

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2000). Abstracting Numeric Constraints with Boolean

Functions. Information Processing Letters, 75(1-2), pp. 17-23. doi: 10.1016/s0020-
0190(00)00081-8

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1696/

Link to published version: https://doi.org/10.1016/s0020-0190(00)00081-8

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Abstra
ting Numeri
 Constraints withBoolean Fun
tionsJa
ob M. Howe 1 and Andy KingComputing Laboratory, University of Kent, Canterbury, CT2 7NFAbstra
tA simple, synta
ti
 algorithm for abstra
ting numeri

onstraints for groundnessanalysis is presented and proved
orre
t. The te
hnique uses neither proje
tion nortemporary variables, and plugs a gap in the abstra
t interpretation literature.Key words: Abstra
t interpretation; Compilers; Constraint programming.
1 Introdu
tionGroundness analysis is an important theme of logi
 programming and ab-stra
t interpretation. Groundness analyses identify those program variableswhi
h at run time will be bound to terms that
ontain no variables (groundterms) [1,3℄. For
onstraint languages, like CLP(R) [7℄, an analogous problemis dedu
ing whi
h variables are de�nite, that is,
ompletely �xed by the store[2,4,5℄. Groundness and de�niteness are strongly related, and groundness isoften used for both
on
epts.Little has been written about how to abstra
t numeri

onstraints, that is,taking a numeri

onstraint as input and
omputing as output a Booleanformula that a

urately des
ribes the grounding behaviour of the
onstraint.For example, [4,5℄ just give some example groundness abstra
tions in a ta-ble; no algorithm for
al
ulating an abstra
tion for an arbitrary
onstraint isdes
ribed. In addition, [2℄ also explains the rôle of temporary variables andproje
tion in abstra
tion. The pro
edure is as follows: �rst, a numeri

on-straint, for instan
e, w = x + y � z, is written in three-variable form, forexample, w = x + v; v = y � z, where v is a fresh, temporary variable. Se
-ond, table lookup is used to map three-variable forms to Boolean formulae,1 Supported by EPSRC grant GR/MO8769.Preprint submitted to Elsevier Preprint 10 April 2000

for example w = x + v and v = y � z map to f1 = (w (x ^ v)) ^ (x (w ^ v)) ^ (v (w ^ x)) and f2 = (v (y ^ z)). The grounding behaviourof the
onstraint w = x + v; v = y � z is des
ribed by f1 ^ f2. Third, tempo-rary variables are removed by proje
tion, for example, v
an be eliminated by9v:(f1 ^ f2) = (w (x ^ y ^ z)) ^ (x (w ^ y ^ z)).The third step
an be omitted but this typi
ally only defers proje
tion. Fur-thermore, retaining the temporary variables
an degrade the time and spa
eeÆ
ien
y of many the representations of Boolean fun
tions [1,3,5,6,8,9℄ thathave been proposed for groundness analysis. Proje
tion is parti
ularly in
on-venient for the analysis of [6℄ be
ause variable elimination is not requiredelsewhere in the analysis. This paper addresses these problems by presentinga simple, synta
ti
 algorithm for abstra
ting numeri

onstraints that neitheruses proje
tion nor introdu
es temporary variables. The algorithm gives ab-stra
tions whi
h are guaranteed to be at least as pre
ise as those given usingthe three variable form method.The paper is organised as follows: Se
tion 2 presents a semanti
s for (non-Herbrand) CLP(R)
onstraints. Abstra
tion is also formalised. Se
tion 3 de-tails three-variable form. Se
tion 4 explains how abstra
tion
an be re
ast asthe problem of re
ognising those variables in a numeri

onstraint whi
h willtake a unique value when the others are grounded. Se
tion 5
on
ludes.2 Abstra
t Interpretation2.1 Con
rete DomainLet R denote the real numbers and let �N denote the set of fun
tor symbolsof CLP(R) [7℄, f+, �, =, �, abs, ar

