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Abstract

We discuss a precise relation between the Veneziano amplitude of string theory,

rewritten in terms of ratios of the Riemann zeta function, and two elementary criteria

for the Riemann hypothesis formulated in terms of integrals of the logarithm and the

argument of the zeta function. We also discuss how the integral criterion based on

the argument of the Riemann zeta function relates to the Li criterion for the Riemann

hypothesis. We provide a new generalization of this integral criterion. Finally, we

comment on the physical interpretation of our recasting of the Riemann hypothesis in

terms of the Veneziano amplitude.
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1 String Theory and the Riemann Zeta Function

Hilbert [1] and Pólya [2] independently suggested a physical realization of the Riemann

hypothesis [3]: if the zeroes of the zeta function in the critical strip are the eigenvalues

of 1
2
1 + iT and T is a Hermitian operator acting on some Hilbert space, then because

the eigenvalues of T are real, the Riemann hypothesis follows. We do not know what

the operator T is, nor what Hilbert space H it acts on. Nevertheless, the Hilbert–Pólya

conjecture constitutes a tremendous insight into how a mathematics problem can be mapped

to a physical system. Many recent works seek to establish such a connection explicitly. (See,

for example, [4–11] and references therein.)
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In this note, we establish a physical realization of the Riemann hypothesis in terms of the

properties of bosonic strings. In particular, we consider equivalent statements of the Riemann

hypothesis written as integrals of the logarithm of the zeta function or the argument of the

zeta function evaluated on the critical line. We link these expressions to the Veneziano

amplitude describing the scattering of four bosonic open strings with tachyonic masses. This

opens a fascinating new connection between string theory and the physics of the Riemann

zeros. We also discuss the relation to the Li criterion for the Riemann hypothesis discussed in

our previous publication [8], and we generalize the integral criterion based on the argument

of the Riemann zeta function evaluated on the critical line.

In this opening section, we point out the fundamental reason why string theory, through

the form of the Veneziano amplitude, should know about the Riemann zeta function [12],

and thence about the Riemann hypothesis. Our argument is based on the seminal work

of Freund and Witten on the adelic strings [13]. Their work appears in the context of

p-adic string theory, itself a subject of long history [14–17], where interesting dynamics

emerges from the string worldsheet on non-Archimedean number fields. What we study in

this section is the ordinary Veneziano amplitude, however, written in a somewhat unusual

form. This expression has already appeared in [13] and serves as the starting point for

our investigations. Many papers in the literature have attempted to harness the powers

of the Veneziano amplitude, especially for the p-adic string [15], to address the Riemann

hypothesis [18, 19]. However, the relation between the Veneziano amplitude and certain

elementary criteria for the Riemann hypothesis, which we point out in this paper, is new.

It is now a famous fact that the scattering amplitude [20] of the bosonic string — when

it was still known as the dual resonance model — is given by the Euler Beta function,

B(s, t) :=

∫ 1

0

dx xs−1(1− x)t−1 =
Γ(s)Γ(t)

Γ(s+ t)
, Re(x) > 0 , Re(y) > 0 . (1.1)

In particular, the four-point Veneziano amplitude is

A(s, t) = B(−α(s),−α(t)) , (1.2)

where α(s) is the Regge trajectory, usually taken as a linear function in terms of the squared

four momenta (the Mandelstam variables) s = −(k1 + k2)
2 and t = −(k2 + k3)

2 for external

momenta ki=1,2,3,4. The four-point amplitude with s, t, and u = −(k1 + k3)
2 symmetrized is

the crossing symmetrized amplitude,

A4(s, t, u) = A(s, t) + A(t, u) + A(s, u) . (1.3)

Traditionally, one takes the linear Regge trajectory to be α(s) = 1 + 1
2
s and works in units
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where the mass squared of the tachyon is −2. This implies that s+ t+ u = −8, and

α(s) + α(t) + α(u) = −1 . (1.4)

However, as we will later see, we will take a slightly different limit of the usual Regge

trajectory.

In constructing a p-adic string amplitude, a useful corollary of [13] is the following:

PROPOSITION 1 [Freund–Witten] The crossing symmetrized amplitude A4(s, t, u) in (1.3)

subject to (1.4) can be written entirely in terms of the Riemann zeta function. More precisely,

A4(s, t, u) = B(−α(s),−α(t)) +B(−α(t),−α(u)) +B(−α(s),−α(u)) =
∏

x=s,t,u

ζ(1 + α(x))

ζ(−α(x)) .

Proof: We will present an expanded version of the argument in [13]. First, combining

the three channels and substituting in (1.4), we have that

A4(s, t, u) =
Γ(−α(s))Γ(−α(t))
Γ(−α(s)− α(t)) + A(t, u) + A(s, u)

= −1

π
sin(πα(u))Γ(−α(u))Γ(−α(s))Γ(−α(t)) + {s→ t, t→ u}+ {s→ s, t→ u}

= −1

π
Γ(−α(s))Γ(−α(t))Γ(−α(u)) (sin(πα(s)) + sin(πα(t)) + sin(πα(u)))

=
1

2π

∏

x=s,t,u

2Γ(−α(x)) cos
(
1

2
πα(x)

)
. (1.5)

In the second line of the above, we have employed the well known Euler reflection formula:

Γ(z)Γ(1 − z) = π

sin πz
, (1.6)

which follows, for example, from the Weierstraß product expansion for Gamma and sine, so

that

Γ(−α(s)−α(t))−1 =
1

π
sin (π(−α(s)− α(t))) Γ(1+α(s)+α(t)) = −1

π
sin(πα(u))Γ(−α(u)) .

(1.7)

In the final line of the above, we make use of the simple but remarkable half circle trigono-

metric identity

∑

x=s,t,u

sin(πα(x)) = −4
∏

x=s,t,u

cos

(
1

2
πα(x)

)
, α(s) + α(t) + α(u) = −1 . (1.8)
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Now, recall the duplication formula for the Euler Gamma function:

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z) , (1.9)

which can be rewritten as

Γ(z) = π− 1

22z−1Γ(
1

2
z)Γ(

1

2
(z + 1)). (1.10)

Furthermore, (1.6) can be recast, using z → 1
2
(z + 1), into

cos

(
1

2
πz

)
= π

(
Γ(

1

2
z +

1

2
)Γ(−1

2
z +

1

2
)

)−1

. (1.11)

The factor 2Γ(−α(x)) cos
(
1
2
πα(x)

)
in the product in (1.5), using (1.10) and (1.11), hence

becomes

2π− 1

22−α(x)−1Γ(−1
2
α(x))Γ(−1

2
α(x) +

1

2
))π

(
Γ(−1

2
α(x) +

1

2
)Γ(

1

2
α(x) +

1

2
)

)−1

=
√
π2−α(x) Γ(−1

2
α(x))

Γ(1
2
α(x) + 1

2
)
, (1.12)

so that, on using (1.4) again,

A4(s, t, u) =
1

2π

∏

x=s,t,u

√
π2−α(x) Γ(−1

2
α(x))

Γ(1
2
α(x) + 1

2
)
=
√
π
∏

x=s,t,u

Γ(−1
2
α(x))

Γ(1
2
α(x) + 1

2
)
. (1.13)

This, as the authors of [13] confess, is an interesting way of writing the Veneziano amplitude.

Now, we use the famous functional equation for the Riemann zeta function (which can

be viewed as an expression of duality):

ζ(z) = 2zπz−1 sin(
1

2
πz)Γ(1− z)ζ(1− z) . (1.14)

This is valid for all complex z. Multiplying both sides by Γ(1
2
z), again using (1.6) to ex-

change sin(1
2
πz) with π

(
Γ( z

2
)Γ(1− z

2
)
)−1

, and finally trading the Γ(1− z) for the expression
π− 1

22−zΓ(1
2
− z

2
)Γ(1− z

2
) by the duplication formula (1.10), we have

Γ(
1

2
z)ζ(z) = πz− 1

2Γ(
1

2
(1− z))ζ(1− z) , (1.15)
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which can be rewritten as an equality of ratios for −z

Γ(−1
2
z)

Γ(1
2
z + 1

2
)
=
ζ(1 + z)

ζ(−z) π− 1

2
−z . (1.16)

Upon substituting into (1.13) and using (1.4) we arrive at our claim. Note that all powers

of π cancel exactly. �

Several remarks are immediate. First, the crossing symmetry is necessary. The original

unsymmetrized four-point function, written in terms of the Beta function, cannot be written

purely in terms of the zeta function. One needs to add in the full (s, t, u) symmetrization

of the four-point function. The moral here is: while three Gamma functions appropriately

combine into the Beta function (which was Veneziano’s initial observation), the appropriate

triple sum over the Beta functions gives us a ratio of pairs of Gamma functions. It is this

ratio which allows us, using the duality version (1.16) of the functional equation, to eliminate

the Gamma functions entirely in terms of ratios of zeta functions.

