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Abstract

The estimation of dynamic games is known to be a numerically challenging task. In this

paper we propose an alternative class of asymptotic least squares estimators to Pesendorfer

and Schmidt-Dengler’s (2008), which includes several well known estimators in the literature as

special cases. Our estimator can be substantially easier to compute. In the leading case with

linear payoffs specification our estimator has a familiar OLS/GLS closed-form that does not

require any optimization. When payoffs have partially linear form, we propose a sequential esti-

mator where the parameters in the nonlinear term can be estimated independently of the linear

components, the latter can then be obtained in closed-form. We show the class of estimators we

propose and Pesendorfer and Schmidt-Dengler’s are in fact asymptotically equivalent. Hence

there is no theoretical cost in reducing the computational burden. Our estimator appears to

perform well in a simple Monte Carlo experiment.
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1 Introduction

We consider the estimation problem for a class of dynamic games of incomplete information that

generalizes the single agent discrete Markov decision models surveyed in Rust (1994); for a recent

survey see Aguirregabiria and Mira (2010). The setup is in an infinite time horizon, where players’

private values enter the payoff function additively and are independent across players, under the

conditional independence framework. A Markov equilibrium of such game can be represented by a

fixed point of nonlinear equations in the space of choice probabilities and has been shown to exist

(e.g. see Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler (2008)). A variety

of methods have been proposed by different authors to estimate the same class of games based on

the equilibrium condition in recent years; examples are given below. However, a common component

of these methodologies is a nonlinear optimization problem that may act as a considerable deterrent

for applied researchers to estimate dynamic games due to involved programming needs and/or long

computational time.

In this paper we propose a class of asymptotic least squares estimators constructed based on the

equilibrium condition of the game when represented in the space of payoffs. Our work is motivated by

the well-received methodology developed in Pesendorfer and Schmidt-Dengler (2008), who propose an

effi cient estimator for a unifying class of estimators that includes the non-iterative pseudo-likelihood

estimator of Aguirregabiria and Mira (2007) and the moment based estimators discussed in Pakes,

Ostrovsky and Berry (2007) as special cases. In contrast to our work, Pesendorfer and Schmidt-

Dengler use the choice probability representation of the equilibrium to construct their estimator.

Our goal is to show there is much to gain computationally using our approach with no effi ciency lost.

Henceforth we use the abbreviation ALSEPSD when referring to a generic estimator of Pesendorfer

and Schmidt-Dengler.

We claim our estimator can be substantially easier to compute than ALSEPSD. In the leading case

our estimator has a familiar OLS/GLS closed-form expression when the per-period payoff function

takes a linear-in-parameter specification.1 In an intermediate case when the payoff function has an

additive partially linear form, Frisch-Waugh-Lovell theorem can be applied so the parameters in the

nonlinear part can be estimated first (dimensional reduction), and the linear-in-parameter component

1The linear payoffs structure may seem restrictive, but it is in fact quite general as it includes any nonlinear (basis)

functions of observables; albeit perhaps with an atheoretic flavor. However, linear specification arises naturally in

many applications, and/or does not cause much concern in terms of structural interpretability in other situations.

A leading example for the latter is when the goal of an empirical analysis is to study market outcomes, such as

competition study of market power. Some notable recent empirical applications of linear-in-parameter payoffs include

Aguirregabiria and Mira (2007), Ryan (2012) and Collard-Wexler (2013).
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can be obtained in closed-form in the second step.2 Even in a more general nonlinear case, we argue

that our estimator is still generally easier to compute than ALSEPSD. ALSEPSD also provides a good

benchmark for a comparison with other estimators in the literature as it has a well-defined effi ciency

property. We establish a duality between our estimator and ALSEPSD, in the sense that they can

always be constructed to have the same asymptotic distribution. Therefore our effi cient estimator is

as effi cient as the effi cient ALSEPSD.

The large sample properties of our estimator (and for asymptotic least squares generally) are easy

to derive for discrete games. Technically, our estimation problem is a least squares problem with

generated regressors and regressands, which are generally smooth functions of the finite dimensional

first stage parameters that are nonparametrically identified. In addition, the number of square terms

in the objective function does not grow with sample size but is determined by the cardinality of the

action and state spaces. Therefore our estimator belongs to the class of asymptotic least squares

estimators as defined in Gourieroux and Monfort (1985,1995) in the same sense as ALSEPSD. The

close connection between our estimator and ALSEPSD goes even further given the smooth bijective

relation between normalized expected payoffs and choice probabilities (Hotz and Miller (1993)’s

inversion); ALSEPSD is defined to minimize the distance between the probabilities implied by the

pseudo-model and the data. We show that, locally around the true, using the inverse function

theorem, our estimator can be constructed to have the same asymptotic distribution as any ALSEPSD
by choosing an appropriate weighting matrix and vice versa.

There are at least two reasons why the estimation of dynamic games can be non-trivial. First,

as well-known from the single-agent problem, it involves value functions that generally do not have

closed-form and need to be numerically evaluated so it is computationally demanding (see Rust

(1996)). For games, there is also a potential issue of indeterminacy of multiple equilibria that gives

rise to incomplete models (Tamer (2003)). A novel approach popularized by Hotz and Miller (1993)

performs inference on the pseudo-model, generated from to the observed data, by estimating the

(policy) value functions that can significantly simplify the computational aspect. Pseudo-models are

also generally easier to handle in a strategic environment as they have been shown to be complete

for several classes of games (Srisuma (2013b)). Methodologies based on pseudo-models are often

referred to as two-step estimators since they require estimation of value functions in the first stage.

Many recently proposed estimators for dynamic games are two-step estimators.

However, despite the simplification of two-step methods, the numerical aspects for implementing

existing estimators in the literature appear to remain a concern as they generally involve solving

highly nonlinear optimization problems. It is not uncommon to see methodology papers using esti-

2Modeling of additive linear components in the payoffs often appear in games with entry/exit decisions, as fixed

cost or scrap value, or more generally as fixed effects.

3



mation time, amongst other things, as a competing factor. Furthermore, it is also not unusual that

the choice of players’per-period payoff specification is chosen with the ease of numerical implemen-

tation in mind. In particular there can be substantial benefits (in terms of computational time) in

specifying player’s payoff functions to be linear-in-parameters. As the action-specific expected payoffs

can then be written as a linear transformation of the parameter, following from the linear structure

that defines the expected payoffs using stationary Markovian beliefs; examples of such discussions

can be found in Bajari, Benkard and Levin (2007, Section 3.3.1) and Pakes, Ostrovsky, Berry (2007,

Section 3). As a result, a linear parameterization of the payoffs is a leading specification employed

in empirical work (see Footnote 1 for examples).

The objective functions that are used to define many two-step estimators in the literature are

constructed in terms of choice probabilities implied by the pseudo-model. These probabilities can

be motivated by the equilibrium condition of the game, which can be stated in terms of consis-

tent beliefs with probabilities of best responses. Choice probabilities are used to define traditional

criterion functions such as pseudo-likelihood function (Aguirregabiria and Mira (2007), Kasahara

and Shimotsu (2012)) or moment and minimum distance based conditions (Pakes, Ostrovsky, Berry

(2007), Pesendorfer and Schmidt-Dengler (2008)). However, in order to calculate the probabilities

implied by the pseudo-model, one must first compute the expected discounted payoffs that determine

the region of integration to be integrated to compute the probabilities. Furthermore, the integral

is generally a nonlinear map of the expected payoffs, and it typically has to be computed numeri-

cally outside the well-known conditional logit framework. The integral, following Hotz and Miller

(1993)’s inversion result, in fact represents a one-to-one mapping between the probabilities and the

normalized expected payoffs.

There are also other methodologies that use expected payoffs explicitly to define their objective

functions. The first such two-step estimator has been developed by Hotz, Miller, Sanders and Smith

(1994), who estimate the expected payoffs by forward simulation, to estimate a dynamic decision

problem for a single agent. Hotz et al. define their estimator using conditional moment restrictions.

They also recognize it is possible to have a closed-form estimator when payoff functions have linear-

in-parameter specification in the form of an IV estimator (see equation (5.8) in the Monte Carlo

Study section of Hotz et al. (1994)). In the context of dynamic games we are only aware of two other

current methodologies that base their objective functions explicitly on expected payoffs. First is the

two-step estimator proposed by Bajari, Benkard and Levin (2007), who also use forward simulation

like Hotz et al. However, generally no closed-form estimator is possible with Bajari, Benkard and

Levin’s methodology as they compare expected payoffs in the pseudo-model and those generated by

local perturbations. The other is Bajari, Chernozhukov, Hong and Nekipelov (2009), who provide

nonparametric identification results for a more general game with continuous state space and propose
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an effi cient one-step estimator.3,4

The rest of the paper is organized as follows. Section 2 begins with an illustrative example

that motivates our estimator, and then describes the model and our estimator for games. Section 3

gives the main results. Section 4 presents results from Monte Carlo experiments that compare the

statistical performance and relative speed of our estimator and ALSEPSD. Section 5 concludes and

provides a brief discussion on how our estimators can be adapted or applied to complement other

recent results in the literature. All proofs can be found in the Appendix.

2 Methodology

We begin with an illustration that highlights the idea behind computational advantages of our esti-

mation approach. Section 2.2 describes elements of the game. We define the pseudo-model in Section

2.3 and introduce our estimator in Section 2.4.

