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Abstract. Boolean functions are ubiquitous in the analysis of (con-
straint) logic programs. The domain of positive Boolean functions, Pos,
has been used for expressing, for example, groundness, finiteness and
sharing dependencies. The performance of an analyser based on Boolean
functions is critically dependent on the way in which the functions are
represented. This paper discusses multiheaded clauses as a representa-
tion of positive Boolean functions. The domain operations for multi-
headed clauses are conceptually simple and can be implemented straight-
forwardly in Prolog. Moreover these operations generalise those for the
less algorithmically complex operations of propositional Horn clauses,
leading to naturally stratified algorithms. The multiheaded clause repre-
sentation is used to build a Pos-based groundness analyser. The analyser
performs surprisingly well and scales smoothly, not requiring widening
to analyse any program in the benchmark suite.

Keywords. Abstract interpretation, (constraint) logic programs, Boolean
functions, groundness analysis.

1 Introduction

Boolean functions play an important role in the practice of static analysis. Many
analyses are couched in terms of Boolean functions, and manipulation of these
functions is crucial to the performance of any implementation. In particular,
positive Boolean functions have been applied to the analysis of logic programs
for properties such as groundness, rigidity [15], finiteness [3] and sharing [8]. This
paper advocates representing positive Boolean functions as multiheaded clauses
and argues that Prolog is well suited to their manipulation.

The choice of abstract domain for a particular application involves the strik-
ing of a balance between efficiency and precision. The various properties tracked
using positive Boolean functions give rise in practice to different forms of Boolean
function. Hence, in some applications, restricting to a more computationally
tractable subclass of Pos can have a significant impact on precision (for exam-
ple, goal-independent analysis of library code), whilst in others little precision is
lost (for example, goal-dependent groundness analysis). Elsewhere, the authors
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have discussed various subclasses of Pos and their computational properties [17,
19]. Here, with an eye to a wider range of applications, the authors adapt tech-
niques from these subclasses to Pos.

Traditionally, Boolean function manipulation has been performed using bi-
nary decision diagrams (BDDs). Groundness analysis is one of the most im-
portant topics in the static analysis of (constraint) logic programs and from
a logic programming point of view this analysis is the most practical test of
Boolean function manipulation. BDD-based analysers have consistently outper-
formed those based on other representations of Boolean functions [1,2,10,24]
for groundness analysis, but there has been a continuous stream of work on
representations amenable to Prolog implementation [7], in particular for the
subclass of definite positive functions, Def [12,13,19]. The majority of these im-
plementations, included those based on BDDs, require widening to analyse large
benchmarks.

The Def-based groundness analyser described in [19] does not require widen-
ing and was designed so that the most frequently called domain operations are
the most lightweight. The same design methodology suggests that a Pos-based
analyser should represent Boolean functions as conjunctions of multiheaded
clauses. In fact, in [1] (reduced) conjunctive normal form, (R)CNF, was investi-
gated, and “performed reasonably well”, but was ultimately rejected since BDDs
performed 40% faster and, in C (their implementation language), conjunctive
normal form is no easier to code than BDDs. Surprisingly, conjunctive normal
forms have not been considered since. This paper revisits clausal representations
of Pos since, in Prolog, clausal representations are much easier to code than
BDDs and following the methodology of [19] the clausal representation lends
itself to efficient implementation based on entailment checking.

The importance of the choice of representation is clearly illustrated by the
subtle difference between multiheaded clauses and RCNF. The RCNF represen-
tation is reduced in the sense that no clause subsumes another. This reduction
makes meet for RCNF quadratic in the size of the representation. The mul-
tiheaded clause representation may contain redundant clauses, enabling meet
to be constant time. This is an important issue for performance since meet is
by far the most frequently applied operation. Neither multiheaded clause nor
RCNF representations are in a canonical form, therefore equivalence cannot be
detected by straightforward syntactic identity. In [1] equivalence for RCNF is
determined by computing the dual Blake canonical form of the formulae and
then testing for syntactic identity. The dual Blake canonical form may be expo-
nentially larger than the RCNF representation and must always be completely
computed. Therefore the method is not amenable to filtering through lower com-
plexity algorithms. Logical entailment, rather than syntactic equivalence, is more
flexible. In practice, entailment of formulae can often be detected using an in-
complete low complexity algorithm. Using such a check, many calls to the worst
case algorithm can be filtered out. It is this stratified use of entailment checking
that enables an analyser based on multiheaded clauses to scale surprisingly well.
Speed is achieved by exploiting Prolog technology — by using a nonground rep-



