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ABSTRACT 14	
  
A major challenge facing the widespread implementation of small and mini-scale organic 15	
  
Rankine cycles (ORCs) is the economy-of-scale. To overcome this challenge requires systems 16	
  
that can be manufactured in large volumes and then implemented into a wide variety of 17	
  
different applications where the heat source conditions may vary. Therefore, the aim of this 18	
  
paper is to investigate whether working fluid selection has a role in improving the current 19	
  
economy-of-scale by enabling the same system components to be used in multiple ORC 20	
  
systems. The performance map for a small-scale ORC radial turbine, obtained using CFD, is 21	
  
adapted to account for additional loss mechanisms not accounted for in the original CFD 22	
  
simulation, such as windage, volute and diffuser losses, before being non-dimensionalised 23	
  
using a modified similitude theory developed for subsonic ORC turbines. The updated 24	
  
performance map is then implemented into an ORC thermodynamic model. This model 25	
  
enables the construction of a single performance contour that displays the range of heat 26	
  
source conditions that can be accommodated by the existing turbine whilst using a particular 27	
  
working fluid. Constructing this performance map for a range of working fluids, this paper 28	
  
demonstrates that through selecting a suitable working fluid, the same turbine can efficiently 29	
  
utilise heat sources between 360 K and 400 K, with mass flow rates ranging between 0.5 kg/s 30	
  
and 2.75 kg/s respectively. This corresponds to using the same turbine in ORC applications 31	
  
where the heat available ranges between 50 and 380 kWth, with the resulting net power 32	
  
produced by the ORC system ranging between 2 kW and 30 kW. Further investigations also 33	
  
suggest that under these operating conditions the same working fluid pump could also be 34	
  
used; however, the required heat exchanger area is found to scale directly with increasing heat 35	
  
input. Overall, this paper demonstrates that through the optimal selection of the working fluid, 36	
  
the same turbomachinery components (i.e. pump and turbine) can be used in multiple ORC 37	
  
systems, which may offer an opportunity to improve on the current economy-of-scale. 38	
  
 39	
  

40	
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NOMENCLATURE 41	
  
𝑎 Speed of sound, m/s 
𝐴 Area, m2 
𝐴! Diffuser area ratio 
𝑐 Velocity, m/s 
𝐶! Windage torque loss coefficient 
𝐷 Turbine rotor diameter, m 
𝑔 Acceleration due to gravity, m/s2 
ℎ Enthalpy, J/kg 
𝐻 Pump head, m 
𝑚 Mass flow rate, kg/s 
𝑁 Turbine rotational speed, rpm 
𝑃 Pressure, Pa 
PP Pinch point 
PR Pressure ratio 
𝑞	
   Thermal energy, J 
𝑄 Volumetric flow rate, m3/s 
𝑟 Radius, m 
Re Reynolds number 
𝑠 Entropy, J/(kg K) 
𝑇 Temperature, K 
𝑈	
   Overall heat transfer coefficient, W/(m2 K) 
𝑊 Work, J/s 
𝑌	
   Total pressure loss coefficient 
𝜂 Efficiency, % 
𝜃 Diffuser divergence angle, ° 
𝜇 Viscosity, Pa/s 
𝜌 Density, kg/m3 
𝜙	
   Pump flow coefficient 
𝜓	
   Pump head coefficient 
𝜔 Rotational speed, rad/s 
𝜔!	
   Pump specific speed 
Δ𝑃!	
   Volute pressure drop 
Δ𝑇!"#	
   Log mean temperature difference, K 
Δ𝑇!" Amount of superheat, K 
  
Subscripts 
* Choked (sonic) flow conditions 
0 Total conditions 
1-5 Turbine locations 
6 Pump inlet/condenser outlet 
7 Pump outlet/evaporator inlet 
8 Evaporator pinch point 
c Heat sink 
d Design point 
h Heat source 
p Pump 
o Organic fluid 
s Conditions after isentropic expansion 
ts Total-to-static 
tt Total-to-total 
w Windage 
 42	
  

43	
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1 INTRODUCTION 44	
  
The growing interest in organic Rankine cycles (ORC) can be attributed to its potential to 45	
  
effectively convert low temperature heat sources such as solar, geothermal, biomass and 46	
  
waste heat into mechanical power. However, low heat source temperatures imply low cycle 47	
  
thermal efficiencies, which places a greater pressure on the need to develop economically 48	
  
viable systems. Despite successful commercialisation for power outputs above a few hundred 49	
  
kilowatts, ORC technology has not been widely commercialised at the smaller-scale. 50	
  
However, a recent review [1] suggested that automotive waste heat recovery, combined heat 51	
  
and power, and concentrated solar power applications could be large potential markets for 52	
  
small-scale ORC systems. The authors of that paper also go on to say that the successful 53	
  
uptake of small-scale ORC systems can only be realised through the high volume production 54	
  
of modular systems, leading to lower system costs. To achieve this, it is necessary to widen 55	
  
the scope of existing systems by developing components that operate efficiently over a wide 56	
  
range of operating conditions, and with different working fluids. However, as stated in [2], 57	
  
many existing state-of-the-art ORC systems are designed for a nominal operating point and 58	
  
exhibit poor off-design. Clearly there is a need to develop new methods to understand and 59	
  
predict the design and off-design performance of ORC expanders, and also to investigate the 60	
  
impact of working fluid selection and replacement on the performance of both the expander 61	
  
and the whole ORC system. 62	
  
 The focus of many ORC studies within the literature has been thermodynamic 63	
  
modelling and optimisation. For clarification, the authors make a distinction here between 64	
  
design optimisation and cycle optimisation. In the former the aim is to optimise the design of 65	
  
the ORC system to deliver the best performance for the available heat source and heat sink. In 66	
  
this case the desired component efficiency can be specified during thermodynamic 67	
  
optimisation, and then during the component design phase the components are designed to 68	
  
achieve this performance. On the other hand, cycle optimisation concerns the case where pre-69	
  
existing system components are available, and the cycle operating conditions are optimised to 70	
  
maximise performance. In this case, off-design components’ models are critical since it is no 71	
  
longer suitable to assume constant expander efficiency. Many examples of design 72	
  
optimisation studies can be found within the literature, for example [3-5]. However, within 73	
  
the scope of this paper, cycle optimisation studies are more appropriate, where off-design 74	
  
models for the pump, evaporator, condenser and expander are implemented into 75	
  
thermodynamic models.  76	
  

Even in the case of cycle optimisation, pump efficiency is often assumed constant. In 77	
  
[6] it was found that the pump could consume up to 15% of the power produced by the 78	
  
expander, demonstrating the large impact a change in pump efficiency can have on system 79	
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performance. The few authors that have considered pump performance have considered it 80	
  
within dynamic models [7,8]. These studies construct non-dimensional performance maps 81	
  
based on pump similitude theory, but this requires performance data that is particular to a 82	
  
given pump and not always available. The same authors have also constructed dynamic heat 83	
  
exchanger models, which apply a one-dimensional differential energy and mass balance to 84	
  
establish temperature distributions as a function of space and time. For steady-state models, 85	
  
heat exchanger performance is often obtained by establishing the effectiveness as a function 86	
  
of the heat exchanger geometry and flow conditions (𝜖-NTU method), and this has been 87	
  
demonstrated for ORC systems in [9]. 88	
  
 Arguably, the expander is the most critical component so this is the main focus within 89	
  
this paper. Particularly in small-scale systems it is not suitable to assume constant expander 90	
  
efficiency as the search for optimal cycle conditions may often move the expander 91	
  
performance away from the design point. Indeed, it has been highlighted that thermodynamic 92	
  
models are only accurate when expander performance is taken into account [10]. Performance 93	
  
maps can be used to model turbine performance, and these plot mass flow rate and turbine 94	
  
efficiency against pressure ratio and rotational speed. These maps are typically non-95	
  
dimensionalised using similitude theory, which is well established for ideal gases [11]. Whilst 96	
  
similitude theory has been applied to ORC turbines as early as the 1980s [12], and has 97	
  
continued until more recently [13], these analyses focussed on turbine design rather than 98	
  
assessing off-design performance. Furthermore, these studies concerned axial, rather than 99	
  
radial turbines. For off-design, similitude has been applied to ORC turbines [14-17]. 100	
  
