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exposure, significant differences were observed in the NPA 
of the finger PPGs. The mean NPA of the red and infra-
red PPGs from the finger have dropped by >80%. Contrary 
to the finger, the mean NPA of red and infrared ear canal 
PPGs had dropped only by 0.2 and 13% respectively. The 
SpO

2
s estimated from the finger sensor have dropped below 

90% in five volunteers (failure) by the end of the cold expo-
sure. The ear canal sensor, on the other hand, had only 
failed in one volunteer. These results strongly suggest that 
the ear canal may be used as a suitable alternative site for 
monitoring PPGs and arterial blood oxygen saturation at 
times were peripheral perfusion is compromised.

Keywords Ear canal · Hypothermia · 
Photoplethysmography · Pulse oximetry

1 Introduction

A pulse oximeter is a non-invasive optical device used to 
provide a continuous and robust measure of arterial oxygen 
saturation (SpO

2
). The device measures SpO

2
 by shining 

light at two different wavelengths into the vascular tissue 
(such as the finger or the ear lobe) and sensing the changes 
in light absorption of the oxygenated and deoxygenated 
haemoglobin produced during arterial pulsations [1]. The 
device has since its invention in the 1970s revolutionised 
anaesthesia and critical care. The popularity of the device 
and its increased clinical use in recent years has driven the 
manufacturers and researchers to consistently develop its 
hardware, software and signal processing algorithms. How-
ever, there still remain a few unresolved problems that limit 
its performance. Possibly, the most important limitation 
of the device in its current state is the inability to estimate 
accurate SpO

2
 in conditions of poor peripheral perfusion. 

Abstract Pulse oximeters rely on the technique of pho-
toplethysmography (PPG) to estimate arterial oxygen satu-
ration (SpO

2
). In conditions of poor peripheral perfusion 

such as hypotension, hypothermia, and vasoconstriction, 
the PPG signals detected are often weak and noisy, or in 
some cases unobtainable. Hence, pulse oximeters produce 
erroneous SpO

2
 readings in these circumstances. The prob-

lem arises as most commercial pulse oximeter probes are 
designed to be attached to peripheral sites such as the fin-
ger or toe, which are easily affected by vasoconstriction. In 
order to overcome this problem, the ear canal was investi-
gated as an alternative site for measuring reliable SpO

2
 on 

the hypothesis that blood flow to this central site is prefer-
entially preserved. A novel miniature ear canal PPG sensor 
was developed along with a state of the art PPG process-
ing unit to investigate PPG measurements from the bottom 
surface of the ear canal. An in vivo study was carried out 
in 15 healthy volunteers to validate the developed technol-
ogy. In this comparative study, red and infrared PPGs were 
acquired from the ear canal and the finger of the volunteers, 
whilst they were undergoing artificially induced hypother-
mia by means of cold exposure (10 ◦C). Normalised Pulse 
Amplitude (NPA) and SpO

2
 was calculated from the PPG 

signals acquired from the ear canal and the finger. Good 
quality baseline PPG signals with high signal-to-noise ratio 
were obtained from both the PPG sensors. During cold 
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Poor perfusion can result from various clinical conditions 
such as hypotension [2, 3], hypothermia, vasoconstriction 
[4], low cardiac output [5], and peripheral vascular disease. 
These clinical situations, can occur in patients undergoing 
major surgical procedures such as cardiopulmonary bypass 
surgery or in patients with chronic cardiovascular compli-
cations and renal failure [6]. The SpO

2
 readings in these 

conditions may become very inaccurate or cease altogether. 
The failure of the device in these circumstances is directly 
associated with the inability of the pulse oximeter probe, 
placed at the periphery (finger or toe) to detect adequate 
photoplethysmographic signals which are necessary for the 
estimation of SpO

2
 by pulse oximetry.

Many attempts were made previously to minimise or 
eliminate this limitation by the application of sensors on 
better-perfused areas such as the forehead [7], nose [8] and 
oesophagus [9]. These sensors, however, experience func-
tional difficulties such as attachment problems, venous pul-
sations, and motion artefacts [7]. In some cases, the sensors 
are semi-invasive and require considerable expertise for use 
in clinical practice. Thus, SpO

2
 readings are still unobtain-

able or inaccurate at just the time when they will be most 
necessary. Hence, the ear canal was proposed as a possible 
site for reliable monitoring of PPG signals and SpO

2
. The 

hypothesis underlying this choice was that the ear canal, 
being closer to the trunk, and being supplied by the arter-
ies that supply blood to the brain, would remain adequately 
perfused during low perfusion states. Also, the anatomy of 
the external ear canal would provide a natural anchoring 
for the sensor. Although the same hypothesis was applied 
in developing in-ear heart rate monitors by companies such 
as Bargi and Cosinusso, the ear canal has not been explored 
for SpO

2
 measurements. The only attempt to measure SpO

2
 

from the tissue surrounding the ear canal was by venema 
et  al, who have developed an in-ear sensor to measure 
SpO

2
 from the targus of the ear [10]. However, so far they 

have not presented any investigations into the morphology 
or the quality of PPG signals that can be acquired during 
hypothermia.

