

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2001). Positive Boolean Functions as Multiheaded

Clauses. Paper presented at the International Conference on Logic Programming, 26 Nov -
01 Dec 2001, Cyprus.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1697/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Positive Boolean Fun
tions asMultiheaded ClausesJa
ob M. Howe?1 and Andy King21Department of Computing, City University, London, UK2Computing Laboratory, University of Kent, Canterbury, UKfj.m.howe, a.m.kingg�uk
.a
.ukAbstra
t. Boolean fun
tions are ubiquitous in the analysis of (
on-straint) logi
 programs. The domain of positive Boolean fun
tions, Pos,has been used for expressing, for example, groundness, �niteness andsharing dependen
ies. The performan
e of an analyser based on Booleanfun
tions is
riti
ally dependent on the way in whi
h the fun
tions arerepresented. This paper dis
usses multiheaded
lauses as a representa-tion of positive Boolean fun
tions. The domain operations for multi-headed
lauses are
on
eptually simple and
an be implemented straight-forwardly in Prolog. Moreover these operations generalise those for theless algorithmi
ally
omplex operations of propositional Horn
lauses,leading to naturally strati�ed algorithms. The multiheaded
lause repre-sentation is used to build a Pos-based groundness analyser. The analyserperforms surprisingly well and s
ales smoothly, not requiring wideningto analyse any program in the ben
hmark suite.Keywords.Abstra
t interpretation, (
onstraint) logi
 programs, Booleanfun
tions, groundness analysis.1 Introdu
tionBoolean fun
tions play an important role in the pra
ti
e of stati
 analysis. Manyanalyses are
ou
hed in terms of Boolean fun
tions, and manipulation of thesefun
tions is
ru
ial to the performan
e of any implementation. In parti
ular,positive Boolean fun
tions have been applied to the analysis of logi
 programsfor properties su
h as groundness, rigidity [15℄, �niteness [3℄ and sharing [8℄. Thispaper advo
ates representing positive Boolean fun
tions as multiheaded
lausesand argues that Prolog is well suited to their manipulation.The
hoi
e of abstra
t domain for a parti
ular appli
ation involves the strik-ing of a balan
e between eÆ
ien
y and pre
ision. The various properties tra
kedusing positive Boolean fun
tions give rise in pra
ti
e to di�erent forms of Booleanfun
tion. Hen
e, in some appli
ations, restri
ting to a more
omputationallytra
table sub
lass of Pos
an have a signi�
ant impa
t on pre
ision (for exam-ple, goal-independent analysis of library
ode), whilst in others little pre
ision islost (for example, goal-dependent groundness analysis). Elsewhere, the authors? Work supported by EPSRC Grant GR/MO8769.

have dis
ussed various sub
lasses of Pos and their
omputational properties [17,19℄. Here, with an eye to a wider range of appli
ations, the authors adapt te
h-niques from these sub
lasses to Pos.Traditionally, Boolean fun
tion manipulation has been performed using bi-nary de
ision diagrams (BDDs). Groundness analysis is one of the most im-portant topi
s in the stati
 analysis of (
onstraint) logi
 programs and froma logi
 programming point of view this analysis is the most pra
ti
al test ofBoolean fun
tion manipulation. BDD-based analysers have
onsistently outper-formed those based on other representations of Boolean fun
tions [1, 2, 10, 24℄for groundness analysis, but there has been a
ontinuous stream of work onrepresentations amenable to Prolog implementation [7℄, in parti
ular for thesub
lass of de�nite positive fun
tions, Def [12, 13, 19℄. The majority of these im-plementations, in
luded those based on BDDs, require widening to analyse largeben
hmarks.The Def-based groundness analyser des
ribed in [19℄ does not require widen-ing and was designed so that the most frequently
alled domain operations arethe most lightweight. The same design methodology suggests that a Pos-basedanalyser should represent Boolean fun
tions as
onjun
tions of multiheaded
lauses. In fa
t, in [1℄ (redu
ed)
onjun
tive normal form, (R)CNF, was investi-gated, and \performed reasonably well", but was ultimately reje
ted sin
e BDDsperformed 40% faster and, in C (their implementation language),
onjun
tivenormal form is no easier to
ode than BDDs. Surprisingly,
onjun
tive normalforms have not been
onsidered sin
e. This paper revisits
lausal representationsof Pos sin
e, in Prolog,
lausal representations are mu
h easier to
ode thanBDDs and following the methodology of [19℄ the
lausal representation lendsitself to eÆ
ient implementation based on entailment
he
king.The importan
e of the
hoi
e of representation is
learly illustrated by thesubtle di�eren
e between multiheaded
lauses and RCNF. The RCNF represen-tation is redu
ed in the sense that no
lause subsumes another. This redu
tionmakes meet for RCNF quadrati
 in the size of the representation. The mul-tiheaded
lause representation may
ontain redundant
lauses, enabling meetto be
onstant time. This is an important issue for performan
e sin
e meet isby far the most frequently applied operation. Neither multiheaded
lause norRCNF representations are in a
anoni
al form, therefore equivalen
e
annot bedete
ted by straightforward synta
ti
 identity. In [1℄ equivalen
e for RCNF isdetermined by
omputing the dual Blake
anoni
al form of the formulae andthen testing for synta
ti
 identity. The dual Blake
anoni
al form may be expo-nentially larger than the RCNF representation and must always be
ompletely
omputed. Therefore the method is not amenable to �ltering through lower
om-plexity algorithms. Logi
al entailment, rather than synta
ti
 equivalen
e, is more
exible. In pra
ti
e, entailment of formulae
an often be dete
ted using an in-
omplete low
omplexity algorithm. Using su
h a
he
k, many
alls to the worst
ase algorithm
an be �ltered out. It is this strati�ed use of entailment
he
kingthat enables an analyser based on multiheaded
lauses to s
ale surprisingly well.Speed is a
hieved by exploiting Prolog te
hnology { by using a nonground rep-