2.1 Least Squares in Probabilities vs Payoffs

Consider a model generated by the following binary choice variable:

at (θ) = 1 [vθ (xt) ≤ εt] for θ ∈ Θ ⊂ Rp,

where xt and εt are independent. Let the cdf of εt be denoted by Q. For all x, let Pθ (x) =

Pr [at (θ) = 1|xt = x], so that Pθ (x) = Q (vθ (x)). Assume the support of xt is finite, say {xj}Jj=1

for some J < ∞, so that we can define Pθ = Γ (vθ), where Pθ = (Pθ (x1) , . . . , Pθ
(
xJ
)
)>, vθ =

(vθ (x1) , . . . , vθ
(
xJ
)
)> and Γ (vθ) = (Q (vθ (x1)) , . . . , Q

(
vθ
(
xJ
))

)>.

Suppose: we observe a random sample of {at, xt} where at = at (θ0) for some θ0 ∈ Θ, which is the

parameter value of interest; vθ is nonparametrically identified up to θ, and there exists a consistent

estimator of vθ, say v̂θ, for all θ; and, Q is known and invertible. Let P = (P (x1) , . . . , P
(
xJ
)
)> be

a vector of choice probabilities identified from the data, so that P = Pθ0 , then one may consider a

class of estimators defined by

θ̂p (V) = arg min
θ∈Θ

(
P̃− P̂θ

)>
V
(
P̃− P̂θ

)
, (1)

where P̃ and P̂θ are estimators for P and Pθ respectively, and V be some positive definite matrix.
Note that P̃ and P̂θ0 are generally different since the former is model-free while the latter is estimated

3An earlier version of Bajari et al. (2009), Bajari and Hong (2006), proposes a two-step estimator that can be seen

as the dynamic game version of Hotz et al. (1994).
4Another notable estimator that does not take a two-step approach is Egesdal, Lai and Su (2012). However, Egesdal

et al. construct their objective functions in terms of choice probabilities.

5



through v̂θ. Similarly, we can define v = (Q−1(P (x1)), . . . , Q−1(P
(
xJ
)
))>, which is also identified

from the data, so that v = vθ0 by construction. Then one can also consider an alternative class of

estimators:

θ̂v (W) = arg min
θ∈Θ

(ṽ − v̂θ)
>W (ṽ − v̂θ) , (2)

where ṽ is Γ−1(P̃) and W is a positive definite matrix. As described previously, ṽ and v̂θ0 will also

generally differ.

Equations (1) and (2) provide two different estimators for θ0. We argue the latter should generally

be easier to compute than the former since it is more convenient to compute (ṽ, v̂θ) relative (P̃, P̂θ)

across different values of θ. This argument is most transparent when vθ has a linear-in-parameter

specification, i.e. vθ (xt) = θ>v (xt) for some p−dimensional vector v (xt). Then v̂θ can be written

as X̂θ, where X̂ is a J by p matrix such that its j−th row equals v̂ (xj)
>. The solution to (2) is

unique and has a closed-form,
(
X̂>WX̂

)−1

X̂>Wv̂, when X̂>WX̂ is invertible. Even without the

linear parameterization of vθ, every evaluation of P̂θ requires the mapping of vθ (xj) by Q for all j,

for every θ, where Q is generally a nonlinear function that may have to be computed numerically.

In contrast, for (2), the potentially costly step of applying Q−1 has to be performed only once to

estimate v that does not depend on θ. Regardless of the parameterization in vθ, under some suitable

regularity conditions, and appropriate choices of weighting matrices, the two estimators can be shown

to be asymptotically equivalent near θ0 in the sense that there exists WV and VW such that for any

V and W:
√
N
(
θ̂v (WV)− θ0

)
=
√
N
(
θ̂p (V)− θ0

)
+ op (1) ,

√
N
(
θ̂p (VW)− θ0

)
=
√
N
(
θ̂v (W)− θ0

)
+ op (1) ,

where N denotes the sample size.

The estimator in (1) is closely related to ALSEPSD and other Hotz and Miller (1993)’s type

estimators that have been widely adopted in the dynamic game setting. In contrast the estimator

based on (2) is the asymptotic least squares analog to the estimator proposed in Hotz et al. (1994).

For the remainder of this section we develop an estimator based on (2) in the context of a dynamic

game.

2.2 Framework

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}, over an infinite time horizon. The
elements of the game in each period are as follows:

Actions. For notational simplicity we assume all players have the same action space. The

action set of each player is A = {0, 1, . . . , K + 1}. We denote the action variable for player i by
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ait. Let at = (a1t, . . . , aIt) ∈ A = ×Ii=1A. We will also occasionally abuse the notation and write

at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ A\A.

States. Player i’s information set is represented by the state variables sit ∈ S, where sit =

(xit, εit) such that xit ∈ X is common knowledge to all players and εit ∈ E = RK+1 denotes private

information only observed by player i. Note that common state space X is without any loss of

generality. We shall use sit and (xt, εit) interchangeably. We define (st, s−it, εt, ε−it, E) analogously

to (at, a−it, A), and denote the support of st by S = X × E .

State Transition. Future states are uncertain. Players’actions and states today affect future

states. The evolution of the states is summarize by a Markov transition law P (st+1|st, at).

Per Period Payoff Functions. Each player has a payoff function, ui : A× S → R, which is
time separable. The payoff function for player i can depend generally on (at, xt, εit) but not directly

on ε−it.

Discounting Factor. Future period’s payoffs are discounted at the rate βi ∈ (0, 1) for each

player. For notational simplicity we take βi = β for all i.

We impose the following assumptions throughout the paper.

Assumption M1 (Additive Separability). ui,θi (ai, a−i, x, εi) = πi,θi (ai, a−i, x)+
∑

a′∈A εi (a
′) 1 [ai = a′]

for all i, θi, ai, a−i, x, εi, where πi,θi is known up to θi ∈ Θi ⊂ Rpi.

Assumption M2 (Conditional independence). The transitional distribution of the states has the

following factorization: P (xt+1, εt+1|xt, εt, at) = Q (εt+1)G (xt+1|xt, at), where Q is the cumulative

distribution function of εt and G denotes the transition law of xt+1 conditioning on at and xt.

Assumption M3 (Independent private values). The private information is independently dis-

tributed across players, and each is absolutely continuous with respect to the Lebesgue measure whose

density is bounded on RK+1. So that Q (ε) =
∏I

i=1Qi (εi), where Qi denotes the cumulative distrib-

ution function of εit.

Assumption M4 (Discrete public values). The support of xt is finite so that X =
{
x1, . . . , xJ

}
for some J <∞.

M1 - M4 are standard in the modeling of dynamic discrete games in the literature. Note that M2

implies xt and εt are independent, however, this can be relaxed slightly at the cost of more notation

by changing all of our statements regarding Q and Qi to be taken conditional on xt. M4 is also
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not essential for the general idea behind estimation of dynamic games. Although the complexity of

the asymptotic theory and the practical aspects increase significantly when xt includes continuous

random variables; see Bajari et al. (2009) and Srisuma and Linton (2012).

At time t every player observes sit, each then chooses ait simultaneously. We consider a Markovian

framework where players’behaviors are stationary across time and players are assumed to play pure

strategies. More specifically, for some αi : S → A, ait = αi (sit) for all i, t, so that whenever

sit = siτ then αi (sit) = αi (siτ ) for any τ . The beliefs are also time invariant. Player i′s beliefs, σi, is

a distribution of at = (α1 (s1t) , . . . , αI (sIt)) conditional on xt for some pure Markov strategy profile

(α1, . . . , αI). The decision problem for each player is to solve

max
ai∈Ai
{Eσi [ui,θi (ait, a−it, si) |sit = si, ait = ai] + βEσi [Wi,θi (sit+1;σi) |sit = si, ait = ai]}, (3)

where Wi,θi (si;σi) =
∞∑
τ=t

βτ−tEσi [ui,θi (aτ , siτ ) |sit = si] ,

for any si. The subscript σi on the expectation operator makes explicit that present and future

actions are integrated out with respect to the beliefs σi; in particular, player i forms an expectation

for all players’future actions including herself, and todays actions of opposing players. Wi,θi (·;σi) is
a policy value function since the expected discounted return needs not be an optimal value from an

optimization problem since σi can be any beliefs, not necessarily equilibrium beliefs. Note that the

transition laws for future states are completely determined by the primitives and the beliefs. Any

strategy profile that solves the decision problems for all i and is consistent with the beliefs satisfies

is an equilibrium strategy. It is well-known that players’best responses are pure strategies almost

surely and Markov perfect equilibria for games under M1 - M4 (e.g. see Aguirregabiria and Mira

(2007) and Pesendorfer and Schmidt-Dengler (2008)). However, there may be multiple equilibria.

2.3 Pseudo-Model

We now define the pseudo-model that plays a central role in two-step estimation methods. The start-

ing point is the structural assumption that we observe random sample of {α∗1 (s1t) , . . . , α
∗
I (sIt) , xt, xt+1}

from a single equilibrium, where α∗i = αi,θi0 for some θi0 ∈ Θi ⊂ Rpi for all i. Let P ∗i (ai|x) =

Pr [α∗i (sit) = ai|xt = x] for all ai, x. Then we have: (i) the equilibrium beliefs for all players is sum-

marized by
∏I

i=1 P
∗
i ; (ii) Pr [ait = ai|xt = x] = P ∗i (ai|x) and Pr [xt+1 = x′|xt = x, at = a] = G (x′|x, a)

for all a, x, x′. For notational simplicity, for this section and the next, we shall: omit ∗; let αi and

Pi denote the equilibrium strategy and choice probability function for player i; and, without any

ambiguity let ait = αi (sit) for all i, t. Then the pseudo-model can be defined as a collection of joint
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conditional distributions indexed by θ = (θ>1 , . . . , θ
>
I )> ∈ ×Ii=1Θi = Θ ⊂ Rp. Also let θ0 denote

(θ>10, . . . , θ
>
I0)>.