Hence, a reflection based, dual wavelength ear canal 
PPG probe was developed along with a PPG processing 
system. The feasibility of measuring PPGs and SpO

2
 from 

the ear canal and its performance in conditions of locally 
induced peripheral vasoconstriction (right-hand immer-
sion in ice water) was previously tested in 15 volunteers 
[11]. However, the cold pressor test described in [11] 
has only validated the ear canal sensor’s performance 
in states of local hypothermia. To truly show the poten-
tial of this site for SpO

2
 and PPG signal monitoring, it 

is necessary to test the sensor in more natural conditions 
leading up to hypothermia. Hence, it is proposed that 
the developed technology be tested in healthy volunteers 
undergoing whole body cold exposure as it results in heat 

loss from all portions of the body and stimulates more 
natural responses a patient would experience in condi-
tions leading up to hypothermia. This paper describes the 
proposed technology in brief and illustrates the effects of 
body cooling on the acquired PPGs and SpO

2
 measured 

from the finger as opposed to the new ear canal sensor.

2  Methods and materials

2.1  Measurement setup

The measurement setup was designed to simultaneously 
detect, sample, record and display PPG, ECG and tem-
perature signals. The block diagram of the entire meas-
urement system is shown in Fig. 1. The system consists 
of the following.

2.1.1  PPG sensors

The ear canal PPG probe is an earphone shaped reflec-
tance PPG probe consisting of two surface mount LEDs 
and a photodiode. The LEDs used to emit light at 870 nm 
in the infrared region and 658 nm in the red region (CR 
50 IRH and CR 50 1M, Excelitas technologies, Massa-
chusetts, USA). The photodetector used is a flattop pho-
todiode with an active area of 0.65 mm2 and peak sensi-
tivity at 900  nm (SR 10 BP-BH, Excelitas technologies, 
Massachusetts, USA). The LEDs and the photodiode were 
placed 5 mm apart from each other as experimental stud-
ies have previously shown that a separation of 4 to 5 mm 
yields a better signal-to-noise ratio [12]. The sensor was 

Finger PPG
Probe

Ear canal PPG
Probe

Skin temperature

ECG

ZenPPG 
system I

PC
Ie-6321

moorVMS-
LDF2

USB-6212

NIBP Tympanic 
Thermometer

Computer

Fig. 1  Block diagram showing the measurement setup used dur-
ing the cold exposure test. PPG, ECG, and temperature signals were 
acquired using the setup



J Clin Monit Comput 

1 3

designed such that, PPG signals can be acquired from 
the bottom surface of the outer ear canal (Fig 2). The 
ear canal probe was manufactured using the FORMIGA 
P-110 SLS 3D printer (EOS – Electro-Optical Systems, 
Munich, Germany). The biocompatible material used to 
manufacture the probe case was Feinpolyamid PA-2200 
(Nylon) (EOS - Electro-Optical Systems, Munich, Ger-
many). The sensor also consisted of an ear hook that 
anchored on top of the helix and a silicone ear fin that 
fit inside the concha of the ear to hold the probe in place 
and reduce motion artefacts. The part of the sensor that 
fit inside the ear canal has an overall diameter of 7 mm.

A reflectance finger PPG probe, optically identical to 
the ear canal probe was also developed to facilitate com-
parisons of SpO

2
 measured from the ear canal and the 

finger. The finger probe was encapsulated within a con-
ventional pulse oximeter clip. In order to avoid direct con-
tact between the optical components and the skin, all sen-
sors were sealed using medical graded clear epoxy resin 
(DYMAX 141-M, Dymax Corporation, Torrington, CT).