os, ar
sin,
os, max, min, pow, sing,where � is unary minus. (Binary subtra
tion x � y abbreviates x + (�y),thus is not modeled dire
tly). Let ? =2 R denote a spe
ial symbol reservedfor error handling and let V denote a denumerable set of variables. Let X?denote X [f?g. Put � = R? [�N and �V = � [V . Let T and TV denotethe (ground) and (non-ground) terms generated from � and �V respe
tively.A valuation is a total map, : V ! R? , and the set of valuations is denoted	. Let D be an interpretation of the symbols of �. D(d) = d for all d 2 R? .Ea
h symbol f 2 �N of arity n is interpreted by D as a map f : Rn? ! R? .For example, + : R? � R? ! R? maps numbers d1; d2 2 R to their sum,otherwise, if either d1 = ? or d2 = ?, it maps to ?. The other symbolsin �N are interpreted in the usual way, ex
ept in the following three
ases:(d=0) = ? for every d 2 R? , ar
sin(d) = ? i� :(�1 � d � 1); ar

os(d) =? i� :(�1 � d � 1). Let � denote the set of binary
onstraint symbols2

f=;�g. D interprets d1 = d2 as the predi
ate whi
h is true i� d1; d2 2 Rand d1 = d2; D interprets d1 � d2 in the obvious way. Let C denote theset of
onstraints generated by TV and �, whi
h is
losed under
onjun
tion(^), existential quanti�
ation (9) and renaming (�). A valuation, , naturallyextends to terms and
onstraints using the interpretation D. Entailment of
onstraints, j=, is de�ned by
1 j=
2 i� 8 2 	: (
1)) (
2). Equivalen
e,�, is de�ned by
1�
2 i�
1 j=
2 and
2 j=
1. hC=�; j=;^i is a (bounded) meetsemi-latti
e with the bottom and top elements false and true, where j= and ^are lifted to equivalen
e
lasses of
onstraints. Let P(X) denote the powersetof X. For the purposes of abstra
t interpretation, the
on
rete domain is takento be the latti
e hP(C=�);�;[;\i.In
ommon with many
onstraint solvers, the solver of CLP(R) [7℄ is partial inthe sense that it
an only dete
t the satis�ability/unsatis�ability of
onstraintsthat be
ome linear. To model this, let L denote the set of linear
onstraints,that is (where d 2 R), true; false, Pni=1 di � xi = d, Pni=1 di � xi � d 2 L.L is
losed under
onjun
tion, existential quanti�
ation and renaming. Thetransition system (� (L � C)2 is de�ned by: h
; d ^ d0i (h
00; d0i i� thereexists
0 2 L su
h that
 j= ^i2I(xi = di), d ^ ^i2I(xi = di)�
0 and
00�
 ^
0(where I is a possibly empty index set). For example, htrue; (y = x�sin(z)^z =�=2)i (h2 � z = �; y = x � sin(z)i (h(x = y ^ 2 � z = �); truei. Let (?abbreviate zero or more(transitions. The transition system(is
on
uentin that if htrue;
i (? h
0; d0i 6(and htrue;
i (? h
00; d00i 6(, then
0 �
00and d0 � d00. Let f : L ! L be a map su
h that f(
) = f(
0) i�
 �
0. Thisgives the (deterministi
) map
 (hf(
0); d0i where htrue;
i (? h
0; d0i 6(.This is ne
essary to formulate abstra
tion as a mapping. Let C= denote those
 2 C of form (t = t0) and su
h that
 6(h
0; d0i with
0 j= false. Letvar(o) denote the (free) variables in synta
ti
 obje
t o and let mvar(o) denotethe variable o

urren
es in synta
ti
 obje
t o (as a multiset), for example,mvar(f(u; v; v)) = fu; v; vg. Let M# denote the set of singularly o

urringelements of the multiset M . Finally, letM(X) = fM jM# 2 P(X)g.2.2 Abstra
t DomainGroundness and groundness dependen
ies are often represented by Booleanfun
tions [1,3℄. Let X denote a �nite set of variables, and let BoolX denote theset of Boolean formulae overX. Ea
h f 2 BoolX represents an jXj-ary Booleanfun
tion, so fun
tion and formula are used inter
hangeably. The formula ^Yis sometimes written Y . A Boolean fun
tion f is positive i� X j= f . LetPosX denote the set of positive Boolean fun
tions over X, augmented withthe logi
al
onstant false. hPosX; j=;_;^i is a
omplete latti
e { the abstra
tdomain. 9fy1; : : : ; yng:f abbreviates 9y1 : : :9yn:f .3