One might wonder, how is it possible that the Gamma functions could capture the zeros

of the zeta function in (1.16)? In retrospect this is not surprising. The Hadamard product

(q.v., Section 3 for further discussions) for the zeta function, valid for all complex z, is

ζ(z) = π
z
2

∏
ρ

(
1− z

ρ

)

2(z − 1)Γ(1 + z
2
)
, (1.17)

for non-trivial zeros ρ. The denominator encodes the simple pole of the zeta function at

z = 1 and the trivial zeros at the negative even integers. If z is a non-trivial zero, the

numerator vanishes. Using the fact that the Gamma function is the generalized factorial

function so that Γ(1+x) = xΓ(x), we may use (1.17) to write the ratios of the zeta functions

as
ζ(1 + z)

ζ(−z) =
π

1

2
+zΓ(−1

2
z)

Γ(1
2
z + 1

2
)

∏

ρ

ρ− 1− z
ρ+ z

. (1.18)

However, as a consequence of the functional equation of the zeta function and independent

of the Riemann hypothesis, ρ is a root if and only if 1 − ρ is. Thus, the product over

the non-trivial zeros cancels exactly because they pair up telescopically. In a way, this is

an alternative derivation of (1.16) using the Hadamard product. Because the product is

unity, (1.18) has the same content as (1.16). In sum, the ratio of zeta functions in (1.16)

does not know about the non-trivial zeros, only the trivial ones coming from the Gamma

function.

Given this fact, what could the Freund–Witten rewriting of the Veneziano amplitude

teach us about the Riemann zeros? In their paper, Freund and Witten concentrate on the

factorization of the four-point Veneziano amplitude in terms of an infinite product of primes
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p of the corresponding p-adic Veneziano amplitudes. (This factorization does not occur for

higher order amplitudes [17].) Nevertheless, even though the non-trivial zeros cancel out

to leave the usual spectrum of string theory, the string might know about the Riemann

zeros and thus about the distribution of primes in some roundabout way. For example, the

string theory excitations, governed by the usual zeros of the Euler gamma function, or the

trivial Riemann zeros, might be expressed in a dual way in terms of non-trivial Riemann

zeros. As string theory is a unitary theory, this dual rewriting should also be described by

a unitary theory, and thus, in the dual rewriting, string theory might represent the Hilbert–

Pólya physical system whose excitations are given by the non-trivial Riemann zeros. This is

largely conjectural, however.

In what follows we achieve a more modest outcome. In Section 2, we concentrate not

on the spectrum of the Veneziano amplitude rewritten in the Freund–Witten form, but on

its argument. We clarify our intuition by formulating equivalent physical criteria for the

Riemann hypothesis in terms of integrals involving the zeta function that find a natural

expression in the properties of the Veneziano amplitude (more specifically, its argument).

The principal new result in this paper is the derivation of Proposition 2. In Section 3, we

provide a generalization of the integral criterion based on the argument of the Riemann

zeta function evaluated on the critical line and we also point out the relation to the Li

criterion for the Riemann hypothesis. In Section 4, we offer a physics perspective on the

Volchkov–Veneziano criterion that we obtain.

2 Statements Equivalent to the Riemann Hypothesis

It was shown in [21] that the Riemann hypothesis is equivalent to the exact integral expression

∫ ∞

0

dT
1− 12T 2

(1 + 4T 2)3

∫ ∞

1

2

dσ log |ζ(σ + iT )| = π
3− γ
32

, (2.1)

where γ is the Euler–Mascheroni constant. Since this remarkable criterion, which was discov-

ered only in the 1990s, several equivalent formulations of the Riemann hypothesis in terms

of integrals of logarithms of the zeta function have been found. A good summary is [22],

which includes as special cases, inter alia, the following two criteria, one involving the log

absolute value of the zeta function on the critical line and the other the argument of the zeta

function on the critical line.

• The Balazard–Saias–Yor [23] criterion: The Riemann hypothesis is equivalent to

∫ ∞

−∞

dT
log
∣∣ζ(1

2
+ iT )

∣∣
1
4
+ T 2

= 0 . (2.2)
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• The Volchkov [21] criterion: The Riemann hypothesis is equivalent to

∫ ∞

0

dT
2T arg ζ(1

2
+ iT )

(1
4
+ T 2)2

= π(γ − 3) . (2.3)

Now, as presented, this second criterion is different in form from the original statement [21],

and it was generalized in [22]. We will not make use of the statement cast in (2.1), but,

instead, the one in (2.3); it is expedient to discuss these criteria in more detail, but we will

leave this to Section 3.

Can any of these criteria be rephrased as a statement about the Veneziano amplitude?

From Proposition 1, we write explicitly

A4(s, t, u) =
ζ(1 + α(s))

ζ(−α(s))
ζ(1 + α(t))

ζ(−α(t))
ζ(−α(s)− α(t))
ζ(1 + α(s) + α(t))

, (2.4)

where we recall that α(s) + α(t) + α(u) = −1. Due to this constraint, we will sometimes

drop that last argument u from the symmetrized four-point amplitude A4.

The Balazard–Saias–Yor result does not yield anything immediately useful but never-

theless does produce an interesting integral which we derive in Appendix A. It turns out,

however, that a direct manipulation can recast the Riemann hypothesis in terms of proper-

ties of the Veneziano amplitude using the Volchkov criterion. Two limits lead to particularly

striking expressions for the open string four tachyon scattering amplitude:

(A) α(s) = α(t) = −1
2
+ iT , T ∈ R , (2.5)

(B) α(s) = −iT , α(t) = −1
2
, T ∈ R . (2.6)

2.1 Veneziano and Volchkov

As we demonstrate in Appendix A, considering only the log absolute value of the zeta

function on the critical line loses precious information about the non-trivial zeros. This is

a consequence of the fact that ζ(z̄) = ζ(z). Consequently, as we have noted above, the

Balazard–Saias–Yor criterion is not helpful for our purposes. Likewise, considering case A

as discussed in (2.5) loses information about the critical zeros as we explain in Appendix B

in pedagogical detail.

We therefore turn now to case B, (2.6), from which we write

A4(α
−1(−iT ), α−1(−1

2
)) =

ζ(1− iT )
ζ(iT )

ζ(1
2
+ iT )

ζ(1
2
− iT ) =

√
π

Γ( i
2
T )

Γ(1
2
− i

2
T )

Γ(1
4
− i

2
T )

Γ(1
4
+ i

2
T )

. (2.7)
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Crucially, we know that ζ(iT ) and ζ(1 − iT ) have no zeros1 for any T ∈ R, and hence,

the ratio of the two is entire. This permits us to define a dressed version of the Veneziano

amplitude:

Â(T ) := A4(α
−1(−iT ), α−1(−1

2
)) ζ(iT )

ζ(1−iT )
. (2.8)

Since

arg Â(T ) = 2 arg ζ(
1

2
+ iT ) , (2.9)

and, in particular, because there is no correction factor 2πn̂(T ), we have:

PROPOSITION 2 An equivalent statement of the Riemann hypothesis in terms of the

Veneziano amplitude is that

∫ ∞

0

dT
2T arg Â(T )

(1
4
+ T 2)2

= 2π(γ − 3) . (2.10)

In the above we recall that the Veneziano amplitude is the symmetrized four-point function

A4(s, t, u) = B(−α(s),−α(t)) +B(−α(t),−α(u)) + B(−α(s),−α(u)) =
∏

x=s,t,u

ζ(1+α(x))
ζ(−α(x))

with

the constraint that α(s) + α(t) + α(u) = −1. We consider this function when α(s) = −iT
and α(t) = −1

2
. More succinctly, we can rewrite the above criterion as

exp

{
i

∫ ∞

0

d

(
1

1
4
+ T 2

)
arg Â(T )

}
= e−2πiγ ≃ −0.884600 + 0.466350 i . (2.11)

We observe for later that arg Â(T ) is an odd function of T .