2.1.2  Instrumentation

The raw PPG signals (AC + DC) from both the ear canal 
and the finger were acquired using a modular, dual channel, 
dual wavelength PPG processing system named ZenPPG 
[13]. The system consisted of the circuitry required for 
intermittent switching of light sources, the independent 
sampling of red/infrared PPG signals, preconditioning and 
outputting the acquired signals to a data acquisition system. 
The system also incorporated a three lead ECG amplifier 

for monitoring the R-waves of the QRS complex of the 
ECG signal.

A laser Doppler flowmeter (moorVMS-LDF2, Moor 
Instruments, Devon, U.K.) was used to measure peripheral 
skin temperature and flux (indirect blood flow measure). 
However, the flux measurements are not used in this paper. 
Along with the LDF, a commercial non-invasive blood 
pressure (NIBP) monitor was used to measure the systolic 
and diastolic blood pressure (HEM-907, Omron Health-
care, Hoofddorp, The Netherlands). A tympanic thermom-
eter (ThermoScan-5 IRT4520, Braun GmbH, Frankfurt, 
Germany) was used to measure the core temperature from 
the ear canal of the volunteer.

2.1.3  Data acquisition

The red and infrared PPG signals acquired from the ear 
canal and the finger were digitised and recorded along with 
the ECG signal using a PCIe-6321 NI DAQ cards (National 
Instrument Corporation, Austin, Texas). An NI USB-
6212–bus powered USB DAQ card was used to record the 
skin temperature signals from the LDF. The simultaneous 
acquisition of all signals and control of the systems was 
through a virtual instrument (VI) implemented in Lab-
VIEW. All the signals were recorded at a sampling fre-
quency of 1 kHz. The blood pressure reading and core tem-
peratures were recorded manually in an Excel sheet during 
the study.

2.2  Subjects

Following the approval from the Senate Research Ethics 
Committee of the City University London, fifteen healthy 
volunteers (6—female  and 9—male) aged between 19 and 
45 (mean age ± SD—28 ± 5 years) were recruited for this 
study. Based on their medical history, volunteers with cardi-
ovascular, pulmonary, or metabolic diseases were excluded 
from the study. Before the study, heart rate, blood pressure 
and core body temperature were recorded for each volun-
teer. All the subjects were found to be normotensive (mean 
BP ± standard deviation (SD)—116/70 ± 14/11), normo-
thermic (mean core temp ± SD—36.52 ± 0.33) and none 
was taking any medication. The subjects were informed of 
the details of the study and a signed informed consent was 
sought from all the volunteers before the experiment. All 
the subjects were asked to refrain from ingesting beverages 
containing caffeine and alcohol and were asked not to exer-
cise or smoke for at least two hours preceding the test. To 
maximise the effect of cold temperatures on the cardiovas-
cular system, all the subjects were asked to wear just one 
layer of clothing during the experiment.

Fig. 2  A 3D sketch of ear canal PPG sensor, photograph of an 
assembled ear canal PPG sensor placed inside the right ear of a vol-
unteer and a photograph of the finger sensor
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2.3  Measurement protocol

The trials were carried out in the Biomedical Engineer-
ing Research Laboratory, at City University London. Upon 
arrival, all the volunteers were seated in a room maintained 
at 24 ± 1

◦C for a minimum of 10 min to ensure haemody-
namic stabilisation. During the study, the subjects were 
sited in a comfortable chair, with both hands resting on the 
armrests arranged to a height approximately equivalent to 
their heart’s position. Once the volunteer was comfortable, 
heart rate (HR), blood pressure and core temperature were 
measured. If the volunteer was found to be normotensive 
and normothermic then, the study was continued. The fol-
lowing sensors were then attached to the volunteer–

–– The finger PPG probe was placed on the second digit of 
the left hand, and the ear canal PPG sensor was placed 
9 mm inside the left ear canal of the volunteer

–– The LDF sensor was placed just below the thumb on the 
dorsal surface of the left hand and it was attached to the 
skin by means of a ring-shaped double-sided adhesive

–– The red, yellow and green leads of the ECG cable were 
connected to the Ag-AgCl easitab ECG electrodes 
(SKINTACT, F-WA00) placed directly on the chest (the 
right and the left side) and on the left hip.

Once all the sensors were in place, the investigation proto-
col started with the acquisition of baseline measurements 
from the volunteer for at least 2 min. The volunteers were 
then moved to the adjacent temperature-controlled room 
maintained at 10 ± 1

◦C for 10 min. After the cold expo-
sure, the volunteers were moved back to normal room tem-
peratures (24 ◦C), where monitoring continued for another 
10 min. PPG, ECG and temperature data was continuously 
recorded during all three phases of the experiment. The 
core temperature was measured from the right ear of the 
volunteer once every minute for the entire duration of the 
study (22 min). Blood pressure was intermittently measured 
from the right arm once at the start of the study, and then at 
the end of the cold exposure and the recovery period.

