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Conductance quantization and snake states in graphene magnetic waveguides

T. K. Ghosh, A. De Martino, W. Häusler, L. Dell’Anna, and R. Egger
Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany

(Dated: February 1, 2008)

We consider electron waveguides (quantum wires) in graphene created by suitable inhomogeneous
magnetic fields. The properties of uni-directional snake states are discussed. For a certain magnetic
field profile, two spatially separated counter-propagating snake states are formed, leading to con-
ductance quantization insensitive to backscattering by impurities or irregularities of the magnetic
field.

PACS numbers: 73.21.-b, 73.63.-b, 75.70.Ak

The physics of monolayer graphene devices has re-
cently attracted a great deal of attention [1, 2]. ¿From
a fundamental perspective, one can hope to relate ex-
perimental observations to the mathematical properties
of two-dimensional massless Dirac-Weyl quasiparticles.
The pseudo-relativistic dispersion relation with Fermi ve-
locity vF ≈ 106 m/sec is intimately connected to the
sublattice structure: the basis of the graphene honey-
comb lattice contains two carbon atoms, giving rise to
an isospin degree of freedom. Graphene has also been
suggested as new material system for device applica-
tions [2]. In this paper, we pose (and affirmatively an-
swer) the question whether quantum wires with quan-
tized conductance can be formed in graphene. Such
electron waveguides are indispensable parts of any con-
ceivable all-graphene device. In lithographically formed
graphene ‘ribbons’, the electronic bandstructure is theo-
retically expected to very sensitively depend on the width
and on details of the boundary [3]. On top of that, disor-
der and structural inhomogeneity are substantial in real
graphene [4]. For narrow graphene ribbons or electro-
statically formed graphene wires [5], conventional con-
ductance quantization thus seems unlikely [6]. This ex-
pectation is in accordance with recent experiments [7].

Contrary to such pessimism, we here demonstrate that
by designing a suitable inhomogeneous magnetic field, a
magnetic waveguide can be built that indeed allows for
the perfectly quantized two-terminal conductance 4e2/h
(including spin and valley degeneracy) even when dis-
order is present. The disorder insensitivity is based
on a spatial separation of the left- and right-moving
‘snake’ states found under the model geometry shown
in Fig. 1(a). This is reminiscent of the edge states en-
countered in the integer quantum Hall regime [8], but
here refers to a completely different microscopic picture.
Such double-snake states develop in the regimeB > 0 but
B′ < 0, while an individual snake state is uni-directional
and already found in the setup of Fig. 1(b). Magnetic
barrier technology is well developed [9, 10, 11] and its
application to graphene samples appears to pose no fun-
damental problems [12]. In fact, snake states were exper-
imentally studied in other materials [9, 13], mainly mo-
tivated by the quest for electrical rectification. On the
theory side, for Schrödinger fermions, the magnetic field
profile in Fig. 1(a) (but only for B′ = 0) was discussed
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FIG. 1: Magnetic field profile (2) for magnetic waveguide
(homogeneous along y direction). (a) Case σ = 1. For B′ < 0,
counter-propagating pairs of snake states are possible. (b)
Case σ = −1, with uni-directional propagating snake states.

in Ref. [14], and asymmetric cases as in Fig. 1(b) were
studied by a number of authors [15]. For the Dirac-Weyl
quasiparticles encountered in graphene, however, such
calculations were not reported. Inhomogeneous magnetic
fields in graphene were discussed by several of us [16], and
we employ that framework in our proposal of magnetic
waveguides in graphene.

For a static orbital magnetic field with perpendicu-
lar component B(x, y), the time-independent Dirac-Weyl
equation for the quasiparticle isospinor Ψ(x, y) at energy
E = vF ǫ reads (we put ~ = 1)

σ ·
(

−i∇ +
e

c
A

)

Ψ = ǫΨ, (1)

where following Ref. [16], we focus on a single K point
(valley). The Pauli matrices σα with σ = (σ1, σ2) act
in sublattice space, and B(x, y)êz = rotA(x, y). The
field profiles considered in Fig. 1 are independent of the
longitudinal transport direction y and constant within
each of the three regions,

B(x) =







B, x < −d,
B′, |x| < d,
σB, x > d,

(2)

where σ = ±1 gives the relative sign of the magnetic field
on the two sides |x| > d. We mention in passing that we
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have also studied the power-law form B(x) ∝ xm (with
m = 1, 2, 3) to make sure that the steps in Eq. (2) do not
cause unphysical artefacts. Indeed the same qualitative
features as reported below for the profile (2) were found
from such calculations, which can also benefit from the
semi-classical approximation. A convenient gauge for the
vector potential, A = A(x)êy withB(x) = ∂xA(x), is (for
σ = +1)

A(x) =







Bx+ (B −B′)d, x < −d,
B′x, |x| < d,
Bx− (B −B′)d, x > d.

