics of
the technology and the human interaction design are out of the scope of this article.

8. USER EVALUATION AND CASE STUDIES
8.1 User Evaluation

A user-based evaluation took place during a second DML workshop on 13 March 2015; in attendance
were 40 participants with interests in digital music and musicology (academic, commercial, and public
sector). Participants were asked to carry out two tasks from the following list in pairs using the VIS
interface.

—Tuning Frequency: identify trends in orchestral pitch over time
—Pitch Profile: identify, compare, and explore pitch class sets and pitch hierarchies
—Tempo Curves: identify historical trends in classical music through tempo summaries

We asked participants to rate their level of agreement with the statement these kinds of tools could help
with the task in hand. In total, we received 28 partial and 16 complete responses from participants. Out
of the 16 complete responses, 9 participants strongly agreed that the developed tools can help with the
task in hand, while 6 participants agreed (on a scale of 1 to 5, with 5 indicating strong agreement).

Most suggestions for improvements were about usability of the user interface (server messages, data
access speeds), many of which have been addressed in the current version. Apart from those, the most
frequent requests were the addition of more genres of music (e.g. electronica, US country music), inte-
gration with other services (e.g. Echonest), and of more metadata (e.g. duration information) to support
more powerful search and selection. During the user study, several musicological interpretations and
reflections were made by the participants, e.g. “Uganda’s music uses a wider range of pitches than
Dinka”, “it seems that the tuning of symphonies was more accurate in 1980-2010 than in the earlier
period” (cf. Section [8:2).

8.2 Musicological Analysis

The DML system aims to enable musicological analysis of large collections, providing musicologists
with descriptors and tools based on music information retrieval, expanding on previous work on tech-
nologies for musicological research (such as Sonic Visualiser and the Sonic Annotator Web Application)
[Fazekas et al. 2010I.

More specifically, the DML system can be used for empirical/systematic musicological research fo-
cusing on comparative analysis between collections of recordings, using various cues, such as: spa-
tial/geographical information, pitch/tonality/harmony (e.g. pitch histograms, chord sequences, tonic,
tuning), rhythm (tempo curves/histograms), as well as similarity research across a music collection.
The modular structure of the proposed system also enables the insertion of additional descriptors and
tools that can be of benefit to musicological research.

8.2.1 Application examples.
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8.2.1.1 Tuning frequencies. The development of tuning frequencies over time and between instru-
mentations is a question that can be addressed with the DML. We performed exploratory experiments,
as exemplified in Figure [, which shows a comparison of symphonic recordings vs. piano recordings,
with the latter showing lower spread. Regarding pitch levels, we found that already in the 1950s there
was an elevated pitch level of 444Hz, despite the then recent standardisation of 440Hz, but the results
vary depending on instrumentation. These initial findings justify further studies from a musicological
perspective?y.

8.2.1.2 Traits of successful musicals. The DML system was used in a study commissioned by Sky
Arts regarding characteristics of successful musical theatre music, as compared to less successful mu-
sicals (commercially or by critics’ judgement). Harmonic, dynamic and tempo-related patterns were

found and used by a team that then created a computer-generated musical that will be performed in
London’s West End®J.

8.3 Music Archive Management

The information management system presented in Sec. [l can be used for integrating music data, de-
rived features, and metadata across heterogeneous collections and archives, as exemplified by the inte-
gration of several databases and archives, as described in Section[l It is also worth noting that while
the public DML interface focusses on displaying/exploring audio collections, the ICMS additionally sup-
ports the use of machine-readable music notation in formats such as MIDI and kern, and linking audio
and symbolic notation for a given music piece or performance. This, combined with the MusicBrainz
integration (Section[5.4) offers additional metadata resources, which are not provided with the original
metadata.

8.4 Music Similarity

The use of content-based similarity descriptors can be directly useful for music recommendation appli-
cations [McFee et al. 2012]]. The similarity features of the DML system, as presented in Section[6.2] can
be used to that end. The modular use of the features (supporting any combination of input low-level
features, as well as various distance measures) also allows for a thorough evaluation of music simi-
larity estimators, across several music collections. Expanding the concept of music similarity beyond
audio recordings is part of the ASyMMusS project on audio-symbolic music similarity@, which relies on
the DML infrastructure.

9. DISCUSSION

Overall, the feedback from the final workshop and from musicologists we interacted with was very pos-
itive. The system was seen as generally providing the required functionality and providing great poten-
tial for advancing Digital Musicology. The main shortfall that was mentioned is the lack of consistent
metadata and search facilities to enable more context-related queries. There were many suggestions
regarding the visual interface, which are outside the scope of this paper as it focuses on the software
system. There are some issues relating to the system design that have not fully been resolved during
the DML project or have emerged as new problems requiring future work.

