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We establish the exact solution of the nonlinear Schrodinger equation with a delta-
function impurity, representing a pointlike defect which reflects and transmits. We
solve the problem both at the classical and the second quantized levels. In the
quantum case the Zamolodchikov—Faddeev algebra, familiar from the case without
impurities, is substituted by the recently discovered reflection-transmi¢gion
algebra, which captures both particle—particle and particle—impurity interactions.
The off-shell quantum solution is expressed in terms of the generators of the RT
algebra and the exact scattering matrix of the theory is derived0@ American
Institute of Physics[DOI: 10.1063/1.1842353

I. INTRODUCTION

Impurity problems arise in different areas of quantum field theory and are essential for un-
derstanding a number of phenomena in condensed matter physics. At the experimental side, the
recent interest in pointlike impuritie&efects is triggered by the great progress in building
nanoscale devices.

The interaction of quantum fields with impurities represents in general a hard and yet un-
solved problem, but there are relevant achievenfefitm the case of integable systems in 1+1
space—time dimensions. The stfhﬁf/gof the special case of purely reflecting impuritié®und-
arie9 indicates factorized scattering the%orif“as the most efficient method for dealing with this
kind of problem. The method provides on-shell information about the system and allows to derive
the exact scattering matrix. The goal of the present paper is to extend this framework, exploring
the possibility to recover off-shell information and to reconstruct the quantum fields, generating
the above scattering matrix. We test this possibility on one of the most extensively studied inte-
grable systems—the nonlinear Schroding®tS) model?®? More precisely, we are concerned
below with the NLS model coupled to a delta-function impurity. The basic tool of our investiga-
tion is a specific exchange algeﬁrécalled reflection-transmissidilRT) algebra. The RT algebra
is a generalization of the Zamolodchikov—Fadde&#)* - algebra used in the case without
defects. The RT algebra is originally designed for the construction of the total scattering operator
from the fundamental scattering data, namely the two-body bulk scattering matrix and the reflec-
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tion and transmission amplitudes of a single particle interacting with the defect. In what follows
we demonstrate that in the NLS model the same algebra allows to reconstruct the corresponding
off-shell quantum field as well. Being the first exactly solvable example with nontrivial bulk
scattering matrix, the NLS model sheds some light on the interplay between pointlike impurities,
integrability, and symmetries. In this respect our solution clarifies a debated question about the
Galilean invariance of the bulk scattering matrix.
After introducing the model in Sec. Il, we establish the solution, both at the clagSieal
I B) and second-quantizé&ec. Il)) levels. We do this in detalil, clarifying the basic properties of
the solution. In Sec. IV we derive from the off-shell quantum field the total scattering matrix of the
model, showing that it coincides with the one obtained directly from factorized scattering. In Sec.
V we indicate some generalizations. Our conclusions and ideas about further developments are
also collected there. Appendixes A and B are devoted to the proofs of some technical results.
We present below the analysis of the so-call®t/pe impurity. A wider class of defects,
interacting with the NLS model and preserving its integrability, can be treated in a similaﬁsway.
We have chosen to focus here on the particdtaype defect in order to keep the length of the
proofs reasonable, referring to Ref. 33 for a more physically oriented treatment of the general case
(without detailed proofs

II. INTRODUCING AN IMPURITY IN THE NLS MODEL

We start by recalling some well-known results about the NLS model without impurity. The
reason for this is twofold: first, because this is a good guide to tackle the problem with impurity
and second, because the central piece of the solution of the NLS model, the Rosales
expansiorf’,“’35 can be adapted to the impurity case.

A. The model to solve

The field theoretic version of NLS is described by a classical complex diétdx) whose
equation of motion reads

(i, + ) D(t,x) = 2g|D(t, %) *D(t, ). (2.1
The corresponding action takes the form
ANLS:J dtf dx(iD(t, ) D(t,X) - |a,D(t,%)|2 - g|®(t,x)|9), (2.2
R R

and, being in particular invariant under time translation, ensures the conservation of the energy

5N|_s:f dx(|aP(t,%)[* + gld(t,x |4). (2.3
R

The latter is non-negative fag=0.
It is well-known that this is a nonrelativistic integrable mofiésee also Ref. 30 for a review
and an explicit solution for the field was given by Rosales in Ref. 34,

D(t,x) = 2, (- 9)"P"(t,x), (2.4)
n=0

where
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n .on .o 2
dp; dg:— — 2,—:0(QjX—0|j2t)—l2i=1(piX—Di t)
o™(tx) = | TS (p) - Npoh(ay -+ Mao) (2.5
penel 2y 27 27
=0 IT (pi - a0 (pi - )
i=1

and the overbar denotes complex conjugation.

The leveln=0 is the linear part of the field corresponding to the free Schrédinger equation. It
was argued in Ref. 32 that this solution is well-defined for a large class of funatipctntaining
the Schwarz spacé&(R)] and an upper bound fay was given for the serie€.4) to converge
uniformly in x. It also represents a physical field since it vanishes-ast . In the same paper,
the authors considered NLS on the half-liRg which can be seen as the model on the whole line
in the presence of a purely reflecting impurity sitting at the origin. Therefore, the latter represents
a particular case of the model with transmitting and reflecting impuritx=s® we wish to
contemplate in this paper. They gave the following action:

AR:J dtf dx(iCI_D(t,x)at@(t,x)—|aX<D(t,x)|2—g|CI>(t,x)|4)—nf dt|d(t,0)?,
R R*

R
wheren e R is the parameter controlling the boundary condition
lim (d,— n)®(t,x) =0. (2.6
x—0"

In our case, since the impurity is allowed to reflect and transmit, we must také tpart into
account and we are led to work with the following action:

ART:A++A_+A0, (27)
where
A= f dt J dx(iD(t,X)aD(t,X) - |4D(t,%)|2 - g|D(t,X)[%), (2.9
R +
«40=‘277f dt|d(t,0)/?. (2.9
R

The form of Azt shows the particular status of the origin O where the impurity sits. Again, the
invariance of the action under time translations ensures the conservation of the energy,

gRT:f dx (| (£, X)[? + gld(t,x)|*) + 27| D(t,0)*. (2.10
R™®R*

It is positive forg=0,7=0, which is what we assume in the rest of this paper. We will see that
n characterizes the transmission and reflection properties of the impurity. Using the variational
principle, one deduces the equation of motion and the boundary conditions for thedfies)
must be the solution of NLS oR~ andR*, continuous ak=0 and satisfy a “jump condition” at
the origin. It must also vanish at infinity as a physical field.

