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Abstract

We use the Dunkl operator approach to construct one dimensional integrable models de-
scribing N particles with internal degrees of freedom. These models are described by a general
Hamiltonian belonging to the center of the Yangian or the reflection algebra, which ensures that
they admit the corresponding symmetry. In particular, the open problem of the symmetry is
answered for the BN -type Sutherland model with spin and for a generalized BN -type nonlinear
Schrödinger Hamiltonian.
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Introduction

The introduction of internal degrees of freedom in an increasing number of one dimensional quan-

tum integrable systems has proved to be fruitful in various physical and mathematical investigations.

This is well illustrated in the study of symmetries. In particular, the quantum Nonlinear Schrödinger

(NLS), the AN Sutherland and the AN confined Calogero models with spin were shown to admit the

Yangian symmetry [1, 2, 3, 4, 5] and this in turn allowed to find the spectrum and degeneracies.

The main idea of this article is to generalize the Dunkl operator approach of [3] in order to con-

struct a general N-body Hamiltonian which possesses the reflection algebra [6] as symmetry algebra.

A direct consequence is the integrability of the system described by this general Hamiltonian. Taking

a particular case of this general Hamiltonian, we answer the question of the symmetry of the BN

Sutherland model with spin. In the same way, we exhibit the symmetry of a generalized BN -type

NLS Hamiltonian. With the same procedure, we also construct a general N-body integrable Hamil-

tonian with Yangian symmetry from which we recover the known cases of NLS and AN Sutherland

model with spin.

After recalling some known mathematical background needed in the construction of the central

elements of the Yangian [8] of gl(n), Y (n), and of the reflection algebra, B(n), in section 1, we give a

realization of these algebras in terms of transfer matrices and generators of the extended degenerate

affine Hecke algebra, A(N). Next, we prove the main theorems of section 2 which provide another

realization for each algebra B(n) and Y (n) in terms of a projector specifying the physical properties of

the wave functions occurring when we represent our setup in section 3. We identify a central element

used in section 3 (resp. section 4) to construct the general one dimensional N -particle Hamiltonian

for which we prove integrability and reflection algebra (resp. Yangian) symmetry. This is done by

representing A(N) in terms of operators (in particular Dunkl operators) acting on the space of wave

functions. Then, we particularize the former general Hamiltonian and conclude on the symmetry of

generalizations of NLS and Sutherland models.

1 Central elements of Y (n) and B(n)

We deal with the multiple tensor products
(
End(Cn)

)⊗m
where m ∈ Z≥0 will be the number of

copies necessary for the equations to make sense. For A ∈ End(Cn) and k ∈ {1, . . . ,m}, we define

Ak(u) by

Ak(u) = 1⊗k−1 ⊗ A⊗ 1⊗m−k ∈ (
End(Cn)

)⊗m
. (1.1)

1.1 Yangian Y (n)

The Yangian of gln [8], Y (n), is the complex associative algebra, generated by the unit and the

elements {t(k)
ij | 1 ≤ i, j ≤ n; k ∈ Z>0} gathered in the formal series

tij(u) = δij + λ
∑

k∈Z>0

t
(k)
ij u−k ∈ Y (n)[[u−1]] (1.1)
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subject to the defining relations

(u− v) [tij(u), tkl(v)] = λ
(
tkj(u) til(v)− tkj(v) til(u)

)
, (1.2)

where λ ∈ C is the parameter of deformation of the Yangian. Let Eij be the elementary matrix with

entry 1 in row i and column j and zero elsewhere and T (u) be defined by

T (u) =
n∑

i,j=1

tij(u)⊗ Eij ∈ Y (n)[[u−1]]⊗ End(Cn). (1.3)

Then the relations (1.2) are equivalent to the RTT relation [9]

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v) (1.4)

where

R12(u) = 1⊗ 1− λ
P12

u
, P12 =

n∑
i,j=1

Eij ⊗ Eji ∈ End(Cn)⊗ End(Cn) (1.5)

P12 is the permutation operator i.e. P12v ⊗ w = w ⊗ v, with v, w ∈ Cn.

This R-matrix, called the Yang matrix, satisfies the following properties

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (Yang-Baxter equation) (1.6)

R12(u)R12(−u) =
u2 − λ2

u2
1⊗ 1 (unitarity relation). (1.7)

Let Am be the antisymmetrizer operator in (Cn)⊗m i.e.