However, these studies implemented a simplified similitude model that used ideal gas 101	
  
relationships that are not suitable for organic fluids. A recent study showed that these 102	
  
formulations cannot accurately predict turbine performance when using organic fluids [18]. 103	
  
This agrees with recent work conducted by the authors [19]. However, the authors’ work also 104	
  
proposed a modification to the similitude model, which accurately predicts ORC turbine 105	
  
performance during subsonic operation. It is worth noting that one-dimensional loss models 106	
  
could be used to assess turbine performance. These loss models have been applied to ORC 107	
  
turbines [20-22], however this is often for turbine design, rather than assessing off-design 108	
  
performance. Furthermore, these loss models are based on empirical data obtained for ideal 109	
  
gases, and have not been validated for organic fluids. However, if validated, these loss models 110	
  
could have a place in off-design modelling of ORC turbines. 111	
  
 Another important variable within an ORC system is the working fluid where 112	
  
working fluid selection remains an important research area. The key selection criteria for an 113	
  
optimal working fluid have been discussed and reiterated within many research papers [23-114	
  
25]. Furthermore, there have been many working fluid studies where a number of working 115	
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fluid candidates have been evaluated for different applications, and this has also included 116	
  
considering different thermodynamic cycle configurations [26-27]. However, what is missing 117	
  
in most of these studies is a consideration of the impact that the working fluid has on the 118	
  
performance of the system components, both at design and off-design conditions. It should 119	
  
therefore be noted that the emphasis within this paper is to investigate this coupling between 120	
  
the working fluid and the turbine performance, rather than reiterating selection criteria and 121	
  
then repeating working fluid selection studies. 122	
  

Previous work has led to the design of an ORC turbine [28], and the generation of the 123	
  
non-dimensional performance map using CFD. The focus of this paper is to combine this 124	
  
turbine performance map with thermodynamic cycle analysis in order to investigate the 125	
  
interaction between the selected working fluid and the turbine performance under different 126	
  
heat source conditions. Preliminary investigations have already been completed by the 127	
  
authors [29], and this paper extends this analysis by implementing the modified and more 128	
  
accurate similitude model, updating the turbine performance map to account for additional 129	
  
loss mechanisms not accounted for during the CFD simulation, whilst also including a 130	
  
consideration of how the pump and heat exchanger performance varies with different working 131	
  
fluids under different heat source conditions. The main novelty in this work is the ability 132	
  
establish the full range of heat source mass flow rates that could be accommodated using a 133	
  
particular turbine design and working fluid. This information is presented on a single contour 134	
  
plot, which can be used to evaluate the suitability of using that turbine and working fluid for a 135	
  
particular application.  The main aim of this research is to then establish the range of heat 136	
  
sources that could be effectively converted into mechanical power using the same turbine 137	
  
design, and to demonstrate how the turbine can be matched to the available heat source by 138	
  
selecting the most suitable working fluid. Ultimately, this is envisioned as a useful first step 139	
  
towards improving the economy-of-scale of small ORC systems, since the same turbine can 140	
  
be manufactured in large volumes and then implemented within a range of different ORC 141	
  
systems designed for different heat source conditions. To the authors’ knowledge, this study 142	
  
is the first to couple the modified similitude theory to an ORC thermodynamic model, and to 143	
  
then explore methods to improve the economy-of-scale of small-scale ORC systems. 144	
  

After this introduction, the modified similitude theory is introduced in Section 2 and 145	
  
the performance map obtained using CFD is updated to account for additional loss 146	
  
mechanisms that were not accounted for during the CFD simulation. In Section 3 the turbine 147	
  
performance map is implemented into the cycle model whilst models for the pump and heat 148	
  
exchangers are described in Section 4. In Section 5, a case study is considered which 149	
  
produces an example of the performance contour plot, and then the model is run for a range of 150	
  
heat source temperatures and working fluids. For each working fluid and heat source 151	
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temperature the optimal operating point is established by evaluating the resulting contour plot, 152	
  
and a range of potential applications are obtained. Then, in Section 6 the conclusions of this 153	
  
research are outlined.  154	
  

 155	
  
 156	
  

2 TURBINE MODELLING 157	
  
Before discussing the turbine and system modelling in the next sections, it is necessary to 158	
  
define the notation used throughout this paper. This is shown in Figure 1. 159	
  
 160	
  
2.1 Similitude theory 161	
  
The authors have investigated the application of similitude theory to ORC turbines, and this 162	
  
led to a proposed modification to the existing model [19]. This modification is shown by 163	
  
Equation (1), and uses the density and speed of sound at the choked stator throat, denoted 𝜌∗ 164	
  
and 𝑎∗ respectively, instead of the turbine total inlet conditions; Δℎ! is the isentropic total-to-165	
  
total enthalpy drop across the turbine, 𝑁 is the rotational speed, 𝐷 is the rotor diameter, 𝜂!! is 166	
  
the turbine total-to-total isentropic efficiency, 𝑊 is the power output and 𝑚! is the working 167	
  
fluid mass flow rate. Although the ratio of specific heats is used in the conventional similitude 168	
  
model, it has been neglected in Equation (1). For ideal gases 𝜌∗ and 𝑎∗ can be expressed using 169	
  
the ideal gas law, such that the ratio of specific heats is contained within the other non-170	
  
dimensional groups. For a non-ideal gas, the ratio of specific heats has been removed as it is 171	
  
assumed that the variation in gas composition is accounted for by using a suitable equation of 172	
  
state to calculate 𝜌∗, 𝑎∗ and 𝛥ℎ!. 173	
  
 174	
  

Δℎ!
𝑁!𝐷!

, 𝜂!!,
𝑊

𝜌∗𝑁!𝐷!
= 𝑓

𝑚!

𝜌∗𝑁𝐷!
,
𝑁𝐷
𝑎∗

,
𝜌∗𝑁𝐷!

𝜇
 

 

(1) 

 175	
  
Equation (1) can be simplified for a fixed turbine since the diameter cannot change. 176	
  

Furthermore, the term on the far right of Equation (1) is the rotational Reynolds number, and 177	
  
for ideal gas turbines this term is often neglected. The previous study suggested this term can 178	
  
also be neglected for ORC turbines if the change in the Reynolds number is less than 200% 179	
  
[19]. At higher deviations, Reynolds number effects may become more prevalent, which 180	
  
might reduce turbine efficiency. Finally, the third term on the left hand side, the power 181	
  
coefficient, has been omitted for simplicity since 𝑊 can be derived once 𝑚!, 𝜂!! and 𝛥ℎ! are 182	
  
all known.  This simplification leads to Equation (2). 183	
  
 184	
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𝛥ℎ!
𝑎∗!

