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We present the effective low-energy theory for interacting 1D quantum wires subject to Rashba
spin-orbit coupling. Under a one-loop renormalization group scheme including all allowed interaction
processes for not too weak Rashba coupling, we show that electron-electron backscattering is an
irrelevant perturbation. Therefore no gap arises and electronic transport is described by a modified
Luttinger liquid theory. As an application of the theory, we discuss the RKKY interaction between
two magnetic impurities. Interactions are shown to induce a slower power-law decay of the RKKY
range function than the usual 1D noninteracting cos(2kF x)/|x| law. Moreover, in the noninteracting
Rashba wire, the spin-orbit coupling causes a twisted (anisotropic) range function with several
different spatial oscillation periods. In the interacting case, we show that one special oscillation
period leads to the slowest decay, and therefore dominates the RKKY interaction for large separation.

PACS numbers: 71.10.Pm, 85.75.-d, 73.63.-b

I. INTRODUCTION

Spin transport in one-dimensional (1D) quantum wires
continues to be a topic of much interest in solid-state and
nanoscale physics, offering interesting fundamental ques-
tions as well as technological applications.1 Of particular
interest to this field is the spintronic field effect tran-
sistor (spin-FET) proposal by Datta and Das,2 where
a gate-tunable Rashba spin-orbit interaction (SOI) of
strength α allows for a purely electrical manipulation of
the spin-dependent current. While the Rashba SOI arises
from a structural inversion asymmetry3,4,5 of the two- di-
mensional electron gas (2DEG) in semiconductor devices
hosting the quantum wire, additional sources for SOI can
be present. In particular, for bulk inversion asymmetric
materials, the Dresselhaus SOI (of strength β) should
also be taken into account. By tuning the Rashba SOI
(via gate voltages) to the special point α = β, the spin-
FET was predicted to show a remarkable insensitivity to
disorder,6 see also Ref. 7. On top of these two, additional
(though generally weaker) contributions may arise from
the electric confinement fields forming the quantum wire.
In this paper, we focus on the case of Rashba SOI and
disregard all other SOI terms. This limit can be realized
experimentally by applying sufficiently strong backgate
voltages,8,9,10,11 which create a large interfacial electric
field and hence a significant and tunable Rashba SOI cou-
pling α. The model studied below may also be relevant to
1D electron surface states of self-assembled gold chains.12

The noninteracting theory of such a “Rashba quantum
wire” has been discussed in the literature,13,14,15,16,17,18

and is summarized in Sec. II below. We here discuss
electron-electron (e-e) interaction effects in the 1D limit,
where only the lowest (spinful) band is occupied. The
bandstructure at low energy scales is then characterized

by two velocities,19

vA,B = vF (1 ± δ), δ(α) ∝ α4. (1)

These reduce to a single Fermi velocity vF in the absence
of Rashba SOI (δ = 0 for α = 0), but they will be differ-
ent for α 6= 0, reflecting the broken spin SU(2) invariance
in a spin-orbit coupled system. The small-α dependence
δ ∝ α4 follows for the model below and has also been
reported in Ref. 20. Therefore, the velocity splitting (1)
is typically weak. While a similar velocity splitting also
happens in a magnetic Zeeman field (without SOI),21 the
underlying physics is different since time-reversal symme-
try is not broken by SOI.

The bandstructure of a single-channel quantum wire
with Rashba SOI should be obtained by taking into ac-
count at least the lowest two (spinful) subbands, since a
restriction to the lowest subband alone would eliminate
spin relaxation.15,22,23 The problem in this truncated
Hilbert space can be readily diagonalized, and yields two
pairs of energy bands. When describing a single-channel
quantum wire, one then keeps only the lower pair of these
energy bands. We mention in passing that bandstructure
effects in the presence of both Rashba SOI and magnetic
fields have also been studied.24,25,26,27,28 In addition, the
possibility of a spatial modulation of the Rashba coupling
was discussed,29 but such phenomena will not be further
considered here. Finally, disorder effects were addressed
in Refs. 30,31.

For 1D quantum wires, it is well known that the in-
clusion of e-e interactions leads to a breakdown of Fermi
liquid theory, and often implies Luttinger liquid (LL) be-
havior. This non-Fermi liquid state of matter has a num-
ber of interesting features, including the phenomenon of
spin-charge separation.32 Motivated mainly by the ques-
tion of how the Rashba spin precession and Datta-Das
oscillations in spin-dependent transport are affected by e-
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e interactions, Rashba SOI effects on electronic transport
in interacting quantum wires have been studied in recent
papers.15,20,22,33,34,35,36,37 In effect, however, all those
works only took e-e forward scattering processes into ac-
count. Because of the Rashba SOI, one obtains a mod-
ified LL phase with broken spin-charge separation,33,34

leading to a drastic influence on observables such as the
spectral function or the tunneling density of states. Mo-
roz et al. argued that e-e backscattering processes are
irrelevant in the renormalization group (RG) sense, and
hence can be omitted in a low-energy theory.33,34 Unfor-
tunately, their theory relies on an incorrect spin assign-
ment of the subbands,15,22 which then invalidates several
aspects of their treatment of interaction processes.