Am(ei1 ⊗ · · · ⊗ eim) =
∑

σ∈Sm

sgn(σ) eiσ(1)
⊗ · · · ⊗ eiσ(m)

(1.8)

where {ei|1 ≤ i ≤ n} is the canonical basis of Cn and 1 ≤ i1, . . . , im ≤ n. One can show [11] that

the following identities hold

Am T1(u) · · ·Tm(u−mλ + λ) = Tm(u−mλ + λ) · · ·T1(u) Am (1.9)

For m = n, An becomes a one-dimensional operator in (Cn)⊗n and the element (1.9) is then equal

to An times a scalar series with coefficients in Y (n) called the quantum determinant. This reads

An qdet T (u) = An T1(u) · · ·Tn(u− nλ + λ). (1.10)

A well-known result (see e.g. [10]) is that the coefficients of qdet T (u) generate the center of Y (n).
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1.2 Reflection algebra B(n)

Let Q ∈ End(Cn) be an operator such that Q2 = 1. The reflection algebra, B(n), is the complex

associative algebra, generated by the unit and the elements {s(k)
ij | 1 ≤ i, j ≤ n; k ∈ Z≥0} gathered

in the formal series

sij(u) =
∑

k∈Z≥0

s
(k)
ij u−k ∈ B(n)[[u−1]]. (1.11)

The defining relations are given by the reflection equation [6, 12]

R12(u− v) S1(u) Q1 R12(u + v) Q1 S2(v) = S2(v) Q1 R12(u + v) Q1 S1(u) R12(u− v) (1.12)

where

S(u) =
n∑

i,j=1

sij(u)⊗ Eij ∈ B(n)[[u−1]]⊗ End(Cn). (1.13)

There exists a connection between Y (n) and B(n).

Theorem 1.1 [6] Let

B(u) =
∑

k≥0

B(k)

uk
∈ End(Cn) [[u−1]]

satisfy the relation (1.12). Then, the map

φ : B(n) 7−→ Y (n)

S(u) −→ S̃(u) = T (u) B(u) QT−1(−u) Q (1.14)

defines an algebra homomorphism.

Thanks to theorem 1.1, the algebra B(n) can be seen as a subalgebra of Y (n). Then, from now on,

the generators S(u) are identified to the generators S̃(u).

By the same procedure as in [7], one can define the Sklyanin determinant

Ansdet S(u) = An

−→∏

1≤k≤n−1

(
Sk(u+λ−kλ)Rk,k+1(2u+λ(1−2k)) · · ·Rk,n(2u+λ(2−k−n))

)
Sn(u+λ−nλ)

(1.15)

where the product is ordered i.e.
−→∏

1≤k≤n−1

Xk = X1 · · ·Xn−1. Following [7], one can express the

Sklyanin determinant in terms of the quantum determinant

sdet S(u) = θ(u) qdet T (u)
(
qdet T (−u + nλ− λ)

)−1
(1.16)

where θ(u) = sdetB(u) ∈ C [[u−1]].

From theorem 1.1 and relation (1.16), one deduces that the coefficients of the Sklyanin determinant

belong to the center of B(n), which shall prove to be fundamental in establishing the reflection

symmetry.
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2 Realizations of Y (n) and B(n)

This section is the first step toward our goal. By realizing the above algebras, we will identify what

will be interpreted as Hamiltonians in the next sections.

2.1 Extended degenerate affine Hecke algebra

Let N ∈ Z≥2. The extended degenerate affine Hecke algebra, A(N), is the complex associative algebra

generated by the unit and three sets of elements denoted {di | 1 ≤ i ≤ N}, {Pi,i+1 | 1 ≤ i ≤ N − 1}
and {Qi | 1 ≤ i ≤ N} subject to the defining relations

Pi,i+1Pi+1,i+2Pi,i+1 = Pi+1,i+2Pi,i+1Pi+1,i+2 (2.1)

P2
i,i+1 = 1 (2.2)

Pi,i+1 dk =





dk Pi,i+1 k 6= i, i + 1

di+1 Pi,i+1 + β k = i

di Pi,i+1 − β k = i + 1

(2.3)

[di, dj] = 0 (2.4)

Q2
i = 1 (2.5)

QiQj = QjQi (2.6)

Qi Pk,k+1 =





Pk,k+1 Qi i 6= k, k + 1

Pk,k+1 Qk+1 i = k

Pk,k+1 Qk i = k + 1

(2.7)

Qi dk =





dk Qi k < i

−di Qi + β
∑N

j=i+1Pij

(Qi +Qj

)
+ b k = i

dk Qi + β Pik

(Qi −Qk

)
k > i

(2.8)

where

β ∈ C , b ∈ C and (2.9)

Pij = Pi,i+1 Pi+1,i+2 · · · Pj−2,j−1 Pj−1,j Pj−2,j−1 · · · Pi+1,i+2 Pi,i+1 (2.10)

The commutation relations (2.1)-(2.8) are obtained in [13] for a particular realization but here we

set them as abstract algebraic relations.