resentation entailment
he
king
an be implemented eÆ
iently using renamingand blo
k de
larations, whilst meet redu
es to list
on
atenation implementedusing di�eren
e lists. The major themes and
ontributions of this work are:� Pos fun
tions
an be naturally expressed as multiheaded
lauses, whi
h areparti
ularly straightforward to understand, manipulate and
ode.� The entailment
he
king algorithm (whi
h is potentially exponential in thenumber of variables) is strati�ed so that
he
ks for naturally o

urring sub-
lasses of formulae take quadrati
 time (in the size of the formulae); in par-ti
ular the forward
haining algorithm for propositional Horn
lauses is sub-sumed.� The domain operations for multiheaded
lauses may be
oded su

in
tly andeÆ
iently in Prolog, resulting in fast Pos-based goal-dependent and goal-independent groundness analysers whi
h do not require widening for anyprogram in the ben
hmark suite.� If widening is required, the representation may be simply and naturallywidened to Def or to the simpler domain EPos.� The analysers again demonstrate the value of a prin
ipled approa
h to thedesign of a stati
 analysis.� An experimental evaluation of the analysers is given illustrating that a
lausal representation of Pos
oded in Prolog gives performan
es
omparableto BDD representations
oded in C.The rest of this paper is stru
tured as follows: Se
tion 2 introdu
es the ne
es-sary te
hni
al ba
kground material. Se
tion 3 details multiheaded
lauses. Se
-tion 4 gives algorithms for the abstra
t operations of Pos represented as multi-headed
lauses. Se
tion 5 des
ribes Pos-based groundness analysers implementedwith Boolean fun
tions represented as multiheaded
lauses. Se
tion 6 gives anexperimental evaluation of these analysers. Se
tion 7 reviews related work andSe
tion 8
on
ludes.2 PreliminariesA Boolean fun
tion is a fun
tion f : Booln ! Bool where n � 0. Let V denotea denumerable universe of variables. A Boolean fun
tion
an be represented bya propositional formula over X � V where jX j = n. The set of propositionalformulae over X is denoted by BoolX . Throughout this paper, Boolean fun
tionsand propositional formulae are used inter
hangeably without worrying aboutthe distin
tion. The
onvention of identifying a truth assignment with the set ofvariables M that it maps to true is also followed. Spe
i�
ally, a map X(M) :}(X) ! BoolX is introdu
ed de�ned by: X(M) = (^M) ^ :(_(X nM)). Inaddition, the formula ^Y is often abbreviated as Y .De�nition 1. The map modelX : BoolX ! }(}(X)) is de�ned by: modelX(f)= fM � X j X(M) j= fg. Also,
ountermodelX : BoolX ! }(}(X)) is de�nedby:
ountermodelX(f) = }(}(X))nmodelX(f). Observe thatmodelX is bije
tive,hen
e model�1X : }(}(X))! BoolX is well de�ned.

EPosfx;ygx ^ y��� ���x x$ y y��� ���true
Deffx;ygx ^ y

 ##x x$ y y�� ��x y y x##

true

Posfx;ygx ^ y

 ##x x$ y y�� ��x y x _ y y x##

true
Fig. 1: Hasse diagramsExample 1. IfX = fx; yg, then the fun
tion fhtrue; truei 7!true, htrue; falsei 7!false, hfalse; truei 7! false, hfalse; falsei 7! falseg
an be represented by theformula x ^ y. Also, modelX(x ^ y) = ffx; ygg and modelX (x _ y) = ffxg; fyg,fx; ygg.The fo
us of this paper is on the use of sub
lasses of BoolX in tra
ing de-penden
ies. These sub
lasses are de�ned below:De�nition 2. A fun
tion f is positive i� X 2 modelX(f). PosX is the setof positive Boolean fun
tions over X . A fun
tion f is de�nite i� M \ M 0 2modelX(f) for all M;M 0 2 modelX(f). DefX is the set of positive fun
tionsover X that are de�nite. A fun
tion f is GE i� f is de�nite positive and for allM;M 0 2 model var(f)(f), jMnM 0j 6= 1. EPosX is the set of GE fun
tions over X .Note that EPosX � DefX � PosX . Also noti
e that EPosX = f^F j F �X [EXg, where EX = fx$ y j x; y 2 Xg.Example 2. SupposeX = fx; y; zg and
onsider the following table, whi
h states,for some Boolean fun
tions, whether they are in EPosX , DefX or PosX and alsogives modelX .f EPosX DefX PosX modelX(f)false ;x ^ y � � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx _ (y z) � f;; fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggtrue � � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote that x _ y is not in DefX (sin
e its set of models is not
losed underinterse
tion) and that false is neither in EPosX , nor PosX , nor DefX .The 4-tuple hPosX ; j=;^;_i is a �nite latti
e, where true is the top ele-ment and ^X is the bottom element. The set of (free) variables in a syn-ta
ti
 obje
t o is denoted by var(o). Existential quanti�
ation is de�ned byS
hr�oder's Elimination Prin
iple, that is, 9x:f = f [x 7! true℄ _ f [x 7! false℄.Also, 9fy1; : : : ; yng:f (proje
t out) abbreviates 9y1: : : : :9yn:f and 9Y:f (proje
tonto) denotes 9var(f) n Y:f . Two fun
tions f; f 0 are equivalent, f � f 0 ifand only if f j= f 0 and f 0 j= f . Finally, for any f 2 BoolX ,
oneg(f) =model�1X (fX nM jM 2 modelX(f)g).