, 𝜂!! =   𝑓
𝑚!

𝜌∗𝑎∗
,
𝑁
𝑎∗

 
 

(2) 

 185	
  

Equation (2) shows that the reduced head coefficient (Δℎ! 𝑎∗!)  and turbine 186	
  
efficiency  𝜂!! are both functions of the reduced flow coefficient (𝑚!/𝜌∗𝑎∗) and the reduced 187	
  
blade Mach number (𝑁 𝑎∗) . Therefore, non-dimensional performance maps can be 188	
  
constructed based on these four parameters. It has been found that for a radial turbine 189	
  
operating with R245fa, R123 and R1234yf working fluids, Equation (2) accurately predicts 190	
  
turbine performance to within 2% for all subsonic operating points, when compared to CFD 191	
  
simulations [19]. More recently, the similitude model has also been validated against unsteady 192	
  
CFD simulations for another radial turbine operating with these same working fluids in 193	
  
addition to R1234ze, pentane and isobutane [30]. In this case Equation (2) predicted the 194	
  
performance to within 1%. It should be noted that currently the authors have focused on radial 195	
  
turbines for small ORC systems. However, there should be no reason why Equation (2) 196	
  
cannot be used to model the performance of different types of turbines, namely axial turbines, 197	
  
but future research efforts should investigate this further. It should also be noted that there is 198	
  
also a need to confirm the suitability of Equation (2) experimentally. 199	
  
 200	
  
2.2 CFD turbine performance map 201	
  
The design specification for an ORC turbine is given in Table 1. For the specified inlet 202	
  
conditions and working fluid the turbine performance was evaluated over a range of pressure 203	
  
ratios and rotational speeds using CFD. The turbine design and CFD analysis is documented 204	
  
in [28]. After completing each CFD simulation the mass flow rate and isentropic efficiency 205	
  
were obtained and then scaled using Equation (2). The turbine performance maps were then 206	
  
obtained by curve fitting the CFD results, and these are shown in Figures 2 and 3. 207	
  
 208	
  
2.3 Loss models 209	
  
The CFD simulations used to construct Figures 2 and 3 were completed with periodic 210	
  
boundaries. Whilst this is necessary to reduce the computational expense of the simulations, 211	
  
this meant windage losses behind the rotor back face were not accounted for. Furthermore, 212	
  
these simulations did not consider the components upstream of the stator leading edge and 213	
  
downstream of the trailing edge, namely the volute and diffuser. Therefore, the performance 214	
  
maps should be updated to account for these additional losses before using them within 215	
  
further ORC studies. It should be noted that tip clearance was included within the CFD 216	
  
simulation and therefore tip clearance losses are already included.  217	
  
 218	
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2.3.1 Windage loss model 219	
  
Within the clearance gap between the rotor back face and the rotor casing the circulation of 220	
  
fluid and the development of boundary layers on the rotor and casing walls results in a 221	
  
parasitic loss. As noted previously, the CFD simulation did not model this loss in an effort to 222	
  
reduce the simulation computational expense. Instead, a simple empirical model has been 223	
  
implemented for the sake of simplicity and cost. Of course, this empirical model was 224	
  
developed for ideal gases, so its validity for organic fluids should be confirmed through future 225	
  
computational and experimental studies.  226	
  

This windage loss, expressed as an enthalpy loss Δℎ!, is defined by Equation (3) 227	
  
where 𝐶! is a torque loss coefficient, 𝜌! is the density at the rotor inlet, 𝜔 is the rotational 228	
  
speed in rad/s, 𝑟! is the rotor inlet radius and 𝑚! is the working fluid mass flow rate. 229	
  
 230	
  

Δℎ! =
1
2 𝐶!𝜌!𝜔

!𝑟!!

𝑚!
 

 

(3) 

 231	
  
Four different flow regimes can occur, namely laminar and turbulent flow, both with 232	
  

merged and separated boundary layers respectively [31]. The flow within the clearance gap is 233	
  
laminar for Re < 105 and turbulent for Re > 105, where Re is the rotational Reynolds number 234	
  
(Equation 4). The design point Reynolds number for the developed turbine is Re = 8.4x106, 235	
  
and therefore the flow is fully turbulent. 236	
  
 237	
  

Re =
𝜌!𝜔𝑟!!

𝜇!
 

 

(4) 

 238	
  
The ratio of the clearance gap 𝜖, to the rotor inlet radius establishes whether the 239	
  

boundary layers are merged or separated. Following from Dixon [32], 𝜖  = 0.4mm was 240	
  
assumed which correlates to 𝜖/𝑟  = 0.012. This is sufficiently small to assume merged 241	
  
boundary layers. In this instance the torque loss coefficient is given by Equation (5), which is 242	
  
an empirical correlation based on experimental results and is described in Glassman [31].  243	
  

 244	
  

𝐶! =
0.0622

𝜖
𝑟!

!
! Re

!
!

  

(5) 

 245	
  

2.3.2 Diffuser design and performance analysis 246	
  
It is often beneficial to install a diffuser downstream of the rotor to reclaim some of the 247	
  
kinetic energy contained within the flow. However, the design and CFD analysis completed 248	
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has not considered a diffuser, so it was necessary to design one. A simple straight-sided 249	
  
conical diffuser was assumed, where the geometry is controlled by the area ratio 𝐴! = 𝐴!/𝐴!, 250	
  
and the diffuser divergence angle 𝜃. 𝜃 is a critical parameter governing diffuser performance 251	
  
and Aungier [33] suggested that optimal performance is obtained when 2𝜃 = 11°. Using this 252	
  
value for 𝜃, a parametric study investigating a range of area ratios was conducted, and an 253	
  
empirical diffuser performance model [33] was used to assess the diffuser performance. From 254	
  
this study it was found that 𝐴! = 2.5 provided sufficient energy recovery, increasing the 255	
  
isentropic total-to-static efficiency from 85.8% (no diffuser) to 88.1%. By comparison a 256	
  
further increase to 𝐴! = 4.0 only resulted in a further increase of 0.3% to 88.4%. 257	
  

It should be noted that the empirical diffuser performance model has not been 258	
  
validated for organic fluids. However real gas effects are generally more prevalent at the 259	
  
turbine inlet than at the outlet since the compressibility factor tends to reduce as the 260	
  
temperature and pressure increases, and the operating conditions approach the critical point. 261	
  
 262	
  
2.4 Updated turbine performance map 263	
  
Using the analysis discussed in Section 2.3, the CFD performance map was then updated. As 264	
  
a starting point the turbine inlet conditions were set to the original design point (𝑇!" = 350K, 265	
  
𝑃!" = 623.1kPa). To account for losses upstream of the stator leading edge a total pressure 266	
  
drop of Δ𝑃! = 1% was assumed within the volute, immediately supplying the conditions at the 267	
  
stator inlet using a suitable equation of state. Within this paper REFPROP has been used, 268	
  
which is a commercially available program containing state-of-the-art equations of state for a 269	
  
wide variety of different fluids [34]. However, for the sake of generality, the calculation is 270	
  
denoted with the notation ‘EoS’. 271	
  
 272	
  

𝑃!" = 𝑃!"(1 − 𝛥𝑃!) (6) 

𝑇!", 𝑠!", 𝜌!" = EoS(𝑃!", ℎ!", fluid) (7) 