(3)

Due to translation invariance in the y-direction, we can
parametrize solutions Ψ(x, y) = ψ(x)eiky by the con-
served longitudinal momentum k. ¿From Eq. (1), for
the spinor component u in ψ(x) = (u, v)T , we obtain

[

∂2
x − e

c
B(x) −

(

k +
e

c
A(x)

)2

+ ǫ2
]

u = 0. (4)

For ǫ 6= 0, v = 1
iǫ

[∂x − k − e
c
A(x)]u then gives the other

component. To obtain the bandstructure, we first de-
termine the general solution in each of the three regions
separately. Matching conditions follow from the continu-
ity of the wavefunction at x = ∓d and will be shown to
give an energy quantization condition.

For x < −d, the constant magnetic field B implies the
lengthscale lB =

√

c/e|B|. We may then explicitly solve
Eq. (4) in terms of parabolic cylinder functions Dp(q)
[16]. With the auxiliary variables

q =
√

2[(x+d)/lB +sgn(B)klB], p = (ǫlB)2/2−1, (5)

and complex coefficients a±, the solution reads

ψB>0(x) =
∑

±
a±

(

Dp(±q)
∓

√
2

iǫlB
Dp+1(±q)

)

, (6)

ψB<0(x) =
∑

±
a±

(

Dp+1(±q)
±

√
2

iǫlB
(p+ 1)Dp(±q)

)

. (7)

Similarly, the eigenfunction for x > d can be expressed
with coefficients c±, and replacing d → −d in Eq. (5).
Finally, for B′ 6= 0, the region |x| < d again admits such
a representation with coefficients b± and d→ 0 in Eq. (5).
For B′ = 0, a plane-wave solution applies instead,

ψ(x) =
∑

±
b±

(

1
±k⊥+ik

ǫ

)

e±ik⊥(x+d), (8)

where k⊥ =
√
ǫ2 − k2. For |ǫ| < |k|, the square root

is taken as k⊥ = i
√

|ǫ2 − k2|. Without loss of gen-
erality we now put B > 0. Normalizability then im-
plies a+ = c−σ = 0 and we are left with four complex
coefficients, one of which is fixed by the normalization
condition. The two matching conditions (at x = ∓d)
for the 2-spinor ψ(x) then give 4 equations for 3 un-
knowns, which generates the sought condition for the
energy bands ǫn(k).
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FIG. 2: (a) Spectrum of the magnetic waveguide with
σ = +1, d = lB and B′ = 0. Energies (momenta) are given
in units of vF /lB (l−1

B
). Only the few lowest electron-like

(ǫn(k) > 0) states are shown. (b) Current profile j1kF
(x) in

units of vF /lB , see Eq. (11), with x in units of lB. The plot
is for n = 1 and ǫlB = 1, leading to kF lB ≃ ±0.7. The two
counter-propagating states are centered near the middle of
the waveguide.

For the symmetric setup σ = +1 with B′ = 0, some
algebra yields the energy quantization condition

w−1(u2v1 − z2u1v2) + w(z2u2v1 − u1v2) (9)

+(z2 − 1)(u1u2 − v1v2) = 0,

which for given k generates an equation for ǫ since k⊥ =
k⊥(ǫ, k). Here we used the notation

u1,2 = Dp(∓
√

2klB), (10)

v1,2 = ±
√

2

i|ǫ|lB
Dp+1(∓

√
2klB),

w = (k⊥ + ik)/|ǫ|, z = e2ik⊥d.

Equation (9) must then be solved numerically, and leads
to the energy bands ǫn(k) shown in Fig. 2(a). For large
|k|, the eigenvalues approach the well-known relativistic

Landau levels at ǫlB = sgn(n)
√

2|n| [2], including a zero-
energy solution (not shown in Fig. 2).
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FIG. 3: Same as Fig. 2(a) but for σ = −1, cf. Fig. 1(b).

To illuminate the current-carrying states, we plot in
Fig. 2(b) the transverse profile of the particle current,

jnk(x) = vF (ψ∗
nk(x))

T
σ2ψnk(x), (11)

where ψnk(x) is the transverse eigenspinor to energy
ǫn(k). Generalizing the standard argument, see Ap-
pendix E in Ref. [17], to the case of Dirac-Weyl quasi-
particles, one can show that

vn(k) ≡
∫

dxjnk(x) = ∂kǫn(k). (12)

We stress that Eq. (12) is a nontrivial result for Dirac
fermions. It holds for any magnetic field profile with
B(x, y) = B(x). This fact leads to the usual can-
cellation of carrier velocity vn(k) and density of states
(2π|∂kǫn(k)|)−1, and thus the two-terminal conductance
will be 4e2/h (assuming perfect contacts to reservoirs).
However, as seen in Fig. 2(b), right- and left-moving
states occupy the same spatial region and are therefore
susceptible to backscattering perturbations, e.g. due to
impurities, charge inhomogeneities, or fluctuations in the
magnetic field. In practice, quantized conductance is
thus not expected for a waveguide with B′ = 0.