3 Pos as Multiheaded ClausesA Boolean fun
tion is positive if and only if every
lause in its
onjun
tive normalform representation
ontains at least one positive literal. A
lause is des
ribed asmultiheaded if it
ontains one or more positive literals. In this paper, multiheaded
lauses are written as impli
ations with the body a
onjun
tion of variables andthe head a disjun
tion of variables. That is, a multiheaded
lause has the form:y1 ^ ::: ^ yn ! x1 _ :: _ xmObserve that the yi and the xj are distin
t variables, otherwise the
lause isequivalent to true. Let f 2 MHC denote that f is represented as a
onjun
tionof multiheaded
lauses.Proposition 1. For every f 2 Pos there is f 0 2 MHC su
h that f � f 0.Proof. It is well known that any Boolean formula is equivalent to another in
onjun
tive normal form. Suppose f � f 0, where f 0 is in
onjun
tive normalform. Sin
e f is positive, every
lause of f 0 must
ontain at least one positiveliteral, hen
e f 0 2 MHC. �In the
ase that m = 1 the multiheaded
lause is simply a propositionalHorn
lause. This suggests that the algorithms to
al
ulate the domain oper-ations might perform well if they naturally spe
ialise to eÆ
ient propositionalHorn
lause algorithms. This will be the
ase for entailment
he
king. Moreover,the multiheaded
lauses representation is parti
ularly amenable to widening. Ifwidening is required, the representation may be restri
ted in linear time so that
lauses with more than, say n, heads are dis
arded. If n = 1, this widening
orresponds to restri
ting to Def.4 Domain Operations for Multiheaded ClausesThis se
tion gives algorithms for the domain operations of Pos represented asmultiheaded
lauses. Meet (^) is simply
onjun
tion of
lauses and is
on-stant time; the other domain operations des
ribed are join (_), relative pseudo-
omplement (!), entailment
he
king (j=) and proje
tion out (9). The algo-rithms form the basis of the groundness analyser whose implementation is de-s
ribed in the next se
tion.4.1 JoinConsider f = f1 _ f2, where f1; f2 2 MHC. Suppose f1 =
1 ^ ::: ^
n andf2 = d1 ^ ::: ^ dm. Then, distributing, f � f 0 = ^ni=1(^mj=1(
i _ dj)). Suppose
i = y1 ^ ::: ^ yk ! x1 _ ::: _ xl and di = u1 ^ ::: ^ up ! v1 _ ::: _ vq . Then
i _ di � y1 ^ ::: ^ yk ^ u1 ^ ::: ^ up ! x1 _ ::: _ xl _ v1 _ ::: _ vq 2 MHC.Hen
e f 0 2 MHC. Sin
e the above involves a quadrati
 blowup in the size of therepresentation, join is quadrati
 in the size of the input formulae.

4.2 Relative Pseudo-ComplementRelative pseudo-
omplement has re
ently been used to support ba
kward rea-soning. In parti
ular to tra
e
ontrol
ow ba
kward (right to left) to infer modingproperties of initial queries [20℄.Consider f = f1 ! f2, where f1; f2 2 MHC. Suppose f1 =
1 ^ ::: ^
nand f2 = d1 ^ ::: ^ dm. Then, f � f 0 = ^mj=1(_ni=1(
i ! dj)). Suppose
i =y1 ^ ::: ^ yk ! x1 _ ::: _ xl and di = u1 ^ ::: ^ up ! v1 _ ::: _ vq . Then
i ! di = � ^li=1(xi ^ u1 ^ ::: ^ up ! v1 _ ::: _ vq)^ ^kj=1(u1 ^ ::: ^ up ! yj _ v1 _ ::: _ vq)Hen
e f 0 2 MHC. Given that the size of f 0 is exponential in the size of f1, theoperation is exponential. However, it should be noted that many analyses usingpositive Boolean fun
tions (in
luding groundness) do not require this operationto be
al
ulated. In su
h
ases the
ost of this operation is not a drawba
k.4.3 Entailment Che
kingEntailment
he
king for positive Boolean fun
tions represented in
onjun
tivenormal form is
o-NP
omplete [1℄. However, as exploited in SAT solving, manyof the Boolean fun
tions that arise in pra
ti
e
an be
he
ked for satis�abilitywith low
omplexity algorithms. This observation is exploited by the two algo-rithms detailed below. The �rst, entailslite, is in
omplete and takes quadrati
time in the size of the input. The se
ond, entailsheavy, adds
ase splitting tothe �rst algorithm to obtain
ompleteness (whi
h is required to guarantee ter-mination in the �xpoint engine). This strati�ed algorithm usually only requiresentailslite to be invoked on
e.The entailslite algorithm (seen Figure 2) is an in
omplete test that a mul-tiheaded
lause is entailed by a
onjun
tion of multiheaded
lauses: ^li=1Bi !Hi j= B ! H , where B = y1 ^ ::: ^ yn and H = x1 _ ::: _ xm. It works bypropagating deterministi
 bindings in an attempt to dete
t
ontradi
tion. Thealgorithm terminates either when a
ontradi
tion is found or when no morebindings
an be propagated: then F lag is returned. Noti
e that this algorithm
ontains forward
haining for propositional Horn
lauses as a spe
ial
ase. Alsonoti
e that the variables are assigned values only on
e. The auxiliary renameprodu
es a synta
ti
 variant of a term whi
h does not share any variables withthe original term.The algorithm entailsheavy (see Figure 3) applies
ase splitting if entailslitedoes not dete
t entailment. The number of
ases is potentially exponential inthe number of variables left unbound by entailslite. However, propagation o
-
urs after ea
h binding, therefore deep
ase splitting is rarely required. A moreintelligent splitting strategy (as in SAT solving)
ould be applied, but the na��vestrategy performs more than adequately.Proposition 2. The algorithm entailslite is sound, but not
omplete for entail-ment
he
king. The algorithm entailsheavy is both sound and
omplete.