2.4  Data analysis

The raw PPG, ECG and temperature data recorded dur-
ing the study were extracted separately for offline analysis. 
Prior to any signal processing, the acquired signals were 
resampled to 100 Hz. This was to restrict the bandwidth of 
the signals and remove unwanted noise. The resampled sig-
nals were then filtered and processed to calculate various 
parameters, described as follows:

Normalised Pulse Amplitude (NPA) — The red and 
infrared PPG signals acquired from both locations 
were first separated into AC and DC components using 

bandpass and lowpass filters implemented in Lab-
Chart–8.0 (AD Instruments, Sydney, Australia). The 
lower and upper cut-off frequencies of the bandpass fil-
ter (AC signal) were 0.5 and 15  Hz respectively. The 
cut-off frequency of the lowpass filter (DC signal) was 
0.5 Hz. The filters used were linear-phase Finite Impulse 
Response (FIR) filters with a transition width of 20% and 
pass band ripple <0.5% (the input amplitude). The effec-
tive length of the lowpass and bandpass FIR filters was 
139 and 3980 respectively. The AC component of the 
PPG signals was then divided by the DC component to 
normalise the PPG signals.

A peak detection algorithm was used to detect the 
peaks and valleys of all the normalised PPG signals. 
From the detected peaks, the normalised pulse amplitude 
(NPA) was calculated. The mean NPA estimated from the 
red and infrared PPG signals acquired from both the ear 
canal and the finger was then averaged for every two min-
utes of the study. NPA was estimated by the above pro-
cedure for all the subjects and was then averaged for the 
entire group. The mean NPA of the study group during 
cold exposure (every 2 min) and recovery (every 2 min) 
periods was analysed for statistical significance compared 
to the baseline period. A non-parametric statistical test 
(ANOVA on ranks) was performed on the data. A P-value 
<0.05 was considered to be statistically significant. Sta-
tistical analysis was performed using SigmaPlot-12.0 
(SPSS Inc, Chicago, USA).

SpO
2
 analysis—In order to demonstrate the effect of 

compromised peripheral perfusion on the estimation of 
arterial oxygen saturation, SpO

2
 values were calculated 

from the PPG signals acquired from both the ear canal 
and the finger probes during all three phases of the exper-
iment. SpO

2
 was calculated in a three-seconds rolling 

window using Eq. (1).

where ROS is the Ratio of Ratios, ACIR and ACR are the 
peak-to-peak amplitudes of the infrared and red AC PPGs, 
and DCIR and DCR are the DC PPG components at respec-
tive wavelengths. The SpO

2
 estimated from each volunteer 

was averaged for every two minutes of the study. The mean 
SpO

2
 estimated during the first 2 min (i.e., baseline) was 

then compared with every 2 min (2–10) of the cold expo-
sure and the recovery periods. Further, the change in SpO

2
 

as a response to the cold exposure was calculated, and the 
number of instances where the SpO

2
 value has dropped 

below 90% was computed and considered as a failure. The 
failure rates of both sensors were then compared.

(1)SpO
2
= 110 − 25 × ROS; ROS =

(

ACR

DCR

)

(

ACIR

DCIR

)
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3  Results

Good quality, easily recognisable raw PPG signals with 
large amplitudes and high signal to noise ratio were 
recorded from the ear canal and the finger of all the vol-
unteers. Figure 3 depicts baseline raw (AC + DC) infrared 
PPG signals acquired from the ear canal and the finger of 
a volunteer. Two key observations can be made from the 
figure—(1) the pronounced respiratory modulation in the 
ear canal PPG signals when compared to the finger PPGs, 
and (2) the large DC amplitude and small AC amplitude 
of the ear canal PPG signals when compared to the PPG 
signals acquired from the periphery. The disparity in the 
amplitude of the PPG signals is expected as the tissue lin-
ing the ear canal (2–3  mm) is much smaller than the fin-
ger (10–15 mm). Hence, the light absorption by tissue and 
other non-pulsatile absorbers is much higher in the finger 
than that of the ear canal.