The possibility that e-e backscattering processes be-
come relevant (in the RG sense) in a Rashba quantum
wire was raised in Ref. 38, where a spin gap was found
under a weak-coupling two-loop RG scheme. If valid, this
result has important consequences for the physics of such
systems, and would drive them into a spin-density-wave
type state. To establish the spin gap, Ref. 38 starts from
a strict 1D single-band model and assumes both α and
the e-e interaction as weak coupling constants flowing
under the RG. Our approach below is different in that
we include the Rashba coupling α from the outset in the
single-particle sector, i.e., in a nonperturbative manner.
We then consider the one-loop RG flow of all possible in-
teraction couplings allowed by momentum conservation
(for not too small α). This is an important difference to
the scheme of Ref. 38, since the Rashba SOI eliminates
certain interaction processes which become momentum-
nonconserving. This mechanism is captured by our ap-
proach. The one-loop RG flow then turns out to be equiv-
alent to a Kosterlitz-Thouless flow, and for the initial val-
ues realized in this problem, e-e backscattering processes
are always irrelevant. Our conclusion is therefore that no
spin gap arises because of SOI, and a modified LL picture
is always sufficient. We mention in passing that in the
presence of a magnetic field (which we do not consider),
a spin gap can be present because of spin-nonconserving
e-e “Cooper” scattering processes;39,40 the effects of e-e
forward scattering in Rashba wires with magnetic field
were studied as well.41,42,43,44 Below, we also provide es-
timates for the renormalized couplings entering the mod-
ified LL theory, see Eq. (26) below. When taking bare
(instead of renormalized) couplings, we recover previous
results.22 Note that the SOI in carbon nanotubes45 or
graphene ribbons46 leads to a similar yet different LL de-
scription. In particular, for (achiral) carbon nanotubes,
the leading SOI does not break spin-charge separation.45

We here only discuss Rashba SOI effects in semiconduc-
tor quantum wires in the absence of magnetic fields.

We apply our formalism to a study of the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction47,48 between
two spin-1/2 magnetic impurities, Σ1,2, separated by
a distance x. The RKKY interaction is mediated by
the conduction electrons in the quantum wire which
are exchange-coupled (with coupling J) to the impurity

spins. In the absence of both the e-e interaction and
the SOI, one finds an isotropic exchange (Heisenberg)
Hamiltonian,48

HRKKY = −J2Fex(x) Σ1 ·Σ2, Fex(x) ∝
cos(2kFx)

|x| ,

(2)
where the 2kF -oscillatory RKKY range function Fex(x)
is specified for the 1D case. When the spin SU(2) sym-
metry is broken by the SOI, spin precession sets in and
the RKKY interaction is generally of a more compli-
cated (twisted) form. For a noninteracting Rashba quan-
tum wire, it has indeed been established49,50,51 that the
RKKY interaction becomes anisotropic and thus has a
tensorial character. It can always be decomposed into
an exchange (scalar) part, a Dzyaloshinsky-Moriya-like
(vector) interaction, and an Ising- like (traceless sym-
metric tensor) coupling. On the other hand, in the pres-
ence of e-e interactions but without SOI, the range func-
tion has been shown52 to exhibit a slow power-law decay,
Fex(x) ∝ cos(2kFx)|x|−η, with an interaction- dependent
exponent η < 1. The RKKY interaction in interacting
quantum wires with SOI has not been studied before.

For the benefit of the focussed reader, we briefly sum-
marize the main results of our analyis. The effective low-
energy theory of an interacting Rashba quantum wire is
given in Eq. (29), with the velocities (30) and the di-
mensionless interaction parameters (31). Previous theo-
ries did not fully account for the e-e backscattering pro-
cesses, and the conspiracy of these processes with the
broken SU(2) invariance due to spin-orbit effects leads
to Ks < 1 in Eq. (31). This in turn implies novel ef-
fects in the RKKY interaction of an interacting Rashba
wire. In particular, the power-law decay exponent in an
interacting Rashba wire, see Eq. (38), depends explic-
itly on both the interaction strength and on the Rashba
coupling.

The structure of the remainder of this paper is as fol-
lows. In Sec. II, we discuss the bandstructure. Inter-
action processes and the one-loop RG scheme are dis-
cussed in Sec. III, while the LL description is provided
in Sec. IV. The RKKY interaction mediated by an inter-
acting Rashba quantum wire is then studied in Sec. V.
Finally, we offer some conclusions in Sec. VI. Technical
details can be found in the Appendix. Throughout the
paper we use units where ~ = 1.

II. SINGLE-PARTICLE DESCRIPTION

We consider a quantum wire electrostatically confined
in the z- direction within the 2DEG (xz-plane) by a har-
monic potential, Vc(z) = mω2z2/2, where m is the effec-
tive mass. The noninteracting problem is then defined
by the single-particle Hamiltonian3,13,14,15,17

Hsp =
1

2m

(

p2
x + p2

z

)

+ Vc(z) + α (σzpx − σxpz) , (3)
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where α is the Rashba coupling and the Pauli matri-
ces σx,z act in spin space. For α = 0, the transverse
problem is diagonal in terms of the familiar 1D har-
monic oscillator eigenstates (Hermite functions) Hn(z),
with n = 0, 1, 2, . . . labeling the subbands (channels).
Eigenstates of Eq. (3) have conserved longitudinal mo-
mentum px = k, and with the z-direction as spin quan-
tization axis, σz |σ〉 = σ|σ〉 with σ =↑, ↓= ±, the σxpz

term implies mixing of adjacent subbands with associ-
ated spin flips. Retaining only the lowest (n = 0) sub-
band from the outset thus excludes spin relaxation. We
follow Ref. 15 and keep the two lowest bands, n = 0 and
n = 1. The higher subbands n ≥ 2 yield only tiny cor-
rections, which can in principle be included as in Ref. 17.
The resulting 4× 4 matrix representing Hsp in this trun-
cated Hilbert space is readily diagonalized and yields four
energy bands. We choose the Fermi energy such that only
the lower two bands, labeled by s = ±, are occupied, and
arrive at a reduced two-band model, where the quantum
number s = ± replaces the spin quantum number. The
dispersion relation is