Next we consider the asymmetric case with σ = −1
but still B′ = 0, see Fig. 1(b). From the analogy to
Schrödinger fermions, one expects to find special uni-
directional snake states [15]. On a semi-classical level,
the uni-directionality can be understood by noting that
cyclotron orbits have a different winding sense for x < −d
and x > d. The propagating snake state follows by
combining half an orbit from each side and a linear
trajectory in the central region. The energy quantiza-
tion condition takes again the form (9) after replacing

u2 = Dp+1(−
√

2klB) and v2 =
√

2
i|ǫ|lB (p+ 1)Dp(−

√
2klB)

in Eq. (10). Numerical solution yields the spectrum de-
picted in Fig. 3. First, we notice a strong asymmetry
in the energy bands ǫn(k), just as in the Schrödinger
case [15]. For k < 0 a linear dispersion relation is ob-
served, corresponding to snake states propagating with
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FIG. 4: (a) Same as Fig. 2(a) but for B′ = −B, cf. Fig. 1(a).
The lower pair of ǫn(k) curves has an avoided level cross-
ing (not visible on this scale). The current profile (b) at
ǫlB = 0.83 (corresponding to kF lB ≃ ±1) shows that the
two counter-propagating snake states are spatially separated
already for d = lB.

n-independent velocity |vn| = vF at sufficiently negative
k, see Eq. (12). The equality of snake velocity and Fermi
velocity for |kd| ≫ 1 also follows from a simple semi-
classical estimate. Second, the levels merge pairwise at
large positive k to form the relativistic Landau levels,
except for the lowest band in Fig. 3 which merges with
the highest negative-ǫ band (not shown) to approach the
zero-energy Landau level. This is a new feature encoun-
tered only for Dirac fermions and makes this state easily
identifiable for weakly doped graphene. However, it is
important to stress that for any finite k, there can be no

true zero-energy state for magnetic field configurations
with σ = −1. This can be proven on general grounds as
a consequence of the Aharonov-Casher theorem, which
in turn follows as a special limit of the celebrated index
theorem [18].

Interestingly, there is another peculiar subtlety for this
magnetic field profile. This is seen by computing the
equilibrium average of the current using Eqs. (11) and
(12), which predicts a nonzero result. In fact, the equilib-
rium current formally diverges and is only limited by the
bandwidth of the model. To interpret this non-sensical
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result we note that in the absence of boundaries, the
snake state propagates in just one direction and thus
produces an unbalanced current flow. The conundrum is
resolved when including boundary contributions to the
current, which are inevitably present in any real sam-
ple. In fact, the dispersion relation in Fig. 3 ultimately
bends upwards for k → ∞ in the presence of a bound-
ary located at xb ≫ d. The counter-propagating edge
state at this boundary will then balance the total cur-
rent [15]. We have explicitly checked that this scenario
holds true for the case of a zig-zag edge, where a sim-
ple boundary condition on the spinor at x = xb can be
used [3]. In analogy to quantum Hall edge states [8],
however, it should be possible to experimentally probe
the locally unbalanced current carried by the snake state
using time-resolved transport measurements [19] or scan-
ning tunneling spectroscopy.

We now go back to the symmetric setup σ = +1 but
take B′ < 0. Such a field configuration can be gener-
ated by depositing two ferromagnetic layers on top of a
graphene sheet covered by a thin insulating layer [10, 12].
In that case one finds two counter-propagating snake
states, and no boundary contributions are required to get
zero total current in equilibrium. While for B′ = 0, no
snake states exist, they do appear once B′ < 0. By gen-
eralizing Eq. (9), numerical solution of the correspond-
ing energy quantization condition leads to the results in
Fig. 4(a). Qualitatively, the spectrum consists of snake
states (with approximately linear dispersion) and Landau
level states (dispersionless), with avoided level crossings
between successive eigenenergies ǫn(k). If the Fermi level

intersects only the lowest band shown in Fig. 4(a), the
quantized conductance 4e2/h follows directly from the
Kubo formula. The current-carrying states at ±kF are
counter-propagating snake states which are spatially sep-
arated and centered near x = ±d, see Fig. 4(b). Due to
this spatial separation, weak disorder effects or irregu-
larities in the magnetic field will not be able to induce
backscattering processes between these states as long as
d & lB. In particular, snake states behave identically
for both K valleys, and thus even inter-valley scattering
processes are not expected to mix counter-propagating
states. The conductance quantization in such a setup
should therefore be observable and very precise.

To conclude, we have analyzed the properties of elec-
tron waveguides in graphene, produced by suitable inho-
mogeneous magnetic field profiles. Under the setup in
Fig. 1(a) with B′ < 0, we predict robust and highly ac-
curate conductance quantization in units of 4e2/h. This
system is clearly of interest in the context of interacting
1D quantum wire physics, as the electron-electron inter-
action can lead to qualitatively new features. We hope
that our work motivates experimental and further theo-
retical studies.

We thank A. Altland, L. Erdös, T. Heinzel and J. Smet
for discussions. T. K. G. is supported by the A. v. Hum-
boldt foundation. R. E. is supported by the DFG (SFB
Transregio 12), and by the ESF network INSTANS.

Note added: During the preparation of this
manuscript, a preprint appeared [20] where some of our
results for σ = −1 were also reported.
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