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1. Introduction

Nanotubes constitute a new class of mesoscopic quantum wires characterized by the

interplay of strong electron-electron interactions, low dimensionality, disorder, and

unconventional spin dynamics [1, 2, 3, 4, 5, 6, 7, 8]. In a sense, they represent an ideal

model for strongly correlated mesoscopic systems, where in fact basically all known

effects in mesoscopic physics have been experimentally observed. Two main classes of

nanotubes can be distinguished, namely single-wall nanotubes (SWNTs) which consist

of just one wrapped-up graphene sheet with radius R in the nanometer regime, and

multiwall nanotubes which contain additional inner shells [5]. Here we will focus on the

conceptually simplest case of metallic SWNTs, where interactions should completely

destroy the Fermi liquid picture and imply a so-called Luttinger liquid (LL) state of

matter [6, 7]. The Luttinger liquid is the generic low-energy description of metallic 1D

(single-channel) quantum wires [9].

Evidence for the LL behaviour of interacting 1D electrons has been reported for

charge transport in SWNTs [2, 3, 4]. However, in such materials one also expects to

find more dramatic consequences of the breakdown of Fermi liquid theory, most notably

the phenomenon of spin-charge separation. This many-body effect asserts that electrons

brought into a LL effectively break up into a charge and a spin part that travel with

different velocities and hence will be spatially separated after some time. A recent

proposal to detect evidence for spin-charge separation in SWNTs has been based on

spin transport [8]. A different (and perhaps easier to realize) proposal based on electron

spin resonance (ESR) is reviewed in this paper, expanding on our short paper [10]. ESR

is a valuable experimental tool to probe the intrinsic spin dynamics of many systems.

In ESR experiments one applies a static magnetic field and measures the absorption of

radiation polarized perpendicular to the field direction. In the absence of SU(2) spin

symmetry breaking terms in the Hamiltonian, the absorption intensity is then simply a

δ-peak at the Zeeman energy [11, 12].

Since spin-orbit (SO) interactions are generally the leading terms breaking the

SU(2) invariance, deviations in the ESR intensity from the δ-peak, e.g. shifts or

broadenings, are directly connected to these couplings. Below we theoretically address

the spin-orbit interaction and the resulting ESR spectrum for interacting SWNTs, using

both a continuum field theory and a Hubbard model description. Within the effective

field theory, the single δ-peak is split into two narrow peaks in SWNTs if spin-charge

separation is realized. Otherwise the ESR spectrum would form a broad band with

thresholds at the lower and upper edge [13]. This qualitative difference is caused by

the fact that the SO interaction in SWNTs does not spoil spin-charge separation to

leading order. Experimental observation of the peak splitting could therefore provide

evidence for the elusive phenomenon of spin-charge separation [9]. To experimentally

check the predictions made below, samples free of magnetic impurities have to be used.

Such impurities have probably spoiled previous ESR measurements for nanotubes [5].

The outline of this article is as follows. In Section 2 the Luttinger liquid theory of



Interacting electrons in nanotubes 3

carbon nanotubes is reviewed in detail, and we give an introduction to ESR theory as

relevant for our purposes. The spin-orbit interaction is derived in Section 3, followed

by a detailed discussion of the low-energy theory predictions for the ESR spectrum in

Section 4. An alternative approach is to use numerical methods to compute the ESR

spectrum for microscopic lattice fermion models. We shall use both a Hubbard chain

and the more realistic two-leg Hubbard ladder formulation of interacting SWNTs [14].

While charge transport does not allow for such a description due to the importance of

long-range interactions, it turns out that for ESR spectra, only short-range interactions

are important. These are correctly captured by Hubbard-type models, and therefore

such models are expected to be appropriate for the quantitative description of ESR

spectra in SWNTs. We discuss this approach in Section 5 and compare the numerical

results with the field-theoretical predictions. Finally, in Section 6 conclusions and a

brief outlook are provided. In most of the paper, we use the conventions h̄ = c = 1 to

simplify notation.

2. Basics

2.1. Luttinger liquid theory

Starting from a microscopic lattice description of the SWNT, inclusion of the interactions

among electrons leads to rather complicated models. In the case of short-ranged

interactions, one can study Hubbard-type models, and we will do so in Section 5. For

low-energy phenomena such as electron spin resonance, however, only bands close to the

Fermi energy do matter. The relevant electronic properties of (not too thin) SWNTs

are then caused only by the π electrons of the wrapped graphene sheet. On energy

scales |E| < D = h̄vF/R ≈ 1 eV around the Fermi energy EF (here vF is the Fermi

velocity), the graphene bandstructure takes a simple form allowing to develop a powerful

field-theoretic framework for SWNTs [6] reviewed below. We mention in passing that it

can be explicitly demonstrated that bands sufficiently far away from the Fermi surface

will not change the results obtained from the field theory; for an explicit discussion, see

Ref. [9].