Es(k) = ω +
k2

2m
−
√

(ω

2
+ sαk

)2

+
mωα2

2
, (4)

with eigenfunctions ∼ eikxφk,s(z). The resulting asym-
metric energy bands (4) are shown in Fig. 1. The trans-
verse spinors (in spin space) are given by

φk,+(z) =

(

i cos[θ+(k)]H1(z)
sin[θ+(k)]H0(z)

)

, (5)

φk,−(z) =

(

sin[θ−(k)]H0(z)
i cos[θ−(k)]H1(z)

)

,

with k-dependent spin rotation angles (we take 0 ≤
θs(k) ≤ π/2)

θs(k) =
1

2
cot−1

(−2sk − ω/α√
2mω

)

= θ−s(−k). (6)

As a result of subband mixing, the two spinor compo-
nents of φk,s(z) carry a different z-dependence. They are
therefore not just the result of a SU(2) rotation. For
α = 0, we recover θs = π/2, corresponding to the usual
spin up and down eigenstates, with H0(z) as transverse
wavefunction; the s = + (s = −) component then de-
scribes the σ =↓ (σ =↑) spin eigenstate. However, for
α 6= 0, a peculiar implication of the Rashba SOI follows.
From Eq. (6) we have limk→±∞ θs(k) = (1± s)π/4, such
that both s = ± states have (approximately) spin σ =↓
for k → ∞ but σ =↑ for k → −∞; the product of spin and
chirality thus always approaches σsgn(k) = −1. More-
over, under the time-reversal transformation, T = iσyC
with the complex conjugation operator C, the two sub-
bands are exchanged,

e−ikxφ−k,−s(z) = sT [eikxφk,s(z)], E−s(−k) = Es(k).
(7)
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FIG. 1: (Color online) Schematic band structure (4) of a typ-
ical 1D Rashba quantum wire. The red/blue curves show the
s = ± bands, and the dotted curves indicate the next subband
(the Fermi energy ǫF is assumed below that band). For the
low-energy description, we linearize the dispersion. It is no-
tationally convenient to introduce bands A (solid lines) and
B (dashed lines). Green and black arrows indicate the re-
spective spin amplitudes (exaggerated). The resulting Fermi

momenta are ±k
(A,B)
F , with Fermi velocities vA,B .

Time-reversal symmetry, preserved in the truncated de-
scription, makes this two-band model of a Rashba quan-
tum wire qualitatively different from Zeeman-spin-split
models.21

In the next step, since we are interested in the
low-energy physics, we linearize the dispersion relation

around the Fermi points ±k(A,B)
F , see Fig. 1, which results

in two velocities vA and vB , see Eq. (1). The lineariza-
tion of the dispersion relation of multi-band quantum
wires around the Fermi level is known to be an excellent
approximation for weak e-e interactions.32 Explicit val-
ues for δ in Eq. (1) can be derived from Eq. (4), and we
find δ(α) ∝ α4 for α → 0, in accordance with previous
estimates.20 We mention that δ . 0.1 has been estimated
for typical geometries in Ref. 34. The transverse spinors
φks(z), Eq. (5), entering the low-energy description can

be taken at k = ±k(A,B)
F , where the spin rotation angle

(6) only assumes one of the two values

θA = θ+

(

k
(A)
F

)

, θB = θ−

(

k
(B)
F

)

. (8)

The electron field operator Ψ(x, z) for the linearized two-
band model with ν = A,B = +,− can then be expressed
in terms of 1D fermionic field operators ψν,r(x), where
r = R,L = +,− labels right- and left-movers,

Ψ(x, z) =
∑

ν,r=±

eirk
(ν)
F x φ

rk
(ν)
F ,s=νr

(z) ψν,r(x), (9)

with φk,s(z) specified in Eq. (5). Note that in the left-
moving sector, band indices have been interchanged ac-
cording to the labeling in Fig. 1.

In this way, the noninteracting second-quantized
Hamiltonian takes the standard form for two inequiva-
lent species of 1D massless Dirac fermions with different
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velocities,

H0 = −i
∑

ν,r=±

rvν

∫

dx ψ†
ν,r∂xψν,r. (10)

The velocity difference implies the breaking of the spin
SU(2) symmetry, a direct consequence of SOI. For α = 0,
the index ν coincides with the spin quantum number σ
for left-movers and with −σ for right-movers, and the
above formulation reduces to the usual Hamiltonian for
a spinful single-channel quantum wire.

III. INTERACTION EFFECTS

Let us now include e-e interactions in such a single-
channel disorder-free Rashba quantum wire. With the
expansion (9) and r = (x, z), the second-quantized two-
body Hamiltonian

HI =
1

2

∫

dr1dr2 Ψ†(r1)Ψ
†(r2)V (r1 − r2)Ψ(r2)Ψ(r1)

(11)
leads to 1D interaction processes. We here assume
that the e-e interaction potential V (r1 − r2) is exter-
nally screened, allowing to describe the 1D interactions
as effectively local. Following standard arguments, for
weak e-e interactions, going beyond this approximation
at most leads to irrelevant corrections.53 We then obtain
the local 1D interaction Hamiltonian54

HI =
1

2

∑

{νi,ri}

V{νi,ri}

∫

dx ψ†
ν1,r1

ψ†
ν2,r2

ψν3,r3
ψν4,r4

,

(12)
where the summation runs over all quantum numbers
ν1, . . . , ν4 and r1, . . . , r4 subject to momentum conserva-
tion,

r1k
(ν1)
F + r2k

(ν2)
F = r3k

(ν3)
F + r4k

(ν4)
F . (13)

With the momentum transfer q = r1k
(ν1)
F − r4k

(ν4)
F and

the partial Fourier transform

Ṽ (q; z) =

∫

dx e−iqxV (x, z) (14)

of the interaction potential, the interaction matrix ele-
ments in Eq. (12) are given by