We call Proposition 2 the Volchkov–Veneziano criterion for the Riemann hypothesis. The

integral (2.10) holds if and only if the Riemann hypothesis is true.

We can also state the relation between the Riemann hypothesis and other string am-

plitudes. For example, the scattering of four closed string tachyons is described by the

Virasoro–Shapiro amplitude [24]. As we discuss in Appendix C, we may substitute this in

Proposition 2.

3 The Volchkov Criterion Revisited

As promised, we now examine the Volchkov criterion in further detail, paying attention to the

nuances in its proof and in due course find unexpected connections with our earlier work [8].

Let us begin with a more detailed discussion on the Hadamard product representation for

1 The classic result of Hadamard and de la Vallée Poussin from 1896 that there are no zeros of the zeta
function on the boundary of the critical strip is central to the proof of the Prime Number Theorem.
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the zeta function, along the lines discussed in Chapter 12 of [25], which constitutes a basic

ingredient of [21, 22].

Recall the Riemann xi function

ξ(z) =
1

2
z(z − 1)π− z

2Γ(
1

2
z)ζ(z) , (3.1)

which is constructed — the poles of Gamma canceling the trivial zeros of zeta at all negative

even integers — to have zeros ρ = σ+ iT only in the critical strip S = {z | 0 ≤ Re(z) ≤ 1}.
It therefore has Weierstraß expansion

ξ(z) = exp(A +Bz)
∏

ρ∈S

(
1− z

ρ

)
exp(

z

ρ
) (3.2)

for constants A and B to be determined.

Taking the logarithmic derivative readily gives

ξ′(z)

ξ(z)
= B +

∑

ρ∈S

(
1

z − ρ +
1

ρ

)

ζ ′(z)

ζ(z)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′(1
2
z + 1)

Γ(1
2
z + 1)

+
∑

ρ∈S

(
1

z − ρ +
1

ρ

)
. (3.3)

Explicitly, we can see the trivial zeros in the zeta function at z = −2,−4, . . . because the

logarithmic derivative of the Gamma function, using its Weierstraß product is

− 1

2

Γ′(1
2
z + 1)

Γ(1
2
z + 1)

=
1

2
γ +

∞∑

n=1

(
1

z + 2n
− 1

2n

)
. (3.4)

The constants A and B can be fixed by evaluation:

A = log ζ(0) = − log 2 , B = −ξ
′(1)

ξ(1)
=
ξ′(0)

ξ(0)
= −1

2
γ − 1 +

1

2
log 4π . (3.5)

Crucially, the constant B is also a vital sum. The functional equation

ξ(z) = ξ(1− z) (3.6)

applied to the logarithmic derivative (3.3) implies that

B +
∑

ρ∈S

(
1

1− z − ρ +
1

ρ

)
= −B −

∑

ρ∈S

(
1

z − ρ +
1

ρ

)
. (3.7)
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Remembering that again by the functional equation ρ is a zero if and only if 1 − ρ is, the

fractions involving z cancel. Then

B = −
∑

ρ∈S

1

ρ
= −

∑

ρ∈S,T>0

1

ρ
+

1

ρ
= −2

∑

ρ∈S,T>0

σ

σ2 + T 2
≃ −0.023 . (3.8)

These together give us the nice compact expansion of the Hadamard product:

ξ(z) =
1

2

∏

ρ∈S

(
1− z

ρ

)
. (3.9)

Prepared with these rudiments, let us follow the arguments of [22] in the derivation

of (2.3). From contour integration of (3.3), we discover that N(x) = 1
π
Im log ξ(1

2
+ ix).

Earlier, we encountered the exact expression in (B.15). For any integrable smooth function

G(x) which decays faster than N(x) at T →∞, we have that

S :=
∑

ρ∈S,T>0

G(T ) =

∫ ∞

0

dN(x) G(x) = −
∫ ∞

0

dx G′(x)N(x) . (3.10)

Let us briefly remember that as N(x) counts the numbers of zeros in the critical strip up to

a height x, dN(x) in the previous equation is a sum of delta functions corresponding to each

of the zeros encountered as we move away from the real axis. Now, simply take

G(x) = (
1

4
+ x2)−1 , −G′(x) =

2x

(1
4
+ x2)2

, (3.11)

and we have that

S =
∑

ρ∈S,T>0

1
1
4
+ T 2

iff RH = 2
∑

ρ∈S,T>0

σ

σ2 + T 2
= −B . (3.12)

In the above, one uses the fact that the function fT (σ) =
σ

σ2+T 2 is convex (for any T > 1)

in the interval [0, 1] so that fT (σ) + fT (1 − σ) ≤ 2fT (
1
2
) for all σ ∈ [0, 1] and with equality

holding iff σ = 1
2
. On the other hand, we recall from (3.8) that B = −2∑ρ∈S,T>0 fT (σ)

unconditionally upon the Riemann hypothesis. Hence, if and only if the Riemann hypothesis

holds and σ = 1
2
can we equate the two sums. We emphasize this relation: that the sum

S, which as we saw can be found via integrating our chosen function G(x) against dN(x),

should equal to our constant −B is equivalent to the Riemann hypothesis.

We can now integrate term by term to evaluate the sum S. First, we have that

∫ ∞

0

dx
−2x

(1
4
+ x2)2

(1− log π

2π
x) =

1

2
log π − 4 . (3.13)

11



Next, we have the second term, by parts:

1

π

∫ ∞

0

dx G′(x) Im log Γ(
1

4
+
i

2
x) =

1

π
Re

∫ ∞

0

dx G(x)
−1

2
Γ′(1

4
+ i

2
x)

Γ(1
4
+ i

2
x)

. (3.14)

This last expression can be evaluated using (3.4), and one finds that this is γ

2
+ log 2. Thus,

combining all terms and using the explicit expression for B, we arrive at

S = −B = −(1
2
log π − 4)− (

γ

2
+ log 2)− 1

π

∫ ∞

0

dx G′(x) arg ζ(
1

2
+ ix) , (3.15)

being equivalent to the Riemann hypothesis, or that

∫ ∞

0

dT
2T arg ζ(1

2
+ iT )

(1
4
+ T 2)2

= π(γ − 3) . (3.16)

3.1 Relation to Li’s Criterion

We see that the crucial step in Volchkov was the integration against N(x); this, together

with the emergence of
∑

ρ∈S
1
ρ
≃ 0.023, should be reminiscent of a criterion contemporary

thereto, viz., the criterion of Li [26], which was recently shown to admit an analogous integral

representation [8].

Let us recall Li’s criterion.

PROPOSITION 3 [Li] Consider the Taylor expansion

log ξ(
1

1− z ) = − log 2 +

∞∑

n=1

kn
n
zn ,

then the Riemann hypothesis is equivalent to the positivity of the coefficients2

kn =
∑

ρ∈S

[
1−

(
1− 1

ρ

)n]
=

1

(n− 1)!

dn

dzn
[
zn−1 log ξ(z)

]
z=1

> 0 , ∀ n = 1, 2, 3, . . . .

In [8], we obtained an integral representation of the Li coefficients:

kn = n

∫ ∞

0

dx
2x

(1
4
+ x2)2

N(x)Un−1

(
x2 − 1

4

x2 + 1
4

)
, (3.17)

where Un−1(cos θ) = sin(nθ)/ sin(θ) is the Chebyshev polynomial of the second kind. Hence,

Volchkov’s integral is the case n = 1 for which U0(x
2− 1

4

x2+ 1

4

) = 1. In other words, adhering to

2 We will discuss these equivalent representations of kn in Appendix D.
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the notation in (3.10)

S = −B = k1 , (3.18)

and the Volchkov criterion is equivalent to the statement that

1

π

∫ ∞

0

dx
2x arg ζ(1

2
+ ix)

(1
4
+ x2)2

= k1 − 4 +
γ

2
+ log(2

√
π) . (3.19)

3.2 Generalizing the Volchkov Criterion

Can we now imitate Volchkov’s method and generate analogous statements for all the n > 1?