Definition 2.1: The nonlinear Schrédinger model with a transmitting and reflecting impurity at
the origin is described by the following boundary problem for the fib(d, x):

(id + 2D (t,x) — 2g|dD(t,x)|?D(t,x) =0, x+# 0, (2.11)
lim {®(t,x) - ®(t,-x)} =0, (2.12
x—0*
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lim {(6,®)(t,) — (4,D)(t,—X)} — 27D(t,0) = 0, (2.13

x—0*

lim ®(t,x) =0. (2.149

X—too

B. Explicit solution

As announced, the Rosales solufiboan be adapted suitably to solve the problem of defini-
tion 2.1. Sinceg2.4) is a solution of NLS orR, it is easy to devise a solution f¢2.11). Starting
from two copies of(2.4) and (2.5), one based on a functian, and the other on a function_,
denoted®,(t,x) andd_(t,x), respectively, we define

(I)+(t!X) 1 X > O;
®(t,x) = P_(t,x), x<0, (2.15
3(@,(t,0)+D_(1,0), x=0.
It is clearly solution of(2.11) for x# 0 and from the vanishing @b, (t,x) asx— =, (2.14 is also

satisfied. However, there is no reason why, in gendrét, x) so defined should satisfy the bound-
ary conditions(2.12 and (2.13. In order to satisfy these conditions, we parametize\_ as

follows:
(M(p)):( 1 T(p)>(u+(p)>+(R(p) 0 )(m(—p)), 2.18
A_(p) T=p 1 /\u(p) 0 REp/\u(-p)
where
_p _ —ing
T(p)—p“n. R(p)_p+in’ peR, (2.17)

and u.(p) are arbitrary Schwarz test functions. Then, the functiodp) satisfy

A(p) =T(EpA:(p) +REPA(-p), OpeR (2.18

which follows from the identities

RP)R(-p)+T(p)T(-p)=1 and T(p)R(-p)+R(P)T(-p)=0, OpeR. (2.19

These relations plus a particular choice for the formuefwill be essential in the proof of the
theorem 2.2 below.

Anticipating the quantum case, if we interpiet (respectively\_) as a wave packef2.18
shows that each wave packet i (respectively,R") is equivalent to the superimposition of a
transmitting part coming fronR~ (respectivelyR*) and a reflected part iR, (respectivelyR_).
This physical interpretation will show up in the next section when we construct a Fock represen-
tation of the creation and annihilation operators.

We are now in position to state the main result of this section whose lengthy proof we defer
until Appendix A.

Theorem 2.2:Let u,, u_ be given by

pa(K) = + “O(ik)k+I(T:+i Z)“l(k), (2.20

whereug, uq are arbitrary Schwartz functiong; being even and leb_(t,x), ®_(t,x) be given by
the Rosales expansion (2.4) and (2.5) witheplaced by\, andA_, respectively. Thenb(t,x) as
defined in (2.15) satisfies the boundary conditions (2.12) and (2.13), i.e.,
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lim {®(t,x) - P(t,-x)} =0,

x—0*

lim {(6,®)(t,%) — (6 P)(t, - X)} — 27P(t,0) = 0.

x—0*

With this result, we can say thdi(t,x) rewritten as

D(t,x) = OX)D.(t,X) + O(= xX)DP_(t,X), (2.21)

where 6(x) is the Heaviside function defined here to %)atxzo, is the classical solution of the
nonlinear Schrodinger model with impurity as given in definition 2.1.

We want to emphasize that these boundary conditions decouple for the nonlinear part of the
field (as shown in Appendix Aand this is due to the reflection-transmission prop&ayl8
satisfied byn, and\_. This already gives a good hint that the construction of a local field from the
quantum counterparts of,, \_ is achievable, as we now explain.

IIl. QUANTIZATION OF THE SYSTEM

In this section, we move on to the construction and resolution of the quantized version of NLS
with impurity. As we mentioned earlier, the crucial ingredient is the RT algebra which encodes the
properties of the impurity.

A. Reflection-transmission algebra

Here we rely on the constructions developed in Ref. 7 and recast them in the particular context
of the scalar nonlinear Schrodinger modeb internal degrees of freedom, special form of the
exchange matrix and of the generators, see also Rgf. 11

We consider the associative algebra with identity elenter#ind two sets of generators,
{a,(p) ,al(p) ;peR,a=x} and{r(p),t(p);p € R}, called the bulk and defe¢teflection and trans-
mission generators. The label=+ refers to the half-lineR* with respect to the impurityin
practice it will indicate where the particle is created or annihilatéttroducing the measurable
function S:R X R — C defined by

p-ig
= 3.1
P = (3.1
the S-matrix is defined in our context by
S= E Salaz(plva)Ealal ® Eazazv (32)

aq,a=%

whereSalaz(pl,p2)=S(a1p1—a2p2) and (E,p) s, = 9009, It is easy to check tha$ satisfies the
unitarity condition and the quantum Yang—Baxter equation

S12(P1:P2)S21(P2rp) =1 ® 1, (3.3

S12(P1,P2)S13(P1, P3)S23(P2, P3) = S23(P2: P3)S13(P1, P3) S1a(P1, P2) - (3.4
Our defect generatongp), t(p) are related t(rf(p), tﬁ(p) defined in Ref. 7 by

rB(p) = &r(ap) andt?(p) = et(ap) with e= ((1) (1)) (3.5

All this setup gives rise to a particular RT algebra whose defining relations then read as follows.

(i) Bulk exchange relations,
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ay,(P1)a,,(P2) = Slazpz — aspr)a,, (P2)a,, (Py) =0, (3.6
al, (pyal,(p) — Slazp, — arpy)al, (Po)al, (Py) = 0, 3.7

aal(pl)azz(pZ) = S(aypy - azpz)alz(pz)aal(pl) =2m8(py - pz)[&iil + 6th(a1p1)]
+2m(py + P) 8,2 (s py). (3.9

(i)  Defect exchange relations,

[r(py),r(p2)]=0, (3.9
[t(py),t(p2)]=0, (3.10
[t(py),r(p2)]=0. (3.11
(i)  Mixed exchange relations,

a,,(PLT(P2) = S(p2 = PSPz + PUT (P2)ay, (Py), (3.12
r(pya, (P2) = S(Py~ P2)S(Py + Po)al, (P (P, (3.13
3., (PV(P2) = S(p2 = PSPz + P(P2)a,, (P, (3.19
t(pl)alz(pz) =S(py =~ p2)S(p1 + pg)alz(pz)t(pl). (3.19

(iv)  Finally, the defect generators are required to satisfy unitarity conditions,
t(Pt(=p) +r(pr-=p =1, (3.16
t(p)r(=p) +r(pt-p) =0, (3.17)

which amount to implement the physical energy conservation when reflection and trans-
mission occur.