Simple tight-binding bandstructure calculations for graphene reveal that there are

only two linearly independent Fermi points (“flavours”) with coordinates α ~K in the

first Brillouin zone (α = ±), instead of a continuous Fermi surface [1]. For |E| < D,

the dispersion relation around the Fermi points is highly linear (two-dimensional light

cone). Since the basis of the graphene honeycomb lattice contains two atoms, there are

two sublattices p = ±, and hence two degenerate Bloch states

ϕpα(~r) = (2πR)−1/2 exp(−iα ~K~r) (1)

at each Fermi point α = ±. Here ~r = (x, y) lives on the sublattice p under consideration,

and the correct normalization for nanotubes has been anticipated. The Bloch functions

are defined separately on each sublattice such that they vanish on the other. One can

then expand the electron operator in terms of these Bloch functions. The resulting
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effective low-energy theory of graphene is the 2D massless Dirac Hamiltonian, as follows

also from standard ~k · ~p theory.

Wrapping the graphene sheet onto a cylinder then leads to transverse momentum

quantization, and hence to the effectively 1D bandstructure of a metallic SWNT. Taking

the x-axis along the tube direction and the circumferential variable as 0 < y < 2πR,

quantization of transverse motion now allows for a contribution ∝ exp(imy/R) to the

wavefunction. However, excitation of angular momentum states other than m = 0 costs

a huge energy of the order D. Assuming that the SWNT is not excessively doped,

following our above remarks, in the field theory we may then omit all transport bands

except m = 0. The theory will then apply on energy scales |E| < D and lengthscales

larger than the graphene lattice spacing a ≈ 0.246 nm.

Evidently, a SWNT then forms a truly 1D quantum wire with only two spin-

degenerate bands intersecting the Fermi energy. To take this into account, the electron

operator for spin σ = ± is written as

Ψσ(x, y) =
∑

pα

ϕpα(x, y)ψpασ(x), (2)

which introduces 1D fermion operators ψpασ(x). Neglecting interactions for the moment,

the Hamiltonian is

H0 = −vF

∑

pασ

p
∫
dx ψ†

pασ∂xψ−pασ, (3)

which is equivalent to a massless 1D Dirac Hamiltonian, where vF = 8 × 105 m/sec.

Next we discuss interactions mediated by the (possibly externally screened)

Coulomb potential U(~r − ~r′). The precise form of this potential will of course depend

on details of the setup. In the simplest case, bound electrons and the effects of an

insulating substrate are described by a dielectric constant κ, and for the long-range

Coulomb interaction,

U(~r − ~r′) =
e2/κ

√
(x− x′)2 + 4R2 sin2[(y − y′)/2R] + a2

z

, (4)

where az ≈ a denotes the average distance between a 2pz electron and the nucleus,

i.e. the “thickness” of the graphene sheet. Electron-electron interactions are then

described by

HI =
1

2

∑

σσ′

∫
d~r

∫
d~r′ Ψ†

σ(~r)Ψ†
σ′(~r′)U(~r − ~r′)Ψσ′(~r′)Ψσ(~r) (5)

which is brought into a 1D form by inserting equation (2) for the electron field operator,

allowing to employ the large arsenal of theoretical methods available only in 1D [9]. The

result is

HI =
1

2

∑

pp′σσ′

∑

{αi}

∫
dxdx′ V pp′

{αi}
(x− x′) (6)

× ψ†
pα1σ(x)ψ

†
p′α2σ′(x′)ψp′α3σ′(x′)ψpα4σ(x),
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with 1D interaction potentials

V pp′

{αi}
(x−x′) =

∫
dydy′ϕ∗

pα1
(~r)ϕ∗

p′α2
(~r′)U(~r−~r′+p~dδp,−p′)ϕp′α3

(~r′)ϕpα4
(~r).(7)

These potentials only depend on x − x′ and on the 1D fermion quantum numbers.

For interactions involving different sublattices p 6= p′ for ~r and ~r′ in equation (5), a

sublattice shift vector ~d arises [7]. To simplify the resulting 1D interaction (6), one

can exploit momentum conservation. Provided we stay away from the charge neutrality

point EF = 0, Umklapp electron-electron scattering processes can be ignored, and the

situation simplifies considerably. We then have only “forward scattering” processes [7],

where α1 = α4 and α2 = α3, and “backscattering” processes with α1 = −α2 = α3 = −α4.

Next we introduce the potential

V0(x− x′) =
∫ 2πR

0

dy

2πR

∫ 2πR

0

dy′

2πR
U(~r − ~r′). (8)

For the unscreened Coulomb interaction (4), this can be explicitly evaluated [7].

From equations (7) and (1), the forward scattering interaction potential reads V0(x) +

δp,−p′δVp(x), with

δVp(x) =
∫ 2πR

0

dydy′

(2πR)2
[U(x + pdx, y − y′ + pdy) − U(x, y − y′)], (9)

which is only present if ~r and ~r′ are located on different sublattices. Thereby information

about the discrete nature of the graphene network has been kept despite the low-energy

continuum approximation. Since V0(x) treats both sublattices on equal footing, the

resulting forward scattering interaction part couples only the total 1D electron densities,

H
(0)
I =

1

2

∫
dxdx′ ρ(x)V0(x− x′)ρ(x′), (10)

where ρ(x) =
∑

pασ ψ
†
pασψpασ. This part of the electron-electron interaction is the most

important one and is responsible for the LL behavior. Note that it is due to the long-

ranged tail of the Coulomb interaction. The remaining interactions originate from

short-ranged interaction processes, and since these are effectively averaged over the

tube circumference, their amplitude is quite small, scaling as 1/R. Such couplings are

seen below to cause only exponentially small gaps.

