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Abstract 
 
There is now a dazzling array of alternatives to the market-cap approach to choosing 
constituent weights for equity indices.  Using data on the 1,000 largest US stocks every year 
from 1968 to the end of 2011 we compare and contrast the performance of a set of 
alternative indexing approaches.  The alternatives that we explore can be loosely 
categorised into two groups.  First, a set of weighting techniques that Chow et al (2011) 
describe as “heuristic”.  The second set are based upon  “optimisation techniques”, since 
they all require the maximisation or minimisation of some mathematical function subject to a 
set of constraints to derive the constituent weights.  We find that all of the alternative indices 
considered here would have produced a better risk-adjusted performance than could have 
been achieved by having a passive exposure to a market capitalisation-weighted index.  
However, the most important result of our work stems from our ten million Monte Carlo 
simulations.  We find that choosing constituent weights randomly, that is, applying weights 
that could have been chosen by monkeys, would also have produced a far better risk-
adjusted performance than that produced by a cap-weighted scheme. 
 
 
Keywords:  Alternative equity indices; risk-adjusted performance; Monte Carlo simulation 
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1.  Introduction 
 
The practice of investing in equity portfolios that are benchmarked against Market-cap 
weighted indices is very common.  This choice of this index weighting scheme is particularly 
relevant to those investors that choose to track such indices passively.  But this choice is 
also of relevance to those investors that employ active fund managers benchmarked against 
these indices since the performance and the risk profile of these active managers is usually 
very closely related to the indices.  In this paper we provide a thorough evaluation of two 
subsets of equity index weighting schemes where the weights of individual equities are 
determined either by simple, heuristic rules of thumb, or are determined by processes that 
use comparatively more demanding optimisation techniques2

 
. 

For both sets of alternative indices we calculate the performance that investors would have 
experienced had they adopted any one of these approaches to the construction of portfolios 
comprising US equities over this period.  By using the same, rich dataset we are able to 
compare ‘apples with apples’ and to make definitive statements about the differences in the 
constituent characteristics and performances of this range of alternatives. 
 
We find that all of the alternative indices considered here would have produced a better risk-
adjusted performance than could have been achieved by having a passive exposure to a 
market-capitalisation weighted index.  However, the most important result of our work stems 
from our ten million Monte Carlo simulations.  We find that choosing constituent weights 
randomly, that is, applying weights that could have been chosen by monkeys, would 
also have produced a far better risk-adjusted performance than that produced by a 
cap-weighted scheme. 
 
The rest of this report is organised as follows: in section 2 we outline the essential features 
of a set of heuristic alternative index construction techniques, while in section 3 we review 
three more techniques which can only be implemented by using optimisation routines; in 
Section 4 we outline the data that we use to compare the various index construction 
methods and also the portfolio construction technique that we use; in section 5 we report the 
main results and index performance statistics; in Section 6 we take a closer look at the 
source of the performance differences between the indices; in Section 7, we undertake some 
Monte Carlo experiments to determine how much of the performance of the indices is due to 
luck and how much to ‘design’; in Section 8 we consider how the use of a simple timing 
indicator can improve the risk-adjusted performance of the indices; in section 9 we consider 
the possible impact of transactions costs on our results; and finally Section 10 concludes the 
paper. 
 
 
2. Heuristic index construction techniques – defining the weights 
 
The benchmark: Market-capitalisation weights 
The focus of this paper is the performance of the Market-cap weighted approach to indexing 
equities.  Of course there are a number of very familiar indices of this kind, such as the S&P 
500 Composite and FTSE-100 indices.  However, so that we can make fair comparisons, 
rather than using these familiar indices as the basis for the comparisons of alternative 
approaches to equity index constructions, we calculate our own Market-cap weighted index 
using the same stock universe that we use to construct the various alternatives.  The weight 
of each stock in the Market-cap weighted index that we use here is calculated in the 

                                                           
2 Chow, T., J. Hsu, V. Kalesnik and B. Little, (2011) A survey of alternative equity index strategies, Financial Analysts Journal, 
vol. 67, 37-57 



4 

 

conventional manner: the weight of each stock is equal to its Market-capitalization divided by 
the sum of the Market-capitalisation of all of the other stocks in our chosen universe of 1,000 
stocks.   
 
It is has often been suggested that a Market-cap based approach to equity index weights is 
‘theoretically’ consistent with the Capital Asset Pricing Model (CAPM), and that such a 
portfolio should, if the market is efficient, be ‘mean variance efficient’.  That is, any portfolio 
constructed on this basis should have the highest expected return of any set of portfolios 
with the same expected risk, in turn meaning that it would be impossible to achieve a higher 
expected return from another portfolio with the same expected risk.  A stylised 
representation of a mean-variance efficient frontier is shown in Figure 1.  Any combination of 
securities that have an expected return and risk combination that means that they plot on the 
upper portion of this frontier, is said to be mean-variance efficient. 
 

Figure 1: The Mean Variance Efficient Frontier 
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However, it is simply not true that a Market-cap weighted index will plot on this frontier.  
There is no ex ante reason why, for example, a Market-cap weighted portfolio of US equities 
should be either mean-variance efficient in a global sense, or consistent with the CAPM in 
any sense. But most investors that invest on a Market-cap weighted basis do not do so 
because they think it is theoretically consistent anyway, they do so for the many convenient 
reasons outlined in last summer’s report. 
 
2.1 Equal weights 
Creating passive equity portfolios against a Market-cap index at least ensures that  investors 
hold positions in the largest, usually most liquid stocks in a market, but of course it can lead 
to less than appealing concentrations in very large stocks.  Therefore a straightforward 
alternative to Market-cap weighting would be to assign each of the N stocks in the equity 
universe an equal weight.  This is a very simple approach to determining equity index 
weights that avoids the concentration risk that might arise with a Market-cap weighted 
approach.  However, one of the possible drawbacks of this approach is that, by definition, it 
gives higher weights to smaller, possibly less liquid stocks than the Market-cap weighted 
approach. 
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2.2 Diversity weights  
Equally-weighted equity index constituents clearly avoids the problem of concentration that 
arises from the use of Market-cap weights, but with the potential for increasing positions in 
less liquid stocks (depending upon the stock universe under consideration of course).  A 
practical approach to this issue might involve setting a cap on the market value of any 
particular stock in a market- cap weighted index.  And redistributing the weight of the largest 
stocks above this ceiling equally amongst the remaining index constituents.  Essentially this 
approach to index construction combines features of both the Market-cap weighting 
approach, subject to a maximum constituent weight, and the equal weighting approach.  Of 
course the higher the ceiling of the constituent weight the closer the index will be to a pure 
Market-cap based index, while the lower it is the closer it will be to an equally weighted 
index. 
 
To this extent this blending of Market-cap and equal weights is the principle behind the 
Diversity Weighting approach to index construction.  This approach was first proposed by 
Fernholz et al (1998).  Effectively it involves raising the Market-cap weight (w) of each 
constituent by the value p, that is wp, where p is bounded between 1 and 0.  The weight of 
each index constituent is then calculated by dividing its wp weight by the sum of all wps of all 
of the constituents in the index.  When p is set to 1 then the constituent weights are equal to  
Market-cap weights and when p is set to 0 the weights are equivalent to equal weights.   
 
To demonstrate how it works consider Table 1.  Column 2 shows the market values of 5 
hypothetical stocks.  Each successive column shows the value of the diversity weights as we 
change the parameter p, shown in the parentheses in row 1 of the table.  The third column 
shows that the weights are equivalent to Market-cap weights when p is set equal to 1.  For 
example for stock A, (100/185) x 100% =  54.1%.  When p is set to 0 (column 7), the weights 
all equal 20%.  As demonstrated in the table, the lower the value of p the closer the 
constituent weights to equality. 

 
Table 1:  

An example of Diversity Weighting for an index with five stocks 
Market cap MCW (1) DW (0.75) DW (0.50) DW (0.25) EW (0)

Stock A 100 54.1% 44.9% 35.8% 27.3% 20%
Stock B 35 18.9% 20.4% 21.2% 21.0% 20%
Stock C 15 8.1% 10.8% 13.9% 17.0% 20%
Stock D 10 5.4% 8.0% 11.3% 15.4% 20%
Stock E 25 13.5% 15.9% 17.9% 19.3% 20%

185 100% 100% 100% 100% 100%  
 
So this leaves one question: what value of p should we use?  In their initial work Fernholz et 
al (1998) used a value of p equal to 0.76.  In their tests of this approach to index construction 
Chow et al (2011) also report results with p set to 0.76; so for purposes of comparison in our 
main results we also set p equal to 0.76. 
 
2.3 Inverse volatility 
Finance theory tells us that low risk investment strategies should ultimately produce 
relatively low returns, although in the context of large portfolios it is not the volatility of the 
return on any particular stock that matters, but its contribution to the volatility of the portfolio 
which, in turn, depends upon the average correlation of that stock’s return with the return of 
all others.  However, in the mid-1970s Haugen and Heins published a paper that 
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demonstrated that low volatility stocks tended to outperform high volatility stocks3

 

.  More 
recently there has been growing interest in ‘low volatility investing’, and we therefore felt that 
it was worth exploring the consequences of creating an index where we assigned a greater 
weight to stocks with relatively low return volatility.  To do this we began by estimating the 
standard deviation of the return of each stock in the universe using five years of monthly 
data.  We then calculate the inverse of this value, so that the stock with the lowest volatility 
will have the highest inverted volatility.  We then simply summed these inverted standard 
deviations.  The weight of stock i is then calculated by dividing the inverse of its return 
standard deviation by the total inverted return standard deviation.  This process therefore 
assigns the biggest weight to the stock with the lowest volatility, and the lowest weight to the 
stock with the highest return volatility. 

2.4 Equal risk contribution weights 
Equally weighting an index as a rule of thumb (which is one definition of a ‘heuristic’ 
approach), would seem to be as sensible as assigning weights based on Market-
capitalization, at least in an ex ante sense.  But an equal weighting in terms of Market-
capitalisation does not necessarily mean that the contribution to the volatility of the portfolio 
will be equal.  The index weight of each stock in an equally weighted index of 100 stocks will 
be 1%.  But those stocks with relatively high levels of volatility will then contribute more to 
the overall volatility of the index than those stocks with lower volatility.   
 
This will only “tend” to be true, because it is not only the individual stock’s volatility that will 
matter, but also the way in which the returns on that stock correlate with the other 99 stocks.  
Therefore an alternative heuristic approach to the equally–weighted approach to determining 
index weights would be to use measures of past stock return volatilities and correlations to 
choose weights such that the contribution of each stock to the risk of the overall portfolio is 
equal4

 

 (see Maillard et al (2008)).  That is, so that in a 100 stock index each stock 
contributes 1% of the index’s total volatility. 

2.5 Risk clustering weights 
The final heuristic approach that we consider to index construction involves the equal 
weighting, not of individual equity constituents, but instead the equal weighting of “risk 
clusters”.  With this technique each risk cluster comprises market value weighted 
constituents that have similar risk characteristics.  The identification of risk clusters normally 
relies on fairly complex statistical procedures.  But a very simplified version of this process 
might be to split a stock universe into its sectoral components, that is, Industrials, Financials, 
Consumer Discretionary etc, then to construct an index where each sector has an equal 
weight, but within each sector the constituents are Market-cap weighted.  So, to some 
extent, this process would involve equally weighting a set of Market-cap weighted sectoral 
indices to create one, ‘risk clustered’ index.   
 