Since we aim at second quantize a physical system, we now turn to the Fock representation of this
algebraic setup as it is presented in Ref. 7. What we need is to represent the generators
{a,(p) ,al(p) ,r(p),t(p),p € R} as operator-valued distributions acting on a common invariant sub-
space of a Hilbert spacé, to be defined. We should also identify a normalizable vacuum State
annihilated bya, and cyclic with respect taz. Applying the general construction of Ref. 7, we
know that each such Fock representation is characterized by two numerical maip¢esnd

R(p). Here we take

(0 T(p)> _ (R(p) 0 )
T(p) = (T(_ 0 0 ) R(p) = 0 Re-p) (3.18
with T, R given in(2.17). Now consider

L= L2(R) (3.19

endowed with the usual scalar product
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(o) = L dp> 0P ¥a(p), (3.20

a=t

which makes it a Hilbert space for the associated norm derjdtethen, then-particle subspace
H" is the subspace of thefold tensor product®" defined as follows. 1™ e £&", we identify
it with the column whose entries a(“%?...,a . Then explicitly, 9= and forn=1, " ¢ H" if
and only if !

gD(n) P £®n1

(Py, -+ Pt Pr) + R(@nP) @l o 1 (P, -+ Pr-1,~ P,
(3.2

(P(D?l) ‘ay (pl! e !pn) T(anpn)(Pal ‘-,

n-1"%

n>1, (P(;l)'“aiaﬁl'“an(pl’ NN O C S e !pn) = S(a'ipi - ai+lpi+1)
X QW saa (Pl - PPy o P), L<i<n-1, (3.22

The Fock space iF=o_,H™ and the common invariant subspace is the finite particle space
spanned by the linear combination of sequengege@, @, ... o™, ...) with ¢™ e H™ and
#M=0 for n large enoughD is dense inF. We extend the scalar product, again denoted: by,

to F,

Oebe F, (o, )= (o™, ¢y
n=0

- E dpl p E Eal---an(pli s 1pn) l//al“'an(plv T vpn) .

R" ay,... =%

The unit norm vacuum state &=(1,0,...,0,..) and belongs t®.
Now, we can define the action of the smeared bulk operé&ofs,a'(f); f € @ ,-.C;(R)} onD

as follows:
afQ =0, (3.23
and for anye™ e H™,
[a(feley s, (Pr - P =0 [ == E fa(p)sole ay (PPL o Pd), (3.29)

[ (Dely Y, (P ... Py =N+ APV o], .,

@1y

(p11 E 1pn+1)1 (325)

whereP™ is the orthogonal projector i6®" defined in Ref. 7. For completeness, the explicit form
of (3.25 is given in Appendix B. These operators are bounded on &#@h

n+1

Og e ", [afel < nlfl e, [a'(hel = Vn+1lf o] (3.26

In particular, they are continuous in the smearing funcfioRinally, they satisfy

O¢,e D, (eaPp)=@" e ). (3.27)

The defect generators are represented as multiplicative operatdps preserving the bulk par-
ticle number,
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[F(P) ] (Prs -+ Do) = S(P = @zpy) ** S(p =~ anP)R(P)S(@aPy + p) -+ Sy + )
Eynl) ‘ay (p11 s 1pn)7 (328)

[t(P) 1. (P, - D) = S(P = @1py) -+ S(p = P T(P) Sty + P) -+ Slegpy + )
X, (P1, -+ PR (3.29

It follows then thatr andt have nonvanishing vacuum expectation values

Q,r(p2)=R(p), (L t(p)Q)=T(p). (3.30

Introducing finally the operator-valued distributioadp), aZ(p) as

a(f) = Efa(p)a (p), a'()= f pEa(p)fa(p) (3.3)

]RZ T o=+

a_+

one can check that the defining relations of the RT algebra are satisfid Time operators,a’

will be referred to as annihilation and creation operators, respectively. Implementing the automor-
phism o defined in Ref. 7 for which we know that it is realized by the identity operator for any
Fock representation, we get the quantum analog of the reflection-transmission pf@pEsty

a,(p) = élt(ap)ag(p) + Fr(ap)ay- p), (3.32

al(p) = exal(Pt(Bp) + Szan(- p)r(- Bp). (3.33

B. The question of operator domains

From the above it appears that the natural domain to start with B&ctually, it is much too
big for practical calculations and we would like to work on a dense subspaPewdiich would
play the role of the standard formal “state space,” a basis of which is usually denoted by
|kq, ... K, ky>--->k,. As a first step, we define

DY=C,

D={al (f) -l (iWQifi e Co(R), @=%,i=1,...n}, n=1, (3.39

One can check thab} is dense inH™, i.e., Q is cyclic with respect tca:rl. The corresponding
domain Dy, dense inD, is the linear space of sequences (¢ @,¢e®, ... ¢, ...) with @™

e Dg and¢™ =0 for n large enoughDy is stable under the action af,(f) andaz(f). Finally, since

T, R, and S are boundedC*-functions, DjC Cg(R"). Now in order to formulate the desired
properties of the quantum field in the next paragraph, we introduce a partial ordering relation on
C5(R) by

f>g< Oxesupaf), Oyesupdg), [x|>1y, (3.35

which extends naturally t€5(R®), a==. Let us introduce

al(t,x) = g—a (P PPt (1 %) e R2,

R

Downloaded 22 Mar 2005 to 157.82.19.233. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042703-9 Solving quantum nonlinear Schrodinger equation J. Math. Phys. 46, 042703 (2005)

a(t,f) = f dxa(t,xf(x), fe C5R). (3.39

Now, fix te R and aq, ... ,a, and define(vect standing for “linear span o)f”T)gzc and forn
=1,

DY oy, = VECHRL (1 F10) AL (1,F0 0 ) f10 > o0 > fog Fig € CHR),
0 ¢ supffi,), i=1,...n} (3.37)

then the following theorem holds.

Theorem 3.1:Ote R, Oay, ... ,a,=t, i‘)g,al,..an is dense ™.

Proof: We only need to considar=1. The proof relies on two known results of standard
analysis. First, the Fourier transform ofC£-function with compact support is real analyftice.,
a Gevrey class 1 functignSecond, a real analytic function vanishing on a given open subeét
an open connected sé vanishes on the whole @ (see, e.g., Ref. 37

Here, it suffices to show th?ﬁ)g,af“ is dense inDy for any te R so let us consider the
matrix element

n

Aty (K5 -+ %) = (¢ BL (tx0) -+ BL (6X)), (3.39)

where ¢ e Dj is arbitrary. To prove the statement, we now have to show that

Acgag-aXi - %) =0, DOxg|> - >%|>0, xeR% i=1,...n (3.39

implies ¢™=0. From(3.36, we get

FAI,‘,D,al“'an(Xla e Xp) = H e P '+'tp'<€0(n) a (pl) aln(pn)m, (3.40
R j= 1

which shows thaAt P is the Fourier transform of @ -function with compact support and is

therefore real analytlc Condltlo(rS 39 amounts to saying thaﬁtw a, vanishes on the set

Upow =Xe R"s.t.|xq| > - > x| >0, % € R4, i=1,... n}. (3.4

apep

Ua, -, DEING an open subset @he open and connected spac¥, we conclude tha;tit,wl...an
vanishes omR". This gives in turn that

((p(”),all(pl)---azn(pn)mzo, OpeR, j=1,...n, (3.42)
or, equivalently, from the cyclicity of) with respect toa'

o (Py - P =0, OpeR, j=1,..n. (343

Now using the propertie€3.21) and(3.22 satisfied bye™, we get

(pala(pl,...,pn):o, OpjeR, Og==%, j=1,...n (3.49

that is ¢™=0. [ ]
This theorem will prove to be fundamental in the sequel to derive the required properties of
the quantum field operator. Indeed, it will be enough to perform all calculations only on states in
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Sna _ .
DO = Do’w with =+ (345)

and conclude for the whole domain by a continuity argument.
Lemma 3.2: Letf, >--->f,, and h gz >--->hyz , then

n
@ (41 a) AL () QS (Lhyg) - Ef (thy 5)0) = ,Hl Sasp(FiasNig) (3.4

In particular, for ¢ € Dy oy -a, TEPrEsented as
' n

a,

o= a, (tH, )3 i), f,> >, 0peB, (3.47)
BeB
whereB is a finite set, one hajbp||:||2ﬁerfal®~-- ®fﬁan||.