For |x| ≫ a, the term δVp(x) is extremely small. However, for |x| ≤ a, an additional

term beyond equation (10) arises due to the hard core of the Coulomb interaction. At

such small length scales, the difference between inter- and intra-sublattice interactions

matters, and δVp(0) must be computed microscopically, leading to a coupling constant

f characterizing the additional forward scattering contribution

H
(1)
I = −f

∫
dx

∑

pαα′σσ′

ψ†
pασψ

†
−pα′σ′ψ−pα′σ′ψpασ, (11)

where f/a = γfe
2/R with a dimensionless constant γf depending on the tube chirality.

An estimate for armchair SWNTs yields γf ≈ 0.05, implying that f is very small. A

similar reasoning applies to the backscattering contributions α1 = −α2 = α3 = −α4 in

equation 6). Because of a rapidly oscillating phase factor, again the only contribution
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comes from |x− x′| ≤ a. Furthermore, only the part of the interaction which does not

distinguish among the sublattices is relevant, leading to

H
(2)
I = b

∫
dx

∑

pp′ασσ′

ψ†
pασψ

†
p′−ασ′ψp′ασ′ψp−ασ. (12)

For the unscreened interaction (4), b/a = γbe
2/R with γb ≈ γf . For externally screened

Coulomb interaction, however, one may have b≫ f .

Further progress can be made by using the Abelian bosonization approach [9].

For that purpose, one brings the non-interacting Hamiltonian (3) into the conventional

form of the 1D Dirac model by switching to right- and left-movers (r = ±) which are

linear combinations of the sublattice states p = ±. In this representation, an Abelian

bosonization formula [6, 7, 9] applies with four bosonic phase fields θa(x) and their

canonical momenta Πa(x). The four channels are obtained from combining charge and

spin degrees of freedom as well as symmetric and antisymmetric linear combinations of

the two Fermi points, a = c+, c−, s+, s−. The bosonized expressions for H0 and H
(0)
I

read

H0 =
∑

a

vF

2

∫
dx

[
Π2

a +K−2
a (∂xθa)

2
]

(13)

H
(0)
I =

2

π

∫
dxdx′ ∂xθc+(x)V0(x− x′)∂x′θc+(x′). (14)

The bosonized form of H
(1,2)
I [6] leads to nonlinearities in the θa fields for a 6= c+.

Although bosonization of equation (3) gives Ka = 1 in equation (13), interactions will

renormalize these parameters. In particular, in the long-wavelength limit, H
(0)
I can be

incorporated into H0 by putting

Kc+ =
{
1 + 4Ṽ0(k ≃ 0)/πh̄vF

}−1/2 ≤ 1, (15)

while for all other channels, the coupling constant f gives rise to a tiny renormalization,

Ka6=c+ = 1+f/πh̄vF ≃ 1. The plasmon velocities of the four modes are va = vF/Ka, and

hence the charged (c+) mode propagates with higher velocity than the three neutral

modes. The dimensionless Luttinger parameters measure the correlation strength in

the system, with the noninteracting point at Ka = 1 and repulsive interactions leading

to Kc+ < 1. For the long-ranged interaction (4), the logarithmic singularity in Ṽ0(k)

requires the infrared cutoff k = 2π/L due to the finite length L of the SWNT, resulting

in:

Kc+ =

{
1 +

8e2

πκh̄vF
ln(L/2πR)

}−1/2

. (16)

Since h̄c/e2 ≃ 137, we estimate e2/h̄vF = (e2/h̄c)(c/vF ) ≈ 2.7, and therefore Kc+ is

typically in the range 0.2 to 0.3. This estimate does only logarithmically depend on L

and R, and therefore is expected to be almost independent of the sample under study.

The Luttinger parameter (16) can also be written in the form

Kc+ =
(
1 +

2Ec

∆

)− 1

2

,
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where Ec is the charging energy and ∆ the single-particle level spacing. The small value

predicted here implies that a metallic SWNT should be a strongly correlated system

displaying pronounced non-Fermi liquid effects.

It is clear from equations (13) and (14) that for f = b = 0, a SWNT constitutes

a realization of the LL. We therefore have to address the effect of the nonlinear

terms associated with the coupling constants f and b. This can be done by means

of the renormalization group approach. Together with a solution via Majorana

refermionization, this procedure allows for the complete characterization of the non-

Fermi-liquid ground state of a clean nanotube [6, 7]. From this analysis, one finds that

for temperatures above the exponentially small energy gap

kBTb = D exp[−πh̄vF/
√

2b] (17)

induced by backscattering processes, the SWNT is adequately described by the LL

model, and H
(1,2)
I can effectively be neglected. A rough order-of-magnitude estimate

is Tb ≈ 0.1 mK. In the remainder, we focus on temperatures well above Tb, where the

nonlinearities can be neglected and the Luttinger picture applies.