The risk clustering approach to index construction is similar at least in spirit to the approach 
outline above.  It begins with the identification of equity sectors.  For a risk clustering index 
focusing on a single market, the sectors will each represent a Market-cap weighted 
component of the related stock market.  However, for a risk clustering index spanning a 
number of markets there is a second, country dimension to the sector definitions so, for 

                                                           
3 Haugen, Robert A., and James Heins. 1975. “Risk and Rate of Return on Financial Assets: Some Old Wine in New Bottles,” 
Journal of Financial and Quantitative Analysis, vol. 10 no. 5 (December): 775–784. 
4 See Maillard, Sébastien, Roncalli, Thierry and Teiletche, Jerome, On the Properties of Equally-Weighted Risk Contributions 
Portfolios (September 22, 2008). Available at: 
 SSRN: http://ssrn.com/abstract=1271972 or http://dx.doi.org/10.2139/ssrn.1271972 
 

http://ssrn.com/abstract=1271972�
http://dx.doi.org/10.2139/ssrn.1271972�
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example, as well as there being a consumer discretionary sector for the US, there will be 
other consumer discretionary sectors for each other market, for the UK, for France, for 
Japan etc.   
 
Once all of the sectors are identified, statistical techniques are applied to identify clusters of 
sectors that are similar.  This is a purely statistical process involving no economic or finance 
related input.  However, before the statistical procedure can begin the index constructor has 
to specify the number of clusters that they want to construct.  Once the desired number of 
risk clusters has been identified each sector within a risk cluster is given an equal weight, 
and then finally each risk cluster itself is given an equal weight so that it comprises the risk 
cluster index. 
 
In our work we apply this approach to US stocks and identify 30 US industrial sectors.  From 
these sectors we create ten risk clusters using a k-mediod5

 

 partitioning technique, and 
create the index from these clusters following the process explained above. 

2.6 Summary 
Each of the alternative equity index weighting schemes considered above seek to reduce the 
sorts of concentration risks that can arise from a straightforward application of Market-cap 
weights.  None have a basis in finance theory, and there is no ex-ante reason why investors 
should expect one to perform better than the other.  Furthermore, with the exception of the 
partitioning technique needed for risk clustering, all of the alternatives are relatively simple to 
understand.  The next set of alternatives that we consider require the application of 
optimisation techniques.    
 
3. Optimization-based index construction techniques6

 
 

The process of optimisation involves trying to achieve some goal, which could be to find the 
maximum or minimum value of a variable, subject to certain constraints.  So, for example, 
one could estimate the expected returns, expected volatilities and expected correlations 
relating to a universe of stocks.  Given these inputs it is then a relatively simple 
computational task to find the portfolio weights from this universe that would give the highest 
expected return for a pre-specified level of expected risk.  The goal in this case is the 
“highest return possible”, while the constraint is that this return should be achieved for the 
“lowest amount of expected risk” possible.  In fact when we take that set of stocks and find 
the highest return portfolios for every level of expected risk, we obtain the mean-variance 
efficient frontier shown in Figure 1.  Each portfolio that plots on the frontier is the optimised 
portfolio with the highest Sharpe ratio for each level of expected risk. 
 
3.1  Minimum variance weights 
When constructing the mean variance frontier using optimisation techniques, point A in 
Figure 1 represents the lowest level of expected risk that can be achieved by combining all 
the securities in the chosen universe.  The optimiser chooses weights for each stock in this 
universe so that the expected risk (point E) is as low as possible, where the weights are all 
constrained to be between 0% and 100%, that is, no short positions are allowed.  The 

                                                           
5 For those that really wish to learn more about this technique see Kaufman, L. and Rousseeuw, P.J. (1987), Clustering by 
means of Medoids, in Statistical Data Analysis Based on the L1-Norm and Related Methods, edited by Y. Dodge, North-
Holland, 405–416.   
6 To estimate  the relevant variance-covariance matrices we used five years of historic data and applied the shrinkage 
technique outlined in Ledoit, O. and Wolf, M. (2004). Honey, I shrunk the sample covariance matrix. Journal of Portfolio 
Management 30, Volume 4, 110-119.  We used the Matlab code from Michael Wolf’s website, which can be found at: 
http://www.econ.uzh.ch/faculty/wolf/publications.html 
 

http://www.econ.uzh.ch/faculty/wolf/publications.html�
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expected return on this portfolio (point D) is a function of the weighted average returns of the 
individual equities.  As can be seen, the expected return on this portfolio is lower than any 
portfolio located on the upper portion (the efficient portion) of the efficient frontier.  But under 
what circumstances would it make sense to use MVP index weights?   
 
One possible instance where constructing an index, or portfolio on a MVP basis might make 
sense, would be if one took the view that stock returns are so unforecastable that one may 
as well assume that the expected return on each stock is identical.  In this case the mean-
variance optimiser would produce not a pleasing looking curve as in Figure 1, but instead a 
single point within the expected return, expected risk plane, where the expected risk 
(volatility) would be the minimum achievable level of risk from combining these stocks; and 
where the expected return on the index would be the same as the return expected on each 
one of the stocks in this universe.   
 
At each index reconstruction date one could create an MVP index by finding the weights that 
satisfy this simple optimisation problem.  However, in practice if this process is applied in a 
completely unconstrained manner then the index can often comprise only a very small 
proportion of stocks, where the remainder are assigned a weight of 0%.  Given that 
concentration risk is one of the key drawbacks of Market-cap based weights it would be 
equally unappealing to some investors to have a concentrated portfolio constructed from the 
MVP process.  Therefore we construct both an unconstrained MVP-based equity index and 
a constrained one where the maximum constituent weight is set at 1%, and then again at 
5%. 
 
Constructing a MVP-based equity index avoids the knotty problem of having to forecast 
equity returns, but it is not obvious why investors would want to construct an index which, ex 
ante at least, will give them the most ‘efficient’ but lowest possible return.  If the expected 
return on all stocks are not identical – which seems very likely – then there exists the 
prospect of moving along the mean-variance efficient frontier to achieve higher returns, 
though at the expense of taking on more risk.  But to construct a full mean variance frontier, 
rather than just the MVP would require the index constructor to forecast returns on all of the 
index constituents.  Since it is very likely that any two equity analysts will provide different 
return forecasts on the just one stock, this would seem to be an impossible task.  However, 
two of the alternative index construction techniques that we examine do offer a solution to 
this problem.  The first of these is the Maximum Diversification approach proposed by 
Choueifaty and Coignard (2008)7, while the second is the Risk Efficient technique proposed 
by Amenc et al (2010)8

 
. 

3.2  Maximum Diversification weights 
Choueifaty and Coignard postulate that the expected return on individual stocks is directly 
proportional to their volatility.  That is, the more volatile a stock’s return the higher will be its 
average return.  Given this heuristic assumption Choueifaty and Coignard then use 
optimisation techniques to identify the weights of individual equity components that generate 
the highest Sharpe ratio.  On the stylised efficient frontier shown in Figure 1, point C 
represents the point on the frontier that has the highest Sharpe ratio, that is, that point on the 
frontier where the ratio of the excess expected return (point B) relative to expected risk (point 
F) is greatest. 
 

                                                           
7 Choueifaty, Y. and Y. Coignard (2008), Toward maximum diversification, Journal of Portfolio Management, vol. 35, 40-51. 
8 Amenc, N., F. Goltz, L. Martellini and P. Retkowsky, 2010, Efficient Indexation: An alternative to cap-weighted indices, 
EDHEC-Risk Institute (February. 
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The numerator in the Sharpe ratio is the weighted average volatility of the index components 
(the ‘expected’ index return), while the denominator is the standard deviation of the 
‘expected return’ of the weighted index.  As with the MVP index construction method, the 
lower bound for any constituent weight is set to 0% so that the index does not consist of 
short positions.  And to stop the optimiser applying non-zero weights to only a few stocks  
Choueifaty and Coignard set the maximum index weight to 10%.   
 
3.3  Risk Efficient weights 
Amenc et al propose an index construction approach that is similar, at least in spirit, to the 
Maximum Diversification technique.  However, instead of assuming or postulating, that the 
expected return on a stock is directly proportional to its volatility, they instead suggest that it 
is proportional to the downside deviation of the stock’s return – another heuristic assumption.   
 
The downside deviation of a stock’s return is calculated in much the same way as one would 
calculate its standard deviation.  But standard deviation gives the same weight to positive as 
it does to negative returns.  By contrast, downside deviation is calculated using only negative 
stock returns.  So for example, in the extreme case, if the set of monthly returns on a stock 
are all positive, the stock’s downside deviation will be 0%.  However, unless this set of 
positive monthly returns are identical, the standard deviation of the stock’s returns will be 
positive.  Downside deviation focuses attention on negative returns so, other things equal, 
the greater their frequency and size, the higher will be the stock’s measured return downside 
deviation. 
 
To construct a Risk Efficient index Amenc et al propose a two stage process. First, the semi 
deviation of each stock is calculated.  Then on the basis of these estimates, the stocks are 
grouped into deciles so that the 10% of stocks with the largest downside deviation comprise 
the first decile; the 10% with the next highest downside deviation comprise the second decile 
and so on, until ten deciles are identified.  The median downside deviation for each decile is 
then calculated and this value is then assigned to each stock in its decile as the proxy for the 
expected return of that stock.  The second stage then involves finding the portfolio with the 
maximum expected return (proxied by the median downside deviation of each stock’s decile) 
with the lowest portfolio return standard deviation.   
 
Again, to prevent the optimiser from creating a portfolio with concentrated single stock 
exposures, Amenc et al impose restrictions on the constituent weights that might otherwise 
be chosen by the optimiser.  The weight limits are as follows: 
 

lower limit = 1/(λ x N) x 100% 
 
upper limit = λ/N x 100% 

 
where N represents the total number of stocks under consideration and where λ is a free 
parameter.  If N equals 1,000 and λ is set equal to 2, then the limits on each index 
component would be: 
 

lower limit = 1/(2x1,000) x 100% = 0.05% 
 
upper limit = (2/1,000) x 100% = 0.2% 

 
The eagle-eyed will have noticed that if λ is set equal to 1, then all constituent index weights 
would be equal to 1/N, that is, the index constituents would be equally-weighted.  In our 
replication work we construct the Risk Efficient index from a universe of 1,000 stocks with λ 
set to various values, and also apply a simpler maximum weight to the constituents. 
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3.4  Summary 
The alternative index weights based upon optimisation routines might seem more ‘scientific’ 
than the heuristic alternatives reviewed in Section 2, but none of them are consistent with 
modern portfolio theory.  To be consistent with theory the MVP approach would necessitate 
that the expected returns on all stocks were identical.  With regard to the Maximum 
Diversification and Risk Efficient approaches, both suggest that investors are rewarded for 
taking on stock specific risk, that is, the higher the risk either calculated as standard 
deviation or downside deviation, the higher the expected return, and yet we know that this 
risk can be diversified away within any randomly chosen portfolio with sufficiently large 
number of constituents.  Second the basis of both these approaches, which both seek to 
identify a maximum Sharpe ratio is a rather arbitrary assumption about the relationship 
between expected returns and risk. 
 