Let us note that the subalgebra of A(N) generated by {di|i = 1, . . . , N} and {Pi,i+1|i = 1, . . . , N−1}
satisfying relations (2.1)-(2.4) is the degenerate affine Hecke algebra denoted Ã(N) first introduced

in [14].

2.2 Transfer matrix

In order to realize Y (n) and B(n) in terms of the elements of A(N), we suppose that the latter

commute with P and Q. A realization of Y (n) is given by the transfer matrix [3]

T0(u) = L01(u) · · · L0N(u) ∈ End(Cn)⊗ End(Cn)⊗N (2.11)
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where

L0i(u) =
u + di

u + di − λ
R0i(u + di) =

u + di

u + di − λ

(
1− λ P0i

u + di

)
. (2.12)

The first space denoted 0 in (2.11) is called the auxiliary space. The other ones, denoted 1, . . . , N

and not displayed explicitly in T0(u) for brevity, are called the quantum spaces.

In the realization (2.11) of Y (n), the quantum determinant takes the following particular form

qdet T (u) =
N∏

j=1

u + dj

u + dj − nλ + λ
(2.13)

This realization allows us to obtain a realization of B(n) thanks to theorem 1.1 and relation (1.7)

S0(u) = T0(u) B0(u) Q0 T −1
0 (−u) Q0 (2.14)

=
u + d1

u + d1 − λ

(
1− λ P01

u + d1

)
· · · u + dN

u + dN − λ

(
1− λ P0N

u + dN

)
B0(u) Q0

× u− dN

u− dN − λ

(
1− λ P0N

u− dN

)
· · · u− d1

u− d1 − λ

(
1− λ P01

u− d1

)
Q0 (2.15)

and one can compute

sdetS(u) = θ(u)
N∏

j=1

(u + dj)(−u + dj)

(u + dj − nλ + λ)(−u + dj + nλ− λ)
(2.16)

= θ0 +
1

u

(
θ1 + 2(nλ− λ)Nθ0

)
+

1

u2

(
θ2 + 2(nλ− λ)Nθ1 + (nλ− λ)2N(2N + 1)θ0

)

+
1

u3

(
θ3 + 2(nλ− λ)Nθ2 + (nλ− λ)2N(2N + 1)θ1

+(nλ− λ)3 2N(N + 1)(2N + 1)

3
θ0 + 2θ0 H

)
+ O

(
1

u4

)
(2.17)

where

H =
N∑

i=1

d2
i (2.18)

and the coefficients θj (j = 0, 1, 2, 3) are given by the expansion

θ(u) = sdetB(u) = θ0 +
θ1

u
+

θ2

u2
+

θ3

u3
+ O

(
1

u4

)
. (2.19)

As announced earlier, we identified a central element H whose interpretation as Hamiltonian will

become explicit in sections 3 and 4.
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2.3 Projectors

We now turn to a crucial point in our construction. Let us define two operators

Λ(1) =
1

N !

N∏
j=2

(
1 + τ ′P1jP1j + · · ·+ τ ′Pj−1,jPj−1,j

)
(2.20)

Λ(2) =
1

2N

N∏
j=1

(
1 + τ ′′QjQj

)
(2.21)

where τ ′, τ ′′ = ±1. We define Λ = Λ(1)Λ(2) = Λ(2)Λ(1). One can check that the operators Λ(1),

Λ(2) and Λ are projectors. Let us remark that the products in relations (2.20) and (2.21) are not

necessarily ordered since the factors in each product commute with one another.

Lemma 2.1 For 1 ≤ i < j ≤ N and 1 ≤ l ≤ N , one has

(1− τ ′PijPij) Λ(1) = 0 (2.22)

(1− τ ′′QlQl) Λ(2) = 0 . (2.23)

Proof: Let σ ∈ SN . An equivalent definition of Λ(1) is

Λ(1) =
1

N !

N∏

k=2

(
1 + τ ′Pσ(1)σ(k)Pσ(1)σ(k) + · · ·+ τ ′Pσ(k−1)σ(k)Pσ(k−1)σ(k)

)
.

For 1 ≤ i < j ≤ N , let us choose σ so that σ(1) = i and σ(2) = j. Then, one gets

(1− τ ′PijPij)Λ
(1) = (1− τ ′PijPij)(1 + τ ′PijPij)

× 1

N !