Proof: To get(3.46), one uses an induction anand combine$3.36), (3.27), (3.8), and(3.23
together with the support conditions on the smearing functions. Using a contour integral argument,
these support conditions imply that all the contributions arising from the RT algebra vanish except
for the usuals- term producing the right-hand side. Equati¢®47 is a mere consequence of
(3.46. [ |

Remark:It is important to realize that the particle space" is the central piece in this
construction and that, on this space, any operation we have consigesddr product, creation
operator, Fourier transfonns continuous in the smearing functions. Sin€gR) is dense in
S(R), the Schwarz space, we can extend the al{egpecially the definition obf) to smearing
functions inS(R).

C. Quantum field
We start by definingb(t,f) as

D(t,f)= | dxD f0P.(tX), feCwhereC= @ Ci(RY). (3.48
R a=% a=t
f is viewed as a column vectdh:(;j) with f, e C5(R®) and Oe supgf,,). Following the standard

argument of Ref. 29, we replade,(p),\,(p) in the Rosales expansion of the classical fi@d)
and(2.5) by the operatoraa(p),aZ(p) in order to define

D, (tx) =2 (9P (tx), g>0 (3.49
n=0
and
n .on 2.\ _.on 2
dp: da; e|2j=0(qjx—qj 1)=iZi_1(piX-p;t)
o™= TPl p) - al(pay(an - aua0) ,
panel 2y 2 27 _ _
i=0 IT (pi -1~ iae)(p —q ~iaz)

i=1
(3.50

where we used air prescription depending on=x+.

We now have several requirements to meet for our quantum theory to be well defined. We
must give a precise meaningde,(t,x), show that the canonical commutation relations as well as
the boundary condition®.12) and(2.13 hold in a sense we shall make precise and gt , x)
is indeed the quantum solution we look for.

We start by associatind,(t,x) with the quadratic form defined o X D by
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(@, ) = (@, (t,X) ), (3.51

D containing only finite particle vectors, it is enough to investiga:tebg‘)(t,x) o for arbitraryn.
Proposition 3.3:00 n=0, 0 ¢,y D, (t,X)H<(p,CI)(C?)(t,X)lﬂ> is a C* function.
Proof: The proof is the same as in Ref. 32. |
We define the conjugat@:‘y(t,x) again as a quadratic form dd XD by

(@, ®L(t, X)) = (D (1,00, ). (3.52

It has the same smoothness properties and {{®2i), we get

" dp; g
o= | 1 2 Aal(qy) - al(aa,pn) - aupy

R+l oy 2 27
j=0

e 2o ap-a O+ 2L (px-p{)

X . (3.53
Hin:l (P = G- +iae)(p — o +iae)
Defining the smeared version
Ot f)= | dxX ®I(t,0f(x), fecC (3.59

R a=t

we conclude tha®(t, f) andd’(t,f) are understood as quadratic forms on the dorfiaend are
related by

(@@L, 1Y) = (P, 1) e, ). (3.55

To get true quantum fields, we need to show that these quadratic forms give rise to operators on
D. This requires the following two lemmas.
Lemma 3.40 ¢,y e D,

() For hy ,>-+->hy .,

(@, @1, )ALt Ny ) -+ Bty )y = 2 (F by o)
j=1

X <(p,’él;(t, hl,a) e aa(tv hj,a) T ’éZ(t! hn,a)Q> y

(3.56)
where the hatted symbol is omitted.
(i)  For h,>f,,
(@, ®L(t,f )AL ¥) = (@3l )LL) (3.57
(i)  Forf,>h;,j=1,...n,
<(P,(Dl(t, fa)aZ(tl hl,a) e ’él-((t! hn,a)Q> = <¢152(t! fa)aZ(t! hl,a) e al(t, hn,a)Q> .
(3.58

Proof: One just has to apply the order by order technique developed in Ref. 29. The latter
heavily relied on the ZF algebra satisfied by the creation and annihilation operators. Here, one
must take care in addition of the many contributions of the defect generators but it is remarkable
that the RT algebra satisfied by the bulk and defect operators leads to the sameusigdtshe
support requirements of the smearing functions and the conditon8, »>0, all the defect
contributions vanish One realizes in these manipulations, especiall{Bib8), that the contribu-
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tions of®, ®' on 53'“ are carried by the zeroth order corresponding to the linear proftasrthe
Fourier transform of, a'). |

Lemma 3.5: Giverwp,, e 238*“, = 133*1"‘ and f, e C{(R%), the quadratic form (3.51) satisfies
the following boundedness condition:

(@a Palt,f) )l < (n+ D el ] (3.59

Proof: The proof is similar to that given in Ref. 32 and uses lemmas 3.2 ar{g.3.4 N

From the Riesz lemma and theorem 3.1, we conclude dhat,f,): H™Y—H®™ is a
bounded operator for any= 0. Thus, it defines an operator on the common invariant dorain
The same holds foﬁbz(t,fa), HW - HMD by (3.55. We can therefore collect our results in the
following theorem.

Theorem 3.6: d(t,f), ®(t,f): D— D are Hermitian conjugate, linear operators and satisfy

dt,H)Q=0, ®I(tHQ=2a'{tHAQ. (3.60

Finally, we will have anonrelativistic quantum fieldf we prove the canonical commutation
relations ford®, @,

Theorem 3.7:{®(t,f),d(t,f),f e C} realize a Fock representation of the equal time canoni-
cal commutation relations oy,

[O(t,f), D(t,f2)] = 0 =[DT(t,f), DT(t, )], (3.61)

[q)(t!fl)!q)T(t!fZ)] :<f11f2>' (362)

Proof: We know that it suffices to compute the commutatorsIgji or Dy~ for arbitraryn
and then extend the results by continuity®#§” and by linearity toD. From theorem 3.6, we get
that (i)—(iii ) of lemma 3.4 hold as operator equalities. Let us start with the first commutator. It is
made out of four parts,

[(I)(t,fl),q)(t,fz)] = [q)+(t:f1,+)aq)+(taf2,+)] + [(I)+(t,f1’+),¢)_(t,f2]_)] + [(I)_(t,fly_),(b+(t,f2'+)]
+[D_(t,f, ), D_(t,f,)]. (3.63

The first and fourth parts of the right-hand side are easily seen to be zerdijromemma 3.4
One has fora=4,

n n
(I)a(tl fl,a)q)a(ti fZ,a)aZ(t'hl,a) o az(t! hr‘l,a)Q = E 2 <f2,al hj,a><f1,a! hk,a>az(t’ hl,a) Tt
j=1 k=1
k#j
X’éa(tv hj,a) e aa(ta hk,a) e ’éz(t hn,a)‘()'!