Once again, ex ante, there is no reason to expect one approach to be better than the other, 
or indeed any better than those approaches outlined in Section 2.  The value of any of these 
alternative approaches to indexing is an empirical issue.   
 
 
4. Data and portfolio construction methodology 
 
4.1 Data 
The data that we use to test the performance of all of the alternative index construction 
techniques outlined in Sections 2 and 3 of this report were collected from the CRSP9 data 
files.  This dataset contains the end month, total returns on all US equities quoted on the 
NYSE, Amex and NASDAQ stock exchanges.  In keeping with previous work in this area10

 

, 
we excluded Exchange Traded Funds (ETFs) and American Depository Receipts (ADRs).  
The sample period that we use spans the period from January 1968 to December 2011.   

Again, in keeping with similar analysis in this area, we choose an index construction 
methodology which, for the first full year in our sample, involves identifying the 1,000 largest 
stocks by Market-capitalisation as at December of that year that have five full years of return 
history, and where Market-capitalisation is calculated as the stock’s share price multiplied by 
the number of outstanding ordinary shares.  We then apply the weights to these thousand 
stocks which are suggested by the various strategies that we reviewed in Sections 2 and 3.  
The performance of the relevant index, and sub-components of each alternative index were 
then collated.  This process is repeated in the following year, where we again identify the 
1,000 largest US stocks in December of that year that have five full years of return history, 
repeating both the index calculation exercise and the collation of relevant return data.  This 
process eventually produces a continuous portfolio, representative of each index 
construction methodology, plus sub-components of this index, from January 1969 to 
December 2011.  The process means that the constituent weights of each methodology are 
calculated at the end of each year, so that each index itself is rebalanced annually. 
 
As well as calculating the performance of these proxies for alternative indices using the 
usual performance statistics, such as the Sharpe ratio etc, we also collect data on the 
characteristics of the index constituents. 
 
4.2 Examining the Maximum Diversification and Risk Efficient heuristic return assumptions 
Choueifaty and Coignard postulate that the more volatile a stock’s return the higher will be 
its average return.  However, Figure 2 offers very little support for this idea.  Each year we 
                                                           
9The Chicago Booth Centre for Research in Securities Prices (CRSP) historic database provide US daily corporate actions, 
price, volume, return, and shares outstanding data for securities with primary listings on the NYSE, NASDAQ, Amex, and 
ARCA exchanges. 
10 In particular see Chow et al (2011). 
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estimated the volatility of the stocks in our database, the ten percent of stocks with the 
lowest historic volatility (based on 60 months of data) were placed in decile 1; the ten 
percent of stocks with the next lowest historic volatility (based on 60 months of data) were 
placed in decile 2, etc.  We repeated this process for every year in our 45 year sample, until 
we had produced ten equity portfolios ranked by volatility.  Each bar in the Figure represents 
the annualised return of these volatility-ranked deciles.  As the Figure shows, if anything high 
volatility tends to lead to lower annualised returns. 
 

Figure 2: The relationship between volatility and returns 
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Amenc et al postulate that the return over time on a stock is directly proportional to the 
downside deviation of its return. We also tested this proposition using the same methodology 
that generated Figure 2, but where we used the downside deviation of a stock’s return for 
the ranking process instead of its standard deviation.  The results are shown in Figure 3.  
Once again, if anything, the higher the downside deviation of a stock the lower is its 
subsequent average return. 
 

Figure 3: The relationship between downside deviation and returns 
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5. Main results 
Table 2 presents the performance statistics of each of the index construction methods 
described in Sections 2 and 3, using the full sample period, and the annual rebalancing 
methodology described in Section 4. 
 
5.1 Returns 
The second column in Panel A of Table 2 presents the average, annualised returns on each 
of the index construction methodologies.  The first point to notice is that the Market-cap 
weighted approach produces the lowest return of 9.4%, over the full sample.  The highest 
returns are achieved by the Inverse volatility and Risk Efficient approaches, which generate 
annualised returns of 11.4% and 11.5% respectively. The risk efficient index approach 
presented in the Table is produced with the constraint that no index constituent has a greater 
than 5% weight in the index.  We have imposed the same constraint on the minimum 
variance and maximum diversification techniques to make them broadly comparable.  The 
risk efficient index approach still produces the highest return over this sample period11

 

.  The 
worst performance is produced by the risk clustering index, however, it is probably fair to say 
that this approach might be better suited to an international dataset rather than to one with 
only one country.  Column 3 in Panel A of Table 2 presents the annualised standard 
deviations of the returns of each index.  By this measure the index that generated the 
highest volatility was the Equally Weighted index (17.2%).  The index that produced the 
lowest volatility by far was the Minimum Variance Portfolio index (11.2%).  The volatility of 
the returns of the remaining indices range between 13.9% and 16.7%.  The volatility of the 
Market-cap index is neither relatively high nor low. 

Table 2: Main results 

Sharpe Sortino Max % Positive

Return st. dev. Ratio Ratio Drawdown Months Alpha Beta

Market cap weighted 9.4% 15.3% 0.32 0.39 -48.5% 60.9% 0.00% 1.00

Equal-weighted (2.1) 11.0% 17.2% 0.39 0.48 -50.2% 60.3% 0.09% 1.06

Diversity Weighting (2.2) 10.0% 15.7% 0.35 0.43 -48.8% 60.3% 0.04% 1.02

Inverse volatility (2.3) 11.4% 14.6% 0.45 0.56 -45.7% 62.8% 0.24% 0.89

Equal risk contribution (2.4) 11.3% 15.6% 0.43 0.52 -47.5% 62.2% 0.18% 0.96

Risk clustering (2.5) 9.8% 16.7% 0.33 0.42 -48.9% 58.7% 0.02% 1.03

MVP-weighted (3.1) 10.8% 11.2% 0.50 0.59 -32.5% 65.1% 0.48% 0.51

Maximum diversification weights (3.2) 10.4% 13.9% 0.40 0.46 -41.1% 62.4% 0.20% 0.82

Risk Efficient (3.3) 11.5% 15.9% 0.43 0.55 -56.0% 61.8% 0.29% 0.85

Return St. dev. Return St. dev. Return St. dev. Return St. dev.

Market cap weighted 6.1% 16.2% 16.9% 16.1% 17.6% 13.1% 0.4% 15.2%

Equal-weighted (2.1) 9.0% 19.9% 17.8% 16.7% 15.0% 13.7% 6.2% 17.0%

Diversity weighting (2.2) 6.9% 17.1% 17.1% 16.2% 17.1% 13.1% 2.6% 15.5%

Equal risk contribution (2.3) 9.3% 18.4% 18.9% 15.5% 14.0% 12.5% 6.6% 15.1%

Inverse volatility (2.4) 9.4% 17.1% 19.6% 14.6% 13.2% 11.6% 6.9% 14.2%

Risk clustering (2.5) 6.4% 18.4% 17.8% 17.3% 13.5% 13.3% 5.1% 16.5%

MVP-weighted (3.1) 7.8% 12.9% 20.2% 12.0% 11.2% 9.8% 6.5% 10.4%

Maximum diversification weights (3.2) 7.5% 16.8% 20.0% 13.6% 12.7% 11.7% 4.6% 12.4%

Risk Efficient (3.3) 12.5% 17.5% 18.7% 15.5% 12.2% 15.3% 5.6% 15.8%

1970s 1980s 1990s 2000s

Panel A: Full sample results (1969 to 2011)

Panel B: Annualised returns and volatility by decade

 
 
Notes:  The figures in parentheses in column 1 of the table relate to the section in the report where the index construction 
method is described.  Returns and standard deviations of returns are all annualised figures.  The alphas presented in column 8 
are monthly.  For the Diversity Weighting index (2.2) we set the parameter p equal to 0.76.  For purposes of comparison we set 
the maximum constituent weight to 5% for the Minimum Variance index (3.1), the Maximum Diversification index (3.2) and for 
the Risk Efficient Index (3.3). 

                                                           
11 It is important to note that the recommendation of Amenc et al is that the Risk Efficient methodology should be applied with λ 
set equal to 2. We explore the significance of this constraint in Table 3. 
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Panel B of Table 3 breaks down the annualised return and annualised standard deviation of 
return of each technique by decade.  The Market-cap weighted approach is the worst 
performing index construction technique in the 1970s, but it performs particularly badly in the 
2000s.  Indeed the annualised performance of 0.44% in the Noughties appears to be a 
substantial outlier.  By contrast the 1990s appears to have been the ‘Market-cap decade’, 
where this index technique comfortably outperformed most other techniques with an 
annualised return of 17.59%, compared with the Risk Efficient technique – the best 
performing technique of the whole sample – which produced a relatively modest 12.2% over 
the same period.  Perhaps the most notable feature of the sub-sample analysis of volatility in 
Panel B is that over each decade the index with the lowest annualised standard deviation is 
the Minimum Variance Portfolio index.   
 
5.2 Risk ratios 
But of course it is not only return that matters.  Panel A of Table 2 also presents a range of 
risk statistics.  We calculated the very familiar Sharpe ratio for each index (Si), which is 
written as: 

Si = (Ri-Rf)/σi 
 
where Ri is the average return on the index, rf is a proxy for the risk free rate of interest, in 
this case the average return on US T-bills; and σi is the standard deviation of the returns on 
index i.  The higher this ratio, the higher has been the return relative to each unit of risk.  The 
higher the Sharpe ratio the better.  The lowest Sharpe ratio is produced by the Market-cap 
approach to indexation.  The highest is produced by the minimum variance index (MVP) 
approach.  We also calculated the less familiar Sortino ratio which is based upon the semi 
deviation, σs-d,i, of index i’s returns, rather than on the full range of returns, in other words it is 
only based upon negative returns and disregards all positive returns: 
 

Si = (Ri-Rf)/σs-d,i 
 
However, the results are broadly unchanged: the Market-cap weighting technique generates 
the lowest risk-adjusted returns while the MVP approach generates the best. 
 
Table 3: Test of null hypothesis that Sharpe ratios are equal. A value of 1 means null 

is rejected. P-values are given in each case 
Equal-

weighted
Diversity 

weighting
Inverse 
Volatiliy

Equal risk 
contribution

Risk 
clustering MVP-weighted Maximum 

diversification
Risk 

Efficient

0 0 1 1 0 0 0 0
19.2% 6.7% 2% 4.9% 86.5% 17.8% 25.0% 24.0%

0 0 1 0 0 0 0
33.4% 6.0% 4.6% 22.8% 39.2% 79.0% 53.9%

Diversity 1 0 0 0 0 0
weighting 3% 5.3% 60.8% 24.5% 42.7% 36.1%

Inverse 0 1 0 0 0
volatility 11% 2% 68% 27% 78%

Equal risk 1 0 0 0
contribution 4.6% 52.4% 57.7% 89.6%

Risk 0 0 0
clustering 22.0% 33.1% 22.9%

MVP- 0 0
weighted 40.5% 61.8%

Maximum 0
Diversification 66.9%

Market cap

Equal-
weighted

 
 
Note: A value of 1 in a cell means that the null is rejected at the 95% level of confidence; the associated p-value  
is also shown in each cell. 
 



14 

 

But the Sharpe ratio of one index may be higher than that of another, simply by chance.  To 
determine how different the Sharpe ratios were from one another we performed a set of 
complex statistical techniques12

 

 to determine the differences.  The results are shown in 
Table 3.  Each cell in the table shows the results of the test of the difference between the full 
sample Sharpe ratios of each pair of indices.  A value of 1 in the cell is a rejection of the null 
hypothesis that the Sharpe ratios are the same at the 95% confidence level.  In each cell we 
have also presented the relevant p-values. 