Definition: The pseudo-model is {Pθ}θ∈Θ such that Pθ =
∏I

i=1 Pi,θi and for all i, θi, ai, x:

Pi,θi (a|x) = Pr [αi,θi (sit) = a|xt = x] a.s., where

αi,θi (sit) = arg max
ai∈A
{E [πi,θi (ai, a−it, xt)|xt] + εit (ai) + βE [Vi,θi (st+1)|xt, ait = ai]} ,

Vi,θi (sit) = E[πi,θi (ait, a−it, xt) +
K∑
a′=0

εit (a′) 1 [ait = a′] |sit] + βE [Vi,θi (sit+1)| sit] .

By construction Pi,θi = Pi for all i when θi = θi0 for all i, and Vi,θi also equals Wi,θi (·;σi) (as de-
fined in (3)), when σi =

∏I
j=1 Pj. Let vi,θi (ai, x) = E [πi,θi (ai, a−it, xt)|xt = x]+βE [Vi,θi (st+1)|xt = x, ait = ai],

then we can write

Pi,θi (a|x) = Pr [vi,θi (ai, xt) + εit (ai) > vi,θi (a′i, xt) + εit (a′i) for all a
′
i 6= ai|xt = x] , (4)

which is familiar from the classical random utility model (e.g. see McFadden (1974)) with mean

utility vi,θi . The numerical advantage in working with the pseudo-model, as opposed to the actual

model, is that vi,θi is relatively straightforward to compute for different θi, since all expectations that

define vi,θi are calculated independent of θi; all with respect to P (st+1|st, at) for all players that is
equivalent to earlier notation using Eσi when σi =

∏I
j=1 Pj for all i.

We shall heavily exploit the fact that vi,θi is a linear transformation of πi,θi . To see this, first look

at the choice-specific expected return:

E [Vi,θi (st+1)|xt, ait = ai] = E [E [Vi,θi (st+1)|xt+1]|xt, ait = ai] , and

E [Vi,θi (st)|xt] = E[πi,θi (ait, a−it, xt) +

K∑
a′=0

εit (a′) 1 [ait = a′] |xt] + βE [E [Vθi (st+1) |xt+1] |xt] .

Let mi,θi = E[Vi,θi (sit) |xt = ·] and gi,θi = E[Vi,θi (sit+1) |xt = ·, ait = ·]. Then, using a linear
functional notation, we have

gi,θi = Himi,θi ,

mi,θi = ri,θi + ri + Lmi,θi , where for all a, x

ri,θi (x) = E [πi,θi (ait, a−it, xt)|xt = x] ,

ri (x) = E[
K∑
a′=0

εit (a′) 1 [ait = a′] |xt = x],

Lm (x) = βE [m (xt+1) |xt = x] ,

Him (a, x) = E [m (xt+1) |xt = x, ait = a] ,
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where L and Hi are linear maps and ri,θi is a linear transformation of πi,θi . Since (I − L)−1 is also

generally a well-defined linear map, as L is a contraction as its norm is strictly less than 1, then

vi,θi =
(
Ri + βHi (I − L)−1R

)
πi,θi + vi,

where Ri and R are conditional expectation operators, conditioning on xt, integrating over a−it and
at respectively , and vi = βHi (I − L)−1 ri.

The choice probabilities can also be written in terms of differences in choice specific expected

payoffs. Let ∆vi,θi (ai, x) denote vi,θi (ai, x)− vi,θi (0, x) for ai > 0, then (4) becomes

Pi,θi (a|x) = Pr [∆vi,θi (ai, xt) + εit (ai) > ∆vi,θi (a′i, xt) + εit (a′i) for all a
′
i > 0|xt = x] . (5)

Since A and X are finite, the relationship between {∆vi,θi (ai, x)}ai>0,x∈X and {πi,θi (a, x)}a∈A,x∈X
can be represented through a matrix equation. We state this representation as a lemma.

Lemma R: Under M1 - M4 {∆vi,θi (ai, x)}ai>0,x∈X can then be represented by a JK−vector,
∆vi,θi :

∆vi,θi = D (Ri + βHiMR)πi,θi + ∆vi, (6)

where πi,θi is a J (K + 1)I −vector of {πi,θi (a, x)}a∈A,x∈X so that elements in: Riπi,θi are

{E [πi,θi (ai, a−it, xt)|xt = x]}ai∈A,x∈X ; Rπi,θi are {E [πi,θi (ait, a−it, xt)|xt = x]}x∈X ; M involve

{Pr [xt+1 = x′|xt = x]}; Hi are Pr [xt+1 = x′|xt = x, ait = ai]; and, D is a difference matrix with re-

spect to the expected payoffs from playing action 0; and, ∆vi is the differenced vector form of

the transformation of ri by βiHi (I − L)−1 normalized by action 0. The detailed constructions of

∆vi,D,Ri,R,Hi and M are provided in the Appendix.

In what follows, we let ∆vi denote ∆vi,θi0 . And, similarly, it shall be convenient to vector-

ize the probabilities. In particular, we let Pi,θi and Pi denote the JK−vector that represent
{Pi,θi (ai|x)}ai>0,x∈X and {Pi (ai|x)}ai>0,x∈X respectively.

2.4 Estimation

Many objective functions proposed in the literature often can be written directly in terms of the

probabilities from the pseudo-model, such as pseudo-likelihood and GMM, based on the construction

that Pi,θi coincides with Pi when θi = θi0. However, from a numerical perspective, computing the

pseudo-probabilities requires a costly additional step of computation, namely the integration with

respect to the distribution of εit that maps ∆vi,θi into Pi,θi (see (5)). These integrals generally do not

have closed-form in the expected payoffs outside the well-known exception when private values are

i.i.d. extreme value. Even if the integrals have closed-form, the integration is generally a nonlinear

10



mapping of ∆vi,θi into Pi,θi . In order to preserve the linear structure outlined previously, we propose

to construct objective functions based directly on ∆vi,θi .

The validity of such objective functions, to identify θ0, follows from the bijective relation between

∆vi,θi and Pi,θi for each i. This well-known result follows from Proposition 1 of Hotz and Miller

(1993), which we shall refer to as Hotz and Miller’s inversion in this paper (also see Lemma 8 of

Matzkin (1991), Lemma 1 of Pesendorfer and Schmidt-Dengler (2008), and, for a recent generalization

of these results, Norets and Takahashi (2013)).5 In particular, it immediately follows that for any

θi, Pi,θi coincides with Pi if and only if ∆vi,θi coincides with ∆vi, where ∆vi is identifiable from the

data by Hotz and Miller’s inversion. Then we can construct a class of estimators based on minimizing

the distance between {∆vi,θi}
I
i=1 and {∆vi}Ii=1.

Using Lemma R, we can write ∆vi,θi = Xi (θi) + ∆vi, where

Xi (θi) = D (Ri + βHiMR)πi,θi . (7)

Note that θi enters Xi (θi) through a matrix transform of the vector πi,θi , where the former does

not depend on θi and the latter is completely known and specified by the researcher. By Hotz and

Miller’s inversion, we also have ∆vi = Φi (Pi) for some nonlinear, but known, function Φi that only

depends on the distributional assumption of εit. Then we can define a JK−vector, Yi, where

Yi = Φi (Pi)−∆vi. (8)

Note that Yi is defined independently of θi. So that, by construction:

Yi = Xi (θi) when θi = θi0.

Let Y =
(
Y>1 , . . . ,Y>I

)>
, θ =

(
θ>1 , . . . , θ

>
I

)>
and define a block diagonal matrix X (θ) = diag(X1 (θ1) ,

. . . ,XI (θI)). In the next section we analyze the asymptotic properties for a class of estimators that

are motivated from minimizing

S (θ;W) = (Y − X (θ))>W(Y − X (θ)), (9)

over Θ, for some weighting matrix W.
It is also worth emphasizing that, through {∆vi}

I
i=1 , {Ri}Ii=1 ,R,L and {Hi}Ii=1, for any θ: X (θ)

and Y are explicit functions, say TX (θ; γ0) and TY (γ0) respectively, of a finite-dimensional vector, γ0,

that consists of choice and transition probabilities. However, optimization with S (θ;W) is infeasible

since X (θ) and Y are not observed, as γ0 is unknown. Given a sample from a single equilibrium,

5Pesendorfer and Schmidt-Dengler (2008) also show equilibrium condition can be characterized in terms of expected

payoffs; see details of their Lemma 1 for further discussions.
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{α∗1 (s1t) , . . . , α
∗
I (sIt) , xt, xt+1}, γ0 can be identified from the data under weak conditions, hence X (θ)

and Y can also be estimated directly from the data for all θ. Consequently we consider a feasible

estimation criterion where X and Y are replaced by X̂ (θ) = TX (θ; γ̂) and Ŷ = TY (γ̂) respectively,

for some preliminary estimator, γ̂, of γ0. We denote the sample counterpart of S by Ŝ, so that

Ŝ(θ; Ŵ) = (Ŷ − X̂ (θ))>Ŵ(Ŷ − X̂ (θ)), (10)

where Ŵ can be random and depend on the sample size. We define our estimator, θ̂(Ŵ), to be the

minimizer of Ŝ
(
θ; Ŵ

)
:

θ̂(Ŵ) = arg min
θ∈Θ
Ŝ(θ; Ŵ).