(3.69

which is symmetric under the exchangefefand f, implying the vanishing of the commutators.
As for the mixed terms, one can check that

®,(t,f; Jal (thy )3 (th,_)Q=0, i=1,2 (3.65

implying the vanishing of the second and third commutator@@'ﬁ“ and hence orD. Now the
vanishing of(®'(t,f,),®(t,f,)] on D is obtained by Hermitian conjugation. This prou&@s61).

Equation(3.62 is obtained as follows. Again, we split the commutator into four parts. Now
given a state irﬁg’“, we assuméy, ,>f, ,>hy,, , for somek and using lemma 3.4, we compute
for a=4,
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(Da(t! fl,a)q)l(tl fZ,a)aZ(t! hl,a) o "éz(t! hr‘l,a)Q = <fl,a! f2,a>52(t! hl,a) o 'al(tihn,a)ﬂ +6

(3.66)
and
CDZ(t, f2,a’)q)a(t! fl,a)al(t! hl,a') o 'az(tvhn,a)ﬂ =6 ’ (367)
where& is
n
2 <fl,al hj,a>al(tl hl,a) e aa(tv hj,a) T ajz(t: hk,a)EZ(t! f2,a)~a“zz(t! hk+l,a) o "éz(t! hr‘l,a/)Q .
j=1
This gives

[, (t,F1 ), DIt )]+ [D_(6F1 ), DT 0] = (F1 T ) + (P Lo ) =(frf),  (3.68)

i.e., the desired contribution. It is then straightforward ugi®\@5 to verify that the mixed terms
do not contribute

[cI)+(t,f1’+),(I)i(t,f21_)] = [¢—(t7fl,—),‘b1(tyf2,+)] =0.

[ |
Now we prove that() is cyclic with respect tob' and that®(t,x) is the solution of the
quantum nonlinear Schrédinger equation with impurity. Extending the partial orderitogfunc-
tions inC as follows:

forf,geC, f>ge-f,>0, a=*%*, (3.69

one can prove the following theorems.
Theorem 3.8: The space

HY =vec{d'(t,f) - (1, f)Q; fiecC, i=1,..n f,>..>f} (3.70

is dense ™.
Proof: Let ¢ e H™ and suppose

(go(“),‘DT(t.fl) "“PT(t,fn)Q) =0, Ofy> - >f,.
Then, it is true in particular fof; ~=0,i=1,... n but in that case, we have
OI(t,f)) - D¢, f,)Q :él(t,fn,Jr) .. .a(t,f“)ﬂ

which implies ¢ =0 sinceD}* is dense irH®. [ |
Theorem 3.9: The quantum fieldb is solution of the quantum nonlinear Schroédinger equa-
tion with impurity, i.e., it satisfies

(i + B, P(t,X) 1) = 2o, : 0P TD: (£, X)) (3.7
and the following boundary conditions:
lim (@ {D,(t,x) = P_(t,—-x)}¢) =0, (3.72
x—0"
lim 0, @, {P,(t,X) + P_(t,— X)}¢h) =277 lim{p, P(t,X) ), (3.73
x—0" x—0
lim (o, ®(t,x) ) =0, (3.79
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for any ¢, e D.
Proof: Inspired by the classical case, we split the field as follows:

O(t,X) = OX)D.(t,x) + (= X)D_(t,X). (3.79

The main difficulty here is to specify a normal ordering prescription for the analog of the cubic
term. We adopt the prescription detailed in Ref. 32 for the normal ordering denotemhd apply

it to ®,, «=%. Then following Ref. 32theorem %, one gets that the quantum fiely, is solution

of the nonlinear Schrddinger equation on the half-litfe for all ¢, e D,

i+ )P, P (X)) = 20, D, DL D 42 (6,0 ). (3.76

The situation is now similar to the classical case and we have to check the quantum analog of
(2.12—(2.14). The idea lies again in realizing that Eq8.72—3.74 can be cast into a zeroth-
order/linear problem. Following the line of argument of Ref.(B&2orem 6, one shows that given
@,y e D, there existsy e HY such that(e,d(t,f))=(Q,®(t,f)x) and x is independent of.

This gives in particulake,®,(t,f,) ¥)=(Q, P (t,f,)x), =+ and we can compute

dp ... 2
(0.t X)) = L0, x) = ;ﬁe‘px-'p Yealp). (3.77

R

Then, Egs(3.72 and(3.73 are easily obtained using the prope(8/21) satisfied byy. Finally,
since x, € L?(R), (¢, ®,(t,X)¢) as a function ofx is also inL%(R) and therefore vanishes at
infinity. Noting that lim_,...{¢,®(t,X) ) =lim,_,... (¢, P.(t, X)), we get(3.74). |

We have finally achieved the goal of this section: we have explicitly constructed off-shell local
fields for the quantum nonlinear Schrodinger system on the line in the presence of a transmitting
and reflecting impurity. As mentioned in Ref. 7, this remained a challenging open problem for
which we brought an answer here. In other words, the quantum inverse scattering method remains
valid in the presence of an impurity provided that the ZF algebra is replaced by the RT algebra.

IV. SCATTERING THEORY

Scattering theory in the presence of an impurity was studied on general grounds in Ref. 7 by
introducing the RT algebra which, being a generalization of the ZF and boundary algebras, is
believed to prove fundamental also in the study of off-shell correlations functions and symmetries
for 1+1-dimensional integrable systems with impurity.

In this section, we aim at giving some credit to this in the context of the nonlinear Schroédinger
model. Indeed from the above results, we can get some insight in the correlations functions of the
theory. The correlations functions vanish unless they involve the same numtbeand ®' and
for a given D-point function, we need at most the filst—1)-order terms in the Rosales expan-
sion of the field. This reads

<Q,(I)(t1,X1) e q)(tnvxn)q)T(tnﬂ-Xml) T q)T(thvXZn)Q>
= > gUNHQOM(ty,x)) - DI (1, %) DTVt g, Xe1) -+ DT (10, X00) ), (4.D)
K=n-1

L=n-1

whereK=X" ki andL==. |; and the sum runs over aituplets(ky, ... k), (I1, ... ,l,) € Z] such
thatK,L=n-1.
One has, for examplawith ti,=t;—t5, X12=X;1 =Xy, aNdX;,=X;+Xy),
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x dp _ 2 . o _
(Q,D(ty,x) P (t2, %)) = f Zlie_'p 12{0(xy) O(xo) €712+ R(P)EP*12] + (- xq) O~ X)[ €12

+R(p)EP12] + 0(x) B(— Xp) T(P)EP12+ 6= X1) (%) T(p)EP12}
(4.2

More importantly, using the Haag—Ruelle approach suitably, we can relate off-shell and
asymptotic theories and, doing so, fill the gap of our quantum field theory. Indeed, on the one
hand, we know from Ref. 7 that the Fock representation of the RT algebra generates the
asymptotic states of a general integrable theory with impurity with correspo&imagrix. On the
other hand, in this paper we constructed off-shell local time-dependent fields whose behavior as
t— o0 we would like to know.