 273	
  
Since the CFD performance map did not account for a volute, Figures 2 and 3 now 274	
  

apply to these updated stator inlet conditions (location 2) instead of the design inlet conditions 275	
  
(location 1). The choked conditions 𝜌∗  and 𝑎∗  are obtained by assuming an isentropic 276	
  
expansion from the stator inlet to the throat. An array of head coefficients consisting of 100 277	
  
elements ranging from 0 to 1.6 was then constructed, and each value was converted into the 278	
  
isentropic total-to-total enthalpy drop from the stator inlet to the rotor outlet Δℎ!. The size of 279	
  
this array is not critical, as it only affects the resolution of the resulting contour plot. At each 280	
  
head coefficient 𝑚!, 𝜂!! and 𝜂!" were established at 50%, 80%, 100%, 120% and 150% of the 281	
  
design reduced Mach number through interpolation of Figures 2 and 3. The total conditions at 282	
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the rotor outlet (location 4) then follow for each combination of head coefficient and reduced 283	
  
blade Mach number. Here the subscript ‘s’ refers to the conditions following an isentropic 284	
  
expansion. 285	
  
 286	
  

ℎ!"! = ℎ!" − 𝛥ℎ! (8) 

𝑃!" = EoS(ℎ!"!, 𝑠!", fluid) (9) 

ℎ!" = ℎ!" − 𝜂!!(ℎ!" − ℎ!"!) (10) 

[𝑇!", 𝑠!", 𝜌!"] = EoS(𝑃!", ℎ!", fluid)	
   (11) 

 287	
  
Using the known value for 𝜂!" the static conditions, and flow velocity 𝑐!, at the rotor 288	
  

outlet are obtained. 289	
  
 290	
  

ℎ!! = ℎ!" −
ℎ!" − ℎ!"

𝜂!"
 

 

(12) 

𝑃! = EoS(ℎ!!, 𝑠!", fluid) (13) 

𝑇!, ℎ!, 𝜌! = EoS(𝑃!, 𝑠!", fluid) (14) 

𝑐! = 2 ℎ!" − ℎ! 	
   (15) 

 291	
  
With the rotor outlet conditions obtained, the diffuser performance model can then be 292	
  

run using the defined diffuser geometry. This supplies the total and static conditions at the 293	
  
diffuser outlet (location 5). The windage loss model is then run, and 𝜂!! is reformulated as 294	
  
follows. 295	
  

 296	
  
ℎ!"! = EoS(𝑃!", 𝑠!", fluid) (16) 

𝜂!! =
ℎ!" − ℎ!" − Δℎ!

ℎ!" − ℎ!"!
   

 

(17) 

	
    

The choked flow parameters, 𝜌∗ and 𝑎∗, associated with the original turbine inlet 297	
  
condition are then obtained, and the performance map is rescaled according to Equation (2). 298	
  
The resulting performance maps are shown in Figures 4 and 5, where they are also compared 299	
  
to the original CFD performance maps. 300	
  

Figure 4 shows the variation in the reduced flow coefficient with the reduced head 301	
  
coefficient and reduced blade Mach number. The behaviour shown in Figure 4 can be 302	
  
explained by considering each additional loss that has now been modelled. Firstly, the 303	
  
windage loss is a parasitic loss that absorbs a fraction of the total power produced by the 304	
  
rotor. Therefore, it is not associated with a total pressure loss, so there is no effect on the 305	
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reduced head coefficient.  306	
  
To consider the diffuser performance, the total pressure loss coefficient 𝑌  is 307	
  

introduced (Equation 18). This is defined as the ratio of the total pressure drop through the 308	
  
diffuser, to the difference between the total and static pressures at the diffuser outlet.  309	
  

 310	
  

𝑌 =
𝑃!" − 𝑃!"
𝑃!" − 𝑃!

  

(18) 

Across the operating conditions considered 𝑌  ranged between 0.05 and 0.3. 311	
  
Furthermore, the flow leaves the diffuser with a low velocity, which implies a small 312	
  
difference between 𝑃!" and 𝑃!. This implies a small total pressure drop within the diffuser, 313	
  
and a minimal change in the total-to-total isentropic enthalpy drop across the turbine. This 314	
  
will have a minimal effect on the reduced head coefficient.  Therefore, the main shift seen in 315	
  
Figure 4 can be attributed to the 1% pressure drop applied upstream of the stator leading edge. 316	
  
This additional pressure drop increases the total-to-total pressure ratio across the whole 317	
  
turbine, and therefore increases the reduced head coefficient. Since the mass flow rate is 318	
  
unaffected, volute pressure drop simply shifts the constant blade Mach number lines to the 319	
  
right, as observed in Figure 4. 320	
  

Figure 5 shows the variation in 𝜂!! with the reduced head coefficient, and reduced 321	
  
blade Mach number. Considering first the diffuser, it has already been determined that there is 322	
  
a small total pressure drop within the diffuser, and a minimal change in total-to-total 323	
  
isentropic enthalpy drop. Furthermore, there is no energy transfer within the diffuser (i.e. 324	
  
ℎ!" = ℎ!"), so the change in 𝜂!! is also minimal. Of course, if Figure 5 had plotted 𝜂!", a 325	
  
more significant shift would be observed since the purpose of the diffuser is to recover the 326	
  
kinetic energy and increase 𝜂!".  327	
  

Using Equations (3) – (5) it can be shown that the windage loss is proportional to the 328	
  
rotational speed 𝜔, the meridional velocity at the rotor inlet 𝑐!" and the fluid properties 𝜌! 329	
  
and 𝜇! (Equation 19).  330	
  

 331	
  

𝛥ℎ! ∝
𝜔
!!
!

𝑐!" 𝜌!𝜇!
!
!
 

 

(19) 

 332	
  
Firstly, from Equation (19) it can be seen that windage loss increases with increasing 333	
  

rotational speed. This effect can be seen in Figure 5 where the constant reduced Mach number 334	
  
lines are increasingly shifted to the right with increasing speed. Secondly, Equation (19) 335	
  
implies that with increasing head coefficient, and therefore increasing mass flow rate, the 336	
  
windage loss will reduce. This is because a higher mass flow rate also implies a higher 337	
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meridional velocity at the rotor inlet. This effect is also shown in Figure 5, where the original 338	
  
and adapted reduced Mach number lines appear to converge with increasing head coefficient.  339	
  

Finally, we can consider the effect of applying a 1% pressure drop in the volute. This 340	
  
additional loss increases the total-to-total isentropic enthalpy drop across the turbine. 341	
  