Therefore θ̂(Ŵ) is generally a nonlinear least square estimator with generated regressors and regres-

sands. Note that Ŝ(θ; Ŵ) is easy to evaluate for different values of θ, following (7) and (8), X̂i (θ)
can be computed by a matrix multiplication of πi,θi by the estimator of D (Ri + βHiMR), which

does not depend on θi, and Ŷi is also independent of θi.

3 Main Results

We give large sample properties of our estimator in full generality in Section 3.1. We consider special

cases when payoffs have linear-in-parameter and partially linear specifications in Section 3.2 and 3.3

respectively. We discuss the relationship between our estimator and ALSEPSD in Section 3.4. In

what follows we denote the matrix norm by ‖·‖, so that ‖B‖ =
√
trace (B>B) for any real matrix

B, and we let “
p→”and “ d→”denote convergence in probability and distribution respectively.

3.1 General Case

From the previous section, we see that TX (θ; ·) and TY (·) are deterministic and smooth functions
in γ for any θ. To analyze the asymptotic properties of θ̂(Ŵ), it will be useful to keep separate the

sampling distribution of the preliminary estimator and the corresponding generated regressors and

regressands. We begin with a preliminary requirement for γ̂.

Assumption P: (i) γ̂
p→ γ0; and, (ii)

√
N (γ̂ − γ0)

d→ N (0,Ξ).

There are several choices for γ̂ in practice that satisfy P under very weak conditions. The simplest

options are perhaps the empirical choice and transition probabilities, otherwise kernel estimators can

be employed (Li and Racine (2006)). We now present our regularity conditions and main results in

terms of (X (θ) ,Y) and their estimators (X̂ (θ) , Ŷ).
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Assumption A1: θ0 ∈ int (Θ) where Θ is a compact subset of Rp, and X (θ) = X (θ0) if and

only if θ = θ0.

Assumption A2: Ŵ p→W, where W is a non-stochastic positive definite matrix.

Assumption A3: supθ∈Θ ‖X (θ)‖ and ‖Y‖ are finite, and supθ∈Θ

∥∥∥X̂ (θ)−X (θ)
∥∥∥ p→ 0 and

Ŷ p→ Y.

Assumption A4: X (θ) is continuously differentiable at θ0 and ∇X = ∂X (θ)

∂θ>

∣∣∣
θ=θ0

has full column

rank.

Assumption A5: supθ∈Bδ(θ0)

∥∥∥∂X̂ (θ)

∂θ>
− ∂X (θ)

∂θ>

∥∥∥ p→ 0, where Bδ (θ0) denotes some neighborhood of

θ0.

Define Û = Ŷ − X̂ (θ0).

Assumption A6:
√
N Û d→ N (0,Σ) for some non-stochastic positive definite matrix Σ.

Comments on Assumptions A1 - A3.

These conditions are suffi cient for the consistency of our estimator. A1 - A2 constitute to a

high level identification condition as it ensures (9) has a unique solution at θ0. There has been

little work on more primitive conditions for parametric identification of payoff functions in dynamic

games. Most identification results in the literature are nonparametric that build on the work of

Magnac and Thesmar (2002); see Pesendorfer and Schmidt-Dengler (2008) and Bajari et al. (2009).

However, using Hotz and Miller’s inversion, it follows that the condition for identification of the

pseudo-model at θ0, in the sense that Pi,θi = Pi,θi0 for all i if and only if θi = θi0 for all i, is

precisely the identification condition required in A1. Furthermore, by inspecting Lemma R more

closely, for each i, we see that the necessary and suffi cient condition for the unique parameterization

of Xi (θi) at θi0 is for the intersection between the {πi,θi − πi,θi0 : θi ∈ Θi\ {θi0}} and the null
space of D (Ri + βHiMR) to be empty. Although, without any restriction on πi,θi , A1 generally

does not hold since D (Ri + βHiMR) is always rank-deficient. For a closely related discussion see

Srisuma (2013a), who provides constructive conditions for parametric identification results in a single

agent model that can be generalized directly to the games considered in this paper. Also see the

identification condition and comments of B1 in Section 3.2 when linear-in-parameter restriction is

imposed. The uniform boundedness and consistency conditions essentially depend on {πi,θi}
I
i=1. In

particular, if D (Ri + βHiMR) is finite then continuity of {πi,θi}
I
i=1 ensures supθ∈Θ ‖X (θ)‖ is finite

since Θ is compact. Then uniform consistency also follows if there exists a consistent estimator for

D (Ri + βHiMR), which is implied by P(i).
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Comments on Assumptions A4 - A6.

For the distribution theory, additional local conditions around θ0 are required. A4 - A5 are

standard smoothness and regularity conditions for an asymptotic normality of an extremum estimator

that optimizes a smooth objective function. Similar to the discussion of suffi cient conditions for A3,

using Lemma R, a suffi cient condition for continuous differentiability of X (θ) in A4 is continuous

differentiability of πi,θi at θi0 for all i, then A5 will also follow if P(i) holds. Furthermore, if P(ii)

holds, so that the elements in X̂ (θ0) and Ŷ have asymptotically normal distribution, then by applying
a delta-method A6 also holds with Σ = ∇γΞ∇>γ , where ∇γ = ∂

∂γ> (TY (γ)− TX (θ0; γ)) |γ=γ0 .

Our estimators are consistent and asymptotically normal under these assumptions.

Theorem 1 (Consistency): Under assumptions A1 - A3, θ̂(Ŵ)
p→ θ0.

Theorem 2 (Asymptotic Normality): Under assumptions A1 - A6,
√
N
(
θ̂(Ŵ)− θ0

)
d→ N (0,ΩW) ,

where ΩW =
(
∇>XW∇X

)−1∇>XWΣW∇X
(
∇>XW∇X

)−1
.

In large sample, the estimators that uniquely solve (10) are distinguishable up to the first order

by ΩW . The effi cient estimator in this class can be found by choosing the optimal weighting matrix,

W∗, that minimizes ΩW over the set of all possible positive definite matrices (i.e. effi ciency gain in

the spirit of Chamberlain (1982) and Hansen (1982) for instance).

Theorem 3 (Efficiency): Under assumptions A1 - A6, (i) the asymptotic variance of
√
N
(
θ̂(Ŵ)− θ0

)
is bounded below by ΩΣ−1 =

(
∇>XΣ−1∇X

)−1
; and, (ii) if Ŵ p→ Σ−1 then

√
N
(
θ̂(Ŵ)− θ0

)
d→

N (0,ΩΣ−1).

The first part of Theorem 3 says that the lower variance bound for the class of estimators we

consider is
(
∇>XΣ−1∇X

)−1
. The second part states that any consistent estimator of Σ−1 is suffi cient

to produce an effi cient estimator. In practice, consistent estimator for Σ−1 will typically require a

preliminary consistent estimator for θ0. The simplest choice is to chooseW to be an identity matrix,

Id. In this case the estimator for θi0 can be computed individually for each player. We state this in

the following corollary.

Corollary A (Identity Weighted Estimator): Under assumptions A1, A3 - A6,
√
N
(
θ̂(Id)− θ0

)
d→ N (0,ΩId), where θ̂(Id) =

(
θ̂1(Id)

>, . . . , θ̂I(Id)
>
)>
. Furthermore, for all i:

θ̂i(Id) = arg minθi∈Θi(Ŷi − X̂i (θi))>(Ŷi − X̂i (θi)) such that
√
N
(
θ̂i(Id)− θi0

)
d→ N (0,

(
∇>Xi∇Xi

)−1

∇>XiΣi∇Xi
(
∇>Xi∇Xi

)−1
) with ∇Xi = ∂Xi(θ)

∂θ>i

∣∣∣
θi=θi0

and Σi = limN→∞ V ar(
√
N(Ŷi − X̂i (θi0)).
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3.2 Linear-in-Parameter Specification

We now consider the leading special case when payoff functions have a linear-in-parameter specifica-

tion.

Assumption M5 (Linear-in-parameter payoffs). For all (i, θi, ai, a−i, x),

πi,θi (ai, a−i, x) = θ>i πi (ai, a−i, x) ,

for some p−dimensional vector πi (ai, a−i, x) = (π1
i (ai, a−i, x) , . . . , πpi (ai, a−i, x))

>.

We assume M1 - M5 hold throughout this subsection. Then, with a slight abuse of notation,

Xi (θi) in (7) simplifies to Xiθi, where

Xi = D (Ri + βHiMR) Πi, (11)

and Πi is a J (K + 1)I by p matrix of {πi (ai, a−i, x)}ai∈A,x∈X . Let X = diag (X1, . . . ,XI). The
limiting and sample objective functions defined in (9) and (10) respectively become

S lip (θ;W) = (Y − X θ)>W(Y − X θ), and

Ŝ lip(θ; Ŵ) = (Ŷ − X̂ θ)>Ŵ(Ŷ − X̂ θ).

If X̂>ŴX̂ is non-singular, then Ŝ lip(θ; Ŵ) is globally convex. The solution to the minization problem

has a well-known closed-form expression of a weighted least squares estimator, namely

θ̂
lip

(Ŵ) =
(
X̂>ŴX̂

)−1

X̂>ŴŶ . (12)

Although the large sample properties for θ̂
lip

(Ŵ) follow immediately from Section 3.1, they can be

specialized substantially to incorporate M5. Since the results in this subsection may be most relevant

for empirical applications we provide some details here.