2.3 Abstra
tion and Con
retisationThe
on
retisation map,
X :PosX!P(C=�), details how formulae represent
onstraints. Con
retisation is de�ned by
X(f) = f[
℄� j 8
0 2 C : (
 ^
0) 6� false) assignX(
 ^
0) j= fgHere, assignX : C!BoolX is given by assignX(
) = Y^(^f:y j y 2 X n Y g)and Y = fy 2 X j 9d 2 R :
 (h
0; d0i ^
0 j= (y = d)g. The abstra
tionmap, �X :P(C=�)!PosX , is de�ned by �X(C) = ^ff 2 PosX j C �
X(f)g.�X(
) abbreviates �X(f[
℄�g).Proposition 1 �X ;
X form a Galois insertion.Proof. By the de�nition of �X , there is a Galois
onne
tion. To show that itis an insertion, it is suÆ
ient to demonstrate that
X is inje
tive. Suppose that
X(f1) =
X(f2) and f1 6= f2. Then there exists g = X1 ^ (^f:xjx 2 X2g),where X = X1 [X2 and X1 \X2 = ;, su
h that (without loss of generality)g j= f1, but g 6j= f2. Let
 = ^fx = 1 j x 2 X1g. Pi
king
0 = true, itis seen that assignX(
 ^
0) = g. Thus [
℄� 2
X(f1), but [
℄� =2
X(f2). A
ontradi
tion. Therefore
X is inje
tive. 23 Computing Abstra
tions With Proje
tionC is not �nite and thus
X (�X)
annot be interpreted as an algorithm for
omputing
X(f) (�X(
)) for arbitrary f 2 PosX (
 2 C). This motivates thetranslation of a
onstraint into three-variable form.De�nition 2 � C2 is the least binary relation su
h that:(1) (
 ^ t = t0) (
 ^ x = t ^ x = t0) if t 62 V [R, t0 62 V [R andx 62 var(
 ^ t = t0);(2) (
 ^ t = t0) (
 ^ t = t00 ^ y = ti) if t 2 V [R, t0 = f(t1; :::; ti; :::; tn),t00 = f(t1; :::; y; :::; tn), where ti 62 V [R, and y 62 var(
 ^ t = t0);(3) (
 ^ t = t0) (
 ^ t0 = t) if t 62 V [R and t0 2 V [R.Proposition 3 �nitely terminates.Example 4 (x = ((sin(y)=2) � z) + 7) (x = u+ 7 ^ u = (sin(y)=2) � z) (x = u+7^u = v �z^v = sin(y)=2) (x = u+7^u = v �z^v = w=2^w =sin(y)) 6 . 4

Table 1Three-variable groundness abstra
tion for CLP(R)
 �tblX (
)
 �tblX (
)t = d � t0 V $ V 0 t = t0 � t00 V (V 0 ^ V 00)t = t0 + t00 f2(V; V 0; V 00) t = �t0 V $ V 0t = t0=d V $ V 0 t = d=t0 V $ V 0t = t0=t00 f1(V; V 0; V 00) t = pow(t0; t00) V (V 0 ^ V 00)t =
os(t0) V V 0 t = sin(t0) V V 0t = ar