A. Asymptotic theory

The first step is to characterize wave packets for the free Schrodinger equation which take into
account the presence of the impurity>at0. We adopt the following setup. Fére C;(R), we
define

fi(x) = f :—pf(p)é"x‘ipzt. (4.3
R a

We transpose the partial orderifi8.35 to functions of the variablg.
Definition 4.1: Given nm= 1, consider two sets of functions

9n=1{hiq € Co(R%), i=1,...n} and®,={g 4 Co(R7), i=1,...m, (4.4

where the functions obey the following order prescriptions:

D1a, > " > bna, Omp, > > 18, (4.5

We also define

ho, 00 = a0 , (), g5 (%) = 6(BXG! 4. (4.6

By construction,hﬁai(x) represent wave packets Rfi moving away from the impurity towards

a0 while gi‘”ﬁi(x) represent wave packets ¥ moving towards the impurity. One already un-
derstands that they will be relevant for the so-called “out” and “in” states, respectively. In fact, this
is the main theorem of this section for which we need some preliminary results.

From the preceding section, we know the exchange and commutation propediésoa’
smeared with ordered functions in the variakldHere, our wave packets were constructed from
ordered functions irp but we made no assumption as to their ordering.iherefore, we must
include all the possibilities and this requires the use of the permutation grouglementss,,.
Foroe &, me &, N,Mm=2, we introduce

%(alxlv T vanxn) = H e(arrixfri - a(rjx(rj)a (47)
i,j=1
i<j

Hg(ﬂlxli T uBme) = H e(ﬂwixﬂ'i - Bﬂ'jxﬂ'j)v (48)
i,j=1
i>]

satisfying
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2 RlanXy, ..an) =1= 2 05(BiX, ... Bk (4.9

oe6, Te6
Lemma 4.2: Given any two sets of functionsinand &,

() The following limits hold:

t[r?w”hf,al ®: e hg'an B hg"al @@ h:‘l,an” = 0,

fim 675, @ =+ © g g =015, @ @ G =0, (4.10
(i)  Let g, be the identity of5,, and let us define

Hop o, (% - Xo) =hT, (%) - hy , O6) B (aaxg, - anXo),

Cfl T,

Gh..p, (X0 - X) = gfﬂl(xl) g,‘;’ﬁm(xm) 05 (BiX4, - BrXen) - (4.11)
Then
lim [H7 .., [=0, lim[Gg..,|=0 forall o#e, =+ e (4.12
to4o 10N to—e 1 Pm

(i)  The following estimate is valid for any &L2(R"),

Proof: The ideas are the same as those detailed in Ref. 32 from theorem 7 onwards and rest
especially on the use of the weak limit

f dxy -+ dGF(X, - Xp)BL (X)L (6%) < \n!||F|. (4.13
RN "

itk
lim =0. (4.14

t;»iocki i8

We just stress again that in our case all the above holds thanks to the use of the RT algebra and by
paying careful attention to the support conditions encoded ). |

We are now in position to identify the asymptotic behavior of the field-ast .

Theorem 4.3: The following limits hold in the strong sense in the Fock spate

lim ®T(th,) - @t )0 =a; (h14) 8l (004, (4.15
t—+oe n ’ n o
lim ®'(t,97 ) ®'(t,g0n, )2 =af (915) " Ap (G, )2 (4.16)

t——

Proof: We note first that from(3.75 one gets®'(t,h!

=0l LI,) and @1(Lgly)
=¢Iﬁ(t’gi€~ﬁi) so that

®'(th’, )0 =3] (th!,)Q and®'(t,g/s)Q =7} (t,0/,)Q. (4.17)

Moreover, forf, e Cj(R*), one has

al(f.) =31, (4.18

Collecting all this, theorem 4.3 is proved form=1 using(i), and(iii) of lemma(4.2),
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|7t £ - al (1) = &l FQ ~ ALt fHQ < I} - £, (4.19

f playing the role ofy or g. Now we want to compute the left-hand sides of Hgsl5 and(4.16
for n,m=2. We give details for Eq(4.15),

@'(t,hi, ) @'(t,h7 )0

2| A d HY L, (G XD () e D (6% Q
oeB, R"

> dxy -+ dxy HY .. (X4, XA (6%, ) B (X, )Q
71 71 n n

a
oeB, RN

=3l (th!,) -3 th) )0+ X oy -+ oy HE g (X, -0 )
oce6 RN
o#e,

X, (6, )-8y (6%, )Q =3 (Lhi )&, (Lhy, )0},
(4.20
where we used poiriii) of lemma 3.4 and3.61) for ®' in the second equality. Applyingt.13
then gives
|®*the, ) H(thh, )0 -a (h14) @l (50, ) Q) < VRl ® - @hl, -h, ®
et + 2 2 HI . (4.21

oeB,
TF€p

implying (4.15 by points(i)—(ii) of lemma 4.2 Similar computations give

—
o', 91,3 ) @, gmﬁ )Q - agl(m B a};m(gm,ﬁm)Q” < \"m!”gf,/;l Q@ ® gfn,ﬁm_ gtl,ﬁl

® - ® gm’ﬁm||+2\e"m! > 11Gg.s ]l (4.22
TeGny
e,
proving (4.16). |

B. Scattering matrix

Now that we have identified the natural “free” dynamics approached by our interacting field as
t— +o0, we are left with the verification of asymptotic completeness allowing the construction of
a unitaryS-matrix. We emphasize here that our “in” and “out” spaces are slightly different from
those exhibited in Ref. 7 because of our ordering involving absolute values, so that we must
recheck their properties.

Proposition 4.4: Let

F=vec{Q,ay (a1p) 85 (Gmp, )0 Bi=%,i=1,...m m=1}, (4.23

POz vee ), (B 0,) 8l (e ) 0= £, 1=1,...0, n=>1}, (4.24

whereb; o and g;, B, un over$, and &,
Then Fin and FoU are separately dense if.
Proof: We deal with.F™. Again, it is sufficient to consider the matrix element,
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At,(p,ﬁl"'ﬁp(p]_, ree apm) = <¢(n>’a2-31(t1 pl) T azfm(t: pm)Q>1 (425)

where ¢ e H" is arbitrary and to show that

At,%ﬁl"'ﬁp(pl' ----prn)ZO: |:||p1|< <|pm|1 pi ER_Biv IBi: t, i:ll . m

implies ¢™=0. From the cyclicity ofQ) with respect tca', (4.26) gives

o) g (P P =0, Olptl < - <lpl, peRA, B=%, i=1,...m

and in view of the properties af™ e H", this implies in turn

o5 g (P1 .. P =0, OpeR, B=%, i=1,..m, (4.28

i.e., ™=0. The case off*“tis similar. [ |
We turn to the definition of the scattering opera®of our theory.
Proposition 4.5: Take functions if), and letS: F°U'— F'" act as follows:

SQ=0 andSal, (h1,) - al (hna)Q—al (hno) @k (h1,)0 (4.29

where b, (p) = b;.(-p) € &,. (4.30

ThenS is invertible andS, S™! are unitary operators acting otF.
Proof: From the definitions(4.29 and (4.30, one deduces immediately th&t! is well
defined. Then, it is straightforward, albeit lengthy, to check that

(Sal, (B1a)) @l (0na) Qa0 (f1y) @5 () Q)
=@l (h1.0) " 2% (00 )20 (f1 ) @) (Fo ) D). (4.30)

In evaluating the left-hand side, one just has to notice that all the contributions coming from the
defect generators vanish due to the support properties of the smearing functions and one is left
with what would be obtained by using the ZF algebra. Then, it is just a matter of changing the
variables into their opposite to get the right-hand side.