pro
ess entailslite(^li=1Bi ! Hi, B ! H)F lag := false;for i = 1 to m do xi := false;for j = 1 to n do yj := true;for k = 1 to l dospawn forward(Bk, Hk, F lag);spawn ba
kward(Bk , Hk, F lag);return F lag.pro
ess forward(B, H, F lag)blo
k until every x 2 B boundif ^B � true then spawn maketrue(H, F lag)else stop.pro
ess ba
kward(B, H, F lag)blo
k until every y 2 H boundif _H � false then spawn makefalse(B, F lag)else stop.pro
ess maketrue(H = fy1; :::; ymg, F lag)blo
k until yi 2 H
hanges for some i 2 f1; :::; mgif _H � false then F lag := true; stopelse if _H � true then stopelse if _H � yi for some i 2 f1; :::; mg then yi := true; stopelse suspend.pro
ess makefalse(B = fx1; :::; xng, F lag)blo
k until xi 2 B
hanges for some i 2 f1; :::; ngif ^B � true then F lag := true; stopelse if ^B � false then stopelse if ^B � xi for some i 2 f1; :::; ng then xi := false; stopelse suspend.Fig. 2: The entailslite Algorithmpro
ess entailsheavy(F , f)F lag :=entailslite(F , f);if F lag = true then return trueelse V := var(F)=fx1; :::; xng;if V = ; then return falseelse dorename(F ^ f)=(F 0 ^ f 0);F lag0 := entailsheavy(fx01 7! truegF , fx01 7! truegf);if F lag0 = true thenrename(F ^ f)=(F 00 ^ f 00);return entailsheavy(fx001 7! falsegF 00, fx001 7! falsegf 00)else return false.Fig. 3: The entailsheavy Algorithm

4.4 Proje
tionAs in [19℄, proje
tion is
al
ulated using a Fourier-Motzkin style algorithm. Theproje
tion of a single variable out of a pair of
lauses, one of whi
h
ontains thevariable in the body and the other in its head is performed by syllogising asfollows:9z:� y1 ^ ::: ^ yp ! z _ x1 _ ::: _ xq^ z ^ yp+1 ^ ::: ^ yn ! xq+1 _ ::: _ xm� = y1 ^ ::: ^ yn ! x1 _ ::: _ xmThe
orre
tness and
ompleteness of this is easily
on�rmed using S
hr�oder elim-ination, hen
e the algorithm below is also
orre
t and
omplete. In general, ea
hvariable is eliminated in turn, as follows. Suppose z is to be proje
ted out of f .1. All those
lauses with z in the head are found, giving fCi j i 2 Ig where Iis a (possibly empty) index set.2. All those
lauses with z in the body are found, giving fDj j j 2 Jg where Jis a (possibly empty) index set.3. These
lauses of f are repla
ed by f9z:Ci ^Dj ji 2 I; j 2 Jg4. A
ompa
t representation is maintained by eliminating redundant
lauses(absorption).Step 4 means that the algorithm is parameterised by the
ompa
tion pro
ess.Compa
tion does not ne
essarily have to remove all redundant
lauses (or indeedany), hen
e a tradeo�
an be made between keeping the representation smalland the
ost of this maintenan
e. In proje
ting out a single variable, syllogisinggives a quadrati
 blowup in the size of the representation. Thus the basi

ostof proje
ting out a single variable is quadrati
. However, the
ompa
tion steptakes as its input a representation quadrati
 in the size of the original and theoverall
ost is dependent on the
ompa
tion algorithm. In the implementation,entailslite is used for
ompa
tion therefore the
ost of proje
ting out a singlevariable is quarti
. Be
ause of the size blowup, proje
ting an arbitrary fun
tiononto a �nite set of variables is exponential.5 A Pos-Based Groundness AnalyserTo assess the representation, two Pos-based groundness analysers built on multi-headed
lauses were implemented in Prolog: one goal-dependent and one goal-independent. The analysers illustrate the ease with whi
h the multiheaded
lauserepresentation
an be used. The analysers perform surprisingly well
omparedwith other Pos analysers (in
luding those with BDD-based Boolean fun
tion ma-nipulation
oded in C) and
ompared with analysers using more
omputationallytra
table domains. This se
tion details the Prolog implementation.5.1 A GEP RepresentationAs in [2, 19℄, the analyser maintains a fa
torised representation, that is, as aprodu
t of subdomains. The fa
torisation is en
oded in the
all and answer pat-terns. A
all (or answer) pattern is a pair ha; fi where a is an atom and f 2 Pos.

