IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2000). Abstracting Numeric Constraints with Boolean
Functions. Information Processing Letters, 75(1-2), pp. 17-23. doi: 10.1016/s0020-
0190(00)00081-8

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1696/

Link to published version: https://doi.org/10.1016/s0020-0190(00)00081-8

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Abstracting Numeric Constraints with
Boolean Functions

Jacob M. Howe! and Andy King

Computing Laboratory, University of Kent, Canterbury, CT2 TNF

Abstract
A simple, syntactic algorithm for abstracting numeric constraints for groundness

analysis is presented and proved correct. The technique uses neither projection nor
temporary variables, and plugs a gap in the abstract interpretation literature.

Key words: Abstract interpretation; Compilers; Constraint programming.

1 Introduction

Groundness analysis is an important theme of logic programming and ab-
stract interpretation. Groundness analyses identify those program variables
which at run time will be bound to terms that contain no variables (ground
terms) [1,3]. For constraint languages, like CLP(R) [7], an analogous problem
is deducing which variables are definite, that is, completely fixed by the store
[2,4,5]. Groundness and definiteness are strongly related, and groundness is
often used for both concepts.

Little has been written about how to abstract numeric constraints, that is,
taking a numeric constraint as input and computing as output a Boolean
formula that accurately describes the grounding behaviour of the constraint.
For example, [4,5] just give some example groundness abstractions in a ta-
ble; no algorithm for calculating an abstraction for an arbitrary constraint is
described. In addition, [2] also explains the role of temporary variables and
projection in abstraction. The procedure is as follows: first, a numeric con-
straint, for instance, w = x + y * z, is written in three-variable form, for
example, w = x4+ v,v = y x 2, where v is a fresh, temporary variable. Sec-
ond, table lookup is used to map three-variable forms to Boolean formulae,

1 Supported by EPSRC grant GR/MOS8769.

Preprint submitted to Elsevier Preprint 10 April 2000

for example w = x +v and v = y*x z map to f; = (w < (x Av)) A (z +
(wAv))A (v (wAx)) and fo = (v < (y A z)). The grounding behaviour
of the constraint w = v + v, v = y * 2z is described by f; A fo. Third, tempo-
rary variables are removed by projection, for example, v can be eliminated by
. (fiNfo) =(w<— (xAYyA2))A(x+ (wAYA=2)).

The third step can be omitted but this typically only defers projection. Fur-
thermore, retaining the temporary variables can degrade the time and space
efficiency of many the representations of Boolean functions [1,3,5,6,8,9] that
have been proposed for groundness analysis. Projection is particularly incon-
venient for the analysis of [6] because variable elimination is not required
elsewhere in the analysis. This paper addresses these problems by presenting
a simple, syntactic algorithm for abstracting numeric constraints that neither
uses projection nor introduces temporary variables. The algorithm gives ab-
stractions which are guaranteed to be at least as precise as those given using
the three variable form method.

The paper is organised as follows: Section 2 presents a semantics for (non-
Herbrand) CLP(R) constraints. Abstraction is also formalised. Section 3 de-
tails three-variable form. Section 4 explains how abstraction can be recast as
the problem of recognising those variables in a numeric constraint which will
take a unique value when the others are grounded. Section 5 concludes.

2 Abstract Interpretation

2.1 Concrete Domain

Let R denote the real numbers and let ¥y denote the set of functor symbols
of CLP(R) [7], {+, *, /, —, abs, arccos, arcsin, cos, max, min, pow, sin},
where — is unary minus. (Binary subtraction z — y abbreviates x + (—y),
thus is not modeled directly). Let L ¢ R denote a special symbol reserved
for error handling and let V denote a denumerable set of variables. Let X
denote X U{L}. Put ¥ =R, UXy and Xy = X U V. Let T and Ty denote
the (ground) and (non-ground) terms generated from X and Xy respectively.
A valuation is a total map,) : V' — R, , and the set of valuations is denoted
U. Let D be an interpretation of the symbols of ¥. D(d) = d for all d € R, .
Each symbol f € ¥y of arity n is interpreted by D as a map f : R} — R, .
For example, + : R, x R, — R, maps numbers d;,d,; € R to their sum,
otherwise, if either d; = 1L or do = L, it maps to L. The other symbols
in Yy are interpreted in the usual way, except in the following three cases:
(d/0) = L for every d € Ry, arcsin(d) = L iff =(—1 < d < 1),arccos(d) =
1 iff =(—1 < d < 1). Let II denote the set of binary constraint symbols