Therefore, since there is no energy transfer in the volute the total enthalpy drop across the 342	
  
turbine remains constant, 𝜂!! must reduce. Furthermore, throughout this analysis 𝛥𝑃! was kept 343	
  
constant, which means that at lower reduced head coefficients, which correspond to lower 344	
  
total-to-total pressure ratios, the volute total pressure loss is a higher fraction of the overall 345	
  
pressure drop across the turbine. This results in a more significant drop in efficiency at lower 346	
  
head coefficients, which further explains why the original and adapted reduced Mach number 347	
  
lines appear to converge at increasing head coefficients. It should be noted that in future 348	
  
studies it might be more beneficial to employ a more sophisticated volute performance model 349	
  
rather than applying a simple fixed value pressure drop.  350	
  
 351	
  
3 SYSTEM MODELLING 352	
  
A novel thermodynamic model has been developed which aims to establish the full range of 353	
  
heat source mass flow rates at a specified temperature that can be utilised using an existing 354	
  
turbine design, and present this information on a single contour plot. To obtain this contour 355	
  
plot, thermodynamic cycle analysis is coupled to the updated non-dimensional turbine 356	
  
performance curves (Figures 4 and 5). The result is a single contour plot that describes the 357	
  
performance of an ORC that utilises a particular heat source and operates with a specific 358	
  
turbine and working fluid. Ultimately, this plot can be used to determine the optimal heat 359	
  
source mass flow rates that can be effectively converted into useful power using this existing 360	
  
turbine. A simple subcritical ORC without a recuperator has been considered. Not only does 361	
  
this simplify the analysis, but it also reduces the overall cost of the system. Since the main 362	
  
focus is to investigate the interaction between turbine and cycle performance, additional 363	
  
aspects such as the required heat transfer areas, and pump performance are not considered, 364	
  
but instead are discussed later. 365	
  

An ORC can be defined by the ORC condensation temperature 𝑇!, the pressure ratio 366	
  
and the amount of superheat Δ𝑇!". If pressure drops within the pipes and heat exchangers are 367	
  
neglected, it is then simple to determine the working fluid properties at the pump inlet 368	
  
(location 6) and turbine inlet. For this analysis constant pump efficiency is assumed, from 369	
  
which the evaporator inlet conditions follow (location 7). The evaporator analysis is restricted 370	
  
to a simple energy balance when supplied with the evaporator pinch point PP! (location 8). 371	
  
Since the aim of this analysis is to determine the optimal heat source mass flow rate, this 372	
  
parameter is unknown. However, the ratio of the working fluid mass flow rate 𝑚!, to the heat 373	
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source mass flow rate 𝑚!, is given by Equation (20), where the subscripts ℎ!" and ℎ!" refer to 374	
  

the heat source enthalpy at the evaporator inlet and pinch point respectively.  375	
  
 376	
  

𝑚!

𝑚!
=
ℎ!" − ℎ!"
ℎ!" − ℎ!

 
 

(20) 

 377	
  
With the turbine inlet conditions defined (i.e. 𝑇!", 𝑃!") the choked flow conditions 378	
  

(𝑎∗and 𝜌∗) follow by assuming an isentropic expansion from the inlet to a Mach number of 1. 379	
  
Furthermore, the turbine outlet pressure is defined by 𝑇!, which in turn determines the 380	
  
reduced head coefficient (ℎ!" − ℎ!"!) 𝑎∗!. Referring back to Figure 4, for a known reduced 381	
  
head coefficient, there is a minimum and maximum flow coefficient that this turbine can 382	
  
accommodate, which correspond to the maximum and minimum reduced blade Mach 383	
  
numbers respectively. The minimum and maximum flow coefficients can be converted into 384	
  
the physical mass flow rate limits for the turbine and an array of mass flow rates can be 385	
  
constructed between these limits. For each value of 𝑚! interpolation of Figure 4 supplies the 386	
  
reduced blade Mach number, whilst interpolation of Figure 5 supplies 𝜂!!. This allows the 387	
  
turbine outlet conditions to be obtained, whilst 𝑚! follows from Equation 20. A simple 388	
  
energy balance within the condenser, assuming a condenser pinch point PP!, provides the 389	
  
cooling mass flow rate and completes the analysis. Ultimately, the result of this model is that 390	
  
for specified 𝑇!, PR, Δ𝑇!" and PP! values there is a range of 𝑚! values that can be converted 391	
  
into power using this existing turbine. 392	
  

Although cycle performance could be evaluated by the net power 𝑊! or the cycle 393	
  
thermal efficiency 𝜂! , these evaluations do not give a clear indication of whether 394	
  
implementing the existing turbine design is a feasible solution. Instead, 𝑊! is compared to the 395	
  
maximum net power that could be produced using the same heat source but with a turbine 396	
  
operating at an optimal efficiency. For fixed values of 𝑇!, Δ𝑇!", PP!, 𝑇!" and 𝑚! there exists 397	
  
an optimal pressure ratio at which optimal power can be produced. This optimum exists 398	
  
because, whilst a higher pressure ratio increases the cycle efficiency, a higher pressure ratio 399	
  
also leads to a higher evaporation temperature, and a smaller heat source temperature drop 400	
  
and ORC mass flow rate. Since 𝑊! is the product of the specific power and the mass flow 401	
  
rate, there is a trade-off between maximising the cycle efficiency, and maximising the amount 402	
  
of heat absorbed by the working fluid. This trade-off has been investigated in Figure 6 for a 403	
  
range of heat source conditions, where the following assumptions have been made: 404	
  
𝑇! = 313 K, 𝛥𝑇!" = 10 K, PP! = 15 K, 𝜂! = 70% and 𝜂!! = 85%. The top graph considers a 405	
  

range of heat source temperatures, all with a fixed 𝑚!, and clearly at higher heat source 406	
  
temperatures, the optimal pressure ratio increases. The bottom graph shows that for a fixed 407	
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𝑇!", the optimal pressure ratio is independent of 𝑚!, and 𝑊! increases linearly with increasing 408	
  
𝑚!. Therefore, when supplied with 𝑇!" and 𝑚! Figure 6 can be used to obtain the maximum 409	
  
potential power that could be obtained for a turbine operating at 𝜂!! = 85%. Here 85% was 410	
  
considered to be an achievable target at the design point. If 𝑊! is greater than the maximum 411	
  
potential power this is the result of the turbine operating at a higher efficiency than 85%.  412	
  
 413	
  
4 OTHER SYSTEM COMPONENTS 414	
  
The motive behind the system model is to establish the range of heat source conditions that 415	
  
can be converted into power using the existing turbine. By simplifying the pump and heat 416	
  
exchanger analysis this stops the analysis being restricted by, for example, the pump 417	
  
performance. Therefore, it is assumed that whilst the same turbine could be used within a 418	
  
number of different systems, thus improving the economy-of-scale, alternative pumps and 419	
  
heat exchangers may be required. However, after completing the analysis, it is interesting to 420	
  
investigate the feasibility of also using the same pump and heat exchangers. 421	
  
 422	
  
4.1 Pump modelling 423	
  
The pump can also be modelled using similitude laws. This is expressed by Equation (21), 424	
  
where the pump head coefficient 𝜓 = 𝑔𝐻/ 𝑟𝜔 !, and pump efficiency 𝜂!, are functions of 425	
  

the flow coefficient 𝜙 = 𝑄/𝜔𝑟!; 𝑔 is the acceleration due to gravity, 𝐻 is the pump head, 𝑟 is 426	
  
the pump radius, 𝜔 is the rotational speed, and 𝑄 is the volumetric flow rate. 427	
  
 428	
  

𝑔𝐻
𝑟𝜔 ! , 𝜂! = 𝑓

𝑄
𝜔𝑟!