V{νi,ri} =

∫

dz1dz2 Ṽ (q; z1 − z2)

×
[

φ†
r1k

(ν1)

F ,ν1r1

· φ
r4k

(ν4)

F ,ν4r4

]

(z1)

×
[

φ†
r2k

(ν2)

F ,ν2r2

· φ
r3k

(ν3)

F ,ν3r3

]

(z2). (15)

Since the Rashba SOI produces a splitting of the Fermi

momenta for the two bands,
∣

∣

∣k
(A)
F − k

(B)
F

∣

∣

∣ ≃ 2αm, the

condition (13) eliminates one important interaction pro-
cess available for α = 0, namely interband backscattering
(see below). This is a distinct SOI effect besides the bro-
ken spin SU(2) invariance. Obtaining the complete “g-
ology” classification32 of all possible interaction processes
allowed for α 6= 0 is then a straightforward exercise. The
corresponding values of the interaction matrix elements
are generally difficult to evaluate explicitly, but in the
most important case of a thin wire,

d≫ 1√
mω

, (16)

where d is the screening length (representing, e.g., the
distance to a backgate), analytical expressions can be
obtained.55 To simplify the analysis and allow for ana-
lytical progress, we therefore employ the thin-wire ap-
proximation (16) in what follows. In that case, we can
neglect the z dependence in Eq. (14). Going beyond this
approximation would only imply slightly modified values
for the e-e interaction couplings used below. Using the
identity

∫

dz

[

φ†
rk

(ν)
F ,νr

· φ
r′k

(ν′)
F ,ν′r′

]

(z) = (17)

= δνν′δrr′ + cos(θA − θB)δν,−ν′δr,−r′ ,

where the angles θA,B were specified in Eq. (8), only two
different values W0 and W1 for the matrix elements in
Eq. (15) emerge. These nonzero matrix elements are

Vνr,ν′r′,ν′r′,νr ≡W0 = Ṽ (q = 0),

Vνr,ν′r′,−ν′−r′,−ν−r ≡W1 (18)

= cos2(θA − θB) Ṽ
(

q = k
(A)
F + k

(B)
F

)

.

We then introduce 1D chiral fermion densities ρνr(x) =
: ψ†

νrψνr :, where the colons indicate normal-ordering.
The interacting 1D Hamiltonian is H = H0 + HI with
Eq. (10) and

HI =
1

2

∑

νν′,rr′

∫

dx
(

[g2‖νδν,ν′ + g2⊥δν,−ν′ ]δr,−r′

+ [g4‖νδν,ν′ + g4⊥δν,−ν′ ]δr,r′

)

ρνrρν′r′ (19)

+
gf

2

∑

νr

∫

dx ψ†
νrψ

†
ν,−rψ−νrψ−ν,−r.

The e-e interaction couplings are denoted in analogy to
the standard g-ology, whereby the g4 (g2) processes de-
scribe forward scattering of 1D fermions with equal (op-
posite) chirality r = R,L = +,−, and the labels ‖, ⊥,
and f denote intraband, interband, and band flip pro-
cesses, respectively. Since the bands ν = A,B = +,− are
inequivalent, we keep track of the band index in the intra-
band couplings. The gf term corresponds to intraband
backscattering with band flip. The interband backscat-
tering without band flip is strongly suppressed since it
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does not conserve total momentum56 and is neglected in
the following. For α = 0, the g4,‖/⊥ couplings coincide

with the usual ones32 for spinful electrons, while gf re-
duces to g1⊥ and g2,‖/⊥ → g2,⊥/‖ due to our exchange
of band indices in the left-moving sector. According to
Eq. (18), the bare values of these coupling constants are

g4‖ν = g4⊥ = g2‖ν = W0,

g2⊥ = W0 −W1, gf = W1. (20)

The equality of the intraband coupling constants for the
two bands is a consequence of the thin-wire approxima-
tion, which also eliminates certain exchange matrix ele-
ments.

The Hamiltonian H0 +HI then corresponds to a spe-
cific realization of a general asymmetric two band-model,
where the one-loop RG equations are known.54,57 Using
RG invariants, we arrive after some algebra at the two-
dimensional Kosterlitz-Thouless RG flow equations,

dḡ2
dl

= −ḡ2
f ,

dḡf

dl
= −ḡf ḡ2, (21)

for the rescaled couplings

ḡ2 =
g2‖A

2πvA
+
g2‖B

2πvB
− g2⊥
πvF

, (22)

ḡf =

√

1 + γ

2

gf

πvF
,

where we use the dimensionless constant

γ =
v2

F

vAvB
=

1

1 − δ2
≥ 1. (23)

As usual, the g4 couplings do not contribute to the one-
loop RG equations. The initial values of the couplings
can be read off from Eq. (20),

ḡ2(l = 0) =
(γ − 1)W0 +W1

πvF
,

ḡf(l = 0) =

√

1 + γ

2

W1

πvF
. (24)

The solution of Eq. (21) is textbook material,32 and ḡf

is known to be marginally irrelevant for all initial condi-
tions with |ḡf (0)| ≤ ḡ2(0). Using Eqs. (18) and (24), this
implies with γ ≃ 1 + δ2 the condition

Ṽ (0) ≥ 1

4
cos2(θA − θB) Ṽ

(

k
(A)
F + k

(B)
F

)

, (25)

which is satisfied for all physically relevant repulsive e-
e interaction potentials. As a consequence, intraband
backscattering processes with band flip, described by the
coupling ḡf , are always marginally irrelevant, i.e., they
flow to zero coupling as the energy scale is reduced,
ḡ∗f = ḡf (l → ∞) = 0. Therefore no gap arises, and a
modified LL model is the appropriate low-energy theory.
We mention in passing that even if we neglect the ve-
locity difference in Eq. (1), no spin gap is expected in

a Rashba wire, i.e., the broken SU(2) invariance in our
model is not required to establish the absence of a gap.