N∏

k=3

(
1 + τ ′Pσ(1)σ(k)Pσ(1)σ(k) + · · ·+ τ ′Pσ(k−1)σ(k)Pσ(k−1)σ(k)

)
= 0 (2.24)

which proves relation (2.22). Relation (2.23) is straightforward.

In the rest of this article, we take a particular form for B(u)

B(u) = 1 + b′
Q

u
(b′ ∈ C) . (2.25)

In this case, the constant coefficient θ0 in (2.19) is 1. Let us now state the main theorem of this

section.

Theorem 2.2 If β = τ ′λ and b = −2τ ′′b′, then S(u)Λ is a realization of B(n) i.e. one gets

R00′(u− v) S0(u)Λ Q0 R00′(u + v) Q0 S0′(v)Λ = S0′(v)Λ Q0 R00′(u + v) Q0 S0(u)Λ R00′(u− v)(2.26)

The Sklyanin determinant can be computed thanks to the following formula

sdet
(S(u)Λ

)
=

(
sdetS(u)

)
Λ (2.27)
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Proof: Noting that Λ commutes with R00′ and Q0, the validity of relation (2.26) is implied by

(Λ− 1)S0(u)Λ = 0 . (2.28)

This in turn holds if
{

(Pi,i+1 − τ ′Pi,i+1) S0(u)Λ(1) = 0 , i = 1, . . . , N − 1

(QN − τ ′′QN) S0(u)Λ(2) = 0
(2.29)

Now a direct computation using the exchange relations of A(N) and the conditions on β and b allows

one to find S ′ and S ′′ such that
{

(Pi,i+1 − τ ′Pi,i+1) S0(u) = S ′0(u) (Pi,i+1 − τ ′Pi,i+1)

(QN − τ ′′QN) S0(u) = S ′′0 (u) (QN − τ ′′QN)
(2.30)

which finishes the proof of (2.28) invoking lemma 2.1. Relation (2.27) is proven using the definition

(1.15) of the Sklyanin determinant and relation (2.28).

Remark: One can verify that the validity of (2.26) actually imposes the explicit form (2.25) of B(u)

up to a normalization and the above constraints on λ and b′.
In a similar way, one can prove the following theorem. The latter encompasses the analog result

in [3]. Indeed, one recovers the situation of [3] by specifying a particular realization of the generators

of A(N).

Theorem 2.3 If β = τ ′λ, then T (u)Λ(1) is a realization of Y (n) i.e. one gets

R00′(u− v) T0(u)Λ(1) T0′(v)Λ(1) = T0′(v)Λ(1) T0(u)Λ(1) R00′(u− v). (2.31)

The quantum determinant of T (u)Λ(1) can be computed thanks to the following formula

qdet
(T (u)Λ(1)

)
=

(
qdet T (u)

)
Λ(1) (2.32)

Proof: The proof is similar to that of theorem 2.2 .

3 Hamiltonians with B(n) symmetry

In this section and the next one, we present the physical application of the above mathematical

setting. We will work in the first quantized picture with N indistinguishable particles. Let {qi|1 ≤
i ≤ N} be the coordinates and {si|1 ≤ i ≤ N} the internal degrees of freedom (or spins) of the

particles. Any si takes values in Σ = {−n−1
2

,−n−3
2

, . . . , n−3
2

, n−1
2
}. Then, the wave function of the

system is denoted φ(q1, · · · , qN |s1, · · · , sN).
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3.1 Representation of A(N) and associated Hamiltonians

We represent P , Q and the generators of A(N) as operators on the space L. This reads, for 1 ≤ i <

j ≤ N and φ ∈ L,

Pij φ(q1, · · · , qi, · · · , qj, · · · , qN |s1, · · · , sN) = φ(q1, · · · , qj, · · · , qi, · · · , qN |s1, · · · , sN) (3.1)

Pij φ(q1, · · · , qN |s1, · · · , si, · · · , sj, · · · , sN) = φ(q1, · · · , qN |s1, · · · , sj, · · · , si, · · · , sN) (3.2)

i.e. Pij (resp. Pij) is the permutation operator acting on positions (resp. spins) of the ith and jth

particles. And for 1 ≤ i ≤ N , we define

Qi φ(q1, · · · , qi, · · · , qN |s1, · · · , sN) = φ(q1, · · · , α(qi), · · · , qN |s1, · · · , sN) (3.3)