Table 3 shows that there are only six instances where the pairs of Sharpe ratios prove to  
significantly different from one another at the 95% level of confidence.  With regard to our 
main focus here, although the results presented in Table 2 showed that all eight of the 
alternative equity weighting schemes produced higher Sharpe ratios than the Market-cap 
index, Table 3 shows that only  two of them  – Inverse Volatility and Equal Risk Contribution 
– appear to produce a higher Sharpe ratio than the Market-cap index at the 95% level of 
confidence.  However, the table does show that the Diversity Weighting index produced a 
higher Sharpe ratio than the Market-cap index at the 90% confidence level.  With regard to 
the remaining alternative indices we cannot say with any statistical certainty that their 
Sharpe ratios are different from the one produced by the Market-cap index. 
 
5.3 “Systematic” risk 
We also calculated the alpha and beta of each index, where the market return was proxied 
by the Market-cap index.  This is why the alpha and beta of the Market-cap index are 0.0 
and 1.0 respectively.  In other words the remaining alphas and betas are estimated relative 
to the market index.   
 
First, all of the alternative indices produce a positive alpha. In fact, relative to the Market-cap 
weighted index, they all produce positive alphas over a long period of time, a performance of 
which many active fund managers would have been proud.  The MVP index construction 
technique generates the highest alpha over this period of 0.48% per month.  The smallest 
alpha of 0.02% was generated by the risk clustering alternative index.   
 
Second, the ‘systematic risk’ of each index is also expressed relative to the Market-cap 
index.  For the Equal-weighted, Equal Risk Contribution, Diversity Weighting and Risk 
Clustering indices the betas are all very close to one, indicating a relatively close average 
relationship with the Market-cap weighted index.  However, the beta coefficients on the 
Inverse Volatility index and on the three optimised indices are much lower than one.  In 
particular, the beta on the MVP-weighted index is 0.51.  These results indicate that these 
indices, and in particular the MVP index seem to be deriving their returns from a different 
source than the Market-cap index.  
 
5.4 Tail Risk 
For many institutional investors, and in particular for Defined Benefit pension schemes, but 
also for very risk averse retail investors including those approaching retirement, avoiding 
significant declines in the value of their equity portfolios is crucial.  Column 5 in Panel A of 
Table 2 presents the maximum drawdown statistics for each index.  This statistic is 
calculated as the largest peak to trough decline in each index in percentage terms.  The 
index calculation methodology with the lowest maximum drawdown is MVP, where the 
largest peak to trough fall of this index between 1969 and 2011 was 32.5%.  The Maximum 

                                                           
12 See Ledoit, O., & Wolf, M. (2008), Robust performance hypothesis testing with the Sharpe ratio. Journal of Empirical 
Finance, 15(5), 850-859.  To perform these tests we used the authors’ Matlab code that can be downloaded from Michael 
Wolf’s website: http://www.econ.uzh.ch/faculty/wolf/publications.html. 
 

http://www.econ.uzh.ch/faculty/wolf/publications.html�
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Diversification index produced the next best peak to trough fall of 41.1%.  The worst 
maximum drawdown statistic is produced by the Risk Efficient index, where the maximum 
peak to trough fall was 56.0% over the period.  The remaining indices all experience peak to 
trough falls between 45% and 50%.   
 
In this regard then the MVP index would have represented an attractive alternative for risk 
averse investors, particularly when we consider that the annualised returns on this index 
were well above those of the Market-cap based index. 
 
5.5 Parameter sensitivity 
In Table 2 we presented a set of results for alternative indices of US equities.  In Table 4 we 
present a similar set of results for a selection of the indices where the choice of indexing 
parameter may influence the results.  In the first row of Panel A we present the index 
statistics related to the Diversity Weighting index, but where p is set equal to 0.5 rather than 
0.76, as in Table 2.  Recall that when p=1.0, the index weights are identical to those of a 
Market-cap weighted index; and when p=0.0 the weights are equivalent to those of an 
equally weighted index.  0.5 is exactly half way.  The results in Table 5, unsurprisingly then 
show that the Diversity Weighting index with p=0.5 produces a performance that is closer to 
that of the equally weighted index than when p=0.76.  For example, the annualised return 
increases from 10.0% to 10.4%. 
 
Of perhaps more interest is the way in which the optimised indices change when the 
constraints around their constituent weights are changed.  In Table 2 , in each case, the 
maximum constituent weight was set to 5%. 
 
The details of the performance of the MVP index with a 1% constituent cap presented in 
Table 4, are very similar to those with the 5% constituent cap shown in Table 2.  The 
annualised returns and Sharpe ratios are almost unchanged.  However, the performance of 
the unconstrained equivalent MVP index is worse, in terms of annualised returns, Sharpe 
ratio and maximum drawdown.  This indicates that with a universe of 1,000 stocks a 
constituent cap can improve the performance of a MVP based index, but that it does not 
need to be greater than 1.0%.   
 
In Panel A of Table 4 we also present two alternative versions of the Maximum 
Diversification index,  one where the constituent weights are completely unconstrained.  The 
performance of these two indices and of the one presented in Table 2, with the 5% 
constituent weight cap are almost identical.  This suggests that the Maximum Diversification 
index construction methodology tends to spread the weights of the constituents in such a 
way that even a constituent cap of 1% makes little difference to the weights, in other words 
the process tends not to produce many constituent weights above 1%.   
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Table 4: Sensitivity analysis 

Sharpe Sortino Max % Positive

Return St. dev. Ratio Ratio Drawdown Months Alpha Beta

Diversity weighting - p=0.5 10.4% 16.2% 0.37 0.45 -49.3% 60.3% 0.71% 1.04

Minimum Variance - unconstrained 10.4% 11.0% 0.37 0.45 -49.3% 60.3% 0.71% 1.04

Minimum Variance - 1% cap 10.8% 11.8% 0.48 0.58 -36.9% 63.6% 0.41% 0.60

Maximum diversification - unconstrained 10.3% 13.9% 0.40 0.46 -41.1% 62.4% 0.20% 0.82

Maximum diversification - 1% cap 10.3% 14.0% 0.39 0.46 -41.8% 62.0% 0.19% 0.84

Risk Efficient - unconstrained 11.1% 15.3% 0.42 0.52 -56.0% 62.2% 0.30% 0.79

Risk Efficient - 1% cap 12.0% 15.7% 0.46 0.58 -51.1% 62.6% 0.29% 0.90

Risk Efficient (λ = 2) 11.5% 16.7% 0.42 0.53 -48.7% 61.0% 0.17% 1.02

Risk Efficient (λ = 10) 11.9% 16.1% 0.45 0.57 -51.8% 62.0% 0.26% 0.92

Risk Efficient (λ = 50) 11.5% 16.0% 0.43 0.54 -56.3% 61.4% 0.29% 0.86

Return St. dev. Return St. dev. Return St. dev. Return St. dev.

Diversity weighting - p=0.5 7.7% 18.1% 17.4% 16.4% 16.1% 13.3% 4.2% 16.0%

Minimum Variance - unconstrained 8.2% 12.5% 19.3% 11.9% 10.2% 9.7% 5.6% 10.4%

Minimum Variance - 1% cap 7.3% 13.8% 20.5% 12.0% 10.9% 10.0% 7.0% 11.0%

Maximum diversification - unconstrained 7.5% 16.9% 20.0% 13.6% 12.7% 11.7% 4.6% 12.4%

Maximum diversification - 1% cap 7.6% 16.6% 19.7% 13.9% 12.5% 11.8% 4.7% 12.7%

Risk Efficient - unconstrained 11.8% 15.6% 18.7% 15.8% 11.2% 15.3% 5.1% 15.6%

Risk Efficient - 1% cap 11.7% 19.4% 19.6% 14.5% 12.9% 13.5% 7.3% 15.5%

Risk Efficient (λ = 2) 9.6% 20.0% 18.6% 16.1% 14.9% 13.5% 7.0% 16.1%

Risk Efficient (λ = 10) 11.7% 19.8% 19.1% 14.9% 13.2% 13.7% 7.1% 15.7%

Risk Efficient (λ = 50) 12.6% 17.6% 18.6% 15.6% 12.3% 15.4% 5.6% 16.0%

1970s 1980s

Panel A: Full sample results (1969 to 2011)

Panel B: Annualised returns and volatility by decade

1990s 2000s

 
 
Notes:  Returns and standard deviations of returns are all annualised figures.  The alphas presented in column 8 are monthly. 
 
Table 4 also presents several versions of the Risk Efficient index, an unconstrained one and 
one with an index constituent cap of 1%, plus three more where lambda is set equal to 2, 10 
and 50.  First, the unconstrained index underperforms the Risk Efficient index with the 5% 
constituent cap presented in Table 2, by an annualised 0.4% per annum, but otherwise the 
performance is very similar.  In return terms the best performing Risk Efficient index is the 
one with a 1% constituent weight cap, which produced an annualised return of 12% and a 
Sharpe ratio of 0.46.   
 
Of the remaining Risk Efficient indices, which all have the constituent weights constrained by 
λ, the differences between them are relatively slight.  The highest annualised return and 
Sharpe ratio occurs when we set λ to 10; while the highest information ratio occurs when we 
set λ equal to 2.  In their work Amenc et al recommend setting λ to 2.  Overall, and over this 
particular sample period, we find this index to have the worst risk and return profile, but the 
difference is so small that it is probably not sufficiently significant to warrant a great deal of 
consideration.   
 
Finally, Panel B of Table 4 presents the annualised returns for each of these indices by 
decade for information. 
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6. A further decomposition of the index returns 
The results presented in section 5 indicate that investors that had constructed their equity 
portfolios along the lines of any of the alternatives considered would generally have 
outperformed a Market-cap weighted equivalent portfolio over the last four decades.  To 
understand where the performance came from we decomposed the returns of each index in 
a number of ways.   
 
6.1 The Market-Cap weighted index 
For the purposes of comparison, we began by decomposing the returns of the Market-cap 
index.  These results are presented in Appendix 1.   
 
Figure 1A in this appendix shows the three year rolling returns of the index.  Figure 1B 
shows the average weight of the Market-cap index by Beta decile.  This figure shows that 
the Market-cap index has an average 10% weighting in those 10% of stocks with the 
smallest betas (decile 1), and has the lowest average weighting of 5% to the 10% of stocks 
with the highest betas (decile 10).  Figure 1C presents analogous results with regard to the 
average weight of the Market-cap index by size.  The figure shows that on average just 
under 60% of its market capitalisation is concentrated in the largest decile of stocks.  Figure 
1D shows the exposure of the index by book-to-market.  In accounting speak, the book value 
of any asset is recorded on a company’s balance sheet as the original cost of the asset 
minus depreciation and subject to some other accounting adjustments.  A company’s book 
value is the total value of its booked assets minus its liabilities and also minus intangible 
assets like ‘goodwill’.   We will say more about this exposure in section 6.3, but for the 
moment we can simply note that the Market-cap weighted index is tilted towards stocks with 
low book values relative to their market values.  Figure 1E shows the Market-cap weighted 
index’s exposure to high and low momentum stocks.  The first momentum decile is 
comprised of those stocks whose prices have been the worst performing ten percent of 
stocks over the previous 12 months.  Conversely decile 10 is made up of the stocks who 
have been the top ten percent of stock price performers over the previous 12 months. Again 
we will say more about the meaning of these momentum exposures in section 6.3, but for 
now we can see that there is no obvious momentum bias in the Market-cap index.  Figure 1F 
presents the index’s weight by volatility decile.  The figure shows, for example, that the 
Market-cap index has an average 20% weighting to the decile of stocks with the lowest 
volatility and a 3% weighting towards those stocks with the highest volatility. Figure 1G 
shows the average monthly return on the Market-cap index in months when the market rises 
and falls.  Finally, Figure 1H shows the average weight of the Market-cap based index by 
volume decile.  On average, and unsurprisingly, the Market-cap index has a weighting of 
53% in the top decile of stocks by traded volume, and a combined average of 12% in the five 
deciles of stocks with the lowest traded volume.  
 