os(t0) V $ V 0 t = ar
sin(t0) V $ V 0t = min(t0; t00) V (V 0 ^ V 00) t = max(t0; t00) V (V 0 ^ V 00)t = abs(t0) V V 0 t � t0 truewhere d 2 R n f0g; t; t0; t00 2 R [V ; V = var(t); V 0 = var(t0); V 00 = var(t00);f1(x; y; z) = (x (y^z))^ (y (x^z)) and f2(x; y; z) = f1(x; y; z)^ (z (x^y))A
onstraint
 2 C is said to be in three-variable form i�
 6 . Let ? abbrevi-ate zero or more redu
tions. This leads to the following abstra
tion te
hnique:De�nition 5 The abstra
tion map �tvfX :C!PosX is de�ned as follows. Sup-pose
(h
0; d0i. If
0 j= false then �tvfX (
) = false, else �tvfX (
) = �tvfX 0(
0^d0)where�tvfX 0(
) = 8>><>>:�tvfX 0(
0) ^ �tvfX 0(
00) if
 =
0 ^
009(var(
0) n var(
)):�tvfX 0(
0) if
 ?
0 6 and
 6=
00 ^
000�tblX (
) otherwise.The redu
tion
 (h
0; d0i
an be performed using CLP(R) ma
hinery [7℄.Table 1 de�nes �tblX (
) for a (non-
ompound) three-variable
onstraint
. Tosee that �tvfX is well-de�ned, let
 ?
1 6 and
 ?
2 6 . A renaming� : Y1 ! Y2 exists with Y1 = var(
1) n var(
), Y2 = var(
2) n var(
) and�(
1) =
2. Moreover, 9Y2:�tvfX (
2) = 9�(Y1):�tvfX (�(
1)) = 9�(Y1):�(�tvfX (
1)) =9Y1:�tvfX (
1) sin
e � is bije
tive and var(�(�tvfX (
1)))n�(Y1) = var(�tvfX (
1))nY1.Intuitively, �tvfX is well-de�ned sin
e any extra variables introdu
ed by areeliminated. Observe �X(
) j= �tvfX (
) for all
 2 C.Proposition 6 Table 1 is safe, that is, �X(
) j= �tblX (
), where
 is in three-variable form,
 6=
0 ^
00 and var(
) � X.
Proof. Safety is demonstrated only for the
ase x = y � z; other
ases may betreated similarly. Let fx; y; zg � X. Assume, for the sake of a
ontradi
tion,that there exists
0 2 C su
h that assignX(x = y � z ^
0) 6j= x (y^ z). ThusassignX(x = y�z^
0) = (:x)^y^z and htrue; x = y�z^
0i(? h
00; d00i where
00 j= (y = d1)^ (z = d2). Hen
e h
00; d00i(? h
000; d000i where
000 j= (x = d1 � d2)whi
h
ontradi
ts assignX(x = y�z^
0) = (:x)^y^z and the assumption. 25

Observe that �X 6= �X tvf sin
e �tvfX (x � y � (1=x) = 0) = true and �X(x �y � (1=x)) = (y x). Moreover, it should be noted that the table does nota

urately des
ribe the grounding behaviour of some unusual (and spe
i�
)
onstraints in three-variable form. For example, �X(x = min(y; y)) = x $ y,whereas �tblX (x = min(y; y)) = x y. In pra
ti
e it is expe
ted that su
h
onstraints will not o

ur, however, the table
ould be extended to in
ludethese extra
ases.
4 Computing Abstra
tions Without Proje
tionAbstra
tion may be re
ast as the problem of re
ognising those variables ina
onstraint whi
h will take a unique value when the other variables in theexpression are grounded. This is a
hieved pre
isely by the map det�. Theapproa
h is formulated in terms of approximations to det�, and is at least asa

urate as the three-variable form method.De�nition 7 The map det� : C= ! P(V) is given by x 2 det�(
) i� 8� :var(
) n fxg ! R:9!d 2 R? :�(
) � (x = d).An abstra
tion map
ould be de�ned in terms of det�. However,
omputingthis may require non-trivial symboli
 manipulation of
. For example, det�(x =y � (1=z)) = fx; yg requires the re
ognition that y � (1=z) � y=z. To build anabstra
tion map in terms of a simple pattern re
ogniser (together with ()det� is approximated by a
lass of maps Det .De�nition 8 Det is the least set of maps det : C= ! P(V) that satisfy (wheref 2 �N):safety: det(
) � det�(
);pre
ision 1: if
 = (x = t) and
 6 , then mvar(
)# \ det�(
) � det(
);pre
ision 2: if y 2 det(x = t) and y =2 var(t0), then y 2 det(t = t0);pre
ision 3: let
 = (t = f(t1; :::; ti; :::; tn)) and
0 = (t = f(t1; :::; y; :::; tn)),with y =2 var(
), if y 2 det(
0), then det(y = ti) n var(
0) � det(
) anddet(
0) n var(y = ti) � det(
) .The
onditions in de�nition 8 relate to the abstra
tion map in the followingway. The safety
ondition ensures �X(
) j= �detX (
) if det 2 Det . Pre
ision 1guarantees �detX (
) j= �tvfX (
) for a non-
ompound three-variable
onstraint
 and the
ompositionality properties of pre
ision 2 and pre
ision 3 (withpre
ision 1) ensures that �detX (
) j= �tvfX (
) for arbitrary
.Proposition 9 det� 2 Det. 6