resentation entailment checking can be implemented efficiently using renaming
and block declarations, whilst meet reduces to list concatenation implemented
using difference lists. The major themes and contributions of this work are:

e Pos functions can be naturally expressed as multiheaded clauses, which are
particularly straightforward to understand, manipulate and code.

e The entailment checking algorithm (which is potentially exponential in the
number of variables) is stratified so that checks for naturally occurring sub-
classes of formulae take quadratic time (in the size of the formulae); in par-
ticular the forward chaining algorithm for propositional Horn clauses is sub-
sumed.

e The domain operations for multiheaded clauses may be coded succinctly and
efficiently in Prolog, resulting in fast Pos-based goal-dependent and goal-
independent groundness analysers which do not require widening for any
program in the benchmark suite.

o If widening is required, the representation may be simply and naturally
widened to Def or to the simpler domain EPos.

e The analysers again demonstrate the value of a principled approach to the
design of a static analysis.

e An experimental evaluation of the analysers is given illustrating that a
clausal representation of Pos coded in Prolog gives performances comparable
to BDD representations coded in C.

The rest of this paper is structured as follows: Section 2 introduces the neces-
sary technical background material. Section 3 details multiheaded clauses. Sec-
tion 4 gives algorithms for the abstract operations of Pos represented as multi-
headed clauses. Section 5 describes Pos-based groundness analysers implemented
with Boolean functions represented as multiheaded clauses. Section 6 gives an
experimental evaluation of these analysers. Section 7 reviews related work and
Section 8 concludes.

2 Preliminaries

A Boolean function is a function f : Bool”™ — Bool where n > 0. Let V' denote
a denumerable universe of variables. A Boolean function can be represented by
a propositional formula over X C V where |X| = n. The set of propositional
formulae over X is denoted by Boolx. Throughout this paper, Boolean functions
and propositional formulae are used interchangeably without worrying about
the distinction. The convention of identifying a truth assignment with the set of
variables M that it maps to true is also followed. Specifically, a map ¢ x (M) :
p(X) — Boolx is introduced defined by: ¢¥x (M) = (AM) A ~(MX\M)). In
addition, the formula AY is often abbreviated as Y.

Definition 1. The map modelx : Booly — p(p(X)) is defined by: model x (f)
={M C X |vx(M) | f}. Also, countermodel x : Boolx — p(p(X)) is defined
by: countermodel x () = p(p(X))\modelx (f). Observe that model x is bijective,
hence model ' : p(p(X)) — Boolx is well defined.



true true true

T Ty Y

TAY TNy T Ay
EPOS{E’y} Def{x’y} POS{Iﬁy}

Fig. 1: Hasse diagrams

Ezample 1. If X = {z,y}, then the function {(true, true) — true, (true, false)—
false, (false,true) — false, (false, false) — false} can be represented by the
formula z A y. Also, modelx (x A y) = {{z,y}} and modelx(z vV y) = {{z}, {y},

{z,y}}.

The focus of this paper is on the use of subclasses of Booly in tracing de-
pendencies. These subclasses are defined below:

Definition 2. A function f is positive iff X € modelx(f). Posx is the set
of positive Boolean functions over X. A function f is definite iff M N M' €
modelx (f) for all M, M' € modelx(f). Defx is the set of positive functions
over X that are definite. A function f is GE iff f is definite positive and for all
M, M'" € model,q.)(f), |M\M'| # 1. EPosx is the set of GE functions over X.