Normally the arguments of a are distin
t variables. The formula f is a
onjun
-tion (list) of multiheaded
lauses. In a non-ground representation the argumentsof a
an be instantiated and aliased to express simple dependen
y information[17℄. For example, if a = p(x1; :::; x5), then the atom p(x1; true; x1; x4; true)represents a
oupled with the formula (x1 $ x3)^ x2 ^ x5. This enables the ab-stra
tion hp(x1; :::; x5); f1i to be
ollapsed to hp(x1; true; x1; x4; true); f2i wheref1 = (x1 $ x3) ^ x2 ^ x5 ^ f2. This en
oding leads to a more
ompa
t rep-resentation and is similar to the GER fa
torisation of ROBDDs proposed byBagnara and S
ha
hte [2℄. The representation of
all and answer patterns de-s
ribed above is
alled GEP (groundness, equivalen
es and propositional
lauses)where the atom
aptures the �rst two properties and the formula the latter.The GEP representation is advantageous sin
e it gives a
ompa
t represen-tation whilst in
urring little overhead when the representation is non-ground.The
ompa
tness of the representation a�e
ts memory usage and the
omplex-ity of domain operations. As demonstrated in [17℄, many dependen
ies arisingin groundness analysis fall into the GE
omponent. By using the GEP represen-tation, many
alls to expensive domain operations are avoided. Note that (asin [19℄) the analyser does not maintain the fa
torisation stri
tly. Dependen
iesthat
ould be en
oded in the GE
omponent may exist in the P
omponent {the advantage of this is that the implementor may
hoose to update the GE
omponent only when most
omputationally
onvenient.5.2 Domain Operations for the GEP RepresentationMeet The meet of the pairs ha1; f1i and ha2; f2i
an be
omputed by unifyinga1 and a2 and
on
atenating f1 and f2.Renaming The obje
ts that require renaming are formulae and
all (answer)pattern GEP pairs. If a dynami
 database is used to store the pairs, then re-naming is automati
ally applied ea
h time a pair is looked-up in the database.Formulae
an be renamed with a single
all to the Prolog builtin
opy term.Entailment Entailment
he
king works on three levels ea
h
alled under anegation so as not produ
e any problemati
 bindings. The �rst entailment
he
koperates only on the GE
omponent (and is
omplete for this
omponent). En-tailment of the fun
tions en
oded in the GE
omponent is denoted a1 j= a2. Totest this, bind ea
h distin
t variable in a1 to a distin
t ground
onstant, resultingin a01. If, after this has been performed, a01 may be uni�ed with a2, then a1 j= a2.Otherwise a1 6j= a2. The se
ond entailment
he
k is only applied to formula in theP
omponent. This implements the (in
omplete) entailslite algorithm des
ribedin se
tion 4.3. The propagating pro
esses are realised using blo
k de
larations.A single pass over the formulae sets up the pro
ess and ea
h
lause results in twopro
esses at any one time. The
ost of suspending and resuming these pro
essesis
onstant time, so propagation is a
hieved with very little overhead. The thirdentailment
he
k implements a variant of the entailsheavy algorithm des
ribed

in se
tion 4.3. Copy term produ
es a renamed formulae with new variables su
hthat if any of the original variables have pro
esses blo
ked on them, then the newvariables will have
opies of the pro
esses blo
ked on them. This saves repeatingwork in the
alls to entailslite.Proje
tion Proje
tion is only applied to formulae in the P
omponent. It isperformed using the algorithm given in se
tion 4.4. Clauses produ
ed by proje
-tion that are equivalent to true (that is, the interse
tion of the head and bodyvariables is nonempty) are immediately dis
arded. The
ompa
tion step is basedon the entailslite algorithm. However, as the purpose of
ompa
tion is to preventan explosion in the size of the representation,
ompa
tion is only performed ifthe representation after syllogising is larger than beforehand. Sin
e entailslite isin
omplete some redundant
lauses may be retained, however this is more than
ompensated by the redu
ed
omplexity of
ompa
tion.Join Cal
ulating the join of the pairs ha1; f1i and ha2; f2i is
ompli
ated by theway that join intera
ts with renaming. Spe
i�
ally, in a non-ground representa-tion,
all (answer) patterns would be typi
ally stored in a dynami
 database sothat var(a1) \ var(a2) = ;. Hen
e ha1; f1i (or equivalently ha2; f2i) have to beappropriately renamed before the join is
al
ulated. This is a
hieved as follows.Plotkin's anti-uni�
ation algorithm [22℄ is used to
ompute the most spe
i�
atom a that generalises a1 and a2. (But observe that if a1 j= a2, a2 is a mostspe
i�
 generalisation of the atoms.) The basi
 idea is to reformulate a1 as apair ha01; f 01i whi
h satis�es two properties: a01 is a synta
ti
 variant of a; thepair represents the same dependen
y information as ha1; truei. A pair ha02; f 02ireformulating a2 is likewise
onstru
ted. The atoms a, a01 and a02 are uni�ed andthe formula f 0 = (f1 ^ f 01)_ (f2 ^ f 02) is
al
ulated. This
al
ulation is �ltered byentailment
he
king. If f1 ^ f 01 j= f2 ^ f 02
an be dete
ted using entailslite, thenf 0 = f2 ^ f 02 (and symmetri
ally). In this
ase the entailment
he
k saves a
allto join (and the asso
iated proje
tion) and the
reation of a new data-stru
ture,f 0. Otherwise the join f 0 is
omputed as in se
tion 4.1. Redundant
lauses areremoved from f 0 using entailslite to give f , and thereby the join ha; fi.5.3 Fixpoint AlgorithmsThe goal-dependent analyser is driven by an indu
ed magi
 based iteration strat-egy, re�ning that used in [19℄. Indu
ed magi
 was introdu
ed in [5℄, where ameta-interpreter for semi-na��ve, goal-dependent, bottom-up evaluation is pre-sented. Simple optimisations
an signi�
antly impa
t on performan
e. In parti
-ular, as noted in [18℄, evaluations resulting from new
alls should be performedbefore those resulting from new answers, and a
all to solve for one rule should�nish before another
all to solve for another rule starts. These optimisationshave been in
orporated into the indu
ed magi
 framework by using an expli
itredo list storing those
all and answer patterns whi
h have
hanged, thereby