Proof. Only pre
ision 3 is non-trivial. Suppose that x 2 det�(y = ti)nvar(
0).It is demonstrated that x 2 det�(
). Sin
e y 2 det�(
) and x 62 var(
0), andgiven � : var(
) n fxg ! R, it
an be seen that there is a unique d 2 R su
hthat �(
0) � (y = d). Put �0 = � [fy 7! dg. Hen
e:�(t = f(t1; :::; ti; :::; tn))� �0(t = f(t1; :::; ti; :::; tn))� �0(t = f(t1; :::; y; :::; tn) ^ y = ti)� �0(y = ti)� x = d0 sin
e x 2 det�(y = ti)Hen
e x 2 det�(
). Similarly, the se
ond
ondition holds. 2An abstra
tion map, parameterised by det,
an now be de�ned.De�nition 10 The abstra
tion map �detX :C!PosX is de�ned as follows. Sup-pose
(h
0; d0i. If
0 j= false then �detX (
) = false, else �detX (
) = �detX 0(
0^d0)where �detX 0(
) = 8>><>>: true if
 = (t � t0)�detX 0(
0) ^ �detX 0(
00) if
 = (
0 ^
00)^v2det(
)(v (var(
) n fvg)) otherwiseTheorem 11 If
 2 C and det2Det, then �X(
) j= �detX (
) j= �tvfX (
).Proof. The �rst entailment is established by demonstrating the any Booleanformula that is entailed by �detX is also entailed by �X . The se
ond entailmentis established by demonstrating that ea
h redu
tion results in a
onstraintwhose �detX abstra
tion is not stronger than that of the previous
onstraint.The base
ase demonstrates that �detX (
) j= �tvfX (
) for
 in the lookup table.Consider
 2 C su
h that
(h
0; d0i. If
0 j= false, the result is immediate.Let det2Det .To show �X(
) j= �detX (
),
onsider
0 ^ d0 =
1 ^ ::: ^
n. If �X(
i) j= �detX 0(
i),then �X(
) j= �detX (
). Suppose, for a
ontradi
tion, that �X(
i) 6j= �detX 0(
i),for some
i. Then there exists fx = x Y , where x 2 det(
i) and Y =var(
i) n fxg, su
h that 9
00 2 C:assignX(
i ^
00) 6j= fx and
i ^
00 6� false.Hen
e assignX(
i ^
00) j= (:x) ^ Y . Thus for every y 2 Y there is e 2 Rsu
h that
i ^
00 (? h
000; d000i and
000 j= (y = e); indeed, it may be assumedthat 8y 2 Y:9e 2 R:
000 j= (y = e). By safety, sin
e x 2 det(
i), for somee0 2 R,
i ^
000 j= (x = e0). Therefore,
i ^
00 (? h
000; d000i (? h
0000; d0000i and
0000 j= (x = e0). A
ontradi
tion. Thus �X(
i) j= fx and the result follows.To show �detX (
) j= �tvfX (
). Let
0 ^ d0 =
1 ^ ::: ^
n. It is enough to showthat �detX (
i) j= �tvfX (
i). Proof is by indu
tion in the length of . For the base7