Taken together these results show that a Market-cap index is heavily weighted towards large 
cap stocks (by design), to the most highly liquid stocks (almost by design), but also to stocks 
with relatively low return volatility. 
 
Appendices 2 to 8, present the same results for the heuristic and optimised indices 
discussed in sections 2 and 3, but where the results are expressed relative to the Market-
cap index.  So, for example, Figure 2A in Appendix 2 shows the three year rolling returns of 
the Equally Weighted index relative to those generated by the Market-cap index; while 
Figure 2B in the same appendix, shows the average betas of the Equally Weighted index, by 
decile, relative to the average betas of the Market-cap index by decile.   
 
6.2 The three year rolling returns of the alternative indices 
The rolling three year return figures for each of the indices indicate that there are fairly 
significant periods when the alternatives underperform the Market-cap index.  With regard to 
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the heuristic indices there appear to be two such periods: in the early part of the 1970s 
(approximately 1970 to 1975) and during the high tech bubble of the 1990s (approximately 
1995 to 2000).  There is also a short period beginning in the late 1980s (1988 to 1991) 
where the Market-cap index outperforms, but only marginally. Generally speaking the 
optimised indices also underperform between 1970 and 1975, and 1995 to 2000, but also 
fairly substantially in the 1988 to 1991 period too.  The optimised index alternative that 
performs a little differently is the Risk Efficient index.  This index does not underperform in 
the early 1970s to any noteworthy degree, but underperforms substantially between 1984 
and 1987, 1990 and 1992 and then finally between 1995 and 2000. 
 
Of course, past performance is no guarantee of future performance, simply opting for the 
best performing alternative index is no guarantee of future outperformance, but even if future 
performance is superior, it seems likely that there could be times when investors could 
expect to underperform a Market-cap weighted equity index. 
 
6.3  Index factor exposures 
The analysis of the performance of equity portfolios often begins by decomposing the returns 
generated by the portfolio into four, systematic sources of return, that is, estimating how 
much of the fund’s return was due to its exposure to the ‘market’, to small cap stocks, to 
stocks with high book-to-market values, or to stocks with relatively high price momentum.  
The appendices of Figures for each index construction methodology contain information on 
their exposures to these four factors.  Figures B, C, D and E show the index tilts towards 
market risk (represented by beta), size, book-to-market value and momentum respectively. 
 
6.3.1 The market  
According to the Capital Asset Pricing Model (CAPM) the “universe of all tradable assets” is 
the only source of undiversifiable, systematic risk.  According to the theory over long periods 
of time, investors should earn a return over and above a cash return, known as a risk 
premium, simply from being passively exposed to this source of risk.  When analysing equity 
market risk to capture this source of risk, finance researchers and industry practitioners 
generally use the return on a broad index of equities as a proxy for market risk.   
 
Figure 2B in appendix 2 shows that the Equally Weighted index is overweight the top four 
high beta deciles relative to the market.  The Diversity Weighting index is overweight the 
higher beta stocks, but only marginally.  Equivalent figures for the other heuristic indices 
shows that the Equal Risk Contribution and Inverse Volatility indices are overweight the 
decile of stocks with the lowest betas.  The pattern of over and underweight beta exposures 
for the Risk Clustering index indicate a slight bias towards higher beta stocks.  Finally, the 
figures for the three optimised indices show a significant bias towards the ten percent of 
stocks with the lowest betas or exposure to market risk.  The Minimum Variance index is 
almost 70% overweight this decile of low beta stocks, while the Maximum Diversification and 
Risk Efficient indices are 42% and 18% overweight this decile of stocks respectively. 
 
These results show that the alternative indices are not all uniformly under or overweight 
market risk, as represented by beta.  But we can at least say that the three optimised indices 
are uniformly overweight low beta stocks or, alternatively, that they are underweight market 
risk. 
 
Although the CAPM remains the benchmark model of risk and return, dissatisfaction with the 
empirical performance of this model led Fama and French (1993)13

                                                           
13 Fama, E., and K. French (1993), Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 
vol. 33, 3-56. 

 to propose that 
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systematic returns were comprised of two further factors: size and book-to-market value.  
We now discuss the exposure of the indices to these two risk factors. 
 
6.3.2 Size 
A number of researchers had previously found that small cap stocks tended to outperform 
large cap stocks even though the identifiable market risk in the small cap stocks was lower 
than was evident in the large cap stocks.  In other words, there seemed to be a risk premium 
that could be earned from investing in small cap stocks that was independent of the premium 
that could be earned from being only exposed to ‘market’ risk.   
 
Figure 2C in appendix 2 shows the relative decile exposures by Market-capitalization for the 
Equally Weighted index.  Unsurprisingly the figure shows that this index is 50% underweight 
the largest ten percent of stocks.  The equivalent figures in the other appendices show that 
the Equal Risk Contribution and Inverse Volatility indices have similarly-sized underweight 
positions in the top ten percent of large stocks, 46% and 43% respectively. The Diversity 
Weighting and Risk Clustering indices are also underweight the largest ten percent of 
stocks, around 14% and 17% respectively.  Finally, the optimised indices all show a 
significant underweight position in the largest ten percent of stocks, just over 40% in each 
case.   
 
Another way of looking at the differences in the size of the stocks that comprise each index 
is shown in Figure 4.  This figure shows the average size of each index constituent for each 
index over 2011.  The Market-cap weighted average is clearly largest, but the Diversity 
weighting index, when p is set equal to 0.76, has an average index constituent 
approximately 80% of the average size of constituents in the Market-cap based index.  The 
Equal Risk, Equal Risk Contribution, Maximum Diversification and Risk Efficient indices 
comprise stocks that are on average much smaller than those that comprise the Market-cap 
index.  
 

Figure 4: Weighted average size of index constituents (2011) 
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Overall these results indicate that all of the indices are underweight large cap stocks, and 
therefore could all be said to have a bias towards small cap stocks.  This is particularly true 
of the Equal Risk Contribution, Inverse Volatility and optimised indices. 
 
6.3.3  Book-to-market value 
Researchers found that companies with a high book-to-market value tended to outperform 
those with lower book-to-market value.  Fama and French (1993) went further and 
suggested that book-to-market value was a systematic risk factor.  They argued that there 
was a risk premium that could be earned from passive exposure to stocks with a high book-
to-market value.  Such stocks are often described as ‘value stocks’ because the price being 
‘asked’ for their shares in the market is low relative to their recorded book value, by contrast 
‘growth’ stocks tend have very low book-to-market values.  Importantly, the book value of a 
company can often be very different from its market value.  For example, the book value of 
Dot.Com firms in the late 1990s was often very, very small relative to the market value of the 
same firms.  This is because these companies unlike, for example, large manufacturing firms 
had few assets, but they still had a market price that had been inflated by the irrational 
exuberance of the time.   
 
Figure 2D in appendix 2 shows the relative decile exposures by book-to-market value for the 
Equally Weighted index.  The figure shows that this index has a mild overweight position in 
those stocks with a relatively high book-to-market value.  The equivalent figures in the 
appendices indicate that the Diversity Weighting and Inverse Volatility indices also have the 
same, mild bias towards stocks with a high book-to-market value.  By contrast the Risk 
Clustering index has a slight bias towards stocks with relatively low book-to-market values.  
With regard to the optimised indices, all three are significantly overweight stocks with high 
book-to-market values.  In particular, the Risk Efficient index is 18% overweight the decile of 
stocks with the highest book-to-market values. 
 
These results indicate that these alternative indices are generally overweight high book-to-
market value stocks relative to the exposure of the Market-cap index. 
 
6.3.4 Momentum 
Fama and French (1993) first proposed size and book-to-market value as additional 
systematic sources of risk and return; in further work in the same spirit, Carhart (1997) 
identified yet another factor: momentum14

 

.  Carhart argued that there was another premium 
available to investors that could be derived from tilting portfolios towards stocks with high 
price momentum, that is, stocks that had performed relatively well compared with other 
stocks.  Essentially Carhart’s argument was that an additional and independent risk premium 
could be earned by equity portfolio managers over time that by tilting their portfolios towards 
stocks that had performed relatively well in the past (usually over the previous 12 months). 

Figure 2E in appendix 2 shows the relative decile exposures by momentum for the Equally 
Weighted index.  The over and underweight positions are relatively small, and indicate that 
this index is overweight both the decile of stocks with the lowest price momentum (decile 1) 
and that decile of stocks with the highest price momentum (decile 10).  The Diversity 
Weighting and Risk Clustering indices have similar patterns of over and underweight 
momentum exposures, but which are smaller than those for the Equally-Weighted index.  
The Equal Risk Contribution and Inverse Volatility indices are both marginally underweight 
high momentum stocks.  With regard to the optimised indices, the Minimum Variance index 
is underweight both low and high momentum stocks, and therefore overweight the middle 
momentum deciles (3 to 7).  The Maximum Diversification index is overweight the lowest and 
highest momentum deciles and marginally underweight most of the intervening momentum 
                                                           
14 Carhart, M., (1997), On persistence of mutual fund performance. Journal of Finance vol. 52, 57-82. 
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deciles.  However, the most significant relative exposure is seen when we consider the Risk 
Efficient index, which is 18% overweight the decile of stocks with the lowest momentum.   
 
In summary, there does not seem to be an obvious momentum bias in the alternative indices 
where over and underweights are either relatively small, or balanced at either extreme.  The 
clear exception to this narrative however, is the Risk Efficient index which is quite heavily 
tilted towards low momentum stocks. 
 
6.3.5 The impact of factor tilts on index returns 
The return produced by a tilt in any equity portfolio or index depends not only on the size of 
the tilt, as discussed above, but also the return to that tilt.  In other words, if there were no 
additional return available to investors from overweighting small cap stocks over time, it 
would make little difference to overall performance.  To determine the impact of the tilts to 
the four risk factors for each index and for each factor, we calculated the average value of, 
for example, being overweight small cap stocks relative to the Market-cap weighted index.  
These results are shown in Table 5.   
 