Extended and linked metadata The resolution of metadata entities to integrate with the Semantic
Web has not been fully achieved. This requires mapping the names of things to URIs as described above,
and needs substantial work that is outside the scope of our project. Having metadata fully linked to

30We would like to thank Prof Stephen Cottrell for musicological contribution and guidance.
31http://www.broadwayworld.com/article/VIDEOS-Computer-Generated-Musical-BEYOND-THE-FENCE-Prepares-For-Opening-20160216
32http:/dml.city.ac.uk/asymmus/

ACM Journal on Computing and Cultural Heritage, Vol. X, No. X, Article XXXX, Publication date: January 2016.


http://www.broadwayworld.com/article/VIDEOS-Computer-Generated-Musical-BEYOND-THE-FENCE-Prepares-For-Opening-20160216
http://dml.city.ac.uk/asymmus/

XXXX:18 . The Digital Music Lab

the Semantic Web would be extremely useful, as musicologists did ask for very specific queries that
require extensive linking to outside sources of knowledge, including authority files, DBpedia and other
data sources.

Size of metadata and results Currently, the results of collection level analyses are stored using
the SWI Prolog persistency library to manage these memo tables, which uses the in-memory Prolog
database backed by an on-disk journal in a text-based format. While this means that accessing the
database is fast, it also means that initially reading the database is getting slower as the database
gets larger, and the pressure on system memory will eventually become a problem. Alternatives cur-
rently being developed are to use an SQL-based database or the Berkeley DB format for these memo
tables. In addition, the use of files to store large values instead of writing them literally in the database,
as explored in [Pastor et al. 2008|, would alleviate this problem.

Parallelisation Prolog’s declarative nature should make it relatively straightforward to parallelise
collection level analyses which follow the map-reduce paradigm, though to make effective use of this
it will be necessary avoid the use of Matlab or R for numerical computations, as both of these libraries
are single-threaded. Computations done in Python or Sonic Annotator avoid this problem, but incur
the overhead of starting an operating system process for each item. Alternatively, parallelisation could
be done in Matlab or R using their own parallelisation mechanisms.

Distributed data and computation Musicologists could greatly benefit from a distributed system that
enables analyses on data held by different libraries and archives. In a system distributed over several
ICMS, analysis that requires computations needs to be triggered on the server that does have access
to the audio, and the results made available to other systems. The built-in Pengine (Prolog engine)
API already provides means for multiple ICMS to interoperate at the level of remote Prolog calls. This
way we plan to scale up the DML system and integrate further content via new ICMS and CS at
other libraries. For integration with existing Linked Data systems, federated SPARQL queries across
multiple servers provide a standardised way to integration. If more scaling is required because of large
numbers of clients, triple fragments, as recently proposed by [Verborgh et al. 2014], may be a potential
solution.

10. CONCLUSIONS

We have proposed the DML system as an approach to bridge the gap between musicology, music infor-
mation retrieval and Big Data back-end technology. The first instantiation of the system enables music
researchers to explore and analyse substantial music audio collections and datasets. Our evaluations
showed that the combination of different facets of music, audio analysis, musical structure, and meta-
data is of value to musicology, as it enables researchers to understand music in its context and conduct
comparative analyses between music collections.

To support fast and interactive exploration and retrieval of results we developed an integrated sys-
tem using intelligent computation management, including result-caching on several levels. This allows
for efficient analysis of large music collections, based in remote locations where they are locally anal-
ysed by compute servers. Combining existing technology with intelligent knowledge management tech-
niques, we developed new collection-analysis tools that are now accessible to end-users through the
interactive graphical VIS interface. The DML system can process copyrighted music data by bringing
the computation to the data, which enables computational analysis of recordings at the BL for the first
time. Our use of standardised data formats renders both the analysis back-end and the visualisation
extensible to new analyses and datasets. Given the outcome of the development and the positive feed-
back from the users, the creation and connection of multiple DML systems at other libraries, archives
or commercial music providers is a very interesting prospect, as it can potentially create unprecedented
coverage and insights in music research. Finally, the DML system can serve as a paradigm for digital
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humanities applications outside the realm of music and musicology, as an open framework for linking
and providing access to raw and derived data with metadata in copyright-restricted collections of any
digital or digitised cultural artefact.
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