2.2. Sugawara formulation

In the following discussion of ESR theory, it is mandatory to keep the SU(2) spin

symmetry explicit at all stages. To do so it is advantageous to avoid the Abelian

bosonization used above, which breaks the spin symmetry by hand, but rather employ

the Sugawara formulation [9] which manifestly respects SU(2) spin invariance. This

formulation is in fact fully equivalent to a Wess-Zumino-Witten theory, even with the

flavour degeneracy due to the two Fermi points [9]. Since our main interest is on spin

properties, we shall however suppress the flavour index for most of what follows, but

return to the complexities added by it later, see Section 5. Instead of four channels,

we then have a two-channel Luttinger liquid, with interaction constants for charge,

Kc = (Kc− + Kc+)/2 ≃ (1 + Kc+)/2, and spin, Ks = (Ks− + Ks+)/2 ≃ 1. In Abelian

bosonization, in order to impose the correct spin symmetry, one then fixes Ks = 1 [9].

This procedure is not necessary in the Sugawara treatment below. Inclusion of magnetic

Zeeman fields B (orbital effects play no role here) only affects the spin sector and in

general could renormalize Ks. However, this renormalization is irrelevant to ESR, which

probes the finite energy scale ≈ B [11]. In addition, the velocities vc/s = vF/Kc/s are

used in the following.

The Sugawara formulation uses the charge (JL/R) and spin currents ~JR/L for right-

and left- (r = ± = R/L) moving electrons described by chiral 1D fermion operators

ψr=R/L(x, t), where we suppress the additional spin index σ. In terms of these field

operators, chiral SU(2) spin current operators are given by

~JR,L(x) =
1

2
: ψ†

R/L(x)~σψR/L(x) :, (18)

where the colons denote normal-ordering and Pauli matrices ~σ act in spin space. They
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obey Kac-Moody commutation relations (µ, ν = x, y, z)

[Jµ
L/R(x), Jν

L/R(x′)] = ±iδ′(x− x′)δµν/4π + iǫµνλJλ
L/R(x)δ(x− x′). (19)

Likewise, charge current operators are defined as

JR,L =: ψ†
R/L(x)ψR/L(x) :, (20)

where spin indices are summed over. Using these current operators, the Luttinger liquid

in the U(1) × SU(2) invariant Sugawara formulation reads [9],

H0 = Hc +Hs, (21)

with decoupled charge and spin parts. The charge sector is described by the U(1)

invariant Hamiltonian

Hc =
πvc

2

∫
dx(: JRJR + JLJL : +gc : JLJR :). (22)

The coupling gc is determined by the Luttinger parameter Kc. Explicit expressions can

be found in Ref. [9], but they are not required below. In particular, in the noninteracting

limit, gc = 0 and vc = vF . The SU(2) invariant spin Hamiltonian Hs commuting with

Hc is

Hs =
2πvs

3

∫
dx : ~JR · ~JR + ~JL · ~JL : +gs

∫
dx : ~JR · ~JL :, (23)

where vs ≈ vF is the spin velocity and gs = bvs is the coupling constant for electron-

electron backscattering processes. In a dynamical spin-sensitive ESR measurement, one

should not simply discard this coupling despite the above thermodynamic argument

invoking the smallness of gaps [8]. The LL Hamiltonian (21) completely decouples when

expressed in terms of spin and charge currents (or the spin/charge bosons of Abelian

bosonization). This remarkable fact leads to the phenomenon of spin-charge separation,

and unless the spin-orbit interaction couples spin and charge sectors, ESR will only

probe the spin sector.

2.3. Electron spin resonance

Adopting the conventional Faraday configuration, the ESR intensity at frequency ω is

proportional to the Fourier transform of the transverse spin-spin correlation function

[11],

I(ω) =
∫
dt eiωt〈S+(t)S−(0)〉, (24)

where the static magnetic field points along the z-axis, ~S =
∑

i
~Si is the total spin

operator, and S± = Sx ± iSy. The Hamiltonian can be written as H = H0 +HZ +H ′,

where H0 represents the SU(2) invariant nanotube model (21) including electron-

electron interactions, HZ = −geµB
~B · ~S is the Zeeman term (below, often geµB = 1),

and H ′ represents SU(2) spin-symmetry breaking terms, in particular the SO coupling.

Inserting a complete set of eigenstates |a〉 of H in equation (24), the ESR intensity

follows as

I(ω) =
1

Z

∑

a,b

e−Eb/kBT δ(ω − (Ea − Eb)) |〈a|S−|b〉|2. (25)
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In the absence of H ′, there are only contributions from matrix elements between

eigenstates with equal total spin Sa = Sb. Then all states with Sz
a = Sz

b − 1 will

lead to a δ-peak at frequency ω = B. For instance, at zero temperature, the application

of a magnetic field B, taken as large enough to overcome a spin gap possibly present

at B = 0, leads to a ground state with finite magnetization, S0 6= 0, and the states

with Sz
a = Sz

0 − 1 again yield the δ-peak. This can be made explicit as follows. Since

[H0 +HZ , S
−] = BS−, one has (H0 + HZ)S−|0〉 = S−(H0 + HZ)|0〉 + BS−|0〉 and

identifying S−|0〉 = |a〉, one gets Ea = E0 + B and thus I(ω) = I0δ(ω − B). Any

perturbation preserving SU(2) invariance will neither shift nor broaden this peak, even

at finite temperature [12]. To get nontrivial ESR spectra, one has to identify the leading

perturbation breaking SU(2) invariance, which will cause finite linewidth and shift of

the ESR peak. In metallic systems like SWNTs, one has to consider the spin-orbit (SO)

interaction. This is done in the next section.