Assumption B1: X has full column rank.

Assumption B2: Ŵ p→W, where W is a non-stochastic positive definite matrix.

Assumption B3: ‖X‖ and ‖Y‖ are finite, and X̂ p→ X and Ŷ p→ Y.

Define Û lip = Ŷ − X̂ θ0.

Assumption B4:
√
N Û lip d→ N

(
0,Σlip

)
for some non-stochastic positive definite matrix Σlip.

Comments on Assumptions B1 - B4.
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Similar to A1 - A2, B1 and B2 ensure S lip(θ;W) has a unique solution at θ0. In this case, the full

rank condition of X is a necessary and suffi cient condition for the identification of the pseudo-model
(for more details see Srisuma (2013)). The sample counterpart of B1, namely the rank condition of

X̂ , also has a finite sample significance. If Ŵ is positive definite, then the full column rank condition

of X̂ is necessary and suffi cient for Ŝ lip(θ; Ŵ) to have a unique solution, which equals to θ̂
lip

(Ŵ) as

defined in (12). Assumptions B3 and B4 are immediate specializations of A3 - A6.

We state the large sample properties for θ̂
lip

(Ŵ) as corollaries without proofs.

Corollary 1 (Consistency): Under assumptions B1 - B3, θ̂
lip

(Ŵ)
p→ θ0.

Corollary 2 (Asymptotic Normality): Under assumptions B1 - B4,

√
N
(
θ̂
lip

(Ŵ)− θ0

)
d→ N

(
0,Ωlip

W

)
,

where Ωlip
W =

(
X>WX

)−1X>WΣlipWX
(
X>WX

)−1
.

Corollary 3 (Efficiency): Under assumptions B1 -B4, (i) the asymptotic variance of
√
N
(
θ̂
lip

(Ŵ)− θ0

)
is bounded below by Ωlip

Σlip−1
=
(
X>Σlip−1X

)−1

; and, (ii) if Ŵ p→ Σlip−1 then
√
N
(
θ̂
lip

(Ŵ)− θ0

)
d→

N
(

0,Ωlip

Σlip−1

)
.

Similarly to the general case, consistent estimator for Σlip−1 requires a preliminary consistent

estimator for θ0. We have the counterpart to Corollary A when we choose W to be an identity

matrix I.

Corollary B (Identity Weighted Estimator): Under assumptions B1, B3 and B4,
√
N
(
θ̂
lip

(I)− θ0

)
d→ N

(
0,Ωlip

I

)
, where θ̂

lip
(I) =

(
X̂>X̂

)−1

X̂>Ŷ and Ωlip
I =

(
X>X

)−1X>ΣX
(
X>X

)−1
.

Furthermore, for all i: θ̂
lip

(I) =
(
θ̂
lip

1 (I)>, . . . , θ̂
lip

I (I)>
)>

such that θ̂
lip

i (I) =
(
X̂>i X̂i

)−1

X̂>i Ŷi and
√
N
(
θ̂
lip

i (I)− θi0
)

d→ N (0,
(
X>i Xi

)−1X>i Σlip
i Xi

(
X>i Xi

)−1
) with Σlip

i = limN→∞ V ar(
√
N(Ŷi −

X̂iθi0).

We have shown here that once we have (Ŷ , X̂ ), under some regularity conditions, a consistent

estimator for θ0 can be obtained by an OLS estimator, θ̂
lip

(I) =
(
X̂>X̂

)−1

X̂>Ŷ (Corollary B),
which can be used to construct an effi cient estimator using a familiar a feasible GLS formulation,

θ̂
lip
(

Σ̂lip−1
)

=
(
X̂>Σ̂lip−1X̂

)−1

X̂>Σ̂lip−1Ŷ where Σ̂lip−1 is a consistent estimator of Σlip−1 .

Our closed-form estimators also readily accommodate linear restrictions. For instance, sometimes

there are a priori restrictions one may wish to impose on θ0 such as symmetry. More formally, suppose
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θ0 is known to satisfy D>θ0 = δ for some known p by q matrix D that has full row rank q < p and

some q−dimensional vector δ. Then a restricted estimator θ̃
lip

(Ŵ) that minimizes (10) subject to

D>θ̃
lip

(Ŵ) = δ, has the following closed-form expression

θ̃
lip

(Ŵ) = θ̂
lip

(Ŵ)−
(
X̂>ŴX̂

)−1

D
(
D>
(
X̂>ŴX̂

)−1

D
)−1 (

D>θ̂
lip

(Ŵ)− δ
)
,

where θ̂
lip

(Ŵ) is the unrestricted estimator defined in (12). The expression above can be derived

using Lagrangean method or through matrix manipulations (see Amemiya (1985, Section 1.4)). And,

since θ̃
lip

(Ŵ) is an affi ne transformation of θ̂
lip

(Ŵ), it is easy to verify that the optimal weighting

matrices for θ̃
lip

(Ŵ) are the same as those described in Corollary 3, i.e. any Ŵ p→ Σlip−1 .

3.3 Partially Linear Specification

One may argue that, in some situations, Assumption M5 is at odds with the spirit of structural

estimation if the functions in the vector πi are interpreted as basis functions. We relax the linear-in-

parameter requirement and instead consider a partially linear structure that may arise naturally by

ways of additive fixed effects, or, frequently in modeling of entry/exit games, as fixed costs or scrap

value. Now suppose θi =
(
θA>i , θB>i

)>
for all i.

Assumption M6 (Partially linear payoffs). For all (i, θi, ai, a−i, x),

πi,θi (ai, a−i, x) = θA>i πAi (ai, a−i, x) + πB
i,θBi

(ai, a−i, x) ,

for some p−dimensional vector πAi (ai, a−i, x) =
(
πA1
i (ai, a−i, x) , . . . , πApi (ai, a−i, x)

)>
.

We assume M1 - M4 and M6 hold throughout this subsection. Then it is easy to see that the

RHS of equation (6) in Lemma R becomes

D (Ri + βHiMR)πAi,θi + D (Ri + βHiMR)πB
i,θBi

+ ∆vi,

and, we define, analogously to (7) and (11), XA
i = D (Ri + βHiMR) ΠA

i , andXB
i

(
θBi
)

= D (Ri + βHiMR)πB
i,θBi
.

Once again, stacking up the vectors from all players, the limiting and sample objective functions de-

fined in (9) and (10) respectively become

Spl (θ;W) = (Y − XAθA −XB
(
θB
)
)>W(Y − XAθA −XB

(
θB
)
), and

Ŝpl(θ; Ŵ) = (Ŷ − X̂AθA − X̂B
(
θB
)
)>Ŵ(Ŷ − X̂AθA − X̂B

(
θB
)
),

where the terms in the above display should by now be familiar. In order to avoid repetition we only

provide a brief discussion of how θ can be (effi ciently) estimated.
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The structural identifying condition in this setting is:

Y = XAθA + XB
(
θB
)
if and only if

(
θA, θB

)
=
(
θA0 , θ

B
0

)
.

The additively linear structure allows us to use a Frisch-Waugh-Lovell type argument to estimate θA0
and θB0 sequentially in two stages. In particular, θ

A
0 and θ

B
0 satisfy the following identities:

MWAY =MWAXB
(
θB0
)
, (13)

whereMWA = I−XA
(
XA>WXA

)−1XA>W is an oblique projection matrix (e.g. see Davidson and

MacKinnon (1993)), so thatMWAXA is a matrix of zeros, and

Y − XB
(
θB0
)

= XAθA0 . (14)

An asymptotic least squares estimator that minimizes Ŝpl(θ; Ŵ) can then be constructed sequentially

in two stages. Let

Ŝpl1 (θB; Ŵ) = (MŴAŶ −MŴAX̂
(
θB
)
)>Ŵ(MŴAŶ −MŴAX̂

(
θB
)
),

whereMŴA = I−X̂A(X̂A>ŴX̂A)−1X̂A>Ŵ. In the first stage we obtain θ̂
plB

(Ŵ) = arg minθB Ŝ
pl
1 (θB; Ŵ).

For the second stage, let

Ŝpl2 (θA; Ŵ) = (Ŷ − X̂B(θ̂
B

)− X̂AθA)>Ŵ(Ŷ − X̂B(θ̂
B

)− X̂AθA).

Then θ̂
plA

(Ŵ) = arg minθA Ŝ
pl
2 (θA; Ŵ) = (X̂A>ŴX̂A)−1X̂A>Ŵ(Ŷ − X̂B(θ̂

B
)). It is easy to verify the

first order conditions that θ̂
plA

(Ŵ) and θ̂
plB

(Ŵ) individually solve are identical to the ones obtained

from jointly minimizing Ŝpl(θ; Ŵ).

The practical advantage of the sequential approach is purely numerical, in the same spirit as

the well-known partition regression methods described since the work of Frisch and Waugh (1933).

Specifically, we only need to perform nonlinear optimization routine to search over a reduced pa-

rameter space for θ̂
plB

(Ŵ) in the first stage, as θ̂
plA

(Ŵ) has a closed-form expression in terms of

θ̂
plB

(Ŵ). Note also that the optimal weighting matrix for Ŝpl1 and Ŝpl2 is the same, and is identical

to the one described in Theorem 3.