Table 5: The ‘returns’ to factor exposures 
Book to

Beta Size Market Value Momentum
Equal-weighted (2.1) -0.43% 1.31% 0.18% -0.22%
Diversity weighting (2.2) -0.09% 0.32% 0.04% -0.05%
Inverse volatility (2.3) 0.11% 1.18% 0.49% 0.03%
Equal risk contribution (2.4) -0.08% 1.24% 0.34% -0.09%
Risk clustering (2.5) -0.09% 0.39% 0.12% -0.13%
Minimum variance (3.1) -0.23% 1.20% 0.83% 0.42%
Maximum diversification weights (3.2) -0.02% 1.25% -0.08% -0.32%
Risk Efficient (3.3) -0.05% 1.32% 0.79% -1.20%  

Notes: The return value in the table represent the annualised difference between the return to the factor exposure of the 
alternative index relative to the Market-cap index. 
 
The results in Table 6 show that on the whole, the difference in the exposure of the Market-
cap index to market risk, represented by beta, and the market risk of most of the alternative 
indices led to underperformance of the alternatives relative to the Market-cap index.  The 
one exception to this general finding is the Inverse Volatility Index whose relative beta 
exposure produces a small annualised outperformance over the full sample relative to the 
Market-cap index of 0.11%.  However, in all cases the size tilts of the alternative indices lead 
to positive performance relative to the Market-cap index.  In most cases this outperformance 
is well above an annualised value of 1.0%.  A similar result is seen with regard to book-to-
market value.  While the impact of the differential exposures to this factor for the Diversity 
Weighting, Maximum Diversification and Risk Clustering indices is small or negligible, for all 
of the other indices the exposure to this factor has added quite significantly to the indices 
returns over time – this is particularly true for the Minimum Variance and Risk Efficient 
indices.  Finally, the differential exposures of the alternative indices to momentum has 
generally lead to underperformance over time.  With regard to this factor the Risk Efficient 
index underperforms by 1.20% relative to the Market-cap index.  The notable exception here 
is the Minimum Variance index where the annualised outperformance is 0.42%.   
 
Overall, our results indicate that the performance differences between the Market-cap index 
and the alternative indices is a function of a bias towards small cap stocks and to a lesser 
degree to stocks with high book-to-market values. 
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6.4 Index compositions by total volatility 
Some investors are uninterested in the factor decomposition of returns, and instead are 
more concerned with total volatility, so in addition to decomposing the indices into factor risk 
buckets, we also decomposed them by total volatility.  Each of the appendices for the 
alternative indices show the decile weights relative to the Market-cap index by total volatility.  
For example, we can see from appendix 2 Figure 2F that the Equally Weighted index has 
7% additional weight to the decile of stocks with the highest volatility.  The results show that 
the Equally Weighted index is generally overweight higher volatility stocks and underweight 
the lower volatility stocks.  The Equal Risk Contribution has a similar weight distribution with 
regard to total volatility.  The Diversity Weighting and Risk Clustering indices also tend to be 
overweight the more risky stocks – defined by total volatility – and underweight the stocks in 
the lower risk deciles relative to the Market-cap index.  The Inverse Volatility index is 
underweight by around 6.5% the decile comprising the stocks with the lowest return volatility.   
 
The Minimum Variance Portfolio index, unsurprisingly, is very overweight the lowest risk 
decile.  We find that this index allocates much more to the stocks with the lowest volatility.  
For example, compared to the Market-cap index, the MVP index has an overweight position 
of nearly 80% relative to the Market-cap index to the stocks that comprise the lowest decile 
of total return volatility.  The exposures to low volatility stocks should not be a surprise of 
course, given the construction technique, but the subsequent performance of the index does 
not appear to be consistent with the empirical prediction of modern portfolio theory, that is 
that low risk investments over long periods of time should generate relatively low returns.  
The Maximum Diversification index also produces an interesting allocation to the risk 
deciles.  The distribution of total volatility risk exposures are very similar to those of the 
Equally Weighted and other heuristic indices, with more exposure to higher volatility stocks 
and less to lower risk stocks.  Finally, the pattern of risk exposures for the Risk Efficient 
index is also relatively complicated. It produces overweight exposures in the lowest total 
volatility decile, where the average overweight is 12%. But the index is underweight risk 
deciles 2 to 5, overweight risk deciles 6 to 9, and then marginally underweight the highest 
risk decile.  However, given that the Risk Efficient index is based upon the semi deviation of 
stock returns, we have introduced an additional Figure, Figure 9I, for this index breaking 
down exposure into semi-deviation deciles.  The figure shows a different profile, in particular 
a relatively large overweight position in the top semi-deviation decile of 15%, which is a clear 
reflection of the index construction methodology. 
 
6.5 Summary 
The results presented in this section of the report confirm that alternative weighting schemes 
would have produced a better risk-adjusted performance for long only US equity investors 
over the long-term and most strikingly over the Noughties than by weighting constituents by 
their Market-capitalisation.  However, during the long bull market of the 1990s, the Market-
cap based index outperformed all the other alternatives.  Generally speaking, the alternative 
indices allocate more weight to stocks with lower realised historic, volatility as well as to 
smaller stocks and to stocks with high book-to-market values. 
 
In the next section of this paper we try to determine whether the performance differences are 
due to luck or to intelligent design. 
 
7. Fooled by randomness15

It is unlikely that any of the index construction techniques examined in Section 6 would have 
produced identical results.  In other words, there was always going to be one index that was 
going to be the best risk-adjusted performer and one that was going to be the worst.  

 

                                                           
15 Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets, Nassim Nicholas Taleb. 
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Perhaps unfortunately for US equity investors benchmarked against a Market-cap weighted 
index, our results show that this was the worst performer. 
 
In his book Fooled by Randomness, Nassim Taleb warns us that financial market 
participants often mistake unsystematic, random events for systematic and explicable 
phenomena.  Or as Professor Taleb puts it: 
 
"If one puts an infinite number of monkeys in front of (strongly built) typewriters and lets 
them clap away (without destroying the machinery), there is a certainty that one of them will 
come out with an exact version of the 'Iliad.' Once that hero among monkeys is found, would 
any reader invest [their] life's savings on a bet that the monkey would write the 'Odyssey' 
next?" 
 
7.1  A simian experiment 
To try to distinguish between ‘luck and design’ we set up an experiment.  Instead of 
determining weights at the end of each calendar year using the techniques described in 
Sections 2 and 3, and then forming the index every year using the appropriate weights, we 
employed a more random approach.  In essence we programmed the computer to simulate 
the stock picking abilities of ten million monkeys.   
 
More precisely, at the end of each year the computer chose, at random, a stock from the 
1,000 available.  This stock was then assigned a weight of 0.1% and placed back in to the 
pool of 1,000.  The computer then chose, randomly the next stock, this stock was also 
assigned a weight of 0.1% and placed back into the pool and so on.  This process was 
repeated 1,000 times until the weights of all of the chosen stocks summed to 100%.  If the 
computer had chosen the same stock twice its weight in the index that year would have been 
0.2%, if it had chosen the same stock three times, its weight in the index that year would 
have been 0.3%, and so on.  If the computer did not choose the stock once in the 1,000 
draws, its weight in the index would have been zero.  At the other extreme, if the computer 
had chosen exactly the same stock 1,000 times then that year this stock would have 
comprised 100% of the index (though the odds against this happening are almost 
incomprehensible).  This process was repeated ten million times for every year in our 
sample.  In other words the computer generated ten million indices where the weights might 
as well have been chosen by Taleb’s monkeys. 
 
Figure 5 shows how many of the ten million monkeys managed to outperform the Market-
cap index and the other alternatives.  The dotted lines represent the terminal values of $100 
invested at the start of the sample period in one of the alternative indices.  The Risk Efficient 
index produces the best terminal value of just under $11,000, while the Inverse Volatility 
index comes a close second.  The worst performing index in this context is the Market-cap 
index which produces a terminal wealth value of just under $5,000.  The black line in the 
Figure represent the distribution of terminal wealth values produced by the ten million 
monkeys.  The grey line in the Figure represents the cumulative frequency of the terminal 
wealth values produced by the monkeys.  Half of the monkeys produced a terminal wealth 
value greater than $8,700; 25% produced a terminal wealth value greater than $9,100; while 
10% produced a terminal wealth value greater than $9,500. 
 
Perhaps the first point to make with regard to this Figure is that nearly every monkey beats 
the performance of the Market-cap index.  However, these indices, constructed on the basis 
of randomly chosen constituent weights, also tend to be vastly superior to most of the other 
approaches to index construction too.  Only four manage to perform better than half of the 
monkeys.  The first is the Equally Weighted index where the modal performance is 
understandably almost equivalent.  However, the three indices that manage to outperform 
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most of the ten million random performers are the Equal Risk Contribution, Inverse Volatility 
and Risk Efficient indices.   
 
The second point to make with regard to Figure 5, and with regard to the outperformance of 
the alternative indices, is that it is not so much that the alternative index techniques are good 
(though three seem to be) it is more the fact that the Market-cap approach has represented 
a very bad investment strategy (particularly since the late 1990s as Table 2 shows). 
 

Figure 5: The distribution of the monkeys’ terminal wealth values (1,000 picks) 
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But a high risk-adjusted return should be the real goal of all investors.  Figure 6 shows the 
distribution of Sharpe ratios produced by the ten million random simulations, and also the 
Sharpe ratios produced by the various indices. Half of the monkeys produced a Sharpe ratio 
greater than 0.38; 25% produced a Sharpe ratio greater than 0.39; while 10% produced a 
Sharpe ratio greater than 0.4. 
 
Once again, the vast majority of simulations produce a Sharpe ratio greater than that 
produced by the Market-cap index.  However, the Maximum Diversification, Equal Risk 
Contribution, Inverse Volatility and Risk Efficient indices all produce Sharpe ratios that are 
greater than those produced by most of the monkeys.  But the stand out Sharpe ratio 
performance was produced by the Minimum Variance Portfolio index, which generated a 
Sharpe ratio greater than that produced by any of the monkeys. 
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Figure 6: The distribution of the monkeys’ Sharpe ratios 
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Figure 7: Proportion of monkeys beating Market-cap on three year rolling basis 
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The results presented in Figures 5 and 6 are a damning indictment of the practice of Market-
cap weighting equity indices.  But do monkey always win?  Figure 7 shows the proportion of 
random simulations that beat the Market-cap index on a rolling three year basis.  Once 
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again, there are a number of periods when the Market-cap index performs well.  Between 
1972 and 1975; for most of the period between 1998 and 1992; and then again between 
1996 and 2001, the Market-cap index outperforms 100% of the random simulations.  
However, having said this, the random simulations outperform the Market-cap index over 
three year overlapping periods 60% of the time. 
 
One of the reasons why the randomly weighted indices rarely produce a set of weights 
similar to the Market-cap index is that there is only a very small prospect of any stock having 
a weight as high as, for example, 10.0%.  For this to happen the same stock would have to 
be chosen 100 times.  To see whether the process itself could be biasing the results against 
the Market-cap index we re-ran the experiment, but using just 100 picks instead of 1,000, so 
that every stock that was picked would be assigned a constituent weight of 1%, etc.  In this 
way a stock would only need to be picked ten times to have an index weight of 10% the 
following year.  However, we found that even with this approach the Market-cap index 
outperforms only a very small proportion of the ten million randomly generated indices16

 
.   

7.2  Summary 
The results in this section suggest that a random process for choosing equity index weights  
would have often outperformed more “intelligent index designs”, but in particular, such an 
“unintelligent” approach would nearly always have outperformed the Market-cap based 
approach to the formulation of constituent weights. 
 