Note that EPosy C Defx C Posx. Also notice that EPosx = {AF | F C
X UEx}, where Ex ={z ¢y |z,y € X}.

Ezample 2. Suppose X = {z,y, z} and consider the following table, which states,
for some Boolean functions, whether they are in EPosx, Def x or Posx and also
gives model x .

f EPosx Defx Posx model x (f)
false [}
TNy . e o |{ {z, v}, {z,y,2}}
TVy o |{ {=} {y}, {z,y}, {z, 2}, {y, 2}, {z,y, 2}}
Ty e o {0, {z}, {z} {z, y}, {=, 2}, {z,y,2}}
TV (y < 2) o {0, {z}, {y}, {z,y} {z, 2}, {y, 2}, {z,y, 2}}
true . o o {0, {z}, {y}, {z}, {z,y}, {z, 2}, {y, 2}, {=,y, 2}}

Note that « V y is not in Defx (since its set of models is not closed under
intersection) and that false is neither in EPosy, nor Posy, nor Defx.

The 4-tuple (Posx, =, A,V) is a finite lattice, where true is the top ele-
ment and AX is the bottom element. The set of (free) variables in a syn-
tactic object o is denoted by var(o). Existential quantification is defined by
Schroder’s Elimination Principle, that is, 3z.f = f[z — true] V flz — false].
Also, {y1,...,yn}.f (project out) abbreviates Jy;. .. .. Jyn.f and 3Y.f (project
onto) denotes Jvar(f) \ Y.f. Two functions f, f' are equivalent, f = f' if
and only if f E f' and f' = f. Finally, for any f € Boolx, coneg(f) =
model ' ({X \ M | M € modelx(f)}).




3 Pos as Multiheaded Clauses

A Boolean function is positive if and only if every clause in its conjunctive normal
form representation contains at least one positive literal. A clause is described as
multiheaded if it contains one or more positive literals. In this paper, multiheaded
clauses are written as implications with the body a conjunction of variables and
the head a disjunction of variables. That is, a multiheaded clause has the form:

NN ANYp =21 V.. VI,

Observe that the y; and the z; are distinct variables, otherwise the clause is
equivalent to true. Let f € MHC denote that f is represented as a conjunction
of multiheaded clauses.

Proposition 1. For every f € Pos there is f' € MHC such that f = f'.

Proof. 1t is well known that any Boolean formula is equivalent to another in
conjunctive normal form. Suppose f = f', where f’ is in conjunctive normal
form. Since f is positive, every clause of f’ must contain at least one positive
literal, hence f' € MHC. [ |

In the case that m = 1 the multiheaded clause is simply a propositional
Horn clause. This suggests that the algorithms to calculate the domain oper-
ations might perform well if they naturally specialise to efficient propositional
Horn clause algorithms. This will be the case for entailment checking. Moreover,
the multiheaded clauses representation is particularly amenable to widening. If
widening is required, the representation may be restricted in linear time so that
clauses with more than, say n, heads are discarded. If n = 1, this widening
corresponds to restricting to Def.

4 Domain Operations for Multiheaded Clauses

This section gives algorithms for the domain operations of Pos represented as
multiheaded clauses. Meet (A) is simply conjunction of clauses and is con-
stant time; the other domain operations described are join (V), relative pseudo-
complement (—), entailment checking (|=) and projection out (3). The algo-
rithms form the basis of the groundness analyser whose implementation is de-
scribed in the next section.

4.1 Join

Consider f = f1 V fao, where f1, fo € MHC. Suppose fi = ¢1 A ... A ¢, and
f2 = di A ... Adp. Then, distributing, f = f' = AL, (AJL(c; V d;)). Suppose
G =N ANyy =>z1V..Vaand d; = u; A... Aupy = v1 V... Vv, Then
cVdi =y AN Ayg Aur Ao Ay, =+ 23 VoV Vo V.. Vo, € MHC.
Hence f’ € MHC. Since the above involves a quadratic blowup in the size of the
representation, join is quadratic in the size of the input formulae.