The above RG procedure also allows us to extract
renormalized couplings entering the low-energy LL de-
scription. The fixed-point value ḡ∗2 = ḡ2(l → ∞) now
depends on the Rashba SOI through γ in Eq. (23). With
the interaction matrix elements W0,1 in Eq. (18), it is
given by

ḡ∗2 =

√

[(γ − 1)W0 +W1]2 − (γ + 1)W 2
1 /2

πvF
. (26)

For α = 0, we have γ = 1 and therefore ḡ∗2 = 0. The
Rashba SOI produces the nonzero fixed-point value (26),
reflecting the broken SU(2) symmetry.

IV. LUTTINGER LIQUID DESCRIPTION

In this section, we describe the resulting effective
low-energy Luttinger liquid (LL) theory of an inter-
acting single-channel Rashba wire. Employing Abelian
bosonization,32 we introduce a boson field and its con-
jugate momentum for each band ν = A,B = +,−.
It is useful to switch to symmetric (“charge”), Φc(x)
and Πc(x) = −∂xΘc(x), and antisymmetric (“spin” for
α = 0), Φs(x) and Πs(x) = −∂xΘs, linear combinations
of these fields and their momenta. The dual fields Φ
and Θ then allow to express the electron operator from
Eq. (9) and the “bosonization dictionary,”

Ψ(x, z) =
∑

ν,r

φ
rk

(ν)
F ,νr

(z)
ηνr√
2πa

(27)

× eirk
(ν)
F x+i

√
π/2[rΦc+Θc+νrΦs+νΘs],

where a is a small cutoff length and ηνr are the stan-
dard Klein factors.32,52,58 (To recover the conventional
expression for α = 0, due to our convention for the
band indices in the left-moving sector, one should re-
place Φs,Θs → −Θs,−Φs.) Using the identity (17), we
can now express the 1D charge and spin densities,

ρ(x) =

∫

dzΨ†Ψ, S(x) =

∫

dzΨ†σ

2
Ψ, (28)

in bosonized form. The (somewhat lengthy) result can
be found in Appendix A.

The low-energy Hamiltonian is then taken with the
fixed-point values for the interaction constants, i.e.,
backscattering processes are disregarded and only appear
via the renormalized value of ḡ∗2 in Eq. (26). Following
standard steps, the kinetic term H0 and the forward scat-
tering processes then lead to the exactly solvable Gaus-
sian field theory of a modified (extended) Luttinger liq-
uid,

H =
∑

j=c,s

vj

2

∫

dx

(

KjΠ
2
j +

1

Kj
(∂xΦj)

2

)

(29)

+ vλ

∫

dx

(

KλΠcΠs +
1

Kλ
(∂xΦc)(∂xΦs)

)

.
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Using the notations ḡ4 = W0/πvF and

yδ =
g∗2‖A − g∗2‖B

4πvF
,

y± =
g∗2‖A + g∗2‖B ± 2g∗2⊥

4πvF
,

where explicit (but lengthy) expressions for the fixed-
point values g∗2‖A/B and g∗2⊥ can be straightforwardly

obtained from Eqs. (22) and (26), the renormalized ve-
locities appearing in Eq. (29) are

vc = vF

√

(1 + ḡ4)2 − y2
+

≃ vF

√

(

1 +
W0

πvF

)2

−
(

2W0 −W1

2πvF

)2

,

vs = vF

√

1 − y2
− ≃ vF , (30)

vλ = vF

√

δ2 − y2
δ ≃ vF δ

√

1 −
(

W1

4πvF

)2

.

In the respective second equalities, we have specified the
leading terms in |δ| ≪ 1, since the SOI-induced relative
velocity asymmetry δ is small even for rather large α,
see Eq. (1). The corrections to the quoted expressions
are of O(δ2) and are negligible in practice. It is note-
worthy that the “spin” velocity vs is not renormalized
for a Rashba wire, although it is well-known that vs will
be renormalized due to W1 for α = 0.32 This difference
can be traced to our thin-wire approximation (16). When
releasing this approximation, there will be a renormaliza-
tion in general. Finally, the dimensionless LL interaction
parameters in Eq. (29) are given by

Kc =

√

1 + ḡ4 − y+
1 + ḡ4 + y+

≃
√

2πvF +W1

2πvF + 4W0 −W1
,

Ks =

√

1 − y−
1 + y−

≃ 1 −
√
W0W1√
2 πvF

|δ|, (31)

Kλ =

√

δ − yδ

δ + yδ
≃
√

4πvF +W1

4πvF −W1
,

where the second equalities again hold up to contribu-
tions of O(δ2). When the 2kF component of the in-
teraction potential W1 = 0, see Eq. (18), we obtain
Ks = Kλ = 1, and thus recover the theory of Ref. 22.
The broken spin SU(2) symmetry is reflected in Ks < 1
when both δ 6= 0 and W1 6= 0.

Since we arrived at a Gaussian field theory, Eq. (29),
all low-energy correlation functions can now be computed
analytically without further approximation. The linear
algebra problem needed for this diagonalization is dis-
cussed in App. A.