8. Can timing indicators improve performance? 
In their paper of last summer Sengupta et al proposed the possible use of ‘timing indicators’ 
as a way of improving the risk return outcome for long only equity investors.  There are a 
number of such techniques.  Using the S&P500 index, Clare et al (2012a)17

 

 explore a range 
of aspects of these rules.  They find that a simple, low frequency trend following approach to 
long only US equity investing can generate better risk-adjusted returns than a comparable 
passive holding in a Market-cap index and that other, more complicated rules do not perform 
as well.  In addition, they find that the performance of more complex rules is often 
undermined anyway once transactions costs are taken into account.   

8.1 The application of a trend following filter 
Trend following is a popular investment technique among CTAs and amongst quantitative, 
systematic investors more generally. Using simple trend following principles it has been 
shown that average asset class returns can be enhanced compared to passive alternatives 
and that volatility can be much reduced, typically by as much as one third, compared to the 
passive alternative.  For recent evidence of these techniques, over a range of asset classes 
and historic periods see Faber (2007)18 and Clare et al (2010 and 2012b)19

 
. 

We applied a trend following rule to all of the indices explored in Table 2.  The rule that we 
applied was very simple:   
 

                                                           
16 We experimented with a number of other variations of the original random experiment, including picking from sets of actual 
market cap weights and reassigning these weights randomly each year, etc.  But ultimately the results were largely unaffected. 
17 Clare et al (2012a).  Breaking into the Blackbox: Trend Following, Stop Losses, and the Frequency of Trading: The Case of 
the S&P500.   http://ssrn.com/abstract=2126476. 
18 Faber, M., (2007). “A Quantitative Approach to Tactical Asset Allocation”, Journal of Investing, 16, 69-79. 
19 ap Gwilym et al (2010). "Price and Momentum as Robust Tactical Approaches to Global Equity Investing", Journal of 
Investing, 19, 80-92.  Clare, et al (2012b).  The Trend is Our Friend: Risk Parity, Momentum and Trend Following in Global 
Asset Allocation.   http://ssrn.com/abstract=2126478. 
 

https://cassmail.city.ac.uk/owa/redir.aspx?C=S1Zy7Mcow0u8wMNEeUiLGBK1Pjzcys9IPNybs7Vb21aEVa6kom7gYFFWFjOU_alj7aBGfd0Oymo.&URL=http%3a%2f%2fssrn.com%2fabstract%3d2126476�
https://cassmail.city.ac.uk/owa/redir.aspx?C=S1Zy7Mcow0u8wMNEeUiLGBK1Pjzcys9IPNybs7Vb21aEVa6kom7gYFFWFjOU_alj7aBGfd0Oymo.&URL=http%3a%2f%2fssrn.com%2fabstract%3d2126478�
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• at the end of the month if the index value was greater than its ten month moving 
average20

• but if at the end of the month the index value was lower than its ten month moving 
average, we ‘invested’ 100% in US T-bills and earned the T-bill return in the following 
month. 

, we ‘invested’ 100% in the equity index and earned the return on that index 
in the following month;  

 
The results shown in Table 7 were generated by applying this technique to each index.  
They are therefore directly comparable to those presented in Panel A of Table 2.  The 
process has its biggest impact upon the Market-cap weighted index.  The annualised return 
on this index rises by over one percentage point and the Sharpe ratio rises from 0.32 to 
0.46.  But the index with the highest annualised return is now the MVP index, which rises 
from 10.8% to 11.6%.  Column 3 in Table 6 presents the annualised standard deviation of 
the returns produced by these indices with the application of the filter.  These figures are all 
around a third lower than the equivalent figures presented in Table 2 for the unfiltered 
indices.  This represents a substantial reduction in volatility compared with the passive 
alternatives.  The annualised standard deviation of the returns on the Minimum Variance 
Portfolio falls to 8.7%, which is comparable to the sort of volatility experienced in bond 
portfolios.  The combination of the MVP index technique and trend following filter has 
therefore produced  “equity like returns and bond like volatility. 
 
The Sharpe ratios of all the indices also rise, with the exception of the Risk Clustering index.  
In particular, the Sharpe ratio for the MVP index rises from 0.50 to 0.69.  The monthly alphas 
of the indices now range from 0.28% (MVP index) to 0.55% (Equally Weighted and Diversity 
Weighting indices).  But perhaps the biggest difference between the results in Panel A of 
Table 2 and those in Table 6 relate to the maximum drawdown statistics.  For example, for 
the Market-cap index, the maximum drawdown more than halves from 48.5% to 23.3%.  The 
maximum drawdown statistic for the MVP index falls from 32.5% to 16.8%. 
 
The results presented in Table 6 are broadly consistent with those published in academic 
journals: compared to a passive alternative, annualised returns are either enhanced or 
unaffected by a low frequency trend following filter, while volatility, and maximum drawdowns 
are significantly reduced.  To our knowledge this is the first time trend following has been 
applied to a range of passive indices derived from the same universe of stocks.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
20 There is of course an infinite number of rules that we could have used here.  However, the main purpose of this section of 
the paper was not to experiment with different rules.  Instead its purpose was to address the proposal in Sengupta et al (2012) 
which was that market timing rules might be able to add value to the performance of an equity index over time.  The evidence 
presented in Table 7 suggests that they might.  In their work Clare et al (2012a) show that their results are largely invariant to a 
wide range moving average, trend following rules.  They found that their results were robust to the use of 6, 8, 10, 12 and 14 
month moving average rules, as were the original results reported by Faber (2007).  
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Table 6: Adding a “timing indicator” 

Sharpe Sortino Max % Positive

Return St. dev. Ratio Ratio Drawdown Months Alpha Beta

Market cap weighted 10.5% 11.6% 0.46 0.55 -23.3% 73.8% 0.7% 0.53

Equal-weighted (2.1) 10.3% 12.6% 0.41 0.50 -27.7% 71.7% 0.6% 0.55

Diversity weighting (2.2) 10.4% 11.9% 0.44 0.53 -23.4% 72.8% 0.6% 0.55

Inverse Volatility (2.3) 10.4% 11.1% 0.46 0.54 -21.8% 72.6% 0.7% 0.49

Equal risk contribution (2.4) 10.0% 11.9% 0.41 0.48 -23.2% 72.6% 0.6% 0.53

Risk clustering (2.5) 8.8% 12.2% 0.31 0.37 -25.7% 71.3% 0.5% 0.51

MVP-weighted (3.1) 11.6% 8.7% 0.69 0.80 -16.8% 76.2% 0.8% 0.28

Maximum diversification weights (3.2) 9.5% 10.6% 0.40 0.45 -20.2% 72.0% 0.6% 0.46

Risk Efficient (3.3) 11.0% 11.7% 0.49 0.61 -25.7% 73.8% 0.7% 0.45

Return St. dev. Return St. dev. Return St. dev. Return St. dev.

Market cap weighted 9.4% 11.1% 14.6% 14.0% 14.7% 12.1% 7.5% 8.3%

Equal-weighted (2.1) 8.1% 13.9% 13.9% 14.2% 13.6% 11.3% 9.1% 10.6%

Diversity weighting (2.2) 8.6% 11.7% 15.3% 14.2% 14.2% 12.0% 7.5% 8.9%

Inverse Volatility (2.3) 9.8% 12.1% 13.5% 12.8% 11.9% 10.1% 9.2% 9.5%

Equal risk contribution (2.4) 8.6% 12.8% 13.9% 13.4% 11.0% 11.3% 9.6% 9.8%

Risk clustering (2.5) 7.6% 12.6% 12.7% 14.8% 9.8% 10.9% 8.5% 10.0%

MVP-weighted (3.1) 7.7% 8.1% 19.1% 10.8% 13.3% 8.1% 6.9% 7.4%

Maximum diversification weights (3.2) 8.8% 11.3% 14.5% 12.4% 10.4% 10.3% 6.8% 7.7%

Risk Efficient (3.3) 9.8% 12.9% 14.6% 13.6% 10.1% 10.7% 10.5% 9.7%

Panel A: Full sample results (1969 to 2011)

Panel B: Annualised returns and volatility by decade

1970s 1980s 1990s 2000s

 
 
Notes:  The figures in parentheses in column 1 of the table relate to the section in the report where the index construction 
method is described.  Returns and standard deviations of returns are all annualised figures.  The alphas presented in column 8 
are monthly.  For the Diversity Weighting index (2.2) we set the parameter p equal to 0.76.  For purposes of comparison we set 
the maximum constituent weight to 5% for the Minimum Variance index (3.1), the Maximum Diversification index (3.2) and for 
the Risk Efficient Index (3.3). 
 
Figure G in appendices 2 to 9 show that the Market-cap index tends to underperform the 
alternative indices in an environment when equity values are declining – particularly the 
Inverse Volatility and optimised indices. This is just another way of identifying that the long 
term relative underperformance of the Market-cap index, particularly on a risk-adjusted 
basis, tends to come from its performance in bear or more volatile markets, where the 
Noughties are a good example.  The trend following filter reduces the downside risk in all of 
these indices, but this has a particularly pronounced effect with the Market-cap index 
because it seems to suffer most when the equity market turns down.  
 
Panel B of Table 6 shows the annualised returns and volatilities of each index where we 
have applied the trend following market timing rule.  One obvious concern about applying a 
trend following rule like this might be “what happens when the market isn’t trending?” The 
Noughties were a difficult time for global equities.  They peaked at around the start of this 
period and were still well below this peak by the end of the sample period.  If anything they 
trended down over this period.  But when we compare the annualised returns for the 
Noughties in Panel B of Table 2, with those in Panel B of Table 6 we can see that in all 
cases annualised returns are higher in the Noughties with the trend following filter than 
without it.  In particular the Market-cap index has an annualised return of 0.4% before the 
application of the trend following filter, but an annualised return of 7.5% with the addition of 
this filter.  The results in Table 6 therefore suggest a further alternative to a straightforward, 
passive investment in a Market-cap index.  This could be a passive investment in a Market-
cap index, along with the application of a trend following filter (derivative products can 
achieve this relatively easily and cheaply). There may be a number of advantages to this 
approach: 
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• First, investors get all of the well known benefits of investing in a Market-cap 
weighted index, outlined by Sengupta et al (2012).   
 

• And second, if there were to be another equity bull market the trend following rule, 
applied to a market-cap index, would leave investors 100% invested in the best 
performing long only equity index type in this scenario, while at the same time 
providing them with some protection against the downside risks that discourages 
many investors from investing in equity markets. 

 
8.2 Summary 
The results in this section demonstrate that the application of a simple, mechanical risk on, 
risk off market timing indicator can significantly enhance the risk-return trade off for investors 
that simply wish to track an equity index. 
 
9. Traded volumes and transactions costs 
9.1  Trading volumes 
One of the perceived advantages of a Market-cap based index is that it allocates weights 
towards the largest stocks that tend to have the highest traded volumes, meaning that a 
portfolio based upon that index should be more liquid than, for example, an index based on 
equal weights.  Figure H in each of the appendices shows the average exposure of the 
alternative indices by volume decile, relative to the composition of the Market-cap index. 
 
Each of the heuristic alternative indices have a very large underweight to the stocks with the 
highest traded volume (decile 10), with a relatively similar overweight to volume deciles 1 
(low volume) to 9.  The three optimised alternative indices demonstrate a different exposure 
to traded volumes.  Each has sizeable overweight exposures to the lowest four traded 
volume deciles.  This is particularly true of the Risk Efficient index which is 44% underweight 
the 10% of stocks with the highest traded volumes.   
 