The disparity in the respiratory modulation of the ear 
canal and finger PPG signals was further investigated by 
taking the power spectrum of the raw PPG signals. The 
power spectrum of the baseline raw infrared PPGs acquired 
from both the locations in four healthy volunteers is shown 
in Fig. 4. In this figure, the power spectrum of the ear canal 
and the finger PPG signals were normalised with the power 
of the cardiac component to highlight just the changes in 
the respiration related component. It is evident that the 
power of the respiration related frequency component is 
much higher in the ear canal PPG signals than that of the 
periphery. Similar results were demonstrated in the work 
carried out by Shelley et al in [14]. Two factors are likely 
to contribute to these findings. First, the shorter distance of 
the ear canal from the heart compared to the finger, which 
meant less attenuation of the respiratory modulation. Sec-
ond, the blood vessels in the head region are relatively less 
sensitive to sympathetically mediated vasoconstriction that 
may mask respiratory oscillations.

3.1  AC PPG signals

A 5-s sample of the baseline infrared AC PPG signals 
acquired from the ear canal and the finger of one of the 
volunteers (Volunteer 6) is shown in Fig.  5, along with 
the simultaneously acquired ECG signal. As can be 
observed from the figure, the morphology of the PPG 
signal acquired from the ear canal was distinct from the 
finger PPG signal. These changes in the morphology 
of the PPG signals are thought to be due to the vascu-
lar resistance of large arteries that supply blood to the 
head and the brain (common carotid arteries). Similar 
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morphological differences were observed in the PPG sig-
nals acquired from most volunteers. Irrespective of these 
differences, the PPG signals acquired from both loca-
tions were synchronous with the R-wave peak of the ECG 
signal.

Figure 6 shows the infrared PPG signals acquired from 
the finger and the ear canal along with the peripheral (skin) 
and the core temperature measured from the same volun-
teer for the entire duration of the study (22 min). From the 
figure, it is evident that the amplitude of the PPG signals 
acquired from the finger has reduced significantly with 
time during cold exposure. This was, however, expected 
due to the profound vasoconstriction resulting from expo-
sure to low temperatures. The skin temperature of the vol-
unteer has dropped from 27.4 ± 0.02◦C during baseline to 
20.2◦C by the end of the cold exposure. On the other hand, 
the amplitude of the PPG signals from the ear canal has 
remained relatively constant throughout the cold exposure. 
The maximum drop in the core temperature of the vol-
unteer during the cold stimulus was only 0.9◦C, which is 
below the ±1◦C error of the digital tympanic thermometer. 
This explains the high amplitude PPGs acquired from the 
ear canal during the cold exposure. The blood pressure of 
the volunteer was increased from 110/60 to 119/71 by the 
end of the cold exposure due to vasoconstriction.

During the recovery period, the amplitude of the PPG 
signals acquired from both locations have increased with 
an increase in skin temperature. However, the amplitude 
of the finger PPG signals did not return to the initial base-
line value within the 10 min recovery period. The ear canal 
PPG signals, on the contrary, have increased in amplitude 
as soon as the volunteer was removed from the air-condi-
tioned room, and have remained relatively constant for 
the rest of the monitoring period. The skin and the core 

temperature of the volunteer by the end of the recovery 
period were 24.1◦C and 36.8◦C respectively. The blood 
pressure has also recovered back to 111/60 by the end of 
the study. Most volunteers in the study group had a simi-
lar response to this volunteer during the cold exposure. To 
analyse these changes further, and to take into account the 
changes in the DC portions of the PPG signals, NPA (AC/
DC) of the PPG signals was measured.

3.2  Normalised pulse amplitude (NPA)

The NPA of the red and infrared PPG signals acquired from 
both the finger and the ear canal was measured and aver-
aged for every two minutes of the study in all the volun-
teers. The distribution of this data is graphically displayed 
using the Box and Whiskers plots in Fig. 7.

The sudden exposure to cold temperatures during the 
experiment caused an instantaneous and significant drop 
in the mean NPA of red and infrared finger PPG signals in 
all volunteers. This is evident through the significant reduc-
tion in the interquartile range, the mean and the median at 
the 4th min in Fig. 7a, when compared to the first 2 min. 
The NPA of the finger PPG signals had further reduced 
with time across the volunteer group at a steady rate until 
the end of the cold exposure. During the recovery period, 
the NPA of the finger PPG signals slowly increased with 
time. However, the NPA did not rise to a value close to the 
baseline, although a steady state was achieved between the 
20th and 22nd min. In contrast with the finger, the NPA 
measured from the ear canal did not change during the cold 
exposure. As seen in Fig.  7b, the interquartile range, the 
mean and the median have all remained relatively constant 
throughout the experiment.