3. Spin-Orbit Coupling

3.1. Microscopic derivation

In our derivation of the SO term, we shall neglect electron-electron interactions. Local

electric fields exerted by other electrons on a given electron are typically weak compared

to the ionic fields [15], and will generally only weakly renormalize the SO couplings from

their noninteracting values. In a single-particle picture, the SO interaction then appears

because an electron moving in the electrostatic potential Φ(~r) experiences an effective

magnetic field ~v × ∇Φ in its rest frame. With ~p = m~v the SO interaction reads in

second-quantized form

H ′ = −geµB

4m

∫
d~r Ψ† [(~p×∇Φ) · ~σ] Ψ. (26)

This represents the starting point for our discussion of the SO coupling.

For a microscopic lattice description, the electron field operator Ψσ(~r) [whose low-

energy expansion is given above in equation (2)] can now be expressed in terms of the

electron operators ci for honeycomb lattice site i at ~ri,

Ψσ(~r) =
∑

i

χ(~r − ~ri) ciσ, (27)

where χ(~r − ~ri) is the corresponding Wannier wavefunction centered at lattice site

~ri. These localized Wannier orbitals can be chosen as real-valued functions even

when hybridization with s-orbitals is important. For the simplest case, 2pz orbital

wavefunctions could be used, with z perpendicular to the graphene plane,

χ(~r) = (z/4a0

√
2π) exp(−r/2a0),

where a0 = h̄2/6me2 is the effective Bohr radius.

Inserting the expansion (27) into (26), the SO interaction reads [10, 16, 17],

H ′ =
∑

〈jk〉

ic†j(~ujk · ~σ)ck + H.c. (28)
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which explicitly breaks SU(2) symmetry. The SO vector ~ujk = −~ukj has real-valued

entries and can be written as

~ujk =
geµB

4m

∫
d~rΦ(~r) [∇χ(~r − ~rj) ×∇χ(~r − ~rk)] . (29)

The on-site term (j = k) is identically zero, and since the overlap decreases exponentially

with |~rj − ~rk|, we keep only nearest-neighbour terms in equation (28). Equation (28)

also allows to incorporate electric fields due to impurities or close-by gate electrodes.

To connect the SO vector to the experimentally measurable SO relaxation rate, τ−1
SO, we

estimate this rate using Fermi’s golden rule. Assuming a constant ~u, the probability for

a transition from the initial state |i〉 = |k, ↑〉 to the final state |f〉 = |k′, ↓〉 is given by

Γi→f = 2π|〈f |H ′|i〉|2δ(Ei −Ef ), and summing over all final states,

τ−1
SO = 8(u2

x + u2
y)/3vs. (30)

For SWNTs, SO couplings are generally expected to be small. This is in accordance with

our approach since the SO vector (29) vanishes by symmetry for an ideal 2D honeycomb

lattice. A finite nearest-neighbour SO coupling can only arise due to the finite curvature,

stray fields from nearby gates, or due to impurities, which break the high symmetry.

Focusing for clarity on the curvature-induced SO coupling, the SO vector for achiral

tubes can be seen to only depend on bond direction,

~u~ri,~ri+~δn
= ~un, (31)

where the nearest-neighbour bonds ~δn (n = 1, 2, 3) connect the two sublattices of the

graphene sheet in real space. For explicit representations of the vectors ~δn, see e.g. [17].

3.2. Low-energy form

From now on we then restrict our analysis to achiral tubes and construct the low-energy

field theory Hamiltonian H ′ describing the spin-orbit interaction (28), including the

flavour indices for the moment. Using equation (31), the microscopic form is

H ′ =
∑

~r

3∑

n=1

(
ic†~r,p=+~un · ~σc~r+δn,p=− + H.c.

)
,

where ~r runs over all lattice sites of the sublattice p = +, and we have made the

sublattice dependence of the lattice electron operators explicit (again spin indices are

implicit). The expansion (2) implies

c~r,p,σ = (2πR)−1/2
∑

α

e−iα ~K·~rψpασ(x),

which yields after y-integration and Taylor expansion of ψp=−,ασ(x+ êx · ~δn) the result

H ′ =
∫
dx

∑

α,n

e−iα ~K·~δnψ†
p=+,α(x) (i~un · ~σ) (32)

×
[
ψp=−,α(x) + (êx · ~δn)∂xψp=−,α(x)

]
+ H.c.

where we use the unit vector êx along the tube axis. Terms involving higher order

derivatives of the field operators are highly irrelevant and can safely be ignored. In



Interacting electrons in nanotubes 11

equation (32), we have also neglected oscillatory terms that vanish in doped SWNTs

because of axial momentum conservation. These oscillations are governed by the

wavevector 2|µ|/vF corresponding to the doping level µ. In practice, intrinsic doping is

unavoidable, but for a commensurate situation (µ = 0), additional terms do arise that

are ignored in this section.