Qi φ(q1, · · · , qN |s1, · · · , si, · · · , sN) = φ(q1, · · · , qN |s1, · · · , s∗i , · · · , sN) . (3.4)

where α is a function defining the action of Qi on the position of the ith particle and ∗ represents

the action of Qi on its spin. Since Q2
i = 1 and Q2

i = 1 , one gets α(α(qi)) = qi and (s∗i )
∗ = si. Now,

we choose dl to be a Dunkl operator [17] defined as follows, for 1 ≤ l ≤ N ,

dl = a(ql)
∂

∂ql

+
l−1∑

k=1

v(ql, qk)Pkl −
N∑

k=l+1

v(qk, ql)Plk +
N∑

k=1,k 6=l

v(ql, qk)P lk + g(ql)Ql (3.5)

where P lk = QlQk Plk. For the product of Dunkl operators to be well-defined, a, v, v, g must be

C∞ functions.

Theorem 3.1 For a 6= 0 and A(x) =
∫ x dy

a(y)
invertible, the operators Pij, Qi and di as defined in

(3.1), (3.3) and (3.5) realize A(N) if and only if

α(x) = A−1(−A(x)) (3.6)

v(x, y) =
β

e−2γ
(

A(x)−A(y)
)
− 1

, γ ∈ C (3.7)

v(x, y) =
β

1− e2γ
(

A(x)+A(y)
) (3.8)

g(x) =
c− b e−2γA(x)

2sinh(2γA(x))
, c ∈ C . (3.9)

Proof: The constraints on the functions α, a, v, v and g arise from (2.3), (2.4) and (2.8). Starting

from (2.4), the idea is to cancel the coefficients appearing in front of independent operators such as

Pij or PikPjk:

a(x)
∂

∂x
v(x, y) + a(y)

∂

∂y
v(x, y) = 0 (3.10)

−v(y, z)v(x, z) + v(x, y)v(y, z) + v(x, z)v(y, x) = 0 (3.11)

whose solution is given by

v(x, y) =
C

e−2γ
(

A(x)−A(y)
)
− 1

, C, γ ∈ C
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and (2.3) imposes C = −β. The form of α, v and g are found in the same way. Then, a global check

ensures that all the remaining relations are identically satisfied.

The Dunkl operators realized as in (3.5) are independent and from (2.4), (2.18), we have

[H, di] = 0 for i = 1, . . . , N , (3.12)

which proves . Then, from (2.18), we can compute

H =
N∑

i=1

(
a(qi)

2 ∂2

∂q2
i

+ a(qi)
∂a(qi)

∂qi

∂

∂qi

)

+
∑

1≤i<j≤N


 βγ

(
Pij − β

2γ

)

sinh2
[
γ
(
A(qi)− A(qj)

)] +
βγ

(
P ij − β

2γ

)

sinh2
[
γ
(
A(qi) + A(qj)

)]



+
N∑

i=1


γ(b + c)

(
Qi − b+c

4γ

)

4 sinh2 [γA(qi)]
−

γ(b− c)
(
Qi − b−c

4γ

)

4 cosh2 [γA(qi)]


 (3.13)

Now the constructions of the previous sections get their physical meaning. Λ(1) is the projector from

L onto L
(1)
τ ′ , the space of globally τ ′-symmetric wave functions (τ ′ = 1 for symmetric and τ ′ = −1

for antisymmetric). Λ(2) is the projector from L onto L
(2)
τ ′′ , the space of wave functions such that

φ(q1, · · · , α(qi), · · · , qN |s1, · · · , s∗i , · · · , sN) = τ ′′φ(q1, · · · , qi, · · · , qN |s1, · · · , si, · · · , sN) (3.14)

And then, Λ is the projector from L onto LΛ = L
(1)
τ ′ ∩ L

(2)
τ ′′ .

Theorem 3.2 Let P ij = QiQjPij and c′ = − cτ ′′
2

. Then the effective Hamiltonian, HΛ, restricted to

LΛ, reads

HΛ =
N∑

i=1

(
a(qi)

2 ∂2

∂q2
i

+ a(qi)
∂a(qi)

∂qi

∂

∂qi

)

+
∑

1≤i<j≤N


 γλ

(
Pij − λ

2γ

)

sinh2
[
γ
(
A(qi)− A(qj)

)] +
γλ

(
P ij − λ

2γ

)

sinh2
[
γ
(
A(qi) + A(qj)

)]



+
N∑

i=1


−

γ(b′ + c′)
(
Qi + b′+c′

2γ

)

2 sinh2 [γA(qi)]
+

γ(b′ − c′)
(
Qi + b′−c′

2γ

)

2 cosh2 [γA(qi)]


 (3.15)

and admits the reflection algebra as symmetry algebra. This ensures in particular that it is integrable.