3.4 An Equivalent ALSE

Generally it is not possible to directly compare asymptotic effi ciency of different estimators in the

literature, although they estimate the same model, since many of the estimators are defined using

non-nesting objective functions. An exception can be found in Pesendorfer and Schmidt-Dengler

(2008), who show ALSEPSD includes some estimators of Aguirregabiria and Mira (2007) and Pakes,
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Ostrovsky and Berry (2007) as special cases. Similar to our general estimator defined in Section 2,

the class of ALSEPSD is also indexed by a positive definite matrix and optimal weights can be found

to define an effi cient estimator (cf. Theorem 3). As implied by the Proposition E below, our effi cient

estimator is asymptotically equivalent to the effi cient ALSEPSD. In fact, more is true, the class of

estimators we consider and that of Pesendorfer and Schmidt-Dengler are asymptotically equivalent

in the sense that one can choose appropriate weighting matrices so that the two estimators always

have the same asymptotic distribution.

Proposition E. ALSEPSD and our estimator are asymptotically equivalent.

The equivalence follows from the existence of a smooth bijective relation between the choice

probabilities and the normalized expected payoffs, i.e. essentially by Hotz and Miller’s inversion and

an application of the inverse function theorem. The precise relationship between the two estimators

are summarized by the equations in display (17) that can be found in the Appendix.

We end this section with a remark on the relationship between asymptotic least squares esti-

mators and GMM estimators. ALSEPSD and our estimator are defined using objective functions

that look at the differences between the data and pseudo-model implied probabilities and payoffs

respectively at every possible actions and observed states. These differences can also be written

as moment conditions, thus asymptotic least squares estimators can also equivalently be defined as

GMM estimators (see Chamberlain (1987)). As a consequence, it follows from Proposition E that the

GMM estimators of Hotz and Miller (1993) and Hotz et al. (1994) are also asymptotically equivalent

for a stationary single agent decision model (a special case of our game when I = 1).6

4 Monte Carlo Experiments

We illustrate the performance of our closed-form estimator using the Monte Carlo design in Sec-

tion 7 of Pesendorfer and Schmidt-Dengler (2008); who also provide further comparison with other

estimators in the literature.

Setup

Consider a symmetric two-firm dynamic entry game. In each period t, each firm i(= 1, 2) has

two possible choices: be active or not active, ait ∈ {0, 1}, where 0 corresponds to “not active”and

1 to “active”. Publically observed state variable has four elements, and can be represented by the

6The estimator of Hotz et al. (1994) has an additional source of sampling error since they estimate the discounted

expected payoffs, E [Vi,θi (st+1)|xt, ait], by forward simulation. However, under suitable conditions, the error from
forward simulation does not affect the asymptotic distribution of their estimator.
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actions made by both firms in period t − 1, so that xt = (a1t−1, a2t−1). The vector of states evolves

over time according to the transition st+1 = at. Firm 1′s period payoffs are described as follows:

π1,θ (a1t, a2t, xt) = 1 [a1t = 1] · [θ1 + θ2a2t] + 1 [a1t = 1, a1t−1 = 0] · F + 1 [a1t = 0, a1t−1 = 1] ·W,

where (θ1, θ2, F,W ) denote respectively the monopoly profit, duopoly profit, entry cost and scrap

value that firm 1 may obtain. Each firm also receives additive private shocks that are i.i.d. N (0, 1).

The game is symmetric and firm’s 2 payoffs are defined analogously.

We set (θ10, θ20, F0,W0) = (1.2,−1.2,−0.2, 0.1). Pesendorfer and Schmidt-Dengler (2008, p.920)

show that there are three distinct equilibria (five if we permute the identity of the players as there is

one symmetric equilibrium). We generate the data using different equilibria of the game and provide

estimates for (θ10, θ20, F0) for each equilibrium. W0 is taken as known, since it is not separately

identified (see Aguirregabiria and Suzuki (2013)). For each sample size T = 100, 500, 1000, 5000, we

report the same statistics as Pesendorfer and Schmidt-Dengler (mean and standard deviation of the

estimator for each parameter, and the averaged mean squared error across the three parameters)

from 1000 simulations of four estimators: OLS, GLS, PSD-I and PSD-E, for each equilibrium. OLS

and GLS estimators correspond to our ineffi cient and effi cient estimators that have closed-form

(see Corollary B and Corollary 3 respectively). PSD-I and PSD-E are the ineffi cient and effi cient

versions of ALSEPSD respectively; the former uses identity weighting matrix. Our Tables 1 - 3

below correspond respectively to equilibria 1 - 3 in Pesendorfer and Schmidt-Dengler (2008), thus

are directly comparable to their Tables 1 - 3 on p.921-922.
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T Estimator F θ10 θ20 MSE

100 OLS -0.244 (0.328) 1.071 (0.330) -1.087 (0.385) 0.396

GLS -0.210 (0.136) 1.227 (0.276) -1.230 (0.255) 0.161

PSD-I -0.262 (0.316) 1.083 (0.341) -1.094 (0.390) 0.395

PSD-E -0.175 (0.155) 1.292 (0.303) -1.327 (0.301) 0.231

500 OLS -0.213 (0.151) 1.169 (0.141) -1.161 (0.179) 0.077

GLS -0.197 (0.048) 1.213 (0.133) -1.209 (0.096) 0.029

PSD-I -0.220 (0.148) 1.176 (0.144) -1.167 (0.186) 0.079

PSD-E -0.188 (0.047) 1.232 (0.129) -1.223 (0.102) 0.031

1000 OLS -0.206 (0.105) 1.184 (0.090) -1.182 (0.125) 0.035

GLS -0.200 (0.030) 1.200 (0.081) -1.197 (0.062) 0.011

PSD-I -0.209 (0.102) 1.186 (0.090) -1.185 (0.130) 0.036

PSD-E -0.195 (0.029) 1.212 (0.077) -1.204 (0.064) 0.011

5000 OLS -0.204 (0.079) 1.194 (0.061) -1.190 (0.093) 0.019

GLS -0.206 (0.074) 1.196 (0.059) -1.192 (0.089) 0.017

PSD-I -0.201 (0.079) 1.199 (0.064) -1.196 (0.094) 0.019

PSD-E -0.203 (0.077) 1.198 (0.061) -1.195 (0.092) 0.018

Table 1: Monte Carlo results (Equilibrium 1). OLS and GLS are our closed-form estimators that

are ineffi cient and effi cient respectively. PSD-I and PSD-E are asymptotic least squares estima-

tors of Pesendorfer and Schmidt-Dengler (2008) that are ineffi cient (identity weighted) and effi cient

respectively.
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T Estimator F θ10 θ20 MSE

100 OLS -0.317 (0.472) 0.971 (0.380) -0.891 (0.543) 0.822

GLS -0.428 (0.333) 0.998 (0.328) -0.892 (0.438) 0.598

PSD-I -0.264 (0.495) 1.065 (0.434) -1.006 (0.592) 0.843

PSD-E -0.422 (1.098) 1.073 (0.488) -0.976 (0.588) 1.903

500 OLS -0.221 (0.236) 1.147 (0.192) -1.120 (0.280) 0.181

GLS -0.262 (0.210) 1.153 (0.180) -1.116 (0.261) 0.157

PSD-I -0.201 (0.242) 1.192 (0.205) -1.171 (0.284) 0.182

PSD-E -0.232 (0.214) 1.172 (0.182) -1.154 (0.265) 0.153

1000 OLS -0.216 (0.168) 1.166 (0.135) -1.155 (0.196) 0.088

GLS -0.233 (0.144) 1.171 (0.123) -1.157 (0.180) 0.072

PSD-I -0.205 (0.171) 1.189 (0.142) -1.182 (0.201) 0.090

PSD-E -0.220 (0.150) 1.177 (0.126) -1.173 (0.187) 0.075

5000 OLS -0.205 (0.076) 1.192 (0.058) -1.189 (0.091) 0.018

GLS -0.203 (0.037) 1.196 (0.039) -1.195 (0.050) 0.005

PSD-I -0.202 (0.076) 1.197 (0.061) -1.196 (0.092) 0.018

PSD-E -0.200 (0.043) 1.197 (0.040) -1.201 (0.058) 0.007

Table 2: Monte Carlo results (Equilibrium 2). OLS and GLS are our closed-form estimators that

are ineffi cient and effi cient respectively. PSD-I and PSD-E are asymptotic least squares estima-

tors of Pesendorfer and Schmidt-Dengler (2008) that are ineffi cient (identity weighted) and effi cient

respectively.
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T Estimator F θ10 θ20 MSE

100 OLS -0.304 (0.475) 0.997 (0.398) -0.895 (0.558) 0.840

GLS -0.436 (0.356) 1.015 (0.352) -0.88 (0.446) 0.641

PSD-I -0.241 (0.514) 1.102 (0.471) -1.023 (0.624) 0.917

PSD-E -0.397 (0.445) 1.081 (0.381) -0.975 (0.526) 0.722

500 OLS -0.225 (0.244) 1.149 (0.187) -1.118 (0.282) 0.184

GLS -0.26 0 (0.229) 1.159 (0.185) -1.122 (0.278) 0.175

PSD-I -0.201 (0.258) 1.200 (0.222) -1.176 (0.304) 0.208

PSD-E -0.230 (0.239) 1.177 (0.189) -1.157 (0.287) 0.178

1000 OLS -0.214 (0.177) 1.169 (0.134) -1.158 (0.204) 0.093

GLS -0.227 (0.170) 1.179 (0.136) -1.166 (0.206) 0.092

PSD-I -0.202 (0.180) 1.193 (0.147) -1.187 (0.211) 0.099

PSD-E -0.207 (0.186) 1.191 (0.148) -1.188 (0.220) 0.105

5000 OLS -0.203 (0.082) 1.194 (0.062) -1.190 (0.093) 0.019

GLS -0.205 (0.076) 1.197 (0.060) -1.192 (0.090) 0.017

PSD-I -0.201 (0.083) 1.200 (0.066) -1.196 (0.095) 0.020

PSD-E -0.201 (0.078) 1.199 (0.061) -1.197 (0.094) 0.018

Table 3: Monte Carlo results (Equilibrium 3). OLS and GLS are our closed-form estimators that

are ineffi cient and effi cient respectively. PSD-I and PSD-E are asymptotic least squares estima-

tors of Pesendorfer and Schmidt-Dengler (2008) that are ineffi cient (identity weighted) and effi cient

respectively.
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The results are as expected from the theory. At smaller sample sizes the estimators are genuinely

different regardless of the choice of weight matrices. Since the model is fully parametric both effi cient

estimators generally perform better than the ineffi cient ones even at T = 100 across all equilibria.