ase,
onsider
00 = (t = f(t1; : : : ; tn)), where f 2 �N and
00 6 (the �
ase isobvious). Suppose �tvfX (
00) j= (x Y), where x =2 Y . By inspe
tion of Table1, x 2 (mvar(
00))#. By Proposition 6, �X(
00) j= �tvfX (
00). Hen
e �X(
00) j=(x Y). Let � : var(
00) n fxg ! R and put
000 = ^fy = �(y)jy 2 Y g. Hen
eeither
00 ^
000 (? h
0000; d0000i and
0000 j= false, in whi
h
ase x 2 det�(
00),sin
e �(
00) � (x = ?), or
00 ^
000 (h
00000; d00000i and
00000 j= (x = e), in whi
h
ase (x = e) � �(
00 ^
000) � �(
00) and x 2 det�(
00). Sin
e x 2 det�(
00), bypre
ision 1, x 2 det(
00). By inspe
tion of Table 1, Y = var(
00) n fxg. Hen
e�detX (
00) j= �tvfX (
00).For the indu
tive
ase, suppose
i
00 ?
000 6 . By hypothesis, �detX (
00) j=9(var(
000) n var(
00)):�tvfX (
000), so it is enough to show �detX (
i) j= 9(var(
00) nvar(
i)):�detX (
00).(1) To show �detX (t = t0) j= 9x:�detX (x = t^x = t0). Sin
e 9x:�detX (x = t^x = t0)= 9x:(�detX (x = t) ^ �detX (x = t0))= 9x:((^v2det(x=t)v (var(x = t) n fvg))^(^u2det(x=t0)u (var(x = t0) n fug))) = fSuppose f j= (y Y). To show ^v2det(t=t0)(v var(t = t0) n fvg) j=(y Y), suppose, without loss of generality, y 2 det(x = t0). Sin
ex 2 det(x = t0), y =2 var(x = t0). By pre
ision 2, y 2 det(t = t0) and thusthe result follows.(2) To show �detX (t = t0) = 9y:�detX (t = t00^y = ti), where t0 = f(t1; :::; ti; :::; tn),t00 = f(t1; :::; y; :::; tn) and y =2 var(t0). Sin
e 9y:�detX (t = t00 ^ y = ti)= 9y:(�detX (t = t00) ^ �detX (y = ti))= 9y:((^v2det(t=t00)v (var(t = t00) n fvg)))^(^u2det(y=ti)u (var(y = ti) n fug)))Using pre
ision 3, the result
an be established analogously to the previ-ous
ase.(3) To show �detX (t = t0) = �detX (t0 = t), where t0 2 R [V and t =2 R [V .Immediate. 2Next, a spe
i�
 map in det1 2 Det is des
ribed. The map synta
ti
ally iden-ti�es those variables that o

ur on
e in a numeri

onstraint expression andwhi
h take a unique value when the variables are grounded.De�nition 12 The map det1 : C= ! P(V) is de�ned by: det1(t = t0) =(det1(t) [det1(t0))#, where det1 : TV !M(V) is given by (where d 2 R n f0g)
8

Table 2Example groundness abstra
tions for X = fw; x; y; zg
i
0i �tvfX (
i) �det1X (
i) �det�X (
i) �X(
i)w = x � (y + z)
1 f1 f1 f1 f1w = x+ w x = 0 f2 f2 f2 f2w = x=0 false f3 f3 f3 f3w = x+ x=w
4 f4 f4 f5 f5(w � x ^ abs(x) � w)
5 f4 f4 f4 f6
det1(t) =ftg if t 2 Vdet1(t0) if t = �t; t = d � t0; t = t0=d or t = d=t0det1(t0) [det1(t00) if t = t0 + t00det1(t0) [det1(t0) [det1(t00) [det1(t00) if t = t0 � t00; t = pow(t0; t00)t = min(t0; t00) or t = max(t0; t00)det1(t0) [det1(t00) [det1(t00) if t = t0=t00det1(t0) [det1(t0) if t = abs(t0); t =
os(t0) or t = sin(t0)det1(t0) if t = ar