Proof: HΛ is actually HΛ for β = τ ′λ and b = −2τ ′′b′. Indeed, the explicit form above is obtained

for the values of β and b just specified and substituting P and Q for P and Q in (3.13) according

to (2.22)-(2.23). When one restricts to LΛ, Λ is no longer required on the right hand side of (3.15).
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Then, relation (2.17) and theorem 2.2 imply that HΛ admits the reflection algebra symmetry.

Integrability is proved upon expanding the Sklyanin determinant. One can show that it can be

written as

sdet (S(u)Λ) = Λ +
+∞∑

k=0

1

uk+1

[
λ(n− 1)

N∑
i=1

(
1 + (−1)k

)
dk

i + Gk(d1, . . . , dN)

]
Λ (3.16)

where Gk is a N -variable polynomial of highest degree k − 1. We denote by Ik the term between

brackets in (3.16). Since the coefficients of the Sklyanin determinant are central elements, one deduces

that

[IkΛ, IlΛ] = 0 and [IkΛ,HΛ] = 0, ∀ k, l ∈ Z≥0 (3.17)

and by paying attention to the terms of highest order in the partial derivatives in IkΛ, it is readily

seen that {I2kΛ}1≤k≤N are independent, which proves the integrability.

3.2 Physical Hamiltonians and gauge fixing

We still have to refine the form of the above Hamiltonian HΛ so that its physical interpretation will

be easier. The aim is to recover the usual physical Hamiltonian in units of ~2/2m

H = −
N∑

i=1

∂2

∂z2
i

+ V (z1, ..., zN) (3.18)

for some potential V . This can be achieved by performing a gauge transformation µ(q) and a change

of variables q = ξ(z) with q = (q1, . . . , qN), z = (z1, . . . , zN)

H = µ(q) HΛ
1

µ(q)

∣∣∣∣
q=ξ(z)

. (3.19)

We note that this does not affect the results about the symmetry and the integrability.

To get (3.18) from HΛ given in (3.15), the suitable transformations are

ξ(z) =
(
A−1(iz1), . . . , A

−1(izN)
)

(3.20)

µ(q) =
∏

1≤i≤N

√
a(qi) (3.21)

Theorem 3.3 Under the transformations (3.20)-(3.21), the potential V in (3.18) splits into an

external potential, U , and a spin potential, Vspin,

V (z) = Vspin(z) +
N∑

k=1

U(zk) . (3.22)

with

Vspin(z) = −
∑

1≤i<j≤N


 γλ

(
Pij − λ

2γ

)

sin2
[
γ
(
zi − zj

)] +
γλ

(
P ij − λ

2γ

)

sin2
[
γ
(
zi + zj

)]



+
N∑

i=1


γ(b′ + c′)

(
Qi + b′+c′

2γ

)

2 sin2 (γzi)
+

γ(b′ − c′)
(
Qi + b′−c′

2γ

)

2 cos2 (γzi)


 (3.23)
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and

U(x) =
1

4
a′

(
A−1(ix)

)2 − 1

2
a
(
A−1(ix)

)
a′′

(
A−1(ix)

)
(3.24)

where a′(x) = d a(x)
dx

.

Proof: By direct computation

To complete our discussion, we have to specify how the wave function and the relations (3.1), (3.3)

transform under the change of variables (3.20). The wave function φ′ on which H acts is given by

φ′(z1, . . . , zN |s1, . . . , sN) = φ(A−1(iz1), . . . , A
−1(izN)|s1, . . . , sN) (3.25)

It is then straightforward to see that the action of P is unchanged

Pij φ′(z1, · · · , zi, · · · , zj, · · · , zN |s1, · · · , sN) = φ′(z1, · · · , zj, · · · , zi, · · · , zN |s1, · · · , sN)

and, noting that α(A−1(iz)) = A−1(−iz), the action of Q reads

Qi φ′(z1, · · · , zi, · · · , zN |s1, · · · , sN) = φ′(z1, · · · ,−zi, · · · , zN |s1, · · · , sN) (3.26)

i.e. it is independent of α when we work with the variables zi. For wave functions in LΛ, this imple-

ments the Neumann (resp. Dirichlet) boundary condition for τ ′′ = 1 (resp. τ ′′ = −1).