{=,<}. D interprets d; = dy as the predicate which is true iff d;,dy € R
and d; = dy; D interprets d; < dy in the obvious way. Let C denote the
set of constraints generated by 7Ty and II, which is closed under conjunction
(A), existential quantification (3) and renaming (p). A valuation, ¢, naturally
extends to terms and constraints using the interpretation D. Entailment of
constraints, =, is defined by ¢; = ¢ iff Vip € W.)(c1) = 1(c2). Equivalence,
=, is defined by c;=¢, iff ¢; |E cp and ¢3 = ¢1. (C/=, £, A) is a (bounded) meet
semi-lattice with the bottom and top elements false and true, where = and A
are lifted to equivalence classes of constraints. Let P(X) denote the powerset
of X. For the purposes of abstract interpretation, the concrete domain is taken
to be the lattice (P(C/=), C, U, N).

In common with many constraint solvers, the solver of CLP(R) [7] is partial in
the sense that it can only detect the satisfiability /unsatisfiability of constraints
that become linear. To model this, let £ denote the set of linear constraints,
that is (where d € R), true, false, Y1 d; xx; = d, X0 dixx; < d € L.
L is closed under conjunction, existential quantification and renaming. The
transition system —o C (£ x C)? is defined by: (c,d A d') —o (¢",d') iff there
exists ¢ € L such that ¢ &= Nier(x; = d;), d A Nep(z; = d;)=c and "=c A ¢
(where [is a possibly empty index set). For example, (true, (y = xx*sin(z)Az =
7/2)) — (2xz = my =z xsin(z)) — ((r = y A2 %z =), true). Let —o*
abbreviate zero or more —o transitions. The transition system —o is confluent
in that if (true,c) —o* (¢, d') #o and (true,c) —o* (¢",d") +o, then ¢ = ("
and d =d". Let f : L — £ be a map such that f(c) = f(¢) iff ¢ = ¢. This
gives the (deterministic) map ¢ —o (f(¢/),d’) where (true,c)y —o* (¢, d') +o.
This is necessary to formulate abstraction as a mapping. Let C_ denote those
¢ € C of form (t = t') and such that ¢ /o (¢/,d') with ¢ = false. Let
var(o) denote the (free) variables in syntactic object o and let mvar(o) denote
the variable occurrences in syntactic object o (as a multiset), for example,
mvar(f(u,v,v)) = {u,v,v}. Let M* denote the set of singularly occurring
elements of the multiset M. Finally, let M(X) = {M|M* € P(X)}.

2.2 Abstract Domain

Groundness and groundness dependencies are often represented by Boolean
functions [1,3]. Let X denote a finite set of variables, and let Boolx denote the
set of Boolean formulae over X. Each f € Boolx represents an | X |-ary Boolean
function, so function and formula are used interchangeably. The formula AY
is sometimes written Y. A Boolean function f is positive iff X | f. Let
Posy denote the set of positive Boolean functions over X, augmented with
the logical constant false. (Posy, =, V, A) is a complete lattice — the abstract
domain. I{y,...,y,}.f abbreviates Jy; ... Jy,.f.

2.3 Abstraction and Concretisation

The concretisation map, vx: Posx —P(C/=), details how formulae represent
constraints. Concretisation is defined by

vx(f) ={[c]z |V € C.(¢cN() # false = assignx(c N) E [}

Here, assigny:C — Booly is given by assignx(c) = YA(AM{-y |y € X \Y})
and Y ={y e X |3dd € R.c — (¢,d) N |E (y = d)}. The abstraction
map, ax: P(C/=)— Posx, is defined by ax(C) = A{f € Posx | C Cvx(f)}.
ay (c) abbreviates ax ({[c|]=}).

Proposition 1 ax,vx form a Galois insertion.