Figure 8: Weighted average traded volume of index constituents 
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In Figure 8 we present a picture analogous to that shown in Figure 4.  However, this time 
each bar represents the average traded volume of the index constituents over 2011.  It is 
clear from this chart that the average traded volumes of the stocks in most of the alternative 
indices is substantially lower than those for the Market-cap index.  Only the Diversity 
Weighting and Risk Clustering indices have average figures that are comparable to that of 
the Market-cap index. 
 
This Figure shows clearly that one of the implications of choosing to benchmark one’s 
portfolio against an alternative index would be a portfolio comprising more thinly traded 
stocks. 
 
9.2  Transactions costs 
The average trading volumes shown in Figure 8 and in Figure H in each of the appendices 
give an idea of the liquidity of the underlying stocks of each index.  Liquidity is an important 
issue of course.  However a second related issue is transactions costs.  For any investor 
wishing to hold a US equity portfolio with one of these indices as the benchmark, one of the 
key questions is whether the trading costs of mimicking the index weights could outweigh 
any potential risk-return benefits that might exist.  We have tried to give an indication of the 
scale of the likely costs of mimicking these indices by calculating an average annual turnover 
statistic for each index.  We calculate the annual one-way turnover statistic for all of the  
indices, including the Market-cap index.  In Table 7 we have provided a simple example of 
how the statistic has been calculated.  In this example, the annual turnover of the portfolio 
consisting of these five stocks between year 1 and year 2 is 50%. 
 

Table 7: Example of turnover calculation 

 
Stock A Stock B Stock C Stock D Stock E 

 Year 1 50% 25% 15% 10% 

  Year 2 0% 30% 20% 10% 40% 

 Turnover 50% 5% 5% 0% 40% 50% 

 
In Figure 9 we have presented the average, annual one-way turnover statistics for each 
index.  The Figure shows that the index with the lowest turnover – by far – is the Market-cap 
based index, which turns over approximately 5% on average every year.  The Diversity 
Weighting index, also has very low annual turnover at just under 8.5% every year.  The 
Equally Weighted, Equal Risk Contribution and Inverse Volatility indices have turnover of 
around 19%, 17% and 16% respectively, all much higher than the Market-cap index.  
However, the turnover of the Risk Clustering index and the optimised indices is very high 
compared to the Market-cap benchmark.  The highest turnover of these is the Risk Efficient 
index which has average turnover of almost 66%. 
 
Of course turnover is only half of the story – if the costs of buying and selling stocks were 
zero, turnover would matter little.  Could trading costs have reduced the performance 
advantages of the alternative indices?  The answer is yes, but it seems unlikely to us that it 
would be enough to eliminate the return outperformance of most of the alternative indices.  It 
is impossible to know the trading costs that would have been involved in mimicking any of 
these index strategies in the past, particular in the 1970s and 1980s.  However, to put it into 
perspective, if an alternative index outperformed a completely costless Market-cap index by 
2.0% per year with turnover of 50% per year, then the average bid ask spread on the stocks 
would need to be 4.0%, which is extremely high, to eliminate the performance difference. 
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To illustrate the issue further, consider the Risk Efficient index which has the highest 
turnover.  Over the sample period it outperforms the Market-cap index by 2.1% with 
additional turnover of approximately 60%.  For transactions costs to have eliminated 
completely the additional return, the average bid-ask spread on US equities would have had 
to have average 3.3% over the full sample period.  Furthermore, over the Noughties (where 
we probably can make a more reasoned guess at average spreads) the turnover of the 
Market-cap index was 5.5%, and the turnover of the Risk Efficient index was 65%.  But the 
Risk Efficient Index outperformed the Market-cap index by 5.2% over this period.  If the bid-
ask spread on US stocks had averaged just over 8.5% over this period then the after 
transactions costs performance of the Market-cap and Risk Efficient indices would have 
been approximately the same.   
 

Figure 9: Average, annual ‘one-way’ turnover statistics 
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Our results show that some alternative indices involve much more turnover than others, but 
also that trading costs would have needed to be implausibly high to have eliminated all of the 
return advantage of the alternative indices over the lower turnover Market-cap index, 
particularly during the Noughties. 
 
 
10. Summary  
 
We find that all of the alternative indices considered in this paper would have produced a 
better risk-adjusted performance than could have been achieved by having a passive 
exposure to a Market-capitalisation weighted index.  Our research shows that it is not so 
much that these alternative indices are well designed, indeed, in many cases a random 
choice of constituent weights would often have produced a superior performance than that 
generated by the alternative indexing techniques.  Instead, the most important result of this 
paper is that since the late 1990s the market-capitalisation weighted index has proved to be 
a relatively unsuccessful investment strategy. 
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Appendix 1: Market-capitalisation weights 
 
                     Figure 1A: 3-Year Rolling Performance                                Figure 1B: Mean Weight by Beta Decile  

  
                   Figure 1C: Mean weight by size decile                               Figure 1D: Mean Weight by BTMV Decile 

   
               Figure 1E: Mean Weight by Momentum Decile                        Figure 1F: Mean Weight by Volatility Decile 

  
                        Figure 1G: Up/Down capture                                          Figure 1H: Mean Weight by Volume Decile 
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Notes: In Figure 1B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 1C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 1D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 1E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 1F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 1H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 2: Equal weight – relative to Market-cap 
              
             Figure 2A: 3-Year Relative Rolling Performance                     Figure 2B: Mean Weight by Beta Decile 

  
                 Figure 2C: Mean weight by size decile                                  Figure 2D: Mean Weight by BTMV Decile 
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                Figure 2E: Mean Weight by Momentum Decile                        Figure 2F: Mean Weight by Volatility Decile 

  
                              Figure 2G: Up/Down capture                                    Figure 2H: Mean Weight by Volume Decile 

  
 
Notes: In Figure 2B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 2C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 2D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 2E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 2F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 2H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 3: Diversity weighting (p=0.76) – relative to Market-cap 
 
              Figure 4A: 3-Year Relative Rolling Performance                        Figure 4B: Mean Weight by Beta Decile                

  
                        Figure 4C: Mean weight by size decile                              Figure 4D: Mean Weight by BTMV Decile 

  
              Figure 4E: Mean Weight by Momentum Decile                       Figure 4F: Mean Weight by Volatility Decile                            

  
                        Figure 4G: Up/Down capture                                            Figure 4H: Mean Weight by Volume Decile 

   
 
Notes: In Figure 4B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 4C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 4D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 4E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 4F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 4H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 4: Inverse volatility – relative to Market-cap 
  
            Figure 6A: 3-Year Relative Rolling Performance                         Figure 6B: Mean Weight by Beta Decile 

  
                   Figure 6C: Mean weight by size decile                                  Figure 6D: Mean Weight by BTMV Decile 

   
                  Figure 6E: Mean Weight by Momentum Decile                     Figure 6F: Mean Weight by Volatility Decile 

  
                            Figure 6G: Up/Down capture                                      Figure 6H: Mean Weight by Volume Decile 

  
 
Notes: In Figure 6B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 6C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 6D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 6E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 6F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 6H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 5: Equal risk contribution – relative to Market-cap 
 

         Figure 3A: 3-Year Relative Rolling Performance                    Figure 3B: Mean Weight by Beta Decile 

  
                    Figure 3C: Mean weight by size decile                                  Figure 3D: Mean Weight by BTMV Decile 

  
                Figure 3E: Mean Weight by Momentum Decile                       Figure 3F: Mean Weight by Volatility Decile                            

  
                         Figure 3G: Up/Down capture                                             Figure 3H: Mean Weight by Volume Decile 

   
 
Notes: In Figure 3B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 3C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 3D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 3E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 3F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 3H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 6: Risk clustering – relative to Market-cap 
 

              Figure 5A: 3-Year Relative Rolling Performance                    Figure 5B: Mean Weight by Beta Decile 

  
                        Figure 5C: Mean weight by size decile                                 Figure 5D: Mean Weight by BTMV Decile 

   
                 Figure 5E: Mean Weight by Momentum Decile                    Figure 5F: Mean Weight by Volatility Decile                           

  
                           Figure 5G: Up/Down capture                                         Figure 5H: Mean Weight by Volume Decile 

   
 

Notes: In Figure 5B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 5C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 5D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 5E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 5F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 5H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 7: Minimum Variance Portfolio (5% weight cap) – relative to Market-cap 
     
              Figure 7A: 3-Year Relative Rolling Performance                         Figure 7B: Mean Weight by Beta Decile 

  
Figure 7C: Mean weight by size decile              Figure 7D: Mean Weight by BTMV Decile                            

   
             Figure 7E: Mean Weight by Momentum Decile                        Figure 7F: Mean Weight by Volatility Decile 

  
                          Figure 7G: Up/Down capture                                       Figure 7H: Mean Weight by Volume Decile 

   
 
Notes: In Figure 7B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 7C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 7D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 7E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 7F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 7H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 8: Maximum Diversification (5% weight cap) – relative to Market-cap 
     
              Figure 8A: 3-Year Relative Rolling Performance                    Figure 8B: Mean Weight by Beta Decile      

  
                   Figure 8C: Mean weight by size decile                                  Figure 8D: Mean Weight by BTMV Decile 

  
               Figure 8E: Mean Weight by Momentum Decile                      Figure 8F: Mean Weight by Volatility Decile 

  
                           Figure 8G: Up/Down capture                                          Figure 8H: Mean Weight by Volume Decile        

  
 
Notes: In Figure 8B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 8C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 8D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 8E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 8F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 8H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume. 
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Appendix 9: Risk Efficient (5% weight cap) – relative to Market-cap 
 
              Figure 9A: 3-Year Relative Rolling Performance                      Figure 9B: Mean Weight by Beta Decile                    

  
                         Figure 9C: Mean weight by size decile                           Figure 9D: Mean Weight by BTMV Decile 

   
              Figure 9E: Mean Weight by Momentum Decile                      Figure 9F: Mean Weight by Volatility Decile 

  
                            Figure 9G: Up/Down capture                                      Figure 9G: Mean Weight by Volume Decile   
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Appendix 9: Risk Efficient (5% weight cap) – relative to Market-cap (continued) 

 
   Figure 9I: Mean Weight by semi-deviation Risk Decile 

   
 
Notes: In Figure 9B: decile 1 contains the 10% of stocks with the lowest beta, decile 10 contains the 10% of stocks with highest 
beta.  In Figure 9C: decile 1 contains the smallest 10% of stocks, decile 10 the largest 10% of stocks.  In Figure 9D: decile 1 
contains the 10% of stocks with the lowest book-to-market-value, decile 10 contains the 10% of stocks with highest  book-to-
market-value.  In Figure 9E: decile 1 contains the 10% of stocks with the lowest return momentum, decile 10 contains the 10% 
of stocks with greatest return momentum.  In Figure 9F: decile 1 contains the 10% of stocks with the lowest volatility, decile 10 
contains the 10% of stocks with greatest volatility.  In Figure 9H:  decile 1 contains the 10% of stocks with the lowest traded 
volume, decile 10 contains the 10% of stocks with greatest traded volume.  In Figure 9I: decile 1 contains the 10% of stocks 
with the lowest semi-deviation, decile 10 contains the 10% of stocks with greatest semi-deviation. 