os(t0) or t = ar
sin(t0)Proposition 13 det1 2 Det.Example 14 Consider
 = (x+ v = x � y + z=w) and suppose
(htrue;
i.Observe that det1(
) = (det1(x+v)[det1(x�y+z=w))# = (det1(x)[det1(v)[det1(x)[det1(x)[det1(y)[det1(y)[det1(z)[det1(w)[det1(w))# = fv; w; w; x;x; x; y; y; zg# = fv; zg. Hen
e �det1X (
) = (v w^x^y^z)^(z v^w^x^y).Example 15 Table 2 details the abstra
tions for various
onstraints wheref1 = w (x ^ y ^ z), f2 = x, f3 = false, f4 = true f5 = x w, f6 =w $ x. The abstra
tion algorithms are de�ned in terms of(. It is assumedthat
i (h
0; d0i and
0i =
0 ^ d0. In pra
ti
e, (is evaluated by posting the
onstraint to the store and then retrieving it. The net e�e
t is to evaluateground terms and to group together like terms. For example, 2 � x =
os(�) �z+x+max(2; 3)(hx = �z+3; truei. This(is used in this example. Notethat �X(
i) j= �det�X (
i) j= �det1X (
i) j= �tvfX (
i). The abstra
tions for
1;
2;
3all agree, illustrating that all methods give good a

ura
y. The abstra
tionsof
4 show that det1
an still be strengthened. �X(
5) shows that, in general,systems of inequations need to be
onsidered to
ompute the best abstra
tion.Note that if a weaker (were used, a stronger det
ould be de�ned to giveabstra
tions of a similar strength. The three variable form method would notbe so
exible. 9

5 Con
lusionThis paper has des
ribed a simple algorithm for abstra
ting numeri

on-straints. This method does not introdu
e temporary variables, utilises avail-able CLP(R) ma
hinery, and is at least as pre
ise as the three-variable method.Whilst other works have given pre
ise de�nitions of abstra
tion, they have notaddressed how to eÆ
iently
ompute the map. This paper plugs this hole. Thealgorithm
an be easily implemented and has been used with the analyser in[8℄. Future work will look at the more general
ase of mixing Herbrand andlinear
onstraints.Referen
es[1℄ T. Armstrong, K. Marriott, P. S
ha
hte, and H. S�ndergaard. Two Classes ofBoolean Fun
tions for Dependen
y Analysis. S
ien
e of Computer Programming,31(1):3{45, 1998.[2℄ N. Baker and H. S�ndergaard. De�niteness Analysis for CLP(R). AustralianComputer S
ien
e Communi
ations, 15(1):321{332, 1993.[3℄ M. Codish and B. Demoen. Analyzing Logi
 Programs Using \Prop"-ositionalLogi
 Programs and a Magi
 Wand. Journal of Logi
 Programming, 25(3):249{274, 1995.[4℄ M. Gar
��a de la Banda. Independen
e, Global Analysis, and Parallelism inDynami
ally S
heduled Constraint Logi
 Programming. PhD thesis, UniversidadPolit�e
ni
a de Madrid, 1994.[5℄ M. Gar
��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,G. Janssens, and W. Simoens. Global Analysis of Constraint Logi
 Programs.ACM Transa
tions on Programming Languages and Systems, 18(5):564{614,1996.[6℄ A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple PolynomialGroundness Analysis for Logi
 Programs. Journal of Logi
 Programming, 2000.Forth
oming.[7℄ N. Heintze, J. Ja�ar, S. Mi
haylov, P. Stu
key, and R. Yap. The CLP(R)Programmer's Manual Version 1.1, 1991.[8℄ J. M. Howe and A. King. Implementing Groundness Analysis with De�niteBoolean Fun
tions. In G. Smolka, editor, European Symposium on Programming,volume 1782 of Le
ture Notes in Computer S
ien
e, pages 200{214. Springer-Verlag, 2000.[9℄ A. King, J. Smaus, and P. Hill. Quotienting Share for Dependen
y Analysis. InS. D. Swierstra, editor, European Symposium on Programming, volume 1576 ofLe
ture Notes in Computer S
ien
e, pages 59{73. Springer-Verlag, 1999.10