Next we define vectors given in terms of the vectors specified in (31),

~u1α =
3∑

n=1

exp(−iα ~K · ~δn)~un

~u2α =
3∑

n=1

exp(−iα ~K · ~δn)~un(êx · ~δn).

We then obtain from equation (32) the form H ′ = H1 +H2 with

H1 =
∫
dx

∑

α

ψ†
p=+,α(x) (i~u1,α · ~σ)ψp=−,α(x) + H.c. (33)

and

H2 =
∫
dx

∑

α

ψ†
p=+,α(x) (i~u2,α · ~σ) ∂xψp=−,α(x) + H.c. (34)

It is then apparent that H1 will give the dominant contribution (relevant in the

renormalization group sense, scaling dimension 1), while H2 is marginal (scaling

dimension 2). Since SO interactions are always small, the renormalization group

arguments around the Luttinger fixed point with no SO couplings can be safely used

here. Note that all contributions neglected here either violate momentum conservation

or have scaling dimensions ≥ 3, i.e. are highly irrelevant.

The final step is to move from the sublattice description to the r = R/L basis using

a unitary transformation. Noting that the term involving Re~u1α involves oscillatory

contributions that can be neglected by virtue of momentum conservation, the dominant

low-energy SO contribution takes the form

H1 =
∫
dx

∑

α

~λα · ( ~JL,α − ~JR,α), (35)

with effective SO vectors

~λα = 2 Im~u1,α = 2 Im
∑

n

e−iα ~K·~δn~un. (36)

In the analysis of Sec. 4, for clarity, we shall ignore the flavour index, but it is clear

from the above how to add it to the theory. The subleading term H2 reads (ignoring

the flavour index, and again omitting oscillatory terms)

H2 =
∫
dx

∑

r=R/L

ψ†
r
~λ′ · ~σ i∂xψr + H.c. (37)

where

~λ′ =
∑

n

e−i ~K·~δn(êx · ~δn)~un.
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4. ESR spectrum from field theory

In the following, we will keep only the leading contribution (35) and neglect the marginal

term H2. In the numerical analysis of Section 5, the full SO interaction will be

considered to assess the accuracy of these approximations. Since SO couplings are

typically very small, however, the above perturbative reasoning, suggesting to drop H2

and the oscillatory terms, is expected to work. Remarkably, the SO interaction then acts

exclusively in the spin sector and hence does not spoil spin-charge separation. Therefore

the ESR intensity can be computed from the spin sector alone.

For convenience, we define

~λr=R/L=± = ~B ± ~λ, (38)

which represents an effective magnetic field acting separately on the chiral (right/left-

moving) spin currents. The presence of two pseudo-fields already hints at the outcome of

our calculation below, namely the emergence of a double peak spectrum. Their position

will then be given by the absolute values λr = |~λr|. The spin Hamiltonian governing

the ESR spectrum I(ω) is then

H = Hs −
∑

r

∫
dx ~λr · ~Jr, (39)

with Hs given in equation (23). The Heisenberg equation of motion for the chiral spin

current operators is

(∂t ± vs/3∂x) ~Jr = ∓(gs/4π)∂x
~J−r + gs

~JR × ~JL − ~λr × ~Jr. (40)

Taking ~B = Bêz, and using ~S = ~JR + ~JL, the ESR spectral density is

I(ω) =
∫
dtdxeiωt

∑

rr′
〈J+

r (x, t)J−
r′ (0, 0)〉. (41)

We then compute the ESR spectrum using the Sugawara spin Hamiltonian (39). An

independent route would proceed via fermionization [10]. For simplicity, we discuss the

case gs = 0 (no backscattering), but the method is flexible enough to allow treatment

of the general case as well. However, the numerical analysis of Section 5 indicates that

indeed the backscattering interaction does not affect the results in a significant way.

Since the spin Hamiltonian decouples in the chiral spin currents, we just need to add

the contributions due to the two chiralities. In equilibrium, using the spin susceptibility

1/4πvs of a chiral fermion, we have

〈 ~JR〉 =
1

4πvs

~λR. (42)

Using the fluctuation-dissipation theorem, we can now express I(ω) in (41) in terms of

the imaginary part of the susceptibility tensor χr(q, ω),

I(ω) =
∑

r=±

∑

µ,ν=x,y

2

1 − exp(−ω/kBT )
Imχµν

r (q → 0, ω). (43)
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The susceptibility can in turn directly be obtained from the equation of motion (40).

Formally defining the matrix (Λr)
µν = ǫµναλα

r , we find

χr(q → 0, ω) =
1

4πvs
[iω + Λr]

−1Λr,

and straightforward algebra then yields the ESR spectrum

I(ω) =
∑

r=±

[1 + λz
r/λr]

2 λr

4vs(1 − e−λr/kBT )
δ(ω − λr). (44)

As expected, the single δ-peak splits into two peaks but there is no broadening. The

peak separation is |λ+ − λ−|, see (38), and the peak heights are generally different. To

lowest order in λ/B, the two peaks are located symmetrically around ω = B. Notice

that for ~B perpendicular to the effective SO vector ~λ, the splitting is zero.