We can give some comments on the form of the potentials. The term γλ
(
Pij− λ

2γ

)
/
(
sin

[
γ
(
zi − zj

)])2

expresses the usual two-body interaction between the ith and jth particles and does not break trans-

lation invariance as expected. The additional terms can be better interpreted if one imagines a

”mirror” sitting at the origin z = 0. Then, the term γλ
(
Pij− λ

2γ

)
/
(
sin

[
γ
(
zi + zj

)])2
represents the

two-body interaction between the ith particle and the ”mirror-image” of the jth particle. And the

remaining terms involving only zi accounts for the potential of the ”impurity” at the origin. These

terms clearly violate translation invariance. Indeed, defining the total momentum as usual

I = −i

N∑
i=1

∂

∂zi

(3.27)

it is readily seen that

[I, H] 6= 0 . (3.28)

We want to emphasize that this interpretation in terms of an impurity sitting at the origin and of a

”mirror-image” of the system is possible thanks to (3.26), which is actually related to the fact that

the Hamiltonian H is invariant under the space reflections zi → −zi, i = 1, . . . , N .

11



3.3 Examples

In all the above constructions, we have some freedom with the function a and the constants γ and

c′. In this section, we use this freedom to exhibit particular Hamiltonians admitting the reflection

algebra as symmetry algebra.

We work with the Hamiltonian (3.18) and from the previous section, we know that we control the

external potential U thanks to a irrespective of Vspin. Thus, we suppose that the function a is

constant so that the scalar external potential, U , vanishes.

3.3.1 BN-type Nonlinear Schrödinger Hamiltonian

Let

γ = iγ′ , λ = ig , b′ = −ib1, where γ′, g, b1 ∈ R (3.29)

Taking the limit γ′ → +∞ in (3.23) in the sense of distributions, we get

HNLS = −
N∑

k=1

∂2

∂z2
k

+ 2g
∑

1≤k<l≤N

[
δ(zk − zl)Pkl + δ(zk + zl)P kl

]
+ 2b1

N∑

k=1

δ(zk)Qk (3.30)

We know from the above results that this Hamiltonian admits the reflection algebra symmetry and

is integrable. Let us note that when acting on LΛ, we can drop the spin operators Pij, P ij, Qi in this

particular case due to the presence of the delta functions

HNLS = −
N∑

k=1

∂2

∂z2
k

+ 2gτ ′
∑

1≤k<l≤N

[δ(zk − zl) + δ(zk + zl)] + 2b1τ
′′

N∑

k=1

δ(zk) (3.31)

This is the Hamiltonian of a system of N bosonic (τ ′ = 1) or fermionic (τ ′ = −1) particles interacting

through a delta potential with coupling constant g in the presence of a delta-type impurity sitting

at the origin.

3.3.2 BN trigonometric/hyperbolic Sutherland model with spin

To recover the known integrable Hamiltonian of the BN trigonometric Sutherland model with spin

[18], we take particular values of the constants present in (3.18)-(3.23)

γ = 1 , λ = 2g , b′ + c′ = −2b1 and b′ − c′ = −2b2 where g, b1, b2 ∈ R . (3.32)

Thus, the Hamiltonian (3.18) becomes

HBtS = −
N∑

i=1

∂2

∂z2
i

− 2g
∑

1≤i<j≤N




(
Pij − g

)

sin2
(
zi − zj

) +

(
P ij − g

)

sin2
(
zi + zj

)



−
N∑

i=1

(
b1 (Qi − b1)

sin2 (zi)
+

b2 (Qi − b2)

cos2 (zi)

)
. (3.33)
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g is the coupling constant and b1, b2 parametrize the coupling with the impurity. From the general

results of the previous sections, we know that the reflection algebra is the symmetry of the Hamilto-

nian (3.33).

The Hamiltonian of BN hyperbolic Sutherland model with spin [13] is obtained by setting

γ = i , λ = 2ig , b′ + c′ = −2ib1 and b′ − c′ = 2ib2 where g, b1, b2 ∈ R (3.34)

and it takes the same form as (3.33) but for the trigonometric functions replaced by the corresponding

hyperbolic functions.

4 Hamiltonians with Y (n) symmetry

In this section, we take advantage of theorem 2.3 and just adapt all our machinery to exhibit a general

integrable Hamiltonian with Yangian symmetry which, once particularized, reproduces already known

systems such as nonlinear Schrödinger and AN Sutherland models with spin.

4.1 Representation of Ã(N) and associated Hamiltonians

It is easy to see that
∑N

i=1 d2
i also appears in the expansion of qdet T (u) in (2.13). As is customary in

the literature [1, 15, 16], the starting point is a representation of the degenerate affine Hecke algebra,

Ã(N). We keep (3.1) and (3.2) and take for the Dunkl operator

dl = a(ql)
∂

∂ql

+
l−1∑

k=1

v(ql, qk)Pkl −
N∑

k=l+1

v(qk, ql)Plk (4.1)

At this stage, we can reproduce along the same line the arguments of section 3 to state the following

theorems whose proofs are similar to that of theorems 3.1-3.2 and will not be given here.