We will shortly see that the validity of this integral representation, generalizing the case of

n = 1 of Volchkov, is equivalent to the Riemann hypothesis.

Indeed, the form of the integration kernel in (3.17) suggests that we should take

−G′
n(x) = nUn−1

(
x2 − 1

4

x2 + 1
4

)
2x

(1
4
+ x2)2

, Gn(x) = 2− 2Tn
(
x2 − 1

4

x2 + 1
4

)
, (3.20)

where Tn(cos θ) := cos(nθ) is the Chebyshev polynomial of the first kind. Note that Gn=1 =

(1
4
+x4)−1 is our previous case. The integration constant 2 is added for convergence and also

plays a crucial rôle in the positivity criterion as we shall now see. Incidentally, this gives

the nice compact expression for our integral formula for the Li coefficients noted, but not

emphasized, in [8]:

kn = 2

∫ ∞

0

dTn
(
x2 − 1

4

x2 + 1
4

)
N(x) =

∑

ρ∈S,T>0

(
2− 2Tn

(
T 2 − 1

4

T 2 + 1
4

))
. (3.21)

Again, this is contingent on the Riemann hypothesis.

The reason that the integral representation for kn is valid on the Riemann hypothesis,

or indeed, if and only if the Riemann hypothesis, is as follows. The comparison, in light

of (3.12), is

∑
ρ∈S,T>0Gn(T )

=
∫∞

0
dN(x) Gn(x)

= n
∫∞

0
dx 2x

( 1
4
+x2)2

N(x) Un−1

(
x2− 1

4

x2+ 1

4

)

=
∑

ρ∈S,T>0

(
2− 2Tn

(
T 2− 1

4

T 2+ 1

4

))
?←→

kn = 1
(n−1)!

dn

dzn
[zn−1 log ξ(z)]z=1

=
∑

ρ∈S

[
1−

(
1− 1

ρ

)n] .

(3.22)

Now, the right of the bidirectional arrow with the question mark, being equaling to kn is

unconditional upon the Riemann hypothesis because we are summing over all zeros in the

critical strip. The left hand side, on the other hand, is equal to the sum of the Chebyshev

13



polynomials over the imaginary part of the critical zeros, viz.,
∑

ρ∈S,T>0

(
2− 2Tn

(
T 2− 1

4

T 2+ 1

4

))

and knows nothing about the real part σ. If the Riemann hypothesis holds and the
?←→ can

be replaced by an equal sign is obvious: simply take σ = 1
2
. That the converse direction

should hold and the replacement of
?←→ by equality would imply Riemann hypothesis is less

obvious but proceeds along the same lines as Volchkov. Consider the sum on the right

S =
∑

ρ∈S

[
1−

(
1− 1

ρ

)n]
=

∑

ρ∈S,T>0

[
1−

(
1− 1

σ + iT

)n

+ 1−
(
1− 1

σ − iT

)n]
(3.23)

which is true simply because of the reflection principle and that all zeros of the xi function

appear as conjugate pairs in the critical strip. This is in turn equal to

S =
∑

ρ∈S,T>0

[
2−

[(
σ − 1 + iT

σ + iT

)n

+

(
σ − 1− iT
σ − iT

)n]]

=
∑

ρ∈S,T>0

[
2−

(
1 +

1− 2σ

σ2 + T 2

)n
2

(
exp

(
in arg[1 +

1

−σ + iT
]

)
+ exp

(
in arg[1− 1

σ + iT
]

))]

=
∑

ρ∈S,T>0

[
2− 2

(
(σ − 1)2 + T 2

σ2 + T 2

)n
2

cos

(
n cos−1 σ(σ − 1) + T 2

√
(σ2 + T 2)((σ − 1)2 + T 2)

)]

=
∑

ρ∈S,T>0

[
2− 2

(
(σ − 1)2 + T 2

σ2 + T 2

)n
2

Tn
(

σ(σ − 1) + T 2

√
(σ2 + T 2)((σ − 1)2 + T 2)

)]
, (3.24)

where we recalled the definition of the Chebyshev polynomial of the first kind in the last step.

If the sum is equal to its value at σ = 1
2
only at σ = 1

2
, which is the sum on in the bottom of

the left hand side box in (3.22), then we would have the Riemann hypothesis. Indeed, this

is in congruence with the fact that if indeed the left hand side is a correct representation

of kn, then since Tn(x) is a cosine function of a real input it must be less than or equal to

one so that each term in the summand on the left hand side is positive, and we have Li’s

positivity criterion.

The problematic term is, of course, the pre-factor
(

(σ−1)2+T 2

σ2+T 2

)n
2

, which could exceed one

for some hypothetically large T whose corresponding σ 6= 1
2
. It suffices to show that this

is unity if and only if for σ = 1
2
. Indeed, for any T > 0 and n ∈ Z+, this is clearly true.

Therefore fn,T (σ) = fn,T (
1
2
) = 2− 2Tn

(
T 2− 1

4

T 2+ 1

4

)
, i.e., if the right box in (3.22) is equal to the

left box, then σ can only equal to 1
2
, and the Riemann hypothesis holds.

Thus, the generalization of Volchkov’s method is to perform the integral

∑

ρ∈S,T>0

Gn(T ) =

∫ ∞

0

dN(x) Gn(x) = N(x)Gn(x)

∣∣∣∣
∞

0

−
∫ ∞

0

dx G′
n(x)N(x) . (3.25)
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As the first zero in the critical strip is approximately 1
2
+ 14.13472514 i, N(0) equals zero.

The asymptotic expression for the number of zeros with imaginary parts between 0 and T is

N(T ) ≈ 1

π
arg ξ(

1

2
+ iT ) =

T

2π
log

T

2π
− T

2π
+

7

8
+O( 1

T
) . (3.26)

For large x, Gn(x) ≃ n2x−2 +O(x−4), which means

lim
x→∞

Gn(x)N(x) =
n2 log x

2πx
− n2(1 + log 2π)

2πx
+O( 1

x2
) −→ 0 . (3.27)

Thus, when we integrate by parts, we may drop the boundary term.

Again, we break the integral into the “average” (viz., I1 + I2) and “oscillatory” (viz., I3)

parts:

I1(n) := −
∫ ∞

0

dx G′
n(x)

(
1− log π

2π
x

)
;

I2(n) := −
∫ ∞

0

dx G′
n(x)

(
1

π
Im log Γ(

1

4
+
i

2
x)

)
;

I3(n) := −
∫ ∞

0

dx G′
n(x)

(
1

π
arg ζ(

1

2
+ ix)

)
. (3.28)

As always, the prime denotes differentiation by x.

To evaluate these integrals, it is expedient to use the generating function for the Cheby-

shev polynomials, viz.,

∞∑

n=0

Tn(x)tn =
1− tx

1− 2tx+ t2
=⇒ G(x, t) =

∞∑

n=0

Gn(x)t
n =

4t(1 + t)

4(1− t)3x2 + (1 + t)2(1− t) .

(3.29)

The evaluation of I1(n) is elementary. The generating function (3.29) readily gives that

of G′(x) upon differentiation. Hence,

∞∑

n=0

I1(n)t
n =

∫ ∞

0

dx

(
− d

dx

4t(1 + t)

4(1− t)3x2 + (1 + t)2(1− t)

)(
1− log π

2π
x

)

= −t
2(8 + log π)− t(8− log π)

2(1− t)2(1 + t)
=

∞∑

n=1

(
−n
2
log π + 2− 2(−1)n

)
tn

=⇒ I1(n) = −
n

2
log π + 2(1− (−1)n) . (3.30)

Next, let us derive an expression for I2(n). Here, it is simplest to integrate by parts so
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that

∞∑

n=0

I2(n)t
n = −1

π
Im G(x, t) log Γ(

1

4
+
i

2
x)

∣∣∣∣∣

∞

0

− 1

π
Re

∫ ∞

0

dx G(x, t)
−1

2
Γ′(1

4
+ i

2
x)

Γ(1
4
+ i

2
x)

. (3.31)

We know that the boundary term Gn(x)N(x) vanishes at the endpoints x = 0 and x = ∞.