Proof. By the definition of ax, there is a Galois connection. To show that it
is an insertion, it is sufficient to demonstrate that vy is injective. Suppose that
Yx(f1) = 7x(f2) and fi # f2. Then there exists g = X) A (AM{~z|z € Xa}),
where X = X; U X5 and X; N X, = (), such that (without loss of generality)
g E fi,but g £ fo. Let ¢ = AM{oz = 1 | + € X;}. Picking ¢ = true, it
is seen that assigny(c A) = g. Thus [c]l= € vx(f1), but [c]l=z ¢ vx(f2). A
contradiction. Therefore vy is injective. O

3 Computing Abstractions With Projection

C is not finite and thus vy (ax) cannot be interpreted as an algorithm for
computing vx (f) (ax(c)) for arbitrary f € Posx (¢ € C). This motivates the
translation of a constraint into three-variable form.

Definition 2 ~+ C C? is the least binary relation such that:

(1) (cANt =1t) ~ (che =tAhx=1t)ift ¢ VUR t' € VUR and
x gvar(c ANt =1);

(2) (cht=1t)~ (cANt=t"Ny=1t)ift c VUR, t' = f(t1, ..., ti, ..., tn),
t" = f(t1, .o Yy ooy ty), where t; € VUR, and y & var(c At =1');

(3) (cAt=1t)~ (cAnt'=t) iftgVUR andt' € VUR

Proposition 3 ~~ finitely terminates.

Example 4 (z = ((sin(y)/2) x2) +7) ~ (zr =u+T7Au = (sin(y)/2) x z) ~
(x=u+TAu=vxzAv=sin(y)/2) ~ (r =u+TAu=v*xzAv =w/2\w =
sin(y)) 7

Table 1
Three-variable groundness abstraction for CLP(R)

| a9 | a0
t=dxt' | VoV t=txt" | Ve (V AV
t=t 4+t fg(V, V', V”) t=—t' | VoV
t=t/d |V <V t=d/t' | V< V!
t= t’/t” fi (V, V’, V”) t= pOW(t', t") V (V’ A V”)
t=cos(t') |V« V' t=sin(t') |V« V'
t = arccos(t') | V < V' t = arcsin(t’) | V < V/
t=min(¢',t") | V.« (V' AV") || t = max(t',t") | V < (VI AV")
t=abs(t') |V« V' t< t’ true
where d € R\ {0}; t,¢',¢" € RUV; V = var(t),V' = var(t'),V" = var(t");

fi(,2) = (& (yA) Ay e (@A2) and folay,2) = fi(2,5,2) Az (@A)

A constraint ¢ € C is said to be in three-variable form iff ¢ . Let ~~* abbrevi-
ate zero or more reductions. This leads to the following abstraction technique:

Definition 5 The abstraction map a8:C — Posx is defined as follows. Sup-
pose ¢ —o (¢, d'). If ¢ |= false then oY (c) = false, else ot (c) = o (¢ Ad')
where

ot () A () ife=d N’
ol (c) = J(var() \ var(c)).o (¢) if ¢ ~* ¢ and ¢ # " A"
a®l(c) otherwise.

The reduction ¢ — (¢, d') can be performed using CLP(R) machinery [7].
Table 1 defines o'?(c) for a (non-compound) three-variable constraint c¢. To
see that aff is well-defined, let ¢ ~* ¢; and ¢ ~* ¢ . A renaming
p Y, = Y, exists with Y} = var(ey) \ var(c), Yo = var(ep) \ var(c) and
p(c1) = ca. Moreover, IYs.a§'(c2) = Ip(¥1).a¥ (p(c1)) = Ip(Y1)-p(af (1)) =
3Y1.a%¥ (1) since p is bijective and var(p(atf(c1))) \ p(Y1) = var(af¥f(c;)) \ Yi.
Intuitively, oYl is well-defined since any extra variables introduced by ~ are
eliminated. Observe ax(c) = a¥(c) for all ¢ € C.

Proposition 6 Table 1 is safe, that is, ax(c) | a®'(c), where ¢ is in three-
variable form, ¢ # ¢ A ¢" and var(c) C X.