de�ning the
lauses whi
h need to be reevaluated. The goal-independent anal-yser is based on semi-na��ve iteration. Neither of these analysers has exploited
ondensing [16, 21℄.6 Experimental EvaluationTo assess the feasibility of multiheaded
lauses as a representation of positiveBoolean fun
tions, the Pos-based groundness analysers were tested on a largeben
hmark suite.BDD representations of Boolean fun
tions have been popular for the imple-mentation of Pos-based groundness analysers. For this reason an analyser usinga BDD pa
kage has also been instrumented. The BDD pa
kage available doesnot employ a GER fa
torisation. However, it should be noted that turning o�the GEP fa
torisation with the multiheaded
lause analyser does not greatlya�e
t its performan
e. This is a strength of
lausal representations. An RCNFanalyser was also implemented in Prolog to aid the assessment of MHC. Thethree goal-dependent analysers share the same �xpoint algorithm and thereforerun in lo
k-step.The analysers are
oded in SICStus Prolog 3.8.6 with the ex
eption for thedomain operations for BDD-based Pos, whi
h were written in C by S
ha
hte[23℄, and
ompiled with O2 level of optimisation. The analysers were run on a296MHz Sun UltraSPARC-II with 1GByte of RAM running Solaris 7. Programsare abstra
ted following the elegant (two program) s
heme of [4℄ to guarantee
orre
tness. Programs
ontaining disjun
tions are normalised to de�nite
lauses.Timeouts were set at two minutes.Table 1 presents the experimental results for the larger programs in theben
hmark suite. The
olumns detail the following information, �le: the pro-gram name; size: the number of abstra
t
lauses; abs: the time require to read,parse, normalise and abstra
t the program. For goal-dependent analysis the �x-point times for the MHC, RCNF and BDD analysers are given, along with
ount:the number of ground argument positions in the
all and answer patterns foundby the analyser. For goal-independent analysis, the �xpoint times for MHC aregiven, along with the number of ground arguments in the su

ess patterns. Time-out is denoted by `{'. The goal-independent
ounts are o

asional larger thanthe goal-dependent
ounts owing to the presen
e of
ode unrea
hable from theinitial query.Multiheaded
lauses perform
onsistently better than RCNF for goal-dependent analysis. This is unsurprising given the
ost of meet and the relativeexpense of equivalen
e
he
king via dual Blake
anoni
al form, together with the�ltering applied to join in MHC. MHC
ompares favourably with BDDs, espe-
ially
onsidering that the BDD operations exploit memoisation and are
odedin C. In terms of runtime, MHC and BDDs give similar results, although aswould be expe
ted, the di�erent representations performed di�erently on di�er-ent programs. For example, BDD perform well on sim.pl, whereas MHC performwell on sim v5-2.pl. The MHC analyser appears to s
ale smoothly for both goal-

goal-dep. goal-indep.�le size abs MHC RCNF BDD
ount MHC
ountbridge.
lpr 68 0.09 0.00 0.12 0.03 24 0.08 34
onman.pl 76 0.05 0.00 0.00 0.03 6 0.01 6unify.pl 77 0.05 0.07 0.29 0.08 70 0.09 19kalah.pl 78 0.05 0.02 0.11 0.04 199 0.02 42nbody.pl 85 0.07 0.05 0.13 0.06 113 0.04 57peep.pl 85 0.12 0.03 0.08 0.04 10 0.02 8sdda.pl 89 0.06 0.04 0.07 0.05 17 0.02 4bryant.pl 94 0.07 0.32 2.38 0.15 99 0.28 9boyer.pl 95 0.08 0.05 0.07 0.04 3 0.02 5read.pl 101 0.09 0.05 0.23 0.08 99 0.03 37qplan.pl 108 0.09 0.03 0.25 0.07 216 0.05 27trs.pl 108 0.13 0.10 2.28 0.26 13 0.04 7press.pl 109 0.09 0.11 0.27 0.12 53 0.04 32redu
er.pl 113 0.07 0.08 0.17 0.09 41 0.05 21parser d
g.pl 122 0.09 0.09 0.29 0.08 43 0.04 24simple analyzer.pl 140 0.10 0.16 0.48 0.13 89 0.10 31dbqas.pl 143 0.09 0.03 0.04 0.04 18 0.03 24ann.pl 146 0.11 0.16 0.43 0.10 71 0.09 12asm.pl 160 0.17 0.05 0.19 0.09 90 0.14 16nand.pl 179 0.14 0.05 1.46 0.14 402 0.68 16lnprolog.pl 220 0.10 0.08 0.19 0.12 143 0.07 31ili.pl 221 0.15 0.55 1.63 0.13 4 0.15 5strips.pl 240 0.22 0.03 0.07 0.08 142 0.06 36sim.pl 244 0.22 1.09 24.78 0.25 100 0.62 33rubik.pl 255 0.21 0.22 25.32 0.20 158 0.16 51
hat parser.pl 281 0.36 0.29 1.75 0.26 505 0.30 128sim v5-2.pl 288 0.23 0.07 0.33 0.16 457 0.10 37peval.pl 332 0.18 0.64 4.62 0.16 27 1.30 17air
raft.pl 395 0.54 0.15 0.70 0.41 687 0.12 196essln.pl 595 0.48 0.19 20.72 0.37 162 0.30 75
hat 80.pl 883 1.43 0.88 4.28 0.84 855 0.64 339aqua
.pl 3928 3.55 7.68 67.04 { 1285 6.59 458Table 1. Timing and Pre
ision Resultsdependent and goal-independent analysis. Of
ourse, any Pos-based analyser
anbe broken using the s
hema from [6, 14℄; the analyser
an deal with the arity 14
ase of [6℄ before timeout (that is, a single predi
ate requiring 16384 iterations).The major
ost in entailment
he
king is in
urred through
ase splitting inentailsheavy. Instrumentation has revealed that the total number of times entail-slite is invoked in
he
king F j= f almost never ex
eeds jvar(F)j. Therefore inpra
ti
e entailsheavy exhibits
ubi
 behaviour in the size of the input formulae.Further instrumentation has shown that the maximum number of heads observedin a
lause is four. These maxima o