This does not imply that the boundary term vanishes for each of the summands in N(x)

separately as a detailed cancelation is in principle possible. It turns out that it does vanish

exactly for I2. At x = 0, G(0, t) log Γ(1
4
) has zero imaginary part. At x =∞, the boundary

term evaluates to

− t(1 + t)

2π(1− t)3
(
log x

x
− 1 + log 2

x
+O( 1

x2
)

)
−→ 0 . (3.32)

As we might expect from (3.27), the generating function for the square integers captures the

t dependence.

Using (3.4), we have that

∞∑

n=0

I2(n)t
n = −1

π
Re

∫ ∞

0

dx
4t(1 + t)

4(1− t)3x2 + (1 + t)2(1− t)

[
1

2
γ +

∞∑

m=1

(
1

−3
2
+ ix+ 2m

− 1

2m

)]

=

[
− γt

2(1− t)2 +
t(1− 2t)

2(1− t)2
∞∑

m=1

1

m(1− 2t− 2m(1− t))

]

= − γt

2(1 − t)2 +
t
(
γ + ψ

(
1

2−2t

))

2(1− t)2 =
tψ
(

1
2−2t

)

2(1− t)2 = t
d

dt
log Γ

(
1

2− 2t

)
, (3.33)

with ψ(z) := (log Γ(z))′ the digamma function again.

To find an exact formula for I2(n), we expand about t = 0:

t
d

dt
log Γ(z) = t

dz

dt

d log Γ(z)

dz
, z =

1

2− 2t
=⇒ t

dz

dt
=

1

2

∞∑

n=1

ntn ,

d log Γ(z)

dz
=

∞∑

n=0

1

(2n)!
ψ(2n)(

1

2
)(z − 1

2
)2n +

∞∑

n=1

(22n − 1)ζ(2n)(z − 1

2
)2n−1 , (3.34)

where ψ(k)(z) = dk

dzk
ψ(z). In fact, as ψ(k)(1

2
) = (−1)k+1k!(2k+1 − 1)ζ(k + 1), we deduce that

d log Γ(z)

dz
= ψ(

1

2
) +

∞∑

m=2

(−1)m(2m − 1)ζ(m)(z − 1

2
)m−1 . (3.35)

16



The series expansion for (z − 1
2
)m−1 about t = 0 tells us that

(z − 1

2
)m−1 =

tm−1

2m−1

∞∑

ℓ=0

tℓ

ℓ!

(
ℓ−1∏

k=0

(k +m− 1)

)
. (3.36)

We also recall from before that ψ(1
2
) = −γ − 2 log 2. Putting the pieces together,

t
d

dt
log Γ(z) = −(γ

2
+log 2)

∞∑

n=1

ntn+

∞∑

n=1

∞∑

m=2

∞∑

ℓ=0

n(−1)m(1−2−m)ζ(m)
1

ℓ!

(
ℓ−1∏

k=0

(k +m− 1)

)
tℓ+m+n−1 .

(3.37)

We first of all note that the exponent of t in the triple summation is at least 2. To

extract the coefficient of tN , where N = ℓ+m+n−1, let us work term by term in m, which,

since n ≥ 1 and ℓ ≥ 0, has a maximum value of N . Given N and m, n ranges from 1 to

N −m+ 1, and ℓ = N −m− n + 1 is fixed. Using Pochhammer identities, we simplify the

triple summation as follows:

∞∑

N=2

N∑

m=2

(−1)m(1− 2−m)ζ(m)

N−m+1∑

n=1

n

(N −m− n + 1)!

(
N−m−n∏

k=0

(k +m− 1)

)
tN

=
∞∑

N=2

N∑

m=2

(−1)m(1− 2−m)ζ(m)
N !

m!(N −m)!
tN . (3.38)

We finally arrive at the explicit expression

I2(n) = −n(
γ

2
+ log 2) +

n∑

m=2

(−1)m(1− 2−m)

(
n

m

)
ζ(m) . (3.39)

In summary then, we have a relation between the n-th Li’s coefficient with the integral

of the oscillatory part. This implies the following result.

COROLLARY 1 The Riemann hypothesis is equivalent to the Li coefficients being equal

to the integral

kn = I1(n) + I2(n)−
1

π

∫ ∞

0

dx G′
n(x) arg ζ(

1

2
+ ix) ,

where the Li coefficient kn is defined in Proposition 3, the constants I1(n) and I2(n) are

defined, respectively, in (3.30) and (3.39), and the integration kernel G′
n(x) is defined in

terms of Chebyshev polynomials using (3.20).

We can readily check that for n = 1, we recover the Volchkov criterion.

An immediate consequence of Li’s criterion is then
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COROLLARY 2 The Riemann hypothesis is equivalent to the positivity of the expression

kn = I1(n) + I2(n) +
n

π

∫ ∞

0

dx Un−1

(
x2 − 1

4

x2 + 1
4

)
2x arg ζ(1

2
+ ix)

(1
4
+ x2)2

> 0 ,

for all n = 1, 2, 3, . . ..

3.3 An Integral Transform

Having seen the inner workings on the types arguments leading to the Volchkov criterion,

and of the relation to the integral representation of Li’s coefficients, one is naturally led to

whether integral kernels other than (1
4
+x2)−1 would lead to nice statements. Indeed, from a

physical point of view, exponentials emerge more naturally, especially within the context of

scattering amplitudes. Now, one quickly sees that the most difficult integral is encountered

when one integrates against the digamma function which is done by integrating against a

rational function and performing an infinite sum. There are indeed very few possibilities to

allow both steps to be done exactly. The selection of the kernel G(x) = (1
4
+T 2)−1 is a quite

astute and special choice.

Nevertheless, this conducive choice can itself be written in terms of exponentials, either by

a transform or a series of Laplace/Fourier type. To do so, one invokes the Fourier transform

−2T
(T 2 + 1

4
)2

= i

∫ ∞

−∞

dx eiTx x e−
1

2
|x| , (3.40)

which, upon substitution into Proposition 2, supplies the following equivalent statement of

the Riemann hypothesis:

e−2πiγ = exp

{
−1
2

∫ ∞

−∞

dx x e−
1

2
|x|Fx

[
arg Â(T )

]}
, (3.41)

where Fx

[
arg Â(T )

]
=
∫∞

−∞
dT eiTx arg Â(T ) is the Fourier transform of the argument of

the symmetrized Veneziano amplitude. In recasting the Volchkov–Veneziano criterion in this

way, we have made use of the fact that both (3.40) and arg Â(T ) are odd functions of T .

This means that we can rewrite (2.11) as an integral over the real axis.

4 A Physical Picture

As emphasized in the first section of this note, the Hilbert–Pólya approach to the Riemann

hypothesis posits the existence of a physical system whose spectrum is captured by the non-

trivial Riemann zeros. We have found an interesting relation between a particular physical
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system, to wit, string theory and a particular integral formulation of the Riemann hypothesis.

The spectrum of string theory can be read of from the Veneziano amplitude which knows only

about the trivial Riemann zeros. However, the phase of the Veneziano scattering amplitude

can be used to relate string theory to the Riemann hypothesis through what we call the

Volchkov–Veneziano criterion.3

We note that the Volchkov–Veneziano criterion is reminiscent of the sum rules for the

phase shift found in the physics literature [29]. In particular, the well known Friedel sum

rule [30] from solid state physics comes to mind when thinking about the physical meaning

of the Volchkov–Veneziano criterion. In this concluding section we wish to comment on

the physics and contemplate the possible further use of the picture we develop. One might

think that, from a physical point of view, our discussion is somewhat formal given the need

to consider arbitrary complex momenta and the integration thereof. (However, note that

complex momenta (and complex phase space) do appear in the context of PT quantum

theory [31].) Even including this caveat, the resulting picture is remarkably compelling as it

suggests a new playground that bridges string theory and analytical number theory.