Proof. Safety is demonstrated only for the case x = y* z; other cases may be
treated similarly. Let {x,y, 2z} C X. Assume, for the sake of a contradiction,
that there exists ¢’ € C such that assignx(z = yx2zAd) £z < (yAz). Thus
assignx(x = y*xzAc') = (~x) AyAz and (true, x = yxzAc') —o* (¢",d") where
" E (y=di) A (z = dy). Hence (¢, d") —o* ("', d") where ¢" = (v = d; * dy)
which contradicts assigny (x = yxzAc') = (mx)AyAz and the assumption. O

Observe that ay # ax™ since a¥f(x — y * (1/z) = 0) = true and ax(z —
y* (1/z)) = (y « x). Moreover, it should be noted that the table does not
accurately describe the grounding behaviour of some unusual (and specific)
constraints in three-variable form. For example, ax(z = min(y,y)) = = < v,
whereas o' (z = min(y,y)) = = < y. In practice it is expected that such
constraints will not occur, however, the table could be extended to include

these extra cases.

4 Computing Abstractions Without Projection

Abstraction may be recast as the problem of recognising those variables in
a constraint which will take a unique value when the other variables in the
expression are grounded. This is achieved precisely by the map det*. The
approach is formulated in terms of approximations to det®, and is at least as
accurate as the three-variable form method.

Definition 7 The map det* : C_ — P(V) is given by x € det*(c) iff Vo :
var(c) \ {z} — R.3ld € R, .¢(c) = (z = d).

An abstraction map could be defined in terms of det*. However, computing
this may require non-trivial symbolic manipulation of ¢. For example, det™(z =
y*(1/2)) = {x,y} requires the recognition that y * (1/2) = y/z. To build an
abstraction map in terms of a simple pattern recogniser (together with —o)
det” is approximated by a class of maps Det.

Definition 8 Det is the least set of mapsdet : C— — P (V) that satisfy (where
f S EN)

safety: det(c) C det™(c);

precision 1: if ¢ = (v =t) and c 4, then mvar(c)* Ndet*(c) C det

precision 2: if y € det(x =t) and y ¢ var(t'), then y € det(t =1');

precision 3: let ¢ = (t = f(t1,...,tiy oy tn)) and ¢ = (t = f(t1, 0 Yy ooy b)),
with y ¢ var(c), if y € det(c), then det(y = t;) \ var(c’) C det(c) and
det() \ var(y = t;) C det(c) .

(€);

The conditions in definition 8 relate to the abstraction map in the following
way. The safety condition ensures ax(c) | a$(c) if det € Det. Precision 1
guarantees a%'(c) = a%f(c) for a non-compound three-variable constraint
¢ and the compositionality properties of precision 2 and precision 3 (with
precision 1) ensures that a9 (c) = a%f(c) for arbitrary c.

Proposition 9 det* € Det.

Proof. Only precision 3 is non-trivial. Suppose that x € det*(y = t;) \ var(¢').
It is demonstrated that x € det*(c). Since y € det*(c) and = ¢ var(c'), and
given ¢ : var(c) \ {z} — R, it can be seen that there is a unique d € R such
that ¢(¢') = (y = d). Put ¢' = ¢ U{y — d}. Hence:

¢(t = f(tl, ceey ti; ceey tn))

¢I(t == f(tl, ceey ti; ceey tn))

Pt =f(t1, s Ysostn) Ny =)

¢'(y =ti)

r=d since x € det*(y = t;)

Hence x € det*(c). Similarly, the second condition holds. O

An abstraction map, parameterised by det, can now be defined.

Definition 10 The abstraction map oS C — Posy is defined as follows. Sup-
posec —o (¢, d'). If ¢ = false then aS(c) = false, else a3 (c) = a3 (¢ Ad')
where

, true ifc=(t<t)
o (c) = S adet'(¢) A adet'(¢) if c= (' N")
Novedet(e) (Vv < (var(c) \ {v})) otherwise

Theorem 11 If ¢ € C and det€Det, then ax(c) | a$(c) E a¥f(c).

Proof. The first entailment is established by demonstrating the any Boolean
formula that is entailed by % is also entailed by ay. The second entailment
is established by demonstrating that each ~» reduction results in a constraint
whose a9t abstraction is not stronger than that of the previous constraint.

The base case demonstrates that a%*(c) | a%f(c) for ¢ in the lookup table.

Consider ¢ € C such that ¢ —o (¢, d'). If ¢ |= false, the result is immediate.
Let det€Det.