V. RKKY INTERACTION

Following our discussion in Sec. I, we now investigate
the combined effects of the Rashba SOI and the e-e in-
teraction on the RKKY range function. We include the
exchange coupling, H ′ = J

∑

i=1,2 Σi · S(xi), of the 1D

conduction electron spin density S(x) to localized spin-
1/2 magnetic impurities, separated by x = x1 − x2. The
RKKY interaction HRKKY, describing spin-spin interac-
tions between the two magnetic impurities, is then ob-
tained by perturbation theory in J .48 In the simplest 1D
case (no SOI, no interactions), it is given by Eq. (2). In
the general case, one can always express it in the form

HRKKY = −J2
∑

a,b

F ab(x)Σa
1Σb

2, (32)

with the range function now appearing as a tensor (β =
1/kBT for temperature T ),

F ab(x) =

∫ β

0

dτ χab(x, τ). (33)

Here, the imaginary-time (τ) spin-spin correlation func-
tion appears,

χab(x, τ) = 〈Sa(x, τ)Sb(0, 0)〉. (34)

The 1D spin densities Sa(x) (with a = x, y, z) were
defined in Eq. (28), and their bosonized expression is
given in App. A, which then allows to compute the cor-
relation functions (34) using the unperturbed (J = 0)
LL model (29). The range function thus effectively co-
incides with the static space-dependent spin suscepti-
bility tensor. When spin SU(2) symmetry is realized,
χab(x) = δabFex(x), and one recovers Eq. (2), but in gen-
eral this tensor is not diagonal. For a LL without Rashba
SOI, Fex(x) is as in Eq. (2) but with a slow power-law
decay.52

If spin SU(2) symmetry is broken, general arguments
imply that Eq. (32) can be decomposed into three terms,
namely (i) an isotropic exchange scalar coupling, (ii) a
Dzyaloshinsky-Moriya (DM) vector term, and (iii) an
Ising-like interaction,

HRKKY/J
2 = −Fex(x)Σ1 ·Σ2 − FDM(x) · (Σ1 × Σ2)

−
∑

a,b

F ab
Ising(x)Σ

a
1Σb

2, (35)

where Fex(x) = 1
3

∑

a F
aa(x). The DM vector has the

components

F c
DM(x) =

1

2

∑

a,b

ǫcabF ab(x),

and the Ising-like tensor

F ab
Ising(x) =

1

2

(

F ab + F ba − 2

3

∑

c

F ccδab

)

(x)
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is symmetric and traceless. For a 1D noninteracting
quantum wire with Rashba SOI, the “twisted” RKKY
Hamiltonian (35) has recently been discussed,49,50,51 and
all range functions appearing in Eq. (35) were shown to
decay ∝ |x|−1, as expected for a noninteracting system.
Moreover, it has been emphasized50 that there are dif-
ferent spatial oscillation periods, reflecting the presence

of different Fermi momenta k
(A,B)
F in a Rashba quantum

wire.
Let us then consider the extended LL model (29),

which includes the effects of both the e-e interaction
and the Rashba SOI. The correlation functions (34) obey
χba(x, τ) = χab(−x,−τ), and since we find χxz = χyz =
0, the anisotropy acts only in the xy-plane. The four
nonzero correlators are specified in App. A, where only
the long-ranged 2kF oscillatory terms are kept. These
are the relevant correlations determining the RKKY in-
teraction in the interacting quantum wire. We note that
in the noninteracting case, there is also a “slow” oscilla-
tory component, corresponding to a contribution to the

RKKY range function ∝ cos
[(

k
(A)
F − k

(B)
F

)

x
]

/|x|. Re-

markably, we find that this 1/x decay law is not changed
by interactions. However, we will show below that inter-
actions cause a slower decay of certain “fast” oscillatory

terms, e.g., the contribution ∝ cos(2k
(B)
F x). We there-

fore do not further discuss the “slow” oscillatory terms
in what follows.

Collecting everything, we find the various range func-
tions in Eq. (35) for the interacting case,

Fex(x) =
1

6

∑

ν

[

(

1 + cos2(2θν)
)

cos
(

2k
(ν)
F x

)

F (1)
ν (x)

+ cos2(θA + θB) cos
[

(k
(A)
F + k

(B)
F )x

]

F (2)
ν (x)

]

,

FDM(x) = êz

∑

ν

ν

2
cos(2θν) sin

(

2k
(ν)
F x

)

F (1)
ν (x), (36)

F ab
Ising(x) =

[

1

2

∑

ν

Ga
ν(x) − Fex(x)

]

δab,

with the auxiliary vector

Gν =











cos
(

2k
(ν)
F x

)

F
(1)
ν (x)

cos2(2θν) cos
(

2k
(ν)
F x

)

F
(1)
ν (x)

cos2(θA + θB) cos
[

(k
(A)
F + k

(B)
F )x

]

F
(2)
ν (x)











.

The functions F
(1,2)
ν (x) follow by integration over τ from

F̃
(1,2)
ν (x, τ), see Eqs. (A1) and (A2) in App. A. This

implies the respective decay laws for a≪ |x| ≪ vF /kBT ,

F (1)
ν (x) ∝ |a/x|−1+Kc+Ks+2ν(1−Kc/K2

λ)
vλKλ
vc+vs , (37)

F (2)
ν (x) ∝ |a/x|−1+Kc+1/Ks .

All those exponents approach unity in the noninteracting
limit, in accordance with previous results.49,50 Moreover,

in the absence of SOI (α = δ = 0), Eq. (37) reproduces
the known |x|−Kc decay law for the RKKY interaction
in a conventional LL.52

Since Ks < 1 for an interacting Rashba wire with

δ 6= 0, see Eq. (31), we conclude that F
(1)
ν with ν = B,

corresponding to the slower velocity vB = vF (1−δ), leads
to the slowest decay of the RKKY interaction. For large
distance x, the RKKY interaction is therefore dominated

by the 2k
(B)
F oscillatory part, and all range functions de-

cay ∝ |x|−ηB with the exponent

ηB = Kc +Ks − 1 − 2

(

1 − Kc

K2
λ

)

vλKλ

vc + vs
< 1. (38)

This exponent depends both on the e-e interaction po-
tential and on the Rashba coupling α. The latter de-
pendence also implies that electric fields are able to
change the power-law decay of the RKKY interaction in
a Rashba wire. The DM vector coupling also illustrates
that the SOI is able to effectively induce off-diagonal cou-
plings in spin space, reminiscent of spin precession ef-

fects. Also these RKKY couplings are 2k
(B)
F oscillatory

and show a power-law decay with the exponent (38).