First, let us recall that in order to compute the four-point Veneziano amplitude from

string theory, we need to insert four (tachyon) vertex operators on the Polyakov path in-

tegral on the disc (for an open string) [32]. More precisely, the four tachyon amplitude

is given as (up to the factors of coupling and the delta function imposing the momentum

conservation [32] as well as the symmetrization of the momenta)

S4 =

∫ +∞

−∞

dy4 〈
3∏

j=1

: c1(yj)e
ikjX(yj) :: eik4X(y4) :〉 . (4.1)

Here, the expectation value of the inserted (and normal ordered) vertex operators O ≡
eikjX(yj) (ki, or k1, k2, k3, and k4, are the momenta introduced in Section 1 of our paper)

and the c ghost field, are computed (on the disc) with the Polyakov worldsheet action for

a string in the flat background SP (X) = 1
4πα′

∫
d2σ ∂aX

µ∂aXµ. In general, a treatment of

amplitudes in string theory and the iε prescription is subtle [33].

We may write

〈O(X)〉 =
∫
DX O(X)e−SP (X) =

∫
DX O(X)e−

1

4πα′

∫
d2σ ∂aX

µ∂aXµ . (4.2)

Next, we note that in order to obtain the Volchkov–Veneziano result, from a path integral

3According to [27]: “In the 1962 International Congress of Mathematicians, I. M. Gel’fand remarked
somewhat cryptically that there is an intriguing analogy between the scattering matrix of quantum mechanics
and zeta functions.” The use of this intuition in the relation of scattering theory and automorphic forms
has led to some remarkable results [28]. In some sense, our main intuition in this paper is that string
theory provides the correct quantum system for this relation between scattering theory and the Riemann
zeta function. This claim could be in principle generalized to other L-functions as well.
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point of view, we have to first integrate over the (free, i.e., non-interacting) worldsheet fields,

thus obtaining the Veneziano amplitude [32]; then we have to evaluate its argument; and

finally, we need to integrate the argument of the Veneziano amplitude over the momenta,

according to the measure featuring in the Volchkov–Veneziano criterion. More precisely we

have

∫ ∞

0

dT
2T

(1
4
+ T 2)2

arg

(
ζ(iT )

ζ(1− iT )

∫ +∞

−∞

dy4 〈
3∏

j=1

: c1(yj)e
ikjX(yj) :: eik4X(y4) :〉(T )

)
= 2π(γ−3) .

(4.3)

However, we can now also envision the opposite procedure. In other words, we can first

integrate over the momenta (and thus perform the integration over T first) in the above

explicit expression for the Volchkov–Veneziano criterion. This procedure would leave us

with a pure path integral of an effective, yet interactive (and non-local) two dimensional

theory of worldsheet fields on the disc. We might call this effective two dimensional theory,

the “Riemann string.” In other words instead of the Polyakov action we would have an

effective non-local action over X

SRS =
1

4πα′

∫
d2σ [∂aX

µ∂aXµ + F (X, ∂X, ∂2X, . . .)] , (4.4)

where the non-local factor F (X, ∂X, ∂2X, . . .) comes from the integration over the four mo-

menta.

From this point of view the Volchkov–Veneziano criterion would become a criterion for the

amplitude of this effective path integral of the Riemann string. However, the most delicate

part of this formal procedure would be taking into account the argument of the path integral

(or more precisely, the argument of the generating functional of the Veneziano amplitude)!

In order to do this properly we would need some effective technical tool which computes the

generating functional for the two dimensional conformal field theory. One such technique

could include the holographic realization of Veneziano-type amplitudes [34]

〈e−
∫
d2σkX〉 ≡

∫
DXe−

∫
d2σkXe−

1

4πα′

∫
d2σ∂aX

µσ∂aXµ = e−SH (p) , (4.5)

where the SH(p) is the relevant holographic action [34], in terms of bulk variables p whose

“boundary” values would correspond to the momenta k. After continuing the momenta

to the Lorentzian signature, we could use such a holographic expression to evaluate the

argument of the Veneziano amplitude.

What could be the physical meaning of this Riemann string? Unlike the canonical string

theory, such a Riemann string theory might know about the non-trivial Riemann zeros. More

precisely, instead of the canonical four-point amplitude (the Veneziano amplitude) given by
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the Euler Beta function, Γ(x)Γ(x)
Γ(x+y)

, the Riemann string could have instead the appropriate zeta

function analog, ξ(x)ξ(x)
ξ(x+y)

. This is, of course, purely conjectural at this point. However, further

study of such an effective Riemann string path integral by various methods of string theory,

including the holographic realization of Veneziano-type of amplitudes [34], the relation of

Veneziano-like amplitudes and algebraic geometry [35], the matrix model technology [36]

as well as the new view of string theory in phase space [37], might open a new field of

investigation relating the mathematics and physics of string theory to properties of prime

numbers.

Particularly intriguing is the last string theory restatement of the Riemann hypothesis

in terms of an integral transform of the argument of the Veneziano amplitude, (3.41). If

one could provide a holographic rewriting of the argument (or, alternatively, the logarithm)

of the Veneziano amplitude in terms of some “bulk” (i.e., holographically dual) effective

action, then the Riemann hypothesis would amount to a particular value (given by the

proper regularization of the bulk term) of the first moment of the Laplace transform of the

bulk effective action, evaluated at fixed momentum (corresponding to the location of the

critical line). Alternatively, the formula (3.41) might have a nice rewriting in terms of the

p-adic Veneziano amplitude, thus taking us back to the starting point of this paper.

The Riemann string might be very complicated to analyze. However, given the Freund–

Witten representation of the Veneziano amplitude we could also imagine investigating the

traditional string theory for the momenta which take values corresponding to the non-trivial

Riemann zeros. In this case, we would have to evaluate the usual Veneziano amplitude, i.e.,

the Euler Beta (and thus first the Euler Gamma) function at the non-trivial Riemann zeros.

The natural question arises: Do we get Regge trajectories in this case as well? If so, these

Regge trajectories would not correspond to the usual string spectrum, but to some dual

formulation of string theory (i.e., the Riemann string) which knows about the non-trivial

Riemann zeros.

In this paper, we make no claim to producing a solution to the Riemann hypothesis. We

believe that rephrasing it as a problem in physics renders it more tractable and constitutes

an advance in its own right. While string theory presents a model for quantum gravity, much

of its considerable success to date has been in connecting physics to mathematics and linking

different areas of mathematics to each other. Indeed, many areas of string theory fall under

the rubric of physical mathematics [38]. The Riemann hypothesis resides at the nexus of

number theory, analysis, and geometry. It is therefore completely natural that string theory

and the Riemann hypothesis couple to each other as well.
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A Veneziano and Balazard–Saias–Yor

Taking the log absolute value of (B.1), we have that

log |A(α−1(−1
2
+iT ), α−1(−1

2
+iT ))| = log

∣∣∣∣
Γ(iT )

Γ(1
2
− iT )π

1

2
−2iT

∣∣∣∣+2 log |ζ(1
2
+iT )|−2 log |ζ(1

2
−iT )|

(A.1)

Unfortunately, at this point because the zeta function is meromorphic,

|ζ(1
2
+ iT )| = |ζ(1

2
− iT )| , (A.2)

so the interesting part of the above expression cancels out. Nevertheless, let us proceed to

arrive at a nice result. Integrating both sides, after dividing by 1
4
+ T 2, we have that

∫ ∞

−∞

dT
1
4
+ T 2

log

∣∣∣∣A(α
−1(−1

2
+ iT ), α−1(−1

2
+ iT ))

∣∣∣∣ =
∫ ∞

−∞

dT
1
4
+ T 2

log

∣∣∣∣∣
Γ(iT )π

1

2
−2iT

Γ(1
2
− iT )

∣∣∣∣∣ .