It should be stressed that these results hold both for the non-interacting and the

interacting case. However, for the interacting case realized in SWNTs the double peak

structure is only possible if spin-charge separation is present. Otherwise the charge

sector will mix in, leading to broad bands with threshold behaviours [13]. Closer

inspection shows that inclusion of the subleading term (37) preserves the splitting into

two peaks, but the peaks now acquire a finite width ∼ |~λ′|. Similarly, the effects

of backscattering are expected to be small. It is important to point out that the

double peak spectrum would also show up in the non-interacting case, and hence its

experimental observation does not represent a true proof for spin-charge separation.

However, it would certainly give strong evidence, as in the interacting situation the

double peak survives only when spin-charge separation is realized.

In practice, to get measurable intensities, one may have to work with an ensemble of

SWNTs. The proposed experiment may be possible using electric-field-aligned SWNTs,

or by employing arrays of identical SWNTS. In more conventional samples with many

SWNTs, however, the SO vector ~λ can take a random direction. For results on the

averaged spectrum, see [10].

5. ESR spectra for armchair SWNTs: Two-leg Hubbard ladders

In this section we discuss an alternative description of the ESR spectrum via a lattice

fermion description. We shall numerically compute ESR spectra for a Hubbard chain

and a two-leg Hubbard ladder [14]. These models ignore the long-range part of the

Coulomb interactions which makes them less accurate for the description of charge

transport. Since the long-range tails of the interaction do not affect the spin dynamics,

however, this does not create a problem for the spin problem at hand.

Modelling the SWNT by a two-leg Hubbard ladder is attractive for the following

reasons:

• Backscattering interactions as well as commensurability effects (Umklapp

scattering) are included.

• The two flavour degrees of freedom are taken care of.
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• Band curvature effects are taken into account.

• The marginal SO term (37) as well as all irrelevant contributions can be kept.

• For the Hubbard chain, it is known that any magnetic field spoils spin-charge

separation [18]. The importance of this effect for SWNTs can be assessed.

• Accurate numerical techniques are available for such models.

To gain a broader perspective and to also make contact to other 1D conductors, before

dealing with the more complex two-leg ladder system, we first consider a 1D Hubbard

chain [9] with uniform SO coupling,

5.1. Hubbard chain

The 1D Hubbard model with a uniform SO coupling vector ~λ is defined by

H =
∑

n

[
c†n

(
−t+ i~λ · ~σ

)
cn+1 + H.c.

]
+ U

∑

n

nn↑nn↓ − B
∑

n

Sz
n. (45)

For ~λ = 0, equation (45) leads to a LL phase at low energies [9]. It is worth noting that

then the exact solution of (45) shows that with a magnetic field, the charge and spin

sectors get mixed [18]. To make progress, we gauge away the SO term by the unitary

transformation

cn → dn =

{
cn (n odd) ,

exp(iα λ̂ · ~σ) cn (n even),

where α = arctan(λ/t), λ̂ = ~λ/λ with λ = |~λ|. The hopping amplitude then changes as

t → t̃ = t + λ sinα, and one can easily see that nn↑nn↓ = ñn↑ñn↓, where ñnσ = d†nσdnσ.

Then the Hamiltonian (45) can be rewritten as

H = −t̃
∑

n

(d†ndn+1 + H.c.) + U
∑

n

ñn↑ñn↓ −B
∑

n

S̃z
n,

and the spin operator as

~Sn =

{
1
2
d†n~σdn (n odd) ,

1
2
d†n(e

iαλ̂·~σ~σe−iαλ̂·~σ)dn (n even).

The transformed picture is easier to use in practical calculations. We have calculated

the ESR spectrum for (45) using exact diagonalization for small lattices.

The main features emerging from exact diagonalization can be seen in figure 1.

For weak interactions, see figure 1(a), we recover the two-peak structure predicted by

field theory, see (44), with the peaks symmetrically arranged around ω = B but with

different peak heights. In addition, no splitting is seen for ~B perpendicular to the SO

vector ~λ. The interaction dependence of the ESR spectrum is shown in figure 1(b).

Strong interactions suppress one of the peaks and enhance the other, and also give rise

to more structure in the spectrum. This behaviour can be traced back to the effects of

band curvature. Note that for increasing U , the distance between both peaks decreases.

This feature can be qualitatively explained by a decrease of the spin velocity vs with U ,

i.e. for a flatter band, the spin-orbit splitting is less effective.
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Figure 1. Exact diagonalization results for the T = 0 ESR spectra of a Hubbard

chain with λ = 0.1, B/t = 0.2, and artificial broadening 0.05t. In (a) ESR spectra for

U/t = 1 are shown for different angles γ between ~λ and ~B. In (b) the U -dependence

is shown for γ = 0. All results are for 12 lattice sites and 4 electrons.

5.2. Two-leg Hubbard ladder: Armchair SWNTs

We are now ready to generalize the above treatment to armchair SWNTs. Mapping

the interacting honeycomb lattice Hamiltonian for armchair SWNTs onto the two-leg

Hubbard model [14], one finds

H0 =
∑

ni

(−tc†nic(n+1)i − t⊥c
†
n1cn2 + H.c.) + U

∑

n,i

nn,i,↑nn,i,↓. (46)

While under the mapping, t⊥ = t up to 1/R corrections [14], we shall allow for t⊥ 6= t to

have better numerical accuracy. Here we also want to include the spin-orbit interaction

(28) in this mapping. We use the SO vectors (31), and for simplicity set ~un=1 = 0,

since this SO vector does not appear in the leading low-energy SO vector ~λ in (36) for

armchair SWNTs. This simplification also allows for numerically feasible calculations.