4.2 Relative Pseudo-Complement

Relative pseudo-complement has recently been used to support backward rea-
soning. In particular to trace control flow backward (right to left) to infer moding
properties of initial queries [20].

Consider f = f; — f2, where fi, fo € MHC. Suppose fi = c1 A ... A ¢y,
and fa = dy A ... Ady,. Then, f = f' = AL, (ViL (c; — dj)). Suppose ¢; =
YiN.Ayy—=z1V..Vegandd; =ui A... Aup = v1 V...V, Then

o d = A (@i Aug A oo Ay = o1 Vo Vo)

T AN (m A Ay =y VoV V)

Hence f' € MHC. Given that the size of f’ is exponential in the size of fi, the
operation is exponential. However, it should be noted that many analyses using
positive Boolean functions (including groundness) do not require this operation
to be calculated. In such cases the cost of this operation is not a drawback.

4.3 Entailment Checking

Entailment checking for positive Boolean functions represented in conjunctive
normal form is co-NP complete [1]. However, as exploited in SAT solving, many
of the Boolean functions that arise in practice can be checked for satisfiability
with low complexity algorithms. This observation is exploited by the two algo-
rithms detailed below. The first, entailslite, is incomplete and takes quadratic
time in the size of the input. The second, entailsheavy, adds case splitting to
the first algorithm to obtain completeness (which is required to guarantee ter-
mination in the fixpoint engine). This stratified algorithm usually only requires
entailslite to be invoked once.

The entailslite algorithm (seen Figure 2) is an incomplete test that a mul-
tiheaded clause is entailed by a conjunction of multiheaded clauses: Al_, B; —
H; =B — H, where B=y; A... Ay, and H = z; V ... V z,,,. It works by
propagating deterministic bindings in an attempt to detect contradiction. The
algorithm terminates either when a contradiction is found or when no more
bindings can be propagated: then Flag is returned. Notice that this algorithm
contains forward chaining for propositional Horn clauses as a special case. Also
notice that the variables are assigned values only once. The auxiliary rename
produces a syntactic variant of a term which does not share any variables with
the original term.

The algorithm entailsheavy (see Figure 3) applies case splitting if entailslite
does not detect entailment. The number of cases is potentially exponential in
the number of variables left unbound by entailslite. However, propagation oc-
curs after each binding, therefore deep case splitting is rarely required. A more
intelligent splitting strategy (as in SAT solving) could be applied, but the naive
strategy performs more than adequately.

Proposition 2. The algorithm entailslite is sound, but not complete for entail-
ment checking. The algorithm entailsheavy is both sound and complete.



process entailslite(/\élei — H;, B— H)
Flag := false;
for i =1 to m do z; := false;
for j =1 to n do y; := true;
for k=1tol do
spawn forward(By, Hy, Flag);
spawn backward(By, Hy, Flag);
return Flag.

process forward(B, H, Flag)
block until every z € B bound
if AB = true then spawn maketrue(H, Flag)
else stop.

process backward(B, H, Flag)
block until every y € H bound
if VH = false then spawn makefalse(B, Flag)
else stop.
process maketrue(H = {y1, ..., ym }, Flag)
block until y; € H changes for some i € {1, ..., m}
if VH = false then Flag := true; stop
else if VH = true then stop
else if VH = y; for some i € {1, ..., m} then y; := true; stop
else suspend.

process makefalse(B = {z1, ...,z }, Flag)
block until z; € B changes for some i € {1,...,n}
if AB = true then Flag := true; stop
else if AB = false then stop
else if AB = g; for some ¢ € {1,...,n} then z; := false; stop
else suspend.

Fig. 2: The entailslite Algorithm

process entailsheavy(F, f)
Flag :=entailslite(F, f);
if Flag = true then return true
else V := var(F)={z1, ..., zn};
if V = 0 then return false
else do
rename(F A f)=(F' A f');
Flag' := entailsheavy({z} v true}F, {z} — true}f);
if Flag' = true then
rename(F A f)=(F" A f");
return entailsheavy({z{ — false}F" {z{ — false}f")
else return false.