(A.3)

By recalling the duplication formula for the Gamma function (1.10) and the reflection for-

mula (1.6), the absolute value in the integrand on the right hand side of (A.3) can be

simplified to read

log

∣∣∣∣∣
Γ(iT )π

1

2
−2iT

Γ(1
2
− iT )

∣∣∣∣∣ = log(2 cosh(πT ) |Γ(2iT )|) . (A.4)
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We then invoke the absolute value identity (see 8.332.1 in [39])

|Γ(iy)| =
√
π

√
csch(πy)

y
, y ∈ R (A.5)

to simplify further:

RHS =

∫ ∞

0

dT
log
(

π coth(πT )
T

)

T 2 + 1
4

. (A.6)

Now, employing the standard infinite product expressions for the hyperbolic trigonometric

functions

sinh(z) = z

∞∏

n=1

(
1 +

z2

n2π2

)
, cosh(z) =

∞∏

n=1

(
1 +

4z2

(2n− 1)2π2

)
, (A.7)

we deduce that

log

(
π coth(πT )

T

)
= −2 log T +

∞∑

n=1

[
log

(
4T 2

(2n− 1)2
+ 1

)
− log

(
T 2

n2
+ 1

)]
. (A.8)

Whence, the right hand side of (A.3) becomes

RHS =

∫ ∞

0

dT


−2 log T

T 2 + 1
4

+
∞∑

n=1



log
(

4T 2

(2n−1)2
+ 1
)

T 2 + 1
4

−
log
(

T 2

n2 + 1
)

T 2 + 1
4






= π log 4 + π

∞∑

n=1

log

(
16n4

(1− 4n2)2

)

= 2π log π ≃ 7.19255 , (A.9)

which agrees perfectly with numerical integration. To summarize

∫ ∞

−∞

dT
1
4
+ T 2

log

∣∣∣∣∣
Γ(iT )π

1

2
−2iT

Γ(1
2
− iT )

∣∣∣∣∣ = 2π log π . (A.10)

This is a nice exact integral. The comparison to the Veneziano amplitude holds in the

limit (B.1) independent of the Riemann hypothesis.
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B A Subtle Phase

In this Appendix, we study the subtleties involved in case A described in (2.5). Here, we

use the ratio (1.16) to eliminate one pair of zeta functions to arrive at

Ã(T ) := A4(α
−1(−1

2
+ iT ), α−1(−1

2
+ iT )) =

ζ(1
2
+ iT )2

ζ(1
2
− iT )2

Γ(iT )

Γ(1
2
− iT )π

1

2
−2iT . (B.1)

We note that Ã(T ) and Ã(−T ) have the same real part, and the imaginary part differs by a

sign. We may equivalently express (B.1) as

Ã(T ) =
√
π

Γ(1
4
− i

2
T )2

Γ(1
4
+ i

2
T )2

Γ(iT )

Γ(1
2
− iT ) . (B.2)

For later reference, we make note of the intermediate step in this identification, which also

arises from application of (1.16):

Γ(1
4
− i

2
T )

Γ(1
4
+ i

2
T )

=
ζ(1

2
+ iT )

ζ(1
2
− iT )π

−iT . (B.3)

Let us consider the limit (B.1), and test the complex argument. That is, using arg z =

− arg z and the additivity of the argument, we have that

arg Ã(T ) = 4 arg ζ(
1

2
+ iT ) + arg Γ(iT )− arg Γ(

1

2
− iT )− 2T log π + 2πñ(T ) , (B.4)

where ñ(T ) is an integer valued function. Note that we are taking the argument to be

principal and thus modulo [−π, π), within the integral we shall shortly take; the constant

adjustment of the argument to be within this interval is crucial for convergence. The additive

integer ñ(T ) is a guarantee of this principality. We shall soon observe that ñ(T ) jumps

discontinuously at the critical Riemann zeros.

Next, we invoke the nice exact expression that

arg Γ(x+ iy) = yψ(x) +
∞∑

n=0

(
y

x+ n
− arctan

y

x+ n

)
, (B.5)

where x ∈ R+, y ∈ R and avoiding the poles (i.e., x + iy 6= 0,−1,−2, . . .) and ψ(x) =

Γ′(x)/Γ(x) is the digamma function [42]. Whence, we have that

arg Γ(ǫ+iT )−arg Γ(1
2
−iT ) = Tψ(ǫ)+Tψ(

1

2
)+

∞∑

n=0

(
T

ǫ+ n
+

T
1
2
+ n
− arctan

T

ǫ+ n
− arctan

T
1
2
+ n

)
,

(B.6)
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where we shall take ǫ→ 0 at the end. The reason we do this is that the digamma function

has a pole at zero

ψ(ǫ) = −1
ǫ
− γ + π2

6
ǫ+O

(
ǫ2
)
, (B.7)

which will be seen to cancel precisely against a divergence in an infinite sum. This is the

same reason why x is required to be positive in the identity (B.5).

Applying (B.6) to (B.4) and integrating against the kernel 2T
( 1
4
+T 2)2

, we have that

∫ ∞

0

dT
2T arg Ã(T )

(1
4
+ T 2)2

= 4

∫ ∞

0

dT
2T arg ζ(1

2
+ iT )

(1
4
+ T 2)2

+

+

∫ ∞

0

dT
2T 2πñ(T )

(1
4
+ T 2)2

+

∫ ∞

0

dT
(2(ψ(ǫ) + ψ(1

2
))− 4 log π)T 2

(1
4
+ T 2)2

+

+

∞∑

n=0

∫ ∞

0

dT
2T

(1
4
+ T 2)2

(
T

ǫ+ n
+

T
1
2
+ n
− arctan

T

ǫ+ n
− arctan

T
1
2
+ n

)
. (B.8)

Thus, we have that LHS = RHS, where

LHS :=

∫ ∞

0

dT
2T arg Ã(T )

(1
4
+ T 2)2

− 4

∫ ∞

0

dT
2T arg ζ(1

2
+ iT )

(1
4
+ T 2)2

− 2π

∫ ∞

0

dT
2T ñ(T )

(1
4
+ T 2)2

,

RHS :=

∫ ∞

0

dT
(2(ψ(ǫ) + ψ(1

2
))− 4 log π)T 2

(1
4
+ T 2)2

+

+

∞∑

n=0

∫ ∞

0

dT
2T

(1
4
+ T 2)2

(
T

ǫ+ n
+

T
1
2
+ n
− arctan

T

ǫ+ n
− arctan

T
1
2
+ n

)
. (B.9)

The integrals on the right hand side are elementary, viz., (for x ∈ R+, n ∈ Z+)

∫ ∞

0

dT
2T 2

(1
4
+ T 2)2

= π ,

∫ ∞

0

dT
2T arctan

(
T

x+n

)
(
T 2 + 1

4

)2 =
π

1
2
+ x+ n

; (B.10)

whence, we discover

RHS = −2π log π + πψ(
1

2
) + π

[
ψ(ǫ) +

∞∑

n=0

(
1

ǫ+ n
+

1
1
2
+ n
− 1

1
2
+ ǫ+ n

− 1

1 + n

)]
.

(B.11)

Here, crucially, we have isolated the ψ(ǫ) with the divergent sum, which, in combination,

cancels exactly since

∞∑

n=0

(
1

ǫ+ n
+

1
1
2
+ n
− 1

1
2
+ ǫ+ n

− 1

1 + n

)
= −γ − ψ(1

2
) + ψ(

1

2
+ ǫ)− ψ(ǫ) . (B.12)
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We will present numerical evidence of support for our manipulations in Appendix B. Finally,

ψ(1
2
) = −γ − 2 log 2.

To evaluate the LHS in (B.9) we begin with (B.3), which tells us that

2 arg Γ(
1

4
− i

2
T ) = 2 arg ζ(

1

2
+ iT )− T log π + 2πn(T ) , (B.13)

for some integer n dependent upon T . Thus,

n(T ) =
1

2π

(
2 Im log Γ(

1

4
− i

2
T )− 2 Im log ζ(

1

2
+ iT ) + T log π

)
. (B.14)

To disentangle what n(T ) is let us recall that the number of zeros ρ = σ + iT in the critical

strip in the upper half plane with T < x ∈ R is given by an exact formula (cf. Theorem 9.1

of Titchmarch or Section 6.6 of Edwards [12]):

N(x) = 1− log π

2π
x+

1

π
Im log Γ(

1

4
+
i

2
x) +

1

π
Im log ζ(

1

2
+ ix) . (B.15)

Here, x is itself not the imaginary part of a root. Traditionally, one defines the auxiliary

function ϑ(x) := Im log Γ(1
4
+ i

2
x)− x

2
log π so that

N(x) =
1

π
ϑ(x) + 1 +

1

π
Im log ζ(

1

2
+ ix) , (B.16)

and the first term is an average part which is easy to control while the fluctuating piece,

proportional to arg ζ(1
2
+ ix), contains the non-trivial information about the Riemann zeros.