  

(21) 

 429	
  
Following from [35], the relationships between 𝜓  and 𝜙 , and 𝜂!  and 𝜙 , can be 430	
  

expressed using a simple quadratic expression of the form 𝑦 = 𝑎𝑥! + 𝑏𝑥 + 𝑐. Along with the 431	
  
design point data (i.e. 𝜙! , 𝜓! , 𝜂!,!) the maximum head coefficient and maximum flow 432	
  

coefficient are needed to determine the quadratic coefficients for each expression. These are 433	
  
denoted as 𝜓! and 𝜙! respectively, and correspond to pump operation when 𝑄 = 0 and 𝐻 = 0 434	
  
respectively. At these operating points 𝜂! = 0. 435	
  

Before modelling pump performance, a pump design is required. Conveniently 𝜓 and 436	
  
𝜙  can be combined to obtain pump specific speed 𝜔!  (Equation (22)). Karassik [36] 437	
  
suggested that for a centrifugal pump 𝜔! can be as low as 0.2 and for this value, 𝜓 = 0.6. For 438	
  
the ORC defined in Table 1, this corresponds to a design rotational speed of 𝜔! = 5,300 rpm 439	
  
and a pump radius of 𝑟 = 37.5 mm. The design point efficiency is assumed to be 𝜂!,! = 70%. 440	
  

 441	
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𝜔! =
𝜙
!
!

𝜓
!
!
=
𝜔!𝑄

!
!

𝑔𝐻
!
!
 

 

(22) 

  442	
  
 To construct the pump performance map, values for 𝜓! and 𝜙! are needed. A typical 443	
  
value for 𝜓! is 0.585 [36], whilst 𝜙! is assumed to be 2𝜙!. Whilst these are primitive 444	
  
assumptions, this facilitates the construction of the pump performance map (see Figure 11), 445	
  
which can be used during a preliminary assessment of pump performance following a change 446	
  
in working fluid. Future efforts should establish the performance map for a specific ORC 447	
  
pump. 448	
  
 449	
  
4.2 Heat exchanger modelling 450	
  
The required heat exchanger area 𝐴 is given by Equation (23), where 𝑞 is the heat transferred, 451	
  
Δ𝑇!"# is the log mean temperature difference, and 𝑈 is the overall heat transfer coefficient. 452	
  

Whilst 𝑞 and Δ𝑇!"# follow from the cycle analysis completed in Section 3, 𝑈 is dependent on 453	
  

the heat exchanger geometry. Since the heat exchanger design is not a focus of this study 454	
  
characteristic values for 𝑈  have been estimated, as is typical during preliminary heat 455	
  
exchanger sizing. For this analysis 𝑈  = 50 W/(m2 K) is used during superheating and 456	
  
precooling, whilst 𝑈  = 1000 W/(m2 K) is used during preheating, evaporation and 457	
  
condensation. These values are set according to [37]. 458	
  
 459	
  

𝐴 =
𝑞

Δ𝑇!"#𝑈
  

(23) 

 460	
  
 With fixed 𝑈 values, it is easy to deduce from Equation (23) that it is unlikely that the 461	
  
same heat exchangers can be used within a range of different systems. Assuming that a 462	
  
similar temperature profile is maintained (i.e Δ𝑇!"#), the required heat exchanger area should 463	
  

scale directly with the heat input. 464	
  
 465	
  
5 RESULTS AND DISCUSSION 466	
  
 467	
  
5.1 R245fa case study 468	
  
An initial case study demonstrates the thermodynamic model developed in Section 3. A heat 469	
  
source of pressurised water (𝑇!" = 380 K, 𝑃! = 400 kPa) has been defined and the ORC 470	
  
working fluid has been kept as R245fa. The ORC parameters were fixed according to Table 2. 471	
  
Both 𝑇! and PP! dictate the condenser area and the heat sink mass flow rate. The heat sink 472	
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temperature is 𝑇! = 288 K, whilst 𝑇! = 313 K and PP! = 10 K corresponds to an approximate 473	
  
15 K temperature rise in the heat sink through the condenser. The value for PP! has been 474	
  
estimated to be 15 K. Pinch points represent a trade-off between performance and cost and the 475	
  
values selected have been found to provide a reasonable balance. It has been widely shown 476	
  
that superheating is not necessary for organic fluids, but a small superheat of Δ𝑇!" = 2 K 477	
  
ensures full vaporisation at the turbine inlet. Since the pump performance is not considered at 478	
  
this stage 𝜂! = 70% is assumed. 479	
  

The ORC model was then run over a range of pressure ratios, and a range of 480	
  
𝑚!values were established at each pressure ratio. At each combination of 𝑚! and PR, 𝑚! was 481	
  
determined allowing the maximum potential power to be obtained. The result of this analysis 482	
  
is a performance map that shows the variation of 𝑊!, as a percentage of the maximum 483	
  
potential power, with PR and 𝑚! (Figure 7). The black lines, overlaid on the contour plot, 484	
  
indicate the resulting 𝑚! values in kg/s. 485	
  

Figure 7 is useful since, for a specified heat source at 𝑇!" = 380 K, it is easy to assess 486	
  
the feasibility of using this turbine. For example, for 𝑚! = 1.0 kg/s and pressure ratio of 2.2, 487	
  
the turbine efficiency is high and 100% of the maximum potential net power can be achieved. 488	
  
The optimal operating point corresponds to PR = 2.17, 𝑚! = 0.60 kg/s and 𝑚! = 0.91 kg/s. At 489	
  
this operating condition the turbine operates at 88.7% of the design reduced rotational speed 490	
  
(𝑁/𝑎∗), which is within feasible limits.  491	
  

As 𝑚!  moves away from this optimal point, the ORC performance deteriorates 492	
  
leading to a lower percentage of the maximum power being produced. However, it is found 493	
  
that for this heat source at 380 K, this existing turbine, operating with R245fa, can effectively 494	
  
operate with pressure ratios between 1.75 and 2.75. This corresponds to heat source mass 495	
  
flow rates between 0.5 kg/s and 1.75 kg/s, whilst 𝑁/𝑎∗ remains between 80% and 110% of 496	
  
the design value. Within these limits 𝑊! should remain above 90% of the maximum potential 497	
  
power. At alternative heat source conditions an alternative turbine design may offer improved 498	
  
performance, and further analysis would be required to establish whether the improved 499	
  
performance would outweigh the increased costs of developing an alternative design.  500	
  
 501	
  
5.2 Alternative working fluids 502	
  
The analysis discussed in Section 5.1 can now be repeated for different heat source 503	
  
temperatures and working fluids. Reiterating that working fluid selection criteria is not a 504	
  
focus of this paper, 15 typical ORC working fluids have been arbitrarily selected. The heat 505	
  
source temperatures were then selected as 360 K, 380 K and 400 K. It is expected that below 506	
  
360 K the cycle thermal efficiency would reduce which would lead to uneconomical systems. 507	
  
On the other hand, higher temperature heat sources above 400 K could result in higher 508	
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pressure ratios across the turbine, and likely lead to supersonic flow within the turbine. Under 509	
  
these conditions it is likely that an alternative turbine design with a supersonic stator would be 510	
  
required. Hence at this stage it can already be hypothesised that the advantage of running the 511	
  
same turbine with different working fluids will be that the same turbine can be used for 512	
  
different heat source mass flow rates, but at similar operating temperatures. 513	
  

For these studies the heat sink conditions, 𝑇!, 𝜂!, 𝛥𝑇!", PP! and PP! were all fixed 514	
  

according to Table 2. For each combination of working fluid and heat source temperature the 515	
  
performance contour plot was obtained (i.e. Figure 7), allowing the optimal operating point to 516	
  
be obtained. Figure 8 displays the results in terms of the optimal 𝑚! and 𝑊! values for each 517	
  
working fluid. The top-right plot in Figure 8 shows a summary all of the results, with each 518	
  
marker representing the result obtained for a particular working fluid at the respective heat 519	
  
source temperature. The remaining plots expand on these results by showing which working 520	
  
fluid each marker represents.  521	
  

It is clear that a large spread of heat sources can be effectively utilised by this turbine. 522	
  