Next, following the line of argument given in Ref. 19, one extesd® F°U by linearity,
preserving unitarity. This gives rise to bounded linear operators which one can uniquely extend by
continuity to the whole ofF. We note that this last step is allowed by the asymptotic completeness
property satisfied byF°'t and F™ (cf. Proposition 4.% The case o5 is similar. |

Refering now to Ref. 7 we finish the description of our scattering theory by defining the
correspondence between in and out states and the asymptotic states identified in theorem 4.3
(correspondence already anticipated in our callfi§t and F™™ the “in” and “out” spacek

|gl,,81; e ;gm,ﬁm>in = azl(gl,ﬁl) T a;m(gm,ﬁm)ﬂa (4.32

D20y - Bna)™=al (h14) ** aL (B0 ). (4.33

Transition amplitudes are therefore easily computable from
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X105+ DnaO1p) - ;gm,,Bm>in = <all(b1,a1) ---aln(bn,an)ﬁaél(m,ﬂl) "'a;rsm(gm,ﬁm)Q>
(4.39

and using(3.27), (3.9), (3.13, (3.15, and(3.23. One recovers for transition amplitudes that they
vanish unless=m as expected for an integrable system where particle production does not occur.
As an example, we derive in our context the one and two particle transition amplitudes obtained
in Ref. 6. We start with the computation of the correlators,

(@, (P, ay()Q) = F8(p - o) + €5(p — Q) T(ap) + 58(p + QR(ap) (4.39

and

(] (ppal, (P)Q,a} (a)ay (6 Q)
= S(apy ~ P15 + LT (app) 182 + 62T (cypy)]
X 8(p2 = A1) Py~ dp) + Slespy = Brl) [ o R(azp) 1822 + €2T(aypy)]
X 8P+ Q) 8Py~ Gp) + Slenpy ~ B[ 571 + €1T (P L 8,2R(apy) J(P, — Ay) By + )
+ Sarpy =~ Bin)[ F2R(aP,) [ 92R(a1p1)18(P, + ) (s + )
+ [+ Slarpy = Byt Slarpy + Bot) €6 T(aypy) L2 + €82T (o) 18Py — ) Ap2 — Gp)
+ Sarpy = Botlp) Sy + Bop) S R(aypy) IL &2 + €2T (o) 18(py + ) Ao = Gp)
+ [+ Slanpy = Byt Slanps + Byt € T(arpy) L 82R () 18(py = ) 8(p2 + Gp)
+ Slaypy = Bot) Slaspy + Bot)[ R(a1py) 1 9,2R(azp2) 18(py + Gy) (P2 + Gp) (4.3

We note that the result for the two-particle correlator differs from that obtained in Ref. 6 by the
appearance of tw8 coefficients in the four last terms. This is due to the fact that we started with

a more general RT algebra where the defect generators do not necessarily obey the linear relations
used in Ref. 6. For the one-particle amplitudes, there are two possibilities according to the relative
signs of the in and out states

[’

d _
(PR P,

_ 2w
0m<h:191>m: 00 p— (4.37)
f_ > 0-(PRE=pg-(-p),
- 4o
| S0,
Mbslg-)" = (438

0 p—
J_ ‘zb_(p)T(— P)g+(p).

One clearly sees the particle-impurity interaction through the reflection coeffieiént a final

and an initial state on the same half-line and through the transmission coeffici¢hérwise, as
expected. The particle—particle interaction through the bulk interaction coeffi8igimbows up in

the 2 different two-particle amplitudes. As an illustration, we compute four such amplitudes
gathered into two generic expressions:
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: d dp, — —
Oy eih2401 4820 = j P ﬁ([71,J_r(F31)fJ2,J_r(pz) R(xpo)S(£p; £ o) R(E Py g1 +(— P2)

pt 2 Jpx 2

Xgo+(—p1) + U_l,i(Pl)f)_z,i(pz) R(xpy)S(£p; £ p2)S(EpP; + PI)R(EP,)

X g1.+(— P g2.+(— P2) (4.39
and
_ d do, —  —
st dassine "= | 2| oo piha PR RIS TR

X g1.4(~ P82, (P + b1 (P2 L(PIREP)
XS(Epy £ P)S(EP; F P T(£P) g1 +(— Pg2(P2). (4.40

More complex transition amplitudes contain the same building blocks nalRdlyandS, which
shows that the corresponding processes involve a succession of particle-impurity and particle—
particle interactions as expected from the factorized scattering occurring in this integrable model.

V. DISCUSSION AND CONCLUSIONS

We have analyzed above the NLS model interacting witBrtgpe impurity, establising the
exact classical and quantum solutions. We have shown that an appropriate RT algebra and its Fock
representation allow to construct not only the scattering operator, but also the off-shell quantum
field d(t,x). As already mentioned in the introduction, these results can be extEnidedwhole
class of point-like defects, substitutitig.72 and(3.73 by the impurity boundary conditions

Iim( (e, 2t X)) ):a(a b>nm( (@, 2(t,X)1) ) 5.1
x10 \ (@, D(t,X) ) ¢ d/xo\de,@tXy) /)’ '

where

{a,...deR, aeCad-bc=1, aa=1}. (5.2

In absence of impurity bound states, namely in the domain

a+d+\(a-d?+4=<0, b<O0,
cla+d)t=0, b=0, (5.3

a+d-+(@a-d3?+4=0, b>0,

one can treat the model closely following tlhémpurity case, because the corresponding reflec-
tion and transmission matricé® and7 have the same analytic properties(asl8§).

We would like to comment finally on the symmetry content of the solution derived in the
paper. It is quite obvious that impurities break down Galilékorent? invariance of thetotal
scattering matrixS. However, since thdulk scattering matrixS describes the scattering away
from the impurity, some authdfs have assumed that preserves these symmetries and that the
breaking inS is generated exclusively by the reflection and transmission coefficierdasd 7.

This assumption however, combined with the conditions of factorized scattering, itttiesS

is constant, which is too restrictive. In fact, one is left with a few systems of limited physical
interest. In order to avoid this negative result, a consistent factorized scattering theory was devel-
oped in Refs. 6 and 7, which does not necessarily assumestisaGalilean(Lorentz invariant.