VI. DISCUSSION

In this paper, we have presented a careful derivation of
the low-energy Hamiltonian of a homogeneous 1D quan-
tum wire with not too weak Rashba spin-orbit inter-
actions. We have studied the simplest case (no mag-
netic field, no disorder, single-channel limit), and in par-
ticular analyzed the possibility for a spin gap to oc-
cur because of electron-electron backscattering processes.
The initial values for the coupling constants entering the
one-loop RG equations were determined, and for rather
general conditions, they are such that backscattering is
marginally irrelevant and no spin gap opens. The re-
sulting low-energy theory is a modified Luttinger liquid,
Eq. (29), which is a Gaussian field theory formulated
in terms of the boson fields Φc(x) and Φs(x) (and their
dual fields). In this state, spin-charge separation is vi-
olated due to the Rashba coupling, but the theory still
admits exact results for essentially all low-energy corre-
lation functions.

Based on our bosonized expressions for the 1D charge
and spin density, the frequency dependence of various
susceptibilities of interest, e.g., charge- or spin-density
wave correlations, can then be computed. As the calcu-
lation closely mirrors the one in Refs. 34,35, we do not
repeat it here. One can then infer a “phase diagram”
from the study of the dominant susceptibilities. Accord-
ing to our calculations, due to a conspiracy of the Rashba
SOI and the e-e interaction, spin-density-wave correla-
tions in the xy plane are always dominant for repulsive
interactions.

We have studied the RKKY interaction between two
magnetic impurities in such an interacting 1D Rashba
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quantum wire. On general grounds, the RKKY interac-
tion can be decomposed into an exchange term, a DM
vector term, and a traceless symmetric tensor interac-
tion. For a noninteracting wire, the corresponding three
range functions have several spatial oscillation periods
with a common overall decay ∝ |x|−1. We have shown
that interactions modify this picture. The dominant con-
tribution (characterized by the slowest power-law decay)

to the RKKY range function is now 2k
(B)
F oscillatory for

all three terms, with the same exponent ηB < 1, see
Eq. (38). This exponent depends both on the interac-
tion strength and on the Rashba coupling. This raises
the intriguing possibility to tune the power-law exponent
ηB governing the RKKY interaction by an electric field,
since α is tunable via a backgate voltage. We stress again
that interactions imply that a single spatial oscillation

period (wavelength π/k
(B)
F ) becomes dominant, in con-

trast to the noninteracting situation where several com-
peting wavelengths are expected.

The above formulation also holds promise for future
calculations of spin transport in the presence of both in-
teractions and Rashba spin-orbit couplings, and possibly
with disorder. Under a perturbative treatment of impu-
rity backscattering, otherwise exact statements are pos-
sible even out of equilibrium. We hope that our work will
motivate further studies along this line.
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APPENDIX A: BOSONIZATION FOR THE

EXTENDED LUTTINGER LIQUID

In this appendix, we provide some technical details re-
lated to the evaluation of the spin-spin correlation func-
tion under the extended Luttinger theory (29). The ex-
act calculation of such correlations is possible within the
bosonization framework, and requires a diagonalization
of Eq. (29).

The 1D charge and spin densities (28) can be written
as the sum of slow and fast (oscillatory) contributions.
Using Eq. (17), the bosonized form for the 1D charge
density is

ρ(x) =

√

2

π
∂xΦc −

2i

πa
ηARηAL cos(θA − θB)

× sin
[(

k
(A)
F + k

(B)
F

)

x+
√

2πΦc

]

cos(
√

2πΘs).

Similarly, using the identity

∫

dz

[

φ†
rk

(ν)
F ,νr

σ φ
r′k

(ν′)
F ,ν′r′

]

(z) =

δr,r′





cos (θA − θB) δν,−ν′

−iνr cos (θA + θB) δν,−ν′

νr cos (2 θν) δν,ν′



+

+δr,−r′





δν,ν′

−iνr cos (2 θν) δν,ν′

νr cos (θA + θB) δν,−ν′



 ,

the 1D spin density vector has the components

Sx(x) = −iηARηBR

πa
cos (θA − θB) cos

[(

k
(A)
F − k

(B)
F

)

x+
√

2πΦs

]

sin(
√

2πΘs)

− i
ηARηAL

πa
cos
[(

k
(A)
F + k

(B)
F

)

x+
√

2πΦc

]

sin
[(

k
(A)
F − k

(B)
F

)

x+
√

2πΦs

]

,

Sy(x) = i
ηARηBR

πa
cos (θA + θB) sin

[(

k
(A)
F − k

(B)
F

)

x+
√

2πΦs

]

sin(
√

2πΘs)

− i
∑

ν=A,B=+,−

ν
ηνRηνL

2πa
cos(2θν) cos

[

2k
(ν)
F x+

√
2π (Φc + νΦs)

]

,

Sz(x) =
1√
8π

[(cos 2θA + cos 2θB) ∂xΘs + (cos 2θA − cos 2θB) ∂xΘc]

− i
ηARηBL

πa
cos(θA + θB) cos

[(

k
(A)
F + k

(B)
F

)

x+
√

2πΦc

]

sin(
√

2πΦs).

Note that while ∂xΦc is proportional to the (slow part of
the) charge density, the (slow) spin density is determined

by both c and s sectors.