For example, for 𝑇!" = 400 K this turbine can convert heat sources between 0.5 kg/s and 523	
  
1.65 kg/s, with 𝑊! ranging between 7.9 kW and 30.2 kW, by simply changing the working 524	
  
fluid. Furthermore, across all of the operating points it was found that the optimal point is 525	
  
consistently close to 100% of the maximum potential power, thus corresponding to turbine 526	
  
isentropic efficiencies close to 85%. This confirms that at the corresponding heat source 527	
  
conditions, the ORC is operating at an optimal pressure ratio that corresponds to the optimal 528	
  
head coefficient. In other words, it would be unlikely that an alternative turbine would offer 529	
  
much improvement on the turbine, and cycle, performance.  530	
  

The optimal operating point for each working fluid and heat source have been plotted 531	
  
onto the turbine performance maps in Figure 9. This is useful to see how close to the design 532	
  
point the turbine is operating for each combination of working fluid and heat source 533	
  
temperature. Ultimately it is observed that as the heat source increases and the pressure ratio, 534	
  
and therefore reduced head coefficient increases, the reduced rotational speed is increased to 535	
  
ensure that the turbine efficiency remains close to the maximum. This ensures the turbine 536	
  
operates close to its design point and therefore operates efficiently over the range of 537	
  
conditions considered. Furthermore, for the range of heat source temperatures considered, the 538	
  
reduced rotational speed remains between 82% and 116% of the original design, confirming 539	
  
feasible turbine operation. Figure 9 also validates the selection of 𝑇!" = 360 K and 𝑇!" = 540	
  
400 K as the limits of operation for this turbine. For lower heat source temperatures optimal 541	
  
operating points would shift to the left leading to lower reduced rotational speeds, and low 542	
  
turbine efficiencies. A similar scenario can be seen for increasing head coefficients, which 543	
  
correspond to higher heat source temperatures. Hence this confirms that the same turbine 544	
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cannot be used with significantly different heat source temperatures, but can be used across a 545	
  
wide range of heat source mass flow rates.  546	
  

The resulting cycle efficiencies 𝜂!  are shown in Figure 10. 𝜂!  increases with 547	
  
increasing heat source temperature, however there is only a small variation in 𝜂! amongst the 548	
  
different working fluids. This is largely due to the optimal pressure ratio for a given heat 549	
  
source temperature being independent of the working fluid mass flow rate. It is arguable that 550	
  
at 𝑇!" = 360 K, 𝜂! is too low to develop an economically feasible system.  551	
  

Overall, Figure 8 suggests that the same turbine can be utilised within a number of 552	
  
different ORC applications with different heat source mass flow rates by selecting a suitable 553	
  
working fluid to match the available heat source. For example, for a heat source of 1.0 kg/s at 554	
  
380 K, R245fa could be selected as the working fluid and power generated would be around 555	
  
8 kW. However, for a heat source of around 1.75 kg/s at 400 K, R1234ze or isobutane could 556	
  
be selected and the power generated would increase to 30 kW. In Figure 11, the thermal input 557	
  
that each operating point corresponds to is also shown. This clearly shows that for a 360 K 558	
  
heat source that has between 50 and 200 kWth of heat available, the same turbine can be used 559	
  
if the working fluid is matched to the heat available. Similarly, a heat source temperature of 560	
  
380 K corresponds to heat inputs ranging between around 70 and 270 kWth, whilst a heat 561	
  
source of 400 K corresponds to values between 100 and 380 kWth. Hence, Figure 11 gives a 562	
  
clear indication of the range of potential applications that this turbine could be utilised within. 563	
  
Ultimately, this allows the same turbine to be manufactured in large volumes, thus facilitating 564	
  
an improvement in the economy-of-scale, and an improvement in the economic feasibility of 565	
  
implementing such a system.   566	
  

Before progressing, it is important to discuss possible limitations to implementing the 567	
  
same turbine within a number of different systems. Firstly, the results in Figure 8 were 568	
  
obtained by varying only the pressure ratio. Therefore, the effects of 𝑇!, 𝛥𝑇!", PP! and PP! 569	
  
were not considered. Therefore, it could be argued that the same turbine and working fluid 570	
  
could be used in different ORC systems by optimising these cycle parameters rather than 571	
  
changing the working fluid. However, whilst this might be true for fluids with similar 572	
  
performance, (i.e. they lie close to each other in Figure 8), it is unlikely that this would be 573	
  
possible when 𝑚! changes significantly (i.e. from 0.5 kg/s to 1.5 kg/s). Secondly, additional 574	
  
factors, such as the bearing system and generator, are not taken into consideration during this 575	
  
study, and this may limit the feasibility of using the same turbine assembly across a wide 576	
  
range of power outputs. However, in these instances, even if modifications to the mechanical 577	
  
design are required, the costs associated with the aerodynamic design and manufacture of the 578	
  
stator and rotor assembly can still be avoided. Finally, within this study a wide range of 579	
  
working fluids were considered, which in reality may not be suitable due to availability, cost 580	
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and legislative restrictions. Nonetheless, this work may be a novel contribution to the ORC 581	
  
community, demonstrating how non-dimensional turbine maps can be implemented within 582	
  
cycle analysis studies, and ultimately how the economy-of-scale of small-scale ORC systems 583	
  
could be improved. 584	
  
 585	
  
5.3 Pump and heat exchanger performance 586	
  
Having established the possibility of implementing the turbine within a number of different 587	
  
ORC configurations, the performance of the pump and heat exchanger performance can now 588	
  
be investigated. For each working fluid, at each heat source temperature, the optimal 𝑚! and 589	
  
PR values are already known, which supplies the pump volumetric flow rate and the pump 590	
  
head. Using the pump performance map this provides the required rotational speed 𝜔 and 591	
  
pump efficiency 𝜂!. Figure 12 displays the results of this analysis plotted onto the pump 592	
  

performance map for the pump design discussed in Section 4.1. Here 𝜙 and 𝜓 have been 593	
  
normalised by the design values (i.e. 𝜙!, 𝜓!). It is clear that for all the operating points 594	
  
considered 𝜙 remains between 0.6𝜙! and 1.5𝜙!, which corresponds to values of 0.6𝜓! and 595	
  
1.1𝜓! respectively. Under these conditions, the pump operates far enough away from the 596	
  
shut-off head, and run-out flow rate that 𝜂! remains above 50%.  597	
  

Figure 13 displays the 𝜔  for each case and clearly, as 𝑇!"  and 𝑚!  increase, 𝜔 598	
  
increases. The maximum rotational speed is around 14,000 rpm, which with 𝑟! = 37.5 mm, 599	
  
corresponds to a maximum pump impeller tip speed of 55 m/s. The maximum allowable tip 600	
  
speed is governed by the mechanical design, and the prevention of cavitation within the 601	
  
pump. However, a typical maximum is around 50 m/s. Therefore, at this maximum rotational 602	
  
speed, the pump may be operating at the limit of feasible operation.  603	
  

Overall, this analysis suggests that it would be possible to use the same pump within 604	
  
the majority of operating points shown in Figure 8, and under these conditions 𝜂! would 605	
  

remain between 50% and 70%. Further analysis is required to establish the impact of this 606	
  
reduction in 𝜂! on the whole system. More detailed research is also required for the design 607	
  

and analysis of ORC pumps to obtain more accurate performance maps, and to validate the 608	
  
use of similitude theory to ORC pumps. Nonetheless, the analysis presented here is believed 609	
  
to be an important first step. 610	
  

The required head transfer areas for the evaporator and condenser for each working 611	
  
fluid and heat source combination have been calculated and are presented in Figures 14 and 612	
  