With larger sample sizes the ineffi cient and effi cient estimators seem to have similar properties for

both methods. Although, in theory, the ineffi cient estimators need not be asymptotically equivalent

as both are weighed by the same identity matrix (see equation (17) in the Appendix).

We now abstract away from the statistical properties and consider the numerical aspects. To

illustrate the potential for computational advantages of our estimator, we introduce an additive

market fixed effect to the per period payoff in the game described above. We use the number of

markets, denoted by M, to control the complexity of the game.7 For each M, we solve the model once

and simulated five times using the symmetric equilibrium. We report in Table 4, the average central

processing unit (CPU) times in seconds to compute our estimators and ALSEPSD that minimize

their respective limiting objective functions (no sampling error, using true choice and transition

probabilities); standard errors are in parentheses.8

M 1 10 20 30 100 200

OLS 0.0021 0.0125 0.0245 0.0366 0.1241 0.2654

(0.0010) (0.0000) (0.0000) (0.0001) (0.0004) (0.0004)

GLS 0.0180 0.1542 0.3091 0.4658 1.8504 5.6084

(0.0038) (0.0001) (0.0013) (0.0002) (0.0023) (0.0069)

PSD-I 0.2084 4.9957 28.6415 73.3173 1171.5137 5657.6393

(0.0089) (0.0351) (0.1805) (0.0846) (1.9478) (0.9183)

PSD-E 0.3564 10.4140 52.0471 109.5519 1607.2349 7621.5963

(0.0079) (0.0359) (0.1824) (0.1049) (2.6654) (1.2093)

Table 4: Computation time. OLS and GLS are our closed-form estimators that are ineffi cient and

effi cient respectively. PSD-I and PSD-E are asymptotic least squares estimators of Pesendorfer and

Schmidt-Dengler (2008) that are ineffi cient (identity weighted) and effi cient respectively.

Our estimators are substantially faster to compute, and the distinction grows exponentially with

more parameters in the model. The reported CPU times also include the construction of the optimal

7There are other ways to vary the complexity of the game, e.g. by changing the number of potential actions and

states. However, the diffi culty to solve and estimate such games increases significantly as the games become more

complexed. Our design is chosen for its simplicity as it only requires us to solve a simple game multiple times.
8The simulation was performed using MATLAB (R2012a, 64 bit version) on a standard PC running on an Intel

Core (TM) 2 Duo 3.16 GHz processor with 4 GB RAM.
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weighting matrices, using numerical derivatives, for GLS and PSD-E. The procedure to compute

the optimal weighting matrices are similar for both (asymptotic least squares) estimators, so its

contribution in this setting can be approximated by comparing the CPU times of OLS and GLS

as M varies. Our results are model specific and we precaution against extrapolations as different

designs, as well as algorithms and softwares, will have different convergence properties for ALSEPSD.

Although a claim that closed-form estimation is generally a much simpler task is quite innocuous.

We also expect the computation time for ALSEPSD to grow at a faster rate with larger action and/or

state spaces for any fixed M. Indeed another, perhaps even more important, numerical property of

our closed-form estimators is they are always global minimizers. In contrast, a numerical solution to

a general nonlinear optimization routine can be sensitive to the search algorithm, initial values, and

as well as the nature of the objective function.9

5 Conclusions and Possible Extensions

We have shown there can be some non-trivial computational gains in defining estimators that opti-

mize objective functions constructed in terms of expected payoffs instead of choice probabilities for

the estimation of structural dynamic discrete choice problems. The most transparent advantages of

our approach follow from an opportunity to utilize familiar linear regression techniques, which arise

when the period payoff functions are modeled to have fully or partially linear-in-parameter struc-

ture. Since the class of estimators we propose is asymptotically equivalent to the unifying class of

estimators developed by Pesendorfer and Schmidt-Dengler (2008), there appears to be no theoretical

costs associated with our approach to simplify and improve the numerical aspects of the estimation

problem. Our estimators also perform well in Monte Carlo exercises in terms of speed and statistical

properties.

The computation advantages we describe in this paper accumulates beyond the procedure to

obtain a point estimate. For instance, resampling methods that are often used in practice to obtain

standard errors (or perhaps to improve finite sample properties) clearly would benefit. The type of

objective functions we propose also naturally complements other research in the literature that aims

to improve the performance and/or scope of two-step methodologies. Two traditional criticisms of

two-step estimators are large finite sample bias (from the first stage nonparametric estimation of

choice probabilities), and the inability to accommodate unobserved heterogeneity and state variables

that are persistent over time. For the former, Aguirregabiria and Mira (2002,2007) propose an

9It is easy to construct a game where the (limiting) objective function defined using pseudo-probabilities has multiple

local minima such that some popular built-in optimization package produces different minimizers that depend on the

initial search value.
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iteration scheme that can improve the finite sample properties by imposing some structure for the first

stage estimators; see Kasahara and Shimotsu (2008,2012) for further discussions and some theoretical

justifications. At each iteration, the structural estimator can update the choice probabilities implied

by the pseudo-model that are then used to define a new pseudo-likelihood function. To incorporate

our estimator, alternatively one can use the updated probabilities to construct an objective function

that defines the distance between the (updated) observed and implied expected payoffs. For the

latter, the recent nonparametric identification results of Kasahara and Shimotsu (2009) and Hu and

Shum (2012) show any two-step approach can also be readily applied to estimate a more general

dynamic model than the one considered in this paper.

Appendix

Proofs of Theorems

Proof of Theorem 1. Under A1 to A3, S (θ;W) has a well-separated minimum at θ0. Let

ψ(θ) = Y − X (θ) and ψ̂(θ) = Ŷ − X̂ (θ). Under A4, it follows that supθ∈Θ ‖ψ(θ)‖ < ∞ and

supθ∈Θ

∥∥∥ψ̂(θ)− ψ(θ)
∥∥∥ = op (1). Then through some tedious algebra, of repeatedly adding nulls and

using properties of the matrix norm:

Ŝ
(
θ; Ŵ

)
− S (θ;W) = ψ̂(θ)>Ŵψ̂(θ)− ψ(θ)>Wψ(θ)

= 2ψ(θ)>W
(
ψ̂(θ)− ψ(θ)

)
+ op

(∥∥∥ψ̂(θ)− ψ(θ)
∥∥∥) ,

where the smaller order terms are uniform overΘ under A2 - A3. Therefore supθ∈Θ

∣∣∣Ŝ (θ; Ŵ)− S (θ;W)
∣∣∣ =

op (1), and consistency follows from a standard argument (e.g. see Newey and McFadden (1994)).�

Proof of Theorem 2. Under our assumptions, θ̂(Ŵ) satisfies the first order condition from

differentiating (10) with respect to θ with probability tending to 1, i.e.

0 =

 ∂X̂ (θ)

∂θ>

∣∣∣∣∣
θ=θ̂(Ŵ)

> Ŵ (Ŷ − X̂ (θ̂(Ŵ))
)

holds with probability tending to 1. Since Y − X (θ0) = 0, by adding nulls, we have

Ŷ − X̂ (θ̂) = Û + E1 + E2

= Û − ∇X
(
θ̂(Ŵ)− θ0

)
+ op

(∥∥∥θ̂(Ŵ)− θ0

∥∥∥) ,
where E1 = −

(
X (θ̂(Ŵ))−X (θ0)

)
and E2 = X̂ (θ̂(Ŵ)) − X̂ (θ0) −

(
X (θ̂(Ŵ))−X (θ0)

)
, and the

second equality follows from A5 after applying mean value expansions to the terms in E1 and E2
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around θ0. By adding nulls and using properties of matrix norm, since θ̂(Ŵ) = θ0 + op (1), we also

have

∥∥∥∥∥
(

∂X̂ (θ)

∂θ>

∣∣∣
θ=θ̂(Ŵ)

)>
Ŵ − ∇>XW

∥∥∥∥∥ = op (1) under A2 and A5. Therefore θ̂(Ŵ) also satisfies

0 = ∇>XW
(
Û − ∇X

(
θ̂(Ŵ)− θ0

))
+ op

(
1√
N

+
∥∥∥θ̂(Ŵ)− θ0

∥∥∥) ,
with probability tending to 1. Then it follows that

√
N
(
θ̂(Ŵ)− θ0

)
=
(
∇>XW∇X

)−1∇>XWÛ + op (1) .