ur infrequently. Sin
e most
lauses have fewheads, typi
ally only a small number of bindings have to be made before prop-

agation binds suÆ
ient variables to return the F lag. The
alls to entailsheavytypi
ally do not dete
t entailment, as the vast majority of entailments are de-te
ted using entailslite. As disentailment is demonstrated by the dis
overy of asingle
ountermodel, the binding of a small number of variables to their valuein a
ountermodel is often enough to generate the rest of this
ountermodel viapropagation. This helps to explain the su

ess of the strati�ed entailment
he
k.7 Related WorkThe eÆ
ien
y of groundness analysis depends on the way dependen
ies are repre-sented and implemented. The representation de
ides the algorithmi

omplexityof the domain operations but the implementation
an introdu
e a prohibitive
onstant fa
tor or even push the
omplexity into a higher
lass if there is not agood mat
h between the representation and the implementation language. EÆ-
ient BDD-based Pos analysis are usually implemented in languages with muta-ble data-stru
tures su
h as C [24℄ or SML [10, 11℄. State-of-the-art BDD-basedgroundness analysers employ a GE fa
torisation [2℄ whi
h keeps simple de�niteinformation separate from dependen
y information. This leads to a parti
ularlydense representation (meant informally, a small number of nodes/
lauses in therepresentation) and is therefore an important implementation ta
ti
.The density of the representation is as important to Prolog as it is to C: thedensity determines the size of the inputs to the domain operations, as well as im-pa
ting on memory usage. The dual Blake
anoni
al form representation of Deffun
tions [1, 9℄ is attra
tive as it is amenable to Prolog implementation [12℄ andit gives a unique representation for every Def fun
tion (up to variable ordered).However, its requirement to make transitive variable dependen
ies expli
it
an
ompromise density. For example, the fun
tion (x y)^ (y z) is representedas (x (y _ z)) ^ (y z). Be
ause of this Howe and King [19℄ present a (non-orthogonal [1℄)
lausal representation of Def as
onjun
tions of propositional
lauses, but do not maintain a
anoni
al form. Therefore entailment
he
king isrequired to dete
t stability.Re
ently, Genaim and Codish [13℄ have proposed a dual representation forDef. For fun
tion f , the models of
oneg(f) are named and f is represented bya tuple re
ording for ea
h variable of f whi
h of these models the variable isin. For example, the models of
oneg(x ! y) are ffx; yg; fxg; ;g. Naming thethree models a, b,
 respe
tively, f is represented by hab; ai. This representation
leverly allows ACI1 uni�
ation theory to be used for the domain operationsand elegantly supports a GE fa
torisation. Promising experimental results arereported [13℄, but a widening is required to analyse the aqua
 ben
hmark.Codish and Demoen [7℄ des
ribe a model based Prolog implementation te
h-nique for Pos that would en
ode x1 $ (x2^x3) as three tuples htrue; true; truei,hfalse; ; falsei, hfalse; false; i. The te
hnique performs well against BDD-based Pos analysis of its era [24℄ but it does not s
ale smoothly to the largerben
hmarks. Heaton et al. [17℄ therefore propose EPos, a sub-domain of Def, that
an only propagate dependen
ies of the form (x1 $ x2) ^ x3 a
ross pro
edure

boundaries. This information is pre
isely that
ontained in one of the �elds ofthe GE fa
torisation. The main �nding of [17℄ is that this sub-domain retainsreasonably pre
ision for goal-dependent analysis and possesses good s
aling be-haviour.8 Con
lusionPositive Boolean fun
tions
an be naturally expressed as multiheaded
lauseswhi
h are straightforward to understand, manipulate and
ode in Prolog. Multi-headed
lauses have been used as the basis for eÆ
ient goal-dependent and goal-independent Pos-based groundness analysers. The key to the su