Theorem 4.1 For a 6= 0 and A(x) =
∫ x dy

a(y)
invertible, the operators Pij and di as defined in (3.1)

and (4.1) realize Ã(N) if and only if

v(x, y) =
β

e−2γ
(

A(x)−A(y)
)
− 1

, γ ∈ C . (4.2)

Again, we can construct the effective Hamiltonian H̃Λ(1) whose properties are gathered in

Theorem 4.2 When restricted to L
(1)
τ ′ , the effective Hamiltonian

H̃Λ(1) =
N∑

i=1

(
a(qi)

2 ∂2

∂q2
i

+ a(qi)
∂a(qi)

∂qi

∂

∂qi

)
+

∑
1≤i<j≤N


 γλ

(
Pij − λ

2γ

)

sinh2
[
γ
(
A(qi)− A(qj)

)]

 (4.3)

admits the Yangian symmetry and is integrable.
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Now, performing the transformations (3.20)-(3.21) on H̃Λ(1) we get the following physical Hamiltonian

H̃ = −
N∑

i=1

∂2

∂z2
i

+ Ṽspin(z) +
N∑

i=1

U(zi) (4.4)

with U given in (3.24) and

Ṽspin(z) = −
∑

1≤i<j≤N

γλ
(
Pij − λ

2γ

)

sin2
[
γ
(
zi − zj

)] (4.5)

Remark: In the expansion of qdet T (u) in (2.13), it is easy to see that there appears the operator

N∑
i=1

di =
N∑

i=1

a(qi)
∂

∂qi

. (4.6)

Assuming that a is constant and performing the transformations (3.20)-(3.21), (4.6) becomes I given

in (3.27). We then conclude that I commutes with our general Hamiltonian H̃ so that the system is

translation invariant. In particular, this shows that the systems we will consider in the next section

with Yangian symmetry are translation invariant as expected.

4.2 Examples

Using the freedom on a and γ in exactly the same fashion as in section 3.3, we show that the Hamil-

tonian (4.4) generalizes known Hamiltonians for which the Yangian symmetry and the integrability

had already been proved:

• Nonlinear Schrödinger Hamiltonian [1] (γ = iγ′ , λ = ig , γ′, g ∈ R , γ′ → +∞)

H̃NLS = −
N∑

k=1

∂2

∂z2
k

+ 2gτ ′
∑

1≤k<l≤N

δ(zk − zl) (4.7)

• AN trigonometric Sutherland model with spin [19, 20] (γ = 1 , λ = 2g , g ∈ R)

H̃AtS = −
N∑

i=1

∂2

∂z2
i

− 2g
∑

1≤i<j≤N




(
Pij − g

)

sin2
(
zi − zj

)

 (4.8)

• AN hyperbolic Sutherland model with spin [19, 20] (γ = i , λ = 2ig , g ∈ R)

H̃AhS = −
N∑

i=1

∂2

∂z2
i

− 2g
∑

1≤i<j≤N




(
Pij − g

)

sinh2
(
zi − zj

)

 (4.9)
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Conclusion and outlooks

Starting from a representation of the extended degenerate affine Hecke algebra in terms of operators

acting on wave functions, our main results are the construction of a general N -particle Hamiltonian

and the proof that it admits the reflection algebra symmetry (theorems 2.2 and 3.2). This ensures in

particular its integrability. The Yangian counterpart of this procedure gives back well-known results.

The physical investigation of this Hamiltonian shows that it is invariant under space reflections so

that we considered wave functions whose behaviour under the action of the operator Qi is dictated by

a parameter τ ′′ = ±1. This amounts to encode a Neumann or Dirichlet boundary condition at z = 0.

However, one sees that the ”mirror-image” of the system on the half-line is relevant and cannot be

neglected if one wants to maintain the usual nontrivial two-body interactions. Of course, all this

applies to the already known systems to which our general Hamiltonian reduces in appropriate limits.

This brings us to the interesting issue of diagonalizing H. This would provide the spectrum for

apparently distinguished models (such as BN -type NLS or BN trigonometric/hyperbolic Sutherland

models), with boundary, unified by the Hamiltonian H.

Acknowledgements: We warmly thank D. Arnaudon, L. Frappat and E. Ragoucy for helpful

discussions and advice.
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