Next we specify the nonzero components of the
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imaginary-time spin-spin correlation function χab(x, τ),
see Eq. (34). Using the above bosonized expressions,
some algebra yields

χxx(x, τ) =
∑

ν

cos
(

2k
(ν)
F x

)

2(2πa)2
F̃ (1)

ν (x, τ),

χyy(x, τ) =
∑

ν

cos2(2θν) cos
(

2k
(ν)
F x

)

2(2πa)2
F̃ (1)

ν (x, τ),

χzz(x, τ) =
∑

νr

cos2(θA + θB)

2(2πa)2

× cos
[(

k
(A)
F + k

(B)
F

)

x
]

F̃ (2)
ν (x, τ),

and

χxy(x, τ) =
∑

ν

ν cos(2θν) sin
(

2k
(ν)
F x

)

2(2πa)2
F̃ (1)

ν (x, τ).

Here, the functions F̃
(1,2)
ν=A,B=+,−(x, τ) are given by

F̃ (1)
ν (x, τ) =

∏

j=1,2

∣

∣

∣

∣

βuj

πa
sin

(

π(ujτ − ix)

βuj

)∣

∣

∣

∣

−
“

Γ
(j)
ΦcΦc

+Γ
(j)
ΦsΦs

+2νΓ
(j)
ΦcΦs

”

and

F̃ (2)
ν (x, τ) =

∏

j=1,2

∣

∣

∣

∣

βuj

πa
sin

(

π(ujτ − ix)

βuj

)∣

∣

∣

∣

−
“

Γ
(j)
ΦcΦc

+Γ
(j)
ΘsΘs

”




sin
(

π(ujτ+ix)
βuj

)

sin
(

π(ujτ−ix)
βuj

)





νΓ
(j)
ΦcΘs

.

The dimensionless numbers Γ(j) appearing in the expo-
nents follow from the straightforward (but lengthy) diag-
onalization of the extended LL Hamiltonian (29), where
the uj are the velocities of the corresponding normal
modes. With the velocities (30) and the dimensionless
Luttinger parameters (31), the result of this linear alge-
bra problem can be written as follows. The normal-mode
velocities u1 and u2 are

2u2
j=1,2 = v2

c + v2
s + 2v2

λ − (−1)j
[

(v2
c − v2

s)2 +

+4v2
λ

[

vcvs

(

K2
λ

KcKs
+
KcKs

K2
λ

)

+ v2
c + v2

s

]

]1/2

,

and the exponents Γ(j=1,2) appearing in F̃
(1,2)
ν (x, τ) are

given by

Γ
(j)
ΦcΦc

=
(−1)jKcvc

uj(u2
1 − u2

2)

(

v2
s − u2

j −
K2

λv
2
λvs

KcKsvc

)

,

Γ
(j)
ΦsΦs

=
(−1)jKsvs

uj(u2
1 − u2

2)

(

v2
c − u2

j −
K2

λv
2
λvc

KcKsvs

)

,

Γ
(j)
ΦcΦs

=
(−1)jKλvλ

uj(u2
1 − u2

2)

(

v2
λ − u2

j −
KcKsvsvc

K2
λ

)

,

Γ
(j)
ΘsΘs

=
(−1)jvs

Ksuj(u2
1 − u2

2)

(

v2
c − u2

j −
KcKsv

2
λvc

K2
λvs

)

,

Γ
(j)
ΦcΘs

=
(−1)jvλ

u2
1 − u2

2

(

Kλ

Ks
vs +

Kc

Kλ
vc

)

.

Since |δ| ≪ 1, we now employ the simplified expres-
sions for the velocities in Eq. (30) and the Luttinger liq-
uid parameters in Eq. (31), which are valid up to O(δ2)
corrections. In the interacting case, this yields for the
normal-mode velocities simply u1 = vc and u2 = vs.
(In the noninteracting limit, the above equation instead
yields u1 = vA and u2 = vB , see Eq. (1).) Moreover, the
exponents Γ(j) simplify to

Γ
(1)
ΦcΦc

= Kc, Γ
(2)
ΦcΦc

= Γ
(1)
ΦsΦs

= Γ
(1)
ΘsΘs

= 0,

Γ
(2)
ΦsΦs

= Ks, Γ
(2)
ΘsΘs

= 1/Ks,

Γ
(1)
ΦcΦs

=
vλ

v2
c − v2

s

(Kλvc +Kcvs/Kλ),

Γ
(2)
ΦcΦs

= − vλ

v2
c − v2

s

(Kλvs +Kcvc/Kλ),
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Γ
(1,2)
ΦcΘs

= ±Γ
(2)
ΦcΦs

.

Collecting everything and taking the zero-temperature

limit, the functions F̃
(1,2)
ν=± (x, τ) take the form

F̃ (1)
ν (x, τ) =

∣

∣

∣

∣

vcτ − ix

a

∣

∣

∣

∣

−Kc−2νvλ
Kλvc+Kcvs/Kλ

v2
c−v2

s

×
∣

∣

∣

∣

vsτ − ix

a

∣

∣

∣

∣

−Ks+2νvλ
Kλvs+Kcvc/Kλ

v2
c−v2

s

, (A1)

and

F̃ (2)
ν (x, τ) =

∣

∣

∣

∣

vcτ − ix

a

∣

∣

∣

∣

−Kc
∣

∣

∣

∣

vsτ − ix

a

∣

∣

∣

∣

−1/Ks

(A2)

×
(

(vsτ − ix)(vcτ + ix)

(vsτ + ix)(vcτ − ix)

)−ν
vλ(Kλvs+Kcvc/Kλ)

v2
c−v2

s

.

The known form of the spin-spin correlations in a LL
with α = 0 is recovered by putting vλ ∝ δ = 0.
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