Fig. 6  Infrared AC PPG signals 
acquired from (a) the ear canal, 
and (b) the finger of a volunteer 
and the simultaneously acquired 
(c) skin and (d) core tempera-
ture signal for the entire dura-
tion of the study. The Y-axis 
on the left shows the amplitude 
of the PPG signals while the 
Y-axis on the right shows the 
temperature. The spike in finger 
PPG signal at 11th min is a 
movement artefact
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To check if there were any statistically significant dif-
ferences between the NPA of red and infrared PPG signals 
measured during baseline, cold exposure and the recovery 
periods, statistical analysis was performed on the measured 
data. Prior to the statistical tests, the normality of the data 
was tested using the Kolmogorov-Smirnov test with Lil-
liefors’ correction. As not all the data was found to be nor-
mally distributed, it was decided that a non-parametric test 
will be used. The test used was Kruskal-Wallis One Way 
Analysis of Variance on Ranks. The mean NPA of all the 
subjects during baseline (every 2 min) was compared with 
every 2  min mean of the cold exposure and the recovery 

periods for statistical significance (i.e., baseline vs. 4 → 
22 min, total of ten comparisons per PPG signal). The sum-
mary of the results of the Kruskal-Wallis test is presented 
in Table  1. Statistically significant (p < 0.05) differences 
were found between all the groups when NPA of red and 
infrared finger PPG signals was compared during the study. 
No significant difference was found between any of the 
groups when NPA of the ear canal was compared during 
the study.

During the cold exposure, the mean skin temperature of 
the volunteers has dropped to 19.5 ± 0.49◦C (± standard 
error of mean (SEM)) from 29.9 ± 0.42◦C during baseline. 
The mean core temperature of the volunteers has remained 
unchanged (baseline: 36.6 ± 0.07◦C, cold: 36.0 ± 0.11◦C). 
This conceivably explains the uncompromised blood flow 
to the ear canal and, therefore, the unwavering PPG signals 
obtained from the ear canal. The BP of the volunteers has 
increased from 115/79 ± 3.6/2.7 during baseline to 125/75 
± 4.2/2.9 during cold exposure.

3.3  Arterial oxygen saturation (SpO
2
)

To show the effect of the cold exposure on the acquired 
PPG signals and subsequently the effect on the SpO

2
 esti-

mated by the pulse oximeter, arterial oxygen saturation 
values were calculated from the PPG signals acquired from 
both sensors. The mean SpO

2
 values calculated for every 

two minutes of the study in all the volunteers is displayed 
in Fig. 8 with the help of boxplots.

The SpO
2
 values estimated from both the uncalibrated 

probes during baseline were in the healthy adult oxygen 
saturation range (94–100%). The mean SpO

2
 (±SEM) 

calculated for the entire group during baseline was 95 ± 
0.45% in the finger, and 98 ± 0.7% in the ear canal. Dur-
ing the cold exposure, the mean SpO

2
 (represented by  in 

Fig. 8(a)) estimated from the finger probe had dropped with 
time, particularly in the last 4 minutes of the cold exposure. 
The mean finger SpO

2
 (±SEM) of the volunteer group by 

the end of the cold exposure was 90 ± 1.6%. These low 
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Fig. 7  NPA of a the finger and b the ear canal PPG signals acquired 
from 15 volunteers during all three stages of the experiment. Each 
box shows the mean NPA measured across a 2 min period in all the 
volunteers. The red line in each box shows the median value of the 
data, the  shows the mean, and + shows the outliers

Table 1  Summary of the statistical test results obtained from the 
Kruskal-Wallis test performed on the NPA of red and infrared PPG 
signals acquired from the finger, and the ear canal of the volunteers

A P-value <0.05 indicates a statistically significant difference. The 
highest H-value corresponds to the largest discrepancy between rank 
sums

Location P-values H-value Statistical 
signifi-
cance

Red Infrared Red Infrared

Finger =0.002 <0.001 28.05 35.67 Yes
Ear canal =0.993 =0.847 2.38 5.61 No
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SpO
2
 values would normally indicate hypoxia in clinical 

circumstances, and hence are inaccurate. During the recov-
ery period, the mean SpO

2
 estimated from the finger has 

slowly recovered with time (93 ± 2%). The mean SpO
2
 

(±SEM) calculated from the ear canal probe has remained 
relatively constant throughout the cold exposure (97 ± 
1.5%) and recovery periods (98 ± 0.6%).