To show ax (c) = a%(c), consider ¢ Ad' = ¢ A ... Aey. If ax(c) = a8 (¢;),
then ax(c) = ad(c). Suppose, for a contradiction, that ax(c;) K a% (),
for some ¢;. Then there exists f, = x < Y, where x € det(¢;) and YV =
var(c;) \ {z}, such that 3¢" € C.assignx(c; A ")}~ fr and ¢; A " £ false.
Hence assigny(c; A ") = (—x) AY. Thus for every y € Y there is e € R
such that ¢; A ' —o* (", d") and " = (y = e); indeed, it may be assumed
that Vy € Y.de € R.¢" = (y = e). By safety, since z € det(c;), for some
e eR, ¢; N |= (x = ¢€). Therefore, ¢; A " —o* (", d") —o* (¢",d"") and
" = (x =¢€'). A contradiction. Thus ax(¢;) = f, and the result follows.

To show a%(c) E a¥f(c). Let ¢ Ad = ¢; A ... A ¢,. It is enough to show
that a¥(c;) E ¥ (c;). Proof is by induction in the length of ~~. For the base

case, consider ¢’ = (t = f(tl, ..y 1n)), where f € ¥y and ¢’ + (the < case is
obvious). Suppose ot (") = (v < Y), where x ¢ Y. By inspection of Table
1, z € (mvar(d"))*. By Proposition 6, ax(c") E a¥f(¢"). Hence ax(c")
(x < Y). Let ¢ : var(c”) \ {z} — R and put ¢ = A{y = ¢(y)|y € Y'}. Hence
either " A " —o* (" d’"’> and " | false, in which case x € det™(¢”),
since (") = (x = L), or " A" —o ("', d"") and " |= (¢ = ¢), in which
case (x = e) = ¢(" AN ") = ¢(¢") and x € det™(¢"). Since = € det*(¢”), by
precision 1, x € det(¢”). By inspection of Table 1, Y = var(¢”) \ {z}. Hence

¥().

det(n)): atv

For the inductive case, suppose ¢; ~ ¢ ~* " . By hypothesis, a9 (") &
J(var(c™) \ var(c")).a¥ ("), so it is enough to show a¥(¢;) | I(var(c”) \

var(c;)).o5¢ (¢").

(1) Toshow a¥t(t = t') &= Jz.a$(x = tAx = t'). Since .08 (v = tAz = ')
= Jz.(a¥(x=t) Ao (xz =1'))
37.((Avedet(z=t)v < (var(z =t) \ {v}))
AN Auedet(z=tyu < (var(z =t') \ {u}))) = f

Suppose f): (y A Y) To show /\vedet(t t’)(v — V&I‘(t) \{ })):
(y < Y), suppose, without loss of generality, y € det(x = t'). Since

x € det(x =t'), y ¢ var(x = t'). By precision 2, y € det(t = t') and thus
the result follows.

(2) Toshow a8 (t = ') = Jy.a%(t = t"Ay = t;), where t' = f(t1,....t5, s tn),
t" = f(t1,..,y, . ty) and y ¢ var(t'). Since Jy.a¥(t = t" Ny = t;)

= 3p(ade(t =) Aodly = 1)
.- (Aveder=eryv < (var(t = 1") \ {v})))
APucaastyiu (var(y =) \ {u})))

Using precision 3, the result can be established analogously to the previ-
ous case.

(3) To show ¥t (t = t') = a$*(t' = t), where ' € RUV and t ¢ RU V.
Immediate. O

Next, a specific map in det; € Det is described. The map syntactically iden-
tifies those variables that occur once in a numeric constraint expression and
which take a unique value when the variables are grounded.