An application of Slutsky’s theorem gives the result.�

Proof of Theorem 3. The proof for part (i) is standard (e.g. see Theorem 3.2 of Hansen

(1982)). We claim the optimal weighting matrix converges in the limit toΣ−1. LetB =W∇X
(
∇X>W∇X

)−1

and C = Σ−1∇X
(
∇X>Σ−1∇X

)−1
, so we have ΩW = B>ΣB and ΩΣ−1 = C>ΣC. Using simple alge-

bra, it can be shown that B>ΣB − C>ΣC = (B − C)>Σ (B − C) ≥ 0. For part (ii), it follows from

the proof of Theorem 2 that we did not use any specific information on Ŵ beyond the fact that it

has a positive definite probability limit.�

Representation Lemma

Proof of Lemma R. First we introduce some additional notations that build on the terms defined

in Section 2.2. Let vai,θi =
(
vi,θi (a, x1) , . . . , vi,θi

(
a, xJ

))
for all a, and vi,θi =

(
v0
i,θi
, . . . , vKi,θi

)>
, so

that vi,θi is a J (K + 1)−vector. Let πa1...aIi,θi
=
(
πi,θi (a1, . . . , aI , x

1) , . . . , πi,θi
(
a1, . . . , aI , x

J
))
for all

a1, . . . , aI , and πi,θi =
(
π0...0
i,θi

, . . . , πK...Ki,θi

)>
, so that πi,θi is a J (K + 1)I −vector. For any k let: Id

denote an identity matrix of size d; Hi denote a block-diagonal matrix diag
(
H0
i , H

1
i , . . . , H

K
i

)
, where

Ha
i denotes a J × J matrix such that (Ha

i )jj′ = Pr
[
xt+1 = xj

′|xt = xj, ait = a
]
; M =

(
I(K+1)I ⊗M

)
whereM = (IJ − L)−1 and L denotes a J×J matrix such that (L)jj′ = β Pr

[
xt+1 = xj

′ |xt = xj
]
; R =

P 0...0 · · · PK...K

... · · · ...

P 0...0 · · · PK...K

 be a J (K + 1)I by J (K + 1)I matrix, where P a1...aI = diag(P (a1, . . . , aI |x1) ,

. . . , P
(
a1, . . . , aI |xJ

)
) with P (a1, . . . , aI |x) = Pr[α1,θ1 (sit) = a1, . . . , αI,θI (sIt) = aI |xt = x] =

∏I
j=1 Pj (aj|x), and let Ri =


P 0...0
i0 · · · PK...K

i0
... · · · ...

P 0...0
iK · · · PK...K

iK

 be a J (K + 1) by J (K + 1)I matrix, where

P a1...aI
ik = diag(Pik (a1, . . . , aI |x1) , . . . , Pik

(
a1, . . . , aI |xJ

)
) with Pik (a1, . . . , aI |x) = Pr[α1,θ1 (sit) =

a1, . . . , αi−1,θi−1 (si−1t) = ai−1, αi,θi (sit) = k, αi+1,θi+1 (si+1t) = ai+1, αI,θI (sIt) = aI |xt = x] =

27



Pi (k|x)
∏I

j 6=i Pj (aj|x). Define ∆vai,θi =
(
vi,θi (a, x1)− vi,θi (0, x1) , . . . , vi,θi

(
a, xJ

)
− vi,θi

(
0, xJ

))
for

all a > 0, and ∆vθ =
(
∆v1

i,θi
, . . . ,∆vKi,θi

)>
. Let D denote the JKI × J (K + 1)J matrix that per-

forms the transformation Dvθ = ∆vθ. Lastly, let vai =
(
vi (a, x

1) , . . . , vi
(
a, xJ

))
for all a, and define

vi =
(
v0
i , . . . , v

K
i

)>
, so that ∆vi = Dvi is a J (K + 1)−vector. Then (6) immediately follows.�

Asymptotic Equivalence of ALSEs

Proof of Proposition E. In the proof of this proposition we shall assume standard regularity

conditions hold throughout (i.e. we assume inverse of matrices exist, expected payoffs and functions

are bounded and continuously differentiable etc.). As seen from the proof of Theorem 2, under

standard regularity conditions θ̂(Ŵ) satisfies

θ̂(Ŵ) = θ0 +
(
∇>XW∇X

)−1∇>XWÛ + op

(
1√
N

)
. (15)

Next we introduce ALSEPSD. It shall be useful to bear in mind the illustrative discussion in

Section 2.1. We first define some additional notations that build on the terms defined in Section 2.3.

Let P =
(
P>1 , . . . ,P

>
I

)>
and Pθ =

(
P>1,θ1 , . . . ,P

>
I,θI

)>
. Similarly, let ∆v =

(
∆v>1 , . . . ,∆v>I

)>
and

∆vθ =
(
∆v>1,θ1 , . . . ,∆v>I,θI

)>
. Then, by Hotz and Miller’s inversion there exists an invertible and

continuously differentiable map Γ such that P = Γ (∆v) and Pθ = Γ (∆vθ). In particular

P =
(

Γ1 (∆v1)> , . . . ,ΓI (∆vI)
>
)>

, and

Pθ =
(

Γ1 (∆v1,θ1)
> , . . . ,ΓI (∆vI,θI )

>
)>

,

where Γi is the inverse of Φi, which is defined in the text. Therefore, in terms of Y and X (θ),

∆v −∆vθ = Y − X (θ) .

Thus P and Pθ are also deterministic functions of the preliminary estimators (that we denoted by

γ0). We denote the estimators of P and Pθ by P̃ and P̂θ respectively, and these estimators are

constructed based on the same γ̂ that define X̂ and Ŷ. Note that, although P = Pθ0 , P̃ and P̂θ0 are

generally different. An ALSEPSD, denoted by θ̂PSD(V̂), is defined as the minimizer of

min
θ∈Θ

(
P̃− P̂θ

)>
V̂
(
P̃− P̂θ

)
,

for some V̂ that converges in probability to positive definite matrix V (cf. equation (21) on page
915 in Pesendorfer and Schmidt-Dengler (2008)). Under appropriate regularity conditions, it is

straightforward to show, analogous to our Theorem 2, that

√
N
(
θ̂PSD(V̂)− θ0

)
d→ N (0,ΨV) .
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For a first order asymptotic equivalence, it suffi ces to only consider the local asymptotic properties

of ALSEPSD around θ0. Let ∇P denote ∂Pθ
∂θ>

∣∣
θ=θ0

. An ALSEPSD satisfies

0 = −∇>PV
(
P̃−P−

(
P̂θ̂PSD(V) −Pθ0

))
+ op

(
1√
N

)
.

As the problem is smooth, it can be shown generally that the condition above simplifies further to

0 = −∇>PV
(
P̃−P−

(
P̂θ0 −Pθ0 + Pθ̂PSD(V) −Pθ0

))
+ op

(
1√
N

)
.

So that we have

θ̂PSD (V) = θ0 +
(
∇>PV∇P

)−1∇>PV
(
P̃−P− (P̂θ0 −Pθ0)

)
+ op

(
1√
N

)
.

By chain rule ∇P equals ∇Γ∇X , where ∇Γ denotes the Jacobian of Γ evaluated at ∆v, and ∂∆vθ
∂θ>

∣∣
θ=θ0

equals ∇X . Thus, we can write

θ̂PSD (V) = θ0 +
(
∇>X∇>ΓV∇Γ∇X

)−1∇>X∇>ΓV
(
P̃−P− (P̂θ0 −Pθ0)

)
+ op

(
1√
N

)
= θ0 +

(
∇>X∇>ΓV∇Γ∇X

)−1∇>X∇>ΓV∇ΓÛ + op

(
1√
N

)
,

where the last equality follows from linearizing P̃ − P − (P̂θ0 − Pθ0) in terms of Ŷ − X̂ (θ0). By

defining WV = ∇>ΓV∇Γ, we have

θ̂PSD (V) = θ0 +
(
∇>XWV∇X

)−1∇>XWV Û + op

(
1√
N

)
. (16)

Therefore, by comparing (15) and (16), θ̂PSD (V) has the same asymptotic distribution as θ̂ (WV).

In particular, let V∗ denote the effi cient weighting matrix for ALSEPSD so that ΨV∗ ≤ ΨV for

any positive definite matrix V. Therefore the effi cient ALSEPSD, denoted by θ̂
∗
PSD, has the same

asymptotic distribution as θ̂ (WV∗) withWV∗ = ∇>ΓV∗∇Γ. Then it must hold, by Theorem 3(i), that

ΩΣ−1 ≤ ΨV∗ since ΩΣ−1 is the lower variance bound. To complete the proof, an identical argument

can be made in the reverse direction. It is easy to show that any θ̂ (W) that satisfies (15) also has the

same asymptotic distribution as θ̂PSD (VW), where VW = ∇>Γ−1W∇Γ−1 (cf. WV), and ∇Γ−1 denotes

the Jacobian of Γ−1 evaluated at P (that equals (∇Γ)−1 by the inverse function theorem). We omit

further details to avoid repetition. Thus, it follows that ΨV∗ ≤ ΩΣ−1 , hence we can also conclude

that ΨV∗ = ΩΣ−1 .

In summary:

√
N
(
θ̂(W)− θ0

)
=
√
N
(
θ̂PSD(VW)− θ0

)
+ op

(
1√
N

)
with VW = ∇>Γ−1W∇Γ−1 , (17)

√
N
(
θ̂PSD(V)− θ0

)
=
√
N
(
θ̂(WV)− θ0

)
+ op

(
1√
N

)
with WV = ∇>ΓV∇Γ,
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and (V ,W) can be replaced by any consistent estimators (V̂ , Ŵ). Therefore our estimator and

ALSEPSD can always be constructed to have the same asymptotic distribution and achieve the

same lower variance bound.�
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