However, since blood oxygenation is a global variable 
which does not change in healthy volunteers from site to 
site, the differences observed in mean SpO

2
 amongst the 

sensors was further investigated. To differentiate the volun-
teers in whom one of the pulse oximeters had failed (i.e., 
inaccurate SpO

2
) from the other, the percentage drop in 

SpO
2
 for every 2 min of the study was calculated in each 

volunteer. The number of instances in which the SpO
2
 

estimated from a particular probe had dropped to a value 
<90% was calculated and considered as a failure. Table 2 
shows the number of volunteers in whom the estimated 
SpO

2
 has dropped to a value <90% during the cold expo-

sure and the recovery period. From the table, the finger 
probe produced erroneous SpO

2
 readings in four volunteers 

as soon as they were exposed to cold air, and by the end 
of the cold stimulus, five volunteers had SpO

2
 below the 

90% mark. The ear canal pulse oximeter, on the other hand, 
had failed in one volunteer towards the end of the cold 
exposure.

The high failure rate of the finger pulse oximeter is due 
to the very weak and noisy PPG signals recorded during 
the cold exposure. The peak detection algorithm in the 
pulse oximeter cannot distinguish between the heart pulses 
and the noise peaks in these situations, therefore produc-
ing inaccurate readings. To demonstrate this, the red finger 
AC PPG signal acquired from a volunteer during the cold 
exposure is shown in Fig. 9, along with the peaks detected 
by the algorithm and the ECG signal. The quality of the 
red finger PPG signals acquired from the five volunteers in 
whom accurate SpO

2
 estimation was not possible is shown 

in Fig. 10. In this figure, arterial pulsations are unidentifi-
able in any of the PPG signals. Hence, the calculated SpO

2
 

readings were inaccurate.

4  Discussion

Blood oxygen monitoring using peripheral pulse oximetry 
is susceptible to inaccuracies in conditions of compromised 
peripheral perfusion. In order to address this issue, the 
ear canal has been proposed as a new monitoring site for 
measuring PPG signals and SpO

2
 on the hypothesis that, 

the ear canal will remain sufficiently perfused in states of 
low peripheral perfusion. To test this hypothesis a novel ear 
canal PPG sensor was developed along with an optically 
identical finger PPG probe and an acquisition system. The 
performance of the developed technology was tested in 15 
healthy volunteers undergoing whole-body cooling. During 
the study, red and infrared PPG signals were acquired from 
the ear canal and the index finger of the volunteers expe-
riencing cutaneous vasoconstriction by exposure to low 
temperatures (10◦C) for 10 min. The red and infrared PPG 
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Fig. 8  Box and whiskers plots demonstrating the change in mean 
SpO

2
 measured for every two minutes of the study in a the finger and 

b the ear canal. SpO
2
 estimated from the finger have dropped signifi-

cantly towards the end of the study when compared to the ear canal. 
The red line in each box shows the median value of the data, the  
shows the mean, and + shows the outliers

Table 2  Summary of the pulse 
oximeter failure during the 
cold exposure and the recovery 
period in 15 volunteers

No. of volunteers with SpO
2
 < 90%

Sensor Cold exposure (min) Recovery (min)

4 6 8 10 12 14 16 18 20 22

Finger 4 2 3 4 5 4 3 3 2 2
Ear canal 0 0 1 1 1 1 1 0 0 0
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signals acquired from both the sensors during the study 
were then analysed and compared with respect to their 
shape, normalised amplitude and the SpO

2
 estimated.

The PPG signals acquired from all the volunteers were 
generally of very good quality. The morphology of the 
PPG signals acquired from the ear canal were distinct 
from the finger PPG signals (Fig. 5). These changes in the 

morphology of the PPG signals are thought to be due to 
the vascular resistance of large arteries that supply blood to 
the head and the brain (common carotid arteries). A slight 
shift in phase between the finger and ear canal PPG signals 
is also apparent in Fig. 5. This is expected, as the ear being 
closer to the heart than the finger, the time taken for arterial 
pulsations to travel from the heart to the ear canal is less 
than the time is taken for the pulsations to reach the finger.