15. Ultimately these results confirm that it is not feasible to use the same heat exchanger 613	
  
across a range of different operating conditions. As discussed previously, it was expected that 614	
  
the required heat transfer area would directly scale with increasing heat input 𝑞. Furthermore, 615	
  
since 𝑞 = 𝑊!/𝜂!, and Figure 10 has already shown that 𝜂! is independent of 𝑇!", this means 616	
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that the required evaporator heat transfer area directly scales with 𝑊!, and therefore 𝑚!. This 617	
  
relationship is clearly observed in Figure 14. 618	
  
 619	
  
6 CONCLUSIONS 620	
  
To improve the economy-of-scale of small ORC systems, it may be necessary to implement 621	
  
the same system components into a range of different applications. This paper has 622	
  
investigated improvements in this area by combining component performance models with 623	
  
thermodynamic cycle analysis. First a turbine performance map, obtained using CFD, was 624	
  
adjusted to account for additional loss mechanisms, before being non-dimensionalised using a 625	
  
modified similitude theory.  A novel thermodynamic model was then constructed, and a case 626	
  
study was considered. This study showed that for a given heat source temperature and 627	
  
working fluid there exists an optimal heat source mass flow rate that can be efficiently 628	
  
converted into power using the existing turbine design. Repeating this analysis for different 629	
  
heat source temperatures and working fluids has demonstrated the possibility of utilising the 630	
  
same turbine for a range of different heat source flow rates. In particular, this study 631	
  
demonstrated that through selecting a suitable working fluid the existing turbine could 632	
  
convert heat sources ranging from 360 K and 400 K, with mass flow rates between 0.5 kg/s 633	
  
and 2.75 kg/s, into power outputs between 2 kW and 30 kW without compromising on turbine 634	
  
performance. Whilst the required heat exchanger areas were found to scale directly with 635	
  
increasing heat input, the possibility of also using the same pump within a number of different 636	
  
applications was also demonstrated. Therefore, this study has demonstrated the possibility of 637	
  
using the same pump and turbine within a number of different ORC systems. This is expected 638	
  
to potential to improve the economy-of-scale of small ORC systems, allowing the same 639	
  
components to be manufactured in large volumes and then implemented within different 640	
  
applications, thus reducing costs and facilitating a move towards more economically viable 641	
  
ORC systems. Further efforts should investigate whether these findings are equally applicable 642	
  
to higher temperature ORCs, which are expected to introduce more uncertainties into the 643	
  
modelling process. Firstly, these systems will require alternative working fluids that are 644	
  
operated closer to their critical point and exhibit more extreme real gas behaviour. 645	
  
Furthermore, due to the low speed of sound supersonic turbines may be required, which will 646	
  
also require the modified similitude model to be investigated for supersonic flows. Finally, 647	
  
more effort is needed to validate both numerically and experimentally the use of similitude 648	
  
theory, and give due consideration to its validity to other types of turbines and ORC pumps. 649	
  
 650	
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Figure 1. Notation used to model the turbine and ORC system. 757	
  
 758	
  
Figure 2. Variation in the reduced flow coefficient at different reduced head coefficients and 759	
  
reduced blade Mach numbers, as predicted using CFD simulations. 760	
  

 761	
  
Figure 3. Variation in the turbine total-to-total efficiency at different reduced head 762	
  
coefficients and reduced blade Mach numbers, as predicted using CFD simulations. 763	
  

 764	
  
Figure 4. Updated turbine performance map showing the relationship between the reduced 765	
  
head coefficient and reduced flow coefficient for reduced Mach numbers ranging between 766	
  
50% and 150% of the design value.  767	
  

 768	
  
Figure 5. Updated turbine performance map showing the relationship between the reduced 769	
  
head coefficient and turbine efficiency for reduced Mach numbers ranging between 50% and 770	
  
150% of the design value. 771	
  
 772	
  
Figure 6. Variation in net power produced as a function of pressure ratio for different heat 773	
  
source conditions. Top: fixed heat source mass flow rate of 1.0kg/s; Bottom: fixed heat source 774	
  
temperature of 380K. 775	
  
 776	
  
Figure 7. Contour of the net power produced by an ORC operating with the candidate turbine 777	
  
as a percentage of the maximum potential power. Heat source of water at 380K, and R245fa 778	
  
as working fluid. The black lines indicate the heat source mass flow rate in kg/s, whilst the 779	
  
black dot represents the point of optimal operation.  780	
  
 781	
  
Figure 8. Cycle analysis results showing the heat source mass flow rates that can be 782	
  
accommodated by an ORC utilising the candidate turbine at each combination of heat source 783	
  
temperature and working fluid. Top left: summary of all results; top right: 360K; bottom left; 784	
  
380K; bottom right; 400K.  785	
  

 786	
  
Figure 9. Results from each combination of heat source temperature and working fluid 787	
  
overlaid onto the turbine performance map.  788	
  
 789	
  
Figure 10. Cycle analysis results showing variation in cycle at the three different heat source 790	
  
temperatures.  791	
  

 792	
  
Figure 11. Net work plotted against the thermal heat input into the ORC system for each heat 793	
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source temperature and working fluid. Each marker represents a particular working fluid. 794	
  
 795	
  
Figure 12. Non-dimensional pump performance map, overlaid with operating points for each 796	
  
heat source temperature. 797	
  
 798	
  
Figure 13. Pump rotational speed for each heat source temperature and mass flow rate. Each 799	
  
marker represents a particular working fluid. 800	
  

	
  801	
  
Figure 14. Required evaporator heat transfer area for each heat source temperature and mass 802	
  
flow rate. Each marker represents a particular working fluid. 803	
  

	
  804	
  
Figure 15. Required condenser heat transfer area for each heat source temperature and mass 805	
  
flow rate. Each marker represents a particular working fluid. 806	
  
 807	
  
 808	
  

Table	
  1.	
  Design point specification for the ORC turbine. 809	
  
Working fluid - R245fa  
ORC condensation temperature 𝑇! 313.0 K 
Total inlet temperature 𝑇!" 350.0 K 
Total inlet pressure 𝑃!" 623.1 kPa 
Pressure ratio PR 2.5  
Mass flow rate 𝑚! 0.7 kg/s 
Rotational speed 𝑁 37,525 rpm 
Rotor diameter 𝐷 66.7 mm 

 810	
  
 811	
  
 812	
  

Table 2. Fixed inputs for the R245fa case study. 813	
  
 814	
   Heat source fluid  water  

Heat source temperature 𝑇!" 380 K 
Heat source pressure 𝑃! 400 kPa 
Heat sink fluid  water  
Heat sink temperature 𝑇! 288 K 
Heat sink pressure 𝑃! 101 kPa 
Pump isentropic efficiency 𝜂! 70 % 
ORC condensation pressure 𝑇! 313 K 
Amount of superheat Δ𝑇!" 2 K 
Evaporator pinch point PP! 15 K 
Condenser pinch point PP! 10 K 