We recognize by inspection of the above expressions that n(T ) = 1 − N(T ). Compar-

ing (B.1), (B.2), and (B.3), we conclude as well that ñ(T ) = 2n(T ). The argument of the

zeta function that appears in the LHS of (B.9) exactly cancels against the argument of the

zeta function that appears in ñ(T ). Thus, because of this subtle conspiracy, the Veneziano

amplitude in case A does not contain information that encodes the Riemann hypothesis via

the Volchkov criterion.

B.1 A Numerical Check

In evaluating (B.8), we have determined that

∫ ∞

0

dT
2T

(1
4
+ T 2)2

(
arg Γ(ǫ+ iT )− arg Γ(

1

2
− iT )

)
= πψ(

1

2
)− πγ = −2π(γ + log 2)

≃ −7.981925165390411 . . . .(B.17)

Let us verify this result numerically.

26



We may simplify the integrand using the reflection formula (1.6) and the duplication

formula (1.10):

arg Γ(ǫ+ iT )− arg Γ(
1

2
− iT ) = arg

(
2−2iTΓ(2iT )

)
= −T log 4 + arg Γ(2iT ) . (B.18)

The first term integrates easily:

∫ ∞

0

dT
2T

(1
4
+ T 2)2

(−T log 4) = −π log 4 , (B.19)

while the second summand gives us a non-trivial integral.

In order to check against numerical integration, let us use the following simple rewriting

of the principal argument function

arg z = −i (log z − log |z|) , z ∈ C . (B.20)

The reason for this is purely computational. In Mathematica the jumps in arg Γ(z) renders

numerical treatment ineffective in precision, whereas the function log Γ(z) is far better to use

(viz., use the LogGamma[ ] rather than the Log[Gamma[ ]] command). Using the expression

quoted in (A.5) to simplify log |Γ(z)|, we have that

arg Γ(2iT ) = −i(log Γ(z)− log |Γ(z)|) = −i log Γ(2iT ) + i

2
log

πcsch(2πT )

2T
. (B.21)

Happily, Mathematica can now perform this numerical integration without complaint

and gives the answer

∫ ∞

0

dT
2T

(1
4
+ T 2)2

(
−i log Γ(2iT ) + i

2
log

πcsch(2πT )

2T

)
≃ −3.626752984783235 . . . .

(B.22)

Adding this to (B.19) yields

− π log 4− 3.6267529847832356 . . .≃ −7.981925165390439 . . . . (B.23)

As (B.17) and (B.23) agree to 13 decimal places, we have confidence in our manipulations.

C The Virasoro–Shapiro Amplitude

The Virasoro–Shapiro amplitude describes the scattering amplitude of four closed string

tachyons [24]. In what follows, we set α′ = 1
2
and adopt the conventions of [40]. Starting
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from

Aclosed
4 (s, t, u) =

Γ(a)Γ(b)Γ(c)

Γ(a+ b)Γ(b+ c)Γ(c+ a)
, (C.1)

where

a = −1
2
α(s) , b = −1

2
α(t) , c = −1

2
α(u) , (C.2)

α(x) = 2 +
1

4
x , s+ t+ u =

4∑

i=1

m2
i = −32 , (C.3)

after a trivial amount of algebra, we find

Aclosed
4 (s, t, u) =

∏

x=s,t,u

Γ(−1 − 1
8
x)

Γ(2 + 1
8
x)

=
∏

x=s,t,u

Γ(z(x))

Γ(1− z(x)) , (C.4)

with z(x) := −1− 1
8
x = −1

2
α(x).

In the open string sector, for a slightly different Regge trajectory α(x), we previously

expressed the symmetrized Veneziano amplitude as

Aopen
4 (s, t, u) =

√
π
∏

x=s,t,u

Γ(z(x))

Γ(1
2
− z(x)) =

∏

x=s,t,u

ζ(1− z(x))
ζ(z(x))

. (C.5)

(See Proposition 1 and (1.13).) Here,

z(x) = −1
2
α(x) , α(x) = 1 +

1

2
x , s+ t+ u = −8 . (C.6)

Structurally, as Freund and Witten already observe [13], the Veneziano amplitude in the

middle expression in (C.5) is almost the same as the Virasoro–Shapiro amplitude for four

closed string tachyons.

Let us look for a nice simplification of Aclosed
4 (s, t, u) in terms of zeta functions. From the

functional identity (1.14), we have

Γ(1− z) = 2−zπ1−z ζ(z)

ζ(1− z)
1

sin(π
2
z)

,

Γ(z) = 2−1+zπz ζ(1− z)
ζ(z)

1

sin(π
2
(1− z)) . (C.7)

In the second line, we have sent z → 1− z. Taking the ratio and using s+ t+ u = −32, we
find that

Aclosed
4 (s, t, u) =

1

2π

∏

x=s,t,u

(
ζ(1− z(x))
ζ(z(x))

)2

tan(
π

2
z(x)) . (C.8)
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As the Regge trajectories are different for the closed bosonic string and the open bosonic

string, to compare the Virasoro–Shapiro amplitude to the Veneziano amplitude, define x̂ =
1
4
x. The hat will emphasize the open string variables that we have used in the main text.

We express the argument of the zeta functions z(x) = −1 − 1
8
x = −1

2
α(x) = −α̂(x̂). Using

the expression for the Veneziano amplitude from Proposition 1, we have

Aclosed
4 (s, t, u) = −

(
Aopen

4 (ŝ, t̂, û)
)2

2π

∏

x=s,t,u

tan(
π

2
α̂(x̂)) . (C.9)

This is the observation of Kawai–Lewellen–Tye [41].

Knowing this, after straightforward algebra, we find that

argAopen
4 (T ) = −π

4
+

1

2
tan−1(sinh(πT )) +

1

2
argAclosed

4 (T ) . (C.10)

As in Proposition 2, we have evaluated in the limit (2.6) where

α̂(ŝ) = −iT , α̂(t̂ ) = −1
2
, T ∈ R , with α̂(ŝ) + α̂(t̂ ) + α̂(û) = −1 . (C.11)

We may now substitute (C.10) into Proposition 2 to express the Volchkov criterion for the

Riemann hypothesis in terms of the closed string Virasoro–Shapiro amplitude.

D Representations of the Li Coefficients

For completeness, we sketch the proofs of the two equivalent representations of the Li coef-

ficients in the right hand side of (3.22), following largely the original paper [26], but being

more careful with precise factors. These should supplant our integral representation from [8].

Define ϕ(z) = ξ( 1
1−z

), which is also equal to ξ( z
z−1

) by the functional equation (3.6), then

the Hadamard product (3.9) gives us

ϕ(z) =
1

2

∏

ρ∈S

(
1− z/(z − 1)

ρ

)
=

1

2

∏

ρ∈S

1−
(
1− 1

ρ

)
z

1− z . (D.1)

Hence, we have that (for |z| < 1
4
, say, which renders the following function analytic)

ϕ′(z)

ϕ(z)
=

d

dz
logϕ(z) =

∑

ρ∈S

d

dz
log

1−
(
1− 1

ρ

)
z

1− z =

∞∑

n=1

kn+1z
n ; kn :=

∑

ρ∈S

[
1−

(
1− 1

ρ

)n]
,

(D.2)
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where in the last step we used the elementary fact that log(1−Az
1−z

) =
∑∞

n=0
1
n
(1−An)zn. This

furnishes the first definition of the Li coefficients and obviously generalizing the constant B

in (3.5) which corresponds to n = 1.

Next, we have that

1

(n− 1)!

dn

dzn
[
zn−1 log ξ(z)

]
s=1

=
1

(n− 1)!

n∑

k=0

(
n

k

)[
dk

dzk
zn−1 d

n−k

dzn−k

∑

ρ∈S

log

(
1− z

ρ

)]

z=1

=
1

(n− 1)!

n∑

k=0

∑

ρ∈S

(
n

k

)[
(n− 1)!

(n− k − 1)!
zn−k−1−(n− k − 1)!

(ρ− z)n−k

]

z=1

= −
∑

ρ∈S

n∑

k=0

(
n

k

)
(ρ− 1)k−n =

∑

ρ∈S

[
1−

(
1− 1

ρ

)n]
, (D.3)

and we thus see that the left hand side is another convenient representation for kn.
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[2] G. Pólya, unpublished (c. 1914). See A. Odlyzko, “Corre-

spondence about the origins of the Hilbert–Pólya conjecture,”
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