Fig. 3: The entailsheavy Algorithm




4.4 Projection

As in [19], projection is calculated using a Fourier-Motzkin style algorithm. The
projection of a single variable out of a pair of clauses, one of which contains the
variable in the body and the other in its head is performed by syllogising as
follows:

EIz.( NN Ay =2V V.V Xy

/\z/\yp+1/\.../\yn—>xq+1v...me> YA AYn D BLY oV T

The correctness and completeness of this is easily confirmed using Schroder elim-
ination, hence the algorithm below is also correct and complete. In general, each
variable is eliminated in turn, as follows. Suppose z is to be projected out of f.

1. All those clauses with z in the head are found, giving {C; | i € I'} where I
is a (possibly empty) index set.

2. All those clauses with z in the body are found, giving {D; | j € J} where J
is a (possibly empty) index set.

3. These clauses of f are replaced by {32.C; AD;li € I,j € J}

4. A compact representation is maintained by eliminating redundant clauses
(absorption).

Step 4 means that the algorithm is parameterised by the compaction process.
Compaction does not necessarily have to remove all redundant clauses (or indeed
any), hence a tradeoff can be made between keeping the representation small
and the cost of this maintenance. In projecting out a single variable, syllogising
gives a quadratic blowup in the size of the representation. Thus the basic cost
of projecting out a single variable is quadratic. However, the compaction step
takes as its input a representation quadratic in the size of the original and the
overall cost is dependent on the compaction algorithm. In the implementation,
entailslite is used for compaction therefore the cost of projecting out a single
variable is quartic. Because of the size blowup, projecting an arbitrary function
onto a finite set of variables is exponential.

5 A Pos-Based Groundness Analyser

To assess the representation, two Pos-based groundness analysers built on multi-
headed clauses were implemented in Prolog: one goal-dependent and one goal-
independent. The analysers illustrate the ease with which the multiheaded clause
representation can be used. The analysers perform surprisingly well compared
with other Pos analysers (including those with BDD-based Boolean function ma-
nipulation coded in C) and compared with analysers using more computationally
tractable domains. This section details the Prolog implementation.

5.1 A GEP Representation

As in [2,19], the analyser maintains a factorised representation, that is, as a
product of subdomains. The factorisation is encoded in the call and answer pat-
terns. A call (or answer) pattern is a pair {a, f) where a is an atom and f € Pos.



Normally the arguments of a are distinct variables. The formula f is a conjunc-
tion (list) of multiheaded clauses. In a non-ground representation the arguments
of a can be instantiated and aliased to express simple dependency information
[17]. For example, if a = p(z1,...,25), then the atom p(zy,true, 1, x4, true)
represents a coupled with the formula (z; <> x3) A 2 A z5. This enables the ab-
straction (p(x1, ..., zs5), f1) to be collapsed to (p(x1,true,x1, x4, true), fo) where
fi = (x1 & x3) A x2 A x5 A fo. This encoding leads to a more compact rep-
resentation and is similar to the GER factorisation of ROBDDs proposed by
Bagnara and Schachte [2]. The representation of call and answer patterns de-
scribed above is called GEP (groundness, equivalences and propositional clauses)
where the atom captures the first two properties and the formula the latter.

The GEP representation is advantageous since it gives a compact represen-
tation whilst incurring little overhead when the representation is non-ground.
The compactness of the representation affects memory usage and the complex-
ity of domain operations. As demonstrated in [17], many dependencies arising
in groundness analysis fall into the GE component. By using the GEP represen-
tation, many calls to expensive domain operations are avoided. Note that (as
in [19]) the analyser does not maintain the factorisation strictly. Dependencies
that could be encoded in the GE component may exist in the P component —
the advantage of this is that the implementor may choose to update the GE
component only when most computationally convenient.