ess of theseanalysers is their
onstant time meet and their use of entailment
he
king su
-
in
tly and eÆ
iently
oded using blo
k de
larations. Entailment
he
king isstrati�ed so that many entailments are dete
ted using a low
omplexity algo-rithm. The full exponential algorithm is only applied when ne
essary for dete
t-ing stability, and even then the number of
ase splits is typi
ally very small. Theanalysers do not require widening for any of the ben
hmarks; however, naturalwidenings to Def or to EPos are available if required [6, 14℄. This work illustratesthe subtlety of
hoosing a representation and its asso
iated operations, even fora well known domain. Minor
hanges to the representation
an have a signif-i
ant impa
t on performan
e if they a�e
t frequently o

urring operations. Italso demonstrates the e�e
tiveness of stratifying high
omplexity operations toavoid expensive
omputation whenever possible. The intelligent appli
ation ofthe simple entailment
he
king algorithm is the heart of the analyser presentedin this paper.Referen
es1. T. Armstrong, K. Marriott, P. S
ha
hte, and H. S�ndergaard. Two Classes ofBoolean Fun
tions for Dependen
y Analysis. S
ien
e of Computer Programming,31(1):3{45, 1998.2. R. Bagnara and P. S
ha
hte. Fa
torizing Equivalent Variable Pairs in ROBDD-Based Implementations of Pos. In Seventh International Conferen
e on Algebrai
Methodology and Software Te
hnology, volume 1548 of Le
ture Notes in ComputerS
ien
e, pages 471{485. Springer-Verlag, 1999.3. P. Bigot, S. Debray, and K. Marriott. Understanding Finiteness Analysis usingAbstra
t Interpretation. In Joint International Conferen
e and Symposium onLogi
 Programming, pages 735{749. MIT Press, 1992.4. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-dard Prolog Programs. In European Symposium on Programming, volume 1058 ofLe
ture Notes in Computer S
ien
e, pages 108{124. Springer-Verlag, 1996.5. M. Codish. EÆ
ient Goal Dire
ted Bottom-up Evaluation of Logi
 Programs.Journal of Logi
 Programming, 38(3):355{370, 1999.6. M. Codish. Worst-Case Groundness Analysis using Positive Boolean Fun
tions.Journal of Logi
 Programming, 41(1):125{128, 1999.7. M. Codish and B. Demoen. Analysing Logi
 Programs using \prop"-ositional Logi
Programs and a Magi
 Wand. Journal of Logi
 Programming, 25(3):249{274, 1995.

8. M. Codish, H. S�ndergaard, and P. Stu
key. Sharing and Groundness Dependen
iesin Logi
 Programs. ACM Transa
tions on Programming Languages and Systems,21(5):948{976, 1999.9. P. Dart. On Derived Dependen
ies and Conne
ted Databases. Journal of Logi
Programming, 11(1{2):163{188, 1991.10. C. Fe
ht. Abstrakte Interpretation logis
her Programme: Theorie, Implemen-tierung, Generierung. PhD thesis, Universit�at des Saarlandes, 1997.11. C. Fe
ht and H. Seidl. A Faster Solver for General Systems of Equations. S
ien
eof Computer Programming, 35(2-3):137{162, 1999.12. M. Gar
��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,G. Janssens, and W. Simoens. Global Analysis of Constraint Logi
 Programs.ACM Transa
tions on Programming Languages and Systems, 18(5):564{614, 1996.13. S. Genaim and M. Codish. The Def-inite Approa
h to Dependen
y Analysis. InEuropean Symposium on Programming, volume 2028 of Le
ture Notes in ComputerS
ien
e, pages 417{32. Springer-Verlag, 2001.14. S. Genaim, J. M. Howe, and M. Codish. Worst-Case Groundness Analysis usingDe�nite Boolean Fun
tions. Theory and Pra
ti
e of Logi
 Programming, 2001.Forth
oming.15. R. Gia
obazzi, S. Debray, and G. Levi. Generalized Semanti
s and Abstra
tInterpretation for Constraint Logi
 Programs. Journal of Logi
 Programming,25(3):191{247, 1995.16. R. Gia
obazzi and F. S
ozzari. A Logi
al Model for Relational Abstra
t Do-mains. ACM Transa
tions on Programming Languages and Systems, 20(5):1067{1109, 1998.17. A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial Ground-ness Analysis for Logi
 Programs. Journal of Logi
 Programming, 45(1{3):143{156,2000.18. M. Hermenegildo, G. Puebla, K. Marriot, and P. Stu
key. In
remental Analysisof Constraint Logi
 Programs. ACM Transa
tion on Programming Languages andSystems, 22(2):187{223, 2000.19. J. M. Howe and A. King. Implementing Groundness Analysis with De�nite BooleanFun
tions. In European Symposium on Programming, volume 1782 of Le
tureNotes in Computer S
ien
e, pages 200{214. Springer-Verlag, 2000. Available athttp://www.
s.uk
.a
.uk/pubs/2000/949/.20. A. King and L. Lu. A Ba
kwards Analysis for Constraint Logi
 Programs. Te
h-ni
al Report 4-01, University of Kent, 2001.21. K. Marriott and H. S�ndergaard. Pre
ise and EÆ
ient Groundness Analysis forLogi
 Programs. ACM Letters on Programming Languages and Systems, 2(4):181{196, 1993.22. G. Plotkin. A Note on Indu
tive Generalisation. Ma
hine Intelligen
e, 5:153{163,1970.23. P. S
ha
hte. Pre
ise and EÆ
ient Stati
 Analysis of Logi
 Programs. PhD thesis,Department of Computer S
ien
e, The University of Melbourne, Australia, 1999.24. P. Van Hentenry
k, A. Cortesi, and B. Le Charlier. Evaluation of the DomainProp. Journal of Logi
 Programming, 23(3):237{278, 1995.