The NPA of the red and infrared PPG signals from the 
finger was significantly reduced as soon as the volunteer 
was exposed to cold temperature and has further decreased 
with time. Statistically, significant differences were found 
in the mean NPA of the finger PPG signals (P-value: red—
0.002, infrared—<0.001) when the baseline measurement 
was compared with every 2  min mean of cold exposure. 
The mean percentage drop in the NPA of red and infrared 
finger PPG signals by the end of the cold exposure was 
80.1 and 86.3% respectively. Statistical significant differ-
ences were also found when the baseline finger NPA was 
compared with every 2 min mean of the recovery period. 
This suggests that the NPA of red and infrared PPG sig-
nals has reduced significantly during the cold exposure and 
never recovered back to the baseline value in the monitor-
ing period. The percentage difference between the mean 
NPA measured by the end of the study to the baseline was 
47.2 (red) and 54.5% (infrared). These results demonstrate 
the sensitivity of the arterial vessels in the periphery to the 
vasoconstrictor stimuli.

In contrast with the finger, the NPA of the ear canal 
PPGs has remained relatively constant throughout the 
study. The mean drop in the red and infrared NPA of the 
ear canal PPGs was only 0.2 and 13% respectively. No sig-
nificant difference was found (P-value: red—0.993, infra-
red—0.847) between any of the groups when the NPA of 
the ear canal PPGs from baseline was compared with cold 
exposure and recovery periods.

These disparities between the NPA of PPG signals 
acquired from the finger and the ear canal (or, in other 
words, the variations in the effect of cold exposure on the 
blood supply) are due to the thermal adaptation of the body. 
When the human body is exposed to cold, the efferent sym-
pathetic nerves descending from the posterior hypothala-
mus (the body’s thermostat) produce intense constriction 
of the cutaneous blood vessels and closure of the arte-
riovenous anastomoses. This innervation reduces the heat 
transfer from the body’s core to the body’s surface and 
subsequently the heat loss to the environment but at the 
expense of further cooling the extremities [15, 16]. Hence, 
appendages such as the finger, which are part of the periph-
eral circulation are more affected by the cold than the cen-
tral areas such as the ear canal. These results compliment 
and align well with the previously reported results by Awad 
et al in [17].
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The SpO
2
 estimated from both probes during base-

line measurements was in the adult normoxic range 
(94–100%). However, during the cold exposure, the mean 
SpO

2
 measured from the finger has dropped significantly 

with time, particularly in the last 4 min of the cold expo-
sure. The mean SpO

2
 calculated from the ear canal, on 

the other hand, has remained relatively constant through-
out the study, with the exception of one outlier (see 
Fig. 8b). The increase in variability (interquartile range) 
of the finger SpO

2
 values with time and the relatively sta-

ble median in Fig.  8a, however, indicates that the SpO
2
 

might have dropped significantly only in a few volun-
teers. Hence, the failure rate of each probe was quanti-
fied by calculating the number of volunteers in whom the 
estimated SpO

2
 had dropped to a value <90%. The finger 

probe produced erroneous SpO
2
 readings in a maximum 

of five volunteers during the cold exposure. The ear canal 
pulse oximeter, on the other hand, had failed only in one 
volunteer.

The high failure rate of the finger sensor during cold 
exposure was not due to the reduction in blood oxygena-
tion but is merely due to the quality of the PPG signals 
acquired. When the body is exposed to ambient tem-
peratures of 10◦C, the blood flow through the hand is 
minimal (less than 1  ml/min) [15, 18]. Hence, the PPG 
signals recorded in these situations are very weak and 
noisy. In some volunteers, the amplitude of the PPG 
signals diminished so significantly that the peak detec-
tion algorithms could not distinguish between noise and 
PPG signal peaks. Hence in these volunteers, the ampli-
tude of the noise is being measured instead of the PPG 
signal. Figure  9 clearly demonstrates this effect. Since 
the amplitude of noise in both the red and infrared chan-
nels is approximately similar, the absorbance ratio (ROS

) will drive towards 1, resulting in a SpO
2
 close to 85% 

(i.e., a failure). The quality of the red finger PPG signals 
acquired from the five volunteers in whom accurate SpO

2
 

estimation was not possible is shown in Fig. 10. As can 
be seen from the figure, it is very hard to differentiate the 
arterial pulsations from the noise in any of the five PPG 
signals. Hence the reason for inaccurate SpO

2
 estimation 

by finger pulse oximeter.
In conclusion, it is fair to say that the SpO

2
 measure-

ments made from the finger are susceptible to poor periph-
eral perfusion and are heavily dependent on the thermal 
state of the site. This limitation really weakens the ability 
of the pulse oximeters in conditions when they are most 
needed. The newly developed ear canal probe on the other 
side offered reliable SpO

2
 measurements even under the 

influence of the cold temperatures or profound vasocon-
striction. However, more trials need to be conducted in 
more healthy volunteers and patients in order to assess this 
hypothesis.
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