Writing ~wn = (−1)n ~W + ~w, where ~w = (~u2 −~u3)/2 and ~W = (~u2 +~u3)/2, the spin-orbit
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Figure 2. Sketch of the two-leg Hubbard ladder including spin-orbit couplings of the

type considered here. The arrows indicate the phase for spins up. Spins down have

the opposite phase.

term can then be written as

H ′ =
∑

n

i(c†n,1 ~wn · ~σcn+1,1 + c†n,2 ~wn+1 · ~σcn+1,2) + H.c., (47)

consisting of a uniform and an alternating contribution,

c†n,1/2 ~wn · ~σcn+1,1/2 = c†n,1/2 ~w · ~σcn+1,1/2 ± (−1)nc†n,1/2
~W · ~σcn+1,1/2.

The resulting model is studied in the remainder of this section for the special case that

both ~w and ~W are parallel to the uniform magnetic field. Note that ~w corresponds to the

leading SO vector ~λ in the low-energy theory, while ~W is related to the subleading vector
~λ′, see equation (36). Moreover, away from half-filling, following standard reasoning,

one may expect that the alternating terms average out. Nevertheless, they will be kept

below, but we indeed confirm that in large systems they lead only to small effects. When

the above gauge transformation is applied again, we arrive at a two-leg Hubbard ladder

(46), but with the on-chain hoppings t carrying both a uniform phase exp(iφu) and an

alternating phase exp(iφa) determined by ~w and ~W , respectively, see figure 2.

Let us first discuss the noninteracting case. For U = 0, the solution of equations (46)

and (47) is straightforward. The eigenenergies are given by (a is the lattice constant)

E1±(kx) = −
√

(2t cos(kxa + σφu))2 ± 4tt⊥ cos(kxa+ σφu) cos(φa) + t2⊥

E2±(kx) =
√

(2t cos(kxa+ φu))2 ± 4tt⊥ cos(kxa+ φu) cos(φa) + t2⊥

where σ = ±1 for up or down electrons respectively. In figure 3 we show the non-

interacting T = 0 ESR spectrum in the presence of both the uniform and the alternating

phase. The main excitations contributing to each peak are sketched in figure 3(b). The

uniform phase case (see dotted line) produces a splitting of the principal Zeeman peak.

Due to the different parity of the k = 0 and k = π bands, for the pure uniform case
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Figure 3. a) ESR spectrum and b) dispersion relation of the non-interacting model

for t = t⊥ = 1 and different phase configurations. The dotted (full) lines in (b)

correspond to spins down (up).

there is no ESR interband transition. When the alternating phase is turned on, the

folding of the Brillouin zone produces peaks at higher energies. As the parity symmetry

is broken, interband transitions are now possible. The opening of the small gap due

to the alternating phase is manifested in the splitting seen in peaks A, B and C. The

broad structure (F and D) between the highest peaks correspond to transitions between

branches with opposite curvature.

Next we discuss results for U > 0 using the density matrix renormalization group

(DMRG) technique [19, 20]. We have used periodic boundary conditions keeping 256

states and the finite-system algorithm. The ESR spectrum (24) at T = 0 has been

calculated using the dynamical DMRG technique [21, 22] for a two-leg ladder with

uniform phase φu only. Additional small alternating phases φa did not change the

spectrum significantly. In figure 4 we present these results for a quarter filled chain

and t⊥ = 1.2 and t = 1. These parameters are used in order to clearly see the effect

of the SO coupling, since for this filling the excitations occur near the linear term of
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Figure 4. ESR spectra for periodic quarter-filled ladders with a uniform phase

φu = 0.1, t = 1 and t⊥ = 1.2.

the cosine bands for system sizes that are multiple of 4. The effect of the correlations

mainly consists of a small shift of the peaks, but the double peak spectrum is preserved.

Therefore the numerical results lend support to the basic prediction of the analytical

low-energy theory, and show that the expected double-peak ESR spectrum is stable

with respect to the above-mentioned perturbations.

6. Conclusions

We have reviewed the analysis of the ESR spectrum produced by the spin-orbit coupling

in SWNTs. The effective field theory analysis shows that at low energy the SO

interaction only acts in the spin sector and the single Zeeman peak, characteristic of a

system with SU(2) spin symmetry, splits into two peaks with no broadening. This result

relies in an essential way on the property of spin-charge separation characteristic of the

Luttinger liquid state realized in the SWNT. Thus the observation of such a splitting

would point to this elusive feature.

The field theory analysis has been complemented by the exact numerical calculation

of the ESR spectrum for Hubbard models on a single chain and on a two-leg ladder.

While these models are not able to describe reliably the charge transport properties

of SWNTs due to neglect of the long-range tails of the Coulomb interaction, they
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are appropriate descriptions of this spin problem. The numerical analysis confirms

the field theory predictions, including the validity of the approximations involved in

their derivation. In addition, it reveals additional structure in the spectrum due to

band curvature and higher energy processes, which are not captured by the field theory

approach.
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