Since the impurity NLS model considered above is the first concrete application of this framework
with nontrivial bulk scattering, the lesson from it is quite instructive. Focusing ¢8.2), we see
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that Galilean invariance is broken by the entries which describe the scattering of two incoming
particles localized fot— —« on the different half-linesR_ and R, respectively. Indeed, these
entries depend ok +k, and not ork; —k,. An intuitive explanation for this breaking is that before
such particles scatter, one of them must necessarily cross the impurity. The nontrivial transmission
is therefore the origin of the symmetry breakingSnThis conclusion agrees with the observation
that in systems which allow only reflectide.g., models on the half-lineone can havd°both
Galilean(Lorentz invariant and nonconstant bulk scattering matrices.

The issue of internal symmetries in the presence of impurities has been partially addressed in
Refs. 8 and 11. In particular, the role of the reflection and transmission elements of the RT algebra
as symmetry generators has been established. However, this question deserves further investiga-
tion. It will be interesting in this respect to extend the anaﬁm the SUN)-NLS model on the
half-line to the impurity case. Work is in progress on this aspect.

Let us conclude by observing that the concept of RT algebra indeed represents a powerful tool
for solving the NLS model with impurities. We are currently exploring the possibility to apply this
algebraic framework also to the quantization of other integrable systems with defects.

APPENDIX A: PROOF OF THEOREM 2.2
First, notice tha{2.12 and(2.13 translate into

lim {®,(t,x) - P_(t,-x)} =0, (A1)
x—0*
lim {(3,®.)(t,%) = (xP_)(t,=x)} = 27P(t,0) = 0, (A2)

x—0*

which we are going to check order by order in the Rosales expansion. The idea is to introduce the
one-to-one correspondence

B-(p) = 3(\(P N (=P}, peR (A3)
and it is not difficult to check that
p-ian
p+in’
Taken=0 corresponding to the linear problem. One gets

I+

a= (A4)

Ba(p) = Ba(p)ﬁa(_ p)r with Ba(p) =«

lim {CDSO)(t,X) - CI)(_O)(t,— X)} = f g_pﬂ_(p)e_ipzt,
R &

x—0*

lim {(3,D2)(t,%) - (3,29)(t,- )} - 27PO(t,0) = g—iup - DB,

x—0* I
which vanish using the propertié#4). It is interesting to note that the time-dependent phase
e‘ipzt, being even im, does not play any role in the vanishing of the previous expressions. It will
be the same in the following as we shall see.
For n=1, we start by changing variables in the Rosales expansion according to

(P1y - PGy - -+ 500) — (Kp, - ko1, —Kon. .. ,Kp) @and we use the one-to-one correspondence
(A3) to rewrite the left-hand side dAl) as
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2n
lim {®M(0,x) - ®™(0,-x)}= >, (1—H a.) f . ﬂal(kl) Bay_(Kont)
i=0 R2L =0

x—0" ag,. . .,apn=%
e—iEjQijt
X By (— Kan) -+ B~ ko) g (A5)
_H (k; + ki_1)
=1
In view of the linear case, weB,-symmetrize” the integrand of the previous integral for elsch
Introducing
B7(p) = 1 for o=+, (A6)
P = B(p) foro=-,
this reads
1 Bot(ky) -+ BZZ" Y(kan-1) B?:(_ Kan) - - B(TO( ko) — —
S2n+1 > : o : Ba,(KD) -+ Bay  (Kon-1)

Qs O2n~%

I1 (oK + 0j-1Kj-1)
j=1
X By (— Kan) *+ B~ k)& 0

which we rewrite as

2n
1 g - - (o
g S Bk B DB ) Bk ] -ski-a— i)

00 O2n~%

y Bay (k) Bay (Kon-1) By (~ ko) *++ By~ ko) s
2n
[T e -1
j:

Let us concentrate on the part depending ondise Developing explicitly the sum over,,, one
gets

2n-1
1 a- g a- (o)
i 2 Bk B n )BI A~ kan) B~ ko) H1 (0-1Kj-1 = T7K))
J:

_ Aon-2
00 O2n-17%

><<5 Zon__ s 2k>
a2n‘+k2n+i77 g, =020

Collecting all the pieces depending &), one gets a function proportional to

kzn ( ﬂ+(_ k2n)

Kno =Ko\ Kon* 177

- B(= k2n)) : (AT)

Now taking ., - as in(2.20 it is not hard to see that the function in parenthese6AR) is
identically zero, implying the vanishing ¢A5).

The case of the jump condition is treated in complete analogy. Indeed, in evaluating the term
proportlonal ton in (A2) in terms of B,, all one must do is to replace -II ”Oal) in (A5) by
(1+H,:Oa,) The rest of the argument implies therefore that
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®M(0,00=0, n=1. (A8)
As for the term involving derivatives of the field, an analogous treatment produces the following
integrand:

2n
1 [0 a- a- Loy
W E Bai(kl) e Bagzj(kzn—l)Bcé:(_ Kon) * - Bag(_ kO)jl:[1 (Uj—lkj—l Y kj)

00 O2n~%

2n B (K) B (Kon ~Kop) B (~ )

y <Eigjkj>ﬂal( ) ﬁ%_gznz DBay(~ke) Bl KO _somar
[T62,-1)

=1

This time, one must develop the sum fey, ando,,_1. This produces the functiofA7) but in the
variablek,, ; and we know it vanishes. This leads to

lim {(3,®)(0,x) - (3,™)(0,-x)} =0, n=1. (A9)
x—0"

As already mentioned, we see that the continuity and the jump condition of the field hold for
any timet. Put another way, they are conserved in time and this is due to the dispersion relation
of the free Schrddinger equatidbeing quadratic irk;, it is not affected by all the symmetrizations
kj— —k; involved in the proof.

It is remarkable that the jump condition actually decouples for the nonlinear {erms) as
seen from(A8) and (A9). This is also true for the continuity which, combined wi#h8) shows
that

»"(0,00=d"(0,00=0, n=1.

APPENDIX B: EXPLICIT FORM OF THE ACTION OF THE CREATION OPERATOR

The projectorP"™ is constructed in Ref. 7 in terms of the generators of the Weyl group
associated to the root system of the classical Lie algBpend of their representation aff*". In
our context, we get fof e C and ™% e H™Y,

1 n
[@" ()@l (Prs - Do) = _2\"Fk2 Sla-1P-1~ i) * ++ SlaaPy — i) (o, (P
/ =1

+ CilaPy, - .anPo) [ T(arPi) f-g, (P + ResP) f o, (= PW])

" by P, (B1)

0[1' oyt 'Cln

X ¢

where we have defined

Cu(P1y -+ Pn) = S(Pc— P2 S(Pk= P - (P = Pn)S(Pn + P+ S(Pk+ Pi) ** S(P1+ Py -

All the hatted symbols must be omitted.

One recognizes the reflected and transmitted structure inside the square brack®i$ of
which, combined with all thé& matrices, ensures the properti@21) and(3.22 required for the
functions of ™.
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