Definition 12 The map det; : C- — P(V) is defined by: dety(t = t') =
(det, () Udet, (t'))¥, where det, : Tyy — M(V) is given by (where d € R\ {0})

Table 2
Example groundness abstractions for X = {w, z,y, z}

Ci c Oét)}'f(ci) ai?“ (ci) a??t* (ci) ax(c)
w=umxx*(y+2) 1 S fi i i
w=z+w T = P f2 p) p)
w=x/0 false f3 f3 f3 f3
w=1z+z/w c4 Ja fa I5 I5
(w <z Aabs(z) <w) | s Ja fa Ja fe
detl(t) =
{t} ifteV
det, (¢') ift=—t t=ds«t', t=t/dort=d/l
det1 (t,) U det1 (t") ift=1¢ + "

dety (¢') Udety (¢') Udety (t") Udety (") if t =t «t", t = pow(¢,t")
t = min(t',t") or t = max(t',t")

dety (¢') U dety (¢") U dety (¢") ift=1/t"
det, (¢') U dety (¢) if t = abs(t'), t = cos(t') or t = sin(t')
det; (¢') if ¢ = arccos(t’) or t = arcsin(t')

Proposition 13 det; € Det.

Example 14 Consider ¢ = (x + v = x x y + z/w) and suppose ¢ — (true, c).
Observe that det; (c) = (det;(z +v)Udet; (zxy+z/w))* = (det,(x) Udet, (v) U
det; (z)Udet; (z) Udet, (y) Udet, (y) Udet, (z) Udet, (w) Udet; (w))* = {v, w, w, z,

det;

z,2,y,y,2}* = {v, z}. Hence o™ (¢) = (v < wAZAYyA2)A(z + vAwATAY).

Example 15 Table 2 details the abstractions for various constraints where
fi=w< (xAyA2), fo =, f3 = false, fi = true f5 = & < w, fo =
w <> x. The abstraction algorithms are defined in terms of —o. It is assumed
that ¢; —o (¢/,d’) and ¢, = ¢ A d'. In practice, —o is evaluated by posting the
constraint to the store and then retrieving it. The net effect is to evaluate
ground terms and to group together like terms. For example, 2 x © = cos(7) *
z+x+max(2,3) — (r = —z+ 3, true). This —o is used in this example. Note
that ax(c) E o (¢;) = oS (¢;) = o (c;). The abstractions for ¢, cs, ¢
all agree, illustrating that all methods give good accuracy. The abstractions
of ¢4 show that det; can still be strengthened. ax(cs5) shows that, in general,
systems of inequations need to be considered to compute the best abstraction.
Note that if a weaker —o were used, a stronger det could be defined to give
abstractions of a similar strength. The three variable form method would not
be so flexible.

5 Conclusion

This paper has described a simple algorithm for abstracting numeric con-
straints. This method does not introduce temporary variables, utilises avail-
able CLP(R) machinery, and is at least as precise as the three-variable method.
Whilst other works have given precise definitions of abstraction, they have not
addressed how to efficiently compute the map. This paper plugs this hole. The
algorithm can be easily implemented and has been used with the analyser in
[8]. Future work will look at the more general case of mixing Herbrand and
linear constraints.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaard. Two Classes of
Boolean Functions for Dependency Analysis. Science of Computer Programming,
31(1):3-45, 1998.

[2] N. Baker and H. Sgndergaard. Definiteness Analysis for CLP(R). Australian
Computer Science Communications, 15(1):321-332, 1993.

[3] M. Codish and B. Demoen. Analyzing Logic Programs Using “Prop”-ositional
Logic Programs and a Magic Wand. Journal of Logic Programming, 25(3):249—
274, 1995.

[4] M. Garcia de la Banda. Independence, Global Analysis, and Parallelism in
Dynamically Scheduled Constraint Logic Programming. PhD thesis, Universidad
Politécnica de Madrid, 1994.

[5] M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 18(5):564-614,
1996.

[6] A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial
Groundness Analysis for Logic Programs. Journal of Logic Programming, 2000.
Forthcoming.

[7] N. Heintze, J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R)
Programmer’s Manual Version 1.1, 1991.

[8] J. M. Howe and A. King. Implementing Groundness Analysis with Definite
Boolean Functions. In G. Smolka, editor, EFuropean Symposium on Programming,
volume 1782 of Lecture Notes in Computer Science, pages 200-214. Springer-
Verlag, 2000.

[9] A. King, J. Smaus, and P. Hill. Quotienting Share for Dependency Analysis. In
S. D. Swierstra, editor, FEuropean Symposium on Programming, volume 1576 of
Lecture Notes in Computer Science, pages 59-73. Springer-Verlag, 1999.

10