5.2 Domain Operations for the GEP Representation

Meet The meet of the pairs (a1, fi) and (ae, f2) can be computed by unifying
a1 and as and concatenating f; and fs.

Renaming The objects that require renaming are formulae and call (answer)
pattern GEP pairs. If a dynamic database is used to store the pairs, then re-
naming is automatically applied each time a pair is looked-up in the database.
Formulae can be renamed with a single call to the Prolog builtin copy_term.

Entailment Entailment checking works on three levels each called under a
negation so as not produce any problematic bindings. The first entailment check
operates only on the GE component (and is complete for this component). En-
tailment of the functions encoded in the GE component is denoted a; = as. To
test this, bind each distinct variable in a; to a distinct ground constant, resulting
in a}. If, after this has been performed, a] may be unified with a-, then a; = as.
Otherwise a; }£ as. The second entailment check is only applied to formula in the
P component. This implements the (incomplete) entailslite algorithm described
in section 4.3. The propagating processes are realised using block declarations.
A single pass over the formulae sets up the process and each clause results in two
processes at any one time. The cost of suspending and resuming these processes
is constant time, so propagation is achieved with very little overhead. The third
entailment check implements a variant of the entailsheavy algorithm described



in section 4.3. Copy_term produces a renamed formulae with new variables such
that if any of the original variables have processes blocked on them, then the new
variables will have copies of the processes blocked on them. This saves repeating
work in the calls to entailslite.

Projection Projection is only applied to formulae in the P component. It is
performed using the algorithm given in section 4.4. Clauses produced by projec-
tion that are equivalent to true (that is, the intersection of the head and body
variables is nonempty) are immediately discarded. The compaction step is based
on the entailslite algorithm. However, as the purpose of compaction is to prevent
an explosion in the size of the representation, compaction is only performed if
the representation after syllogising is larger than beforehand. Since entailslite is
incomplete some redundant clauses may be retained, however this is more than
compensated by the reduced complexity of compaction.

Join Calculating the join of the pairs (a1, fi) and (a2, f2) is complicated by the
way that join interacts with renaming. Specifically, in a non-ground representa-
tion, call (answer) patterns would be typically stored in a dynamic database so
that var(a1) Nvar(az) = 0. Hence (a1, f1) (or equivalently (a2, f2)) have to be
appropriately renamed before the join is calculated. This is achieved as follows.
Plotkin’s anti-unification algorithm [22] is used to compute the most specific
atom a that generalises a; and az. (But observe that if a1 |= a2, a2 is a most
specific generalisation of the atoms.) The basic idea is to reformulate a; as a
pair {(a{, f{) which satisfies two properties: a} is a syntactic variant of a; the
pair represents the same dependency information as (aj,true). A pair {(a}, f3)
reformulating a, is likewise constructed. The atoms a, a| and a}, are unified and
the formula f" = (fi A f{) V (f2 A f3) is calculated. This calculation is filtered by
entailment checking. If fi A f{ = f2 A f3 can be detected using entailslite, then
f" = fo A f} (and symmetrically). In this case the entailment check saves a call
to join (and the associated projection) and the creation of a new data-structure,
f'. Otherwise the join f’ is computed as in section 4.1. Redundant clauses are
removed from f’ using entailslite to give f, and thereby the join (a, f).

5.3 Fixpoint Algorithms

The goal-dependent analyser is driven by an induced magic based iteration strat-
egy, refining that used in [19]. Induced magic was introduced in [5], where a
meta-interpreter for semi-naive, goal-dependent, bottom-up evaluation is pre-
sented. Simple optimisations can significantly impact on performance. In partic-
ular, as noted in [18], evaluations resulting from new calls should be performed
before those resulting from new answers, and a call to solve for one rule should
finish before another call to solve for another rule starts. These optimisations
have been incorporated into the induced magic framework by using an explicit
redo list storing those call and answer patterns which have changed, thereby



defining the clauses which need to be reevaluated. The goal-independent anal-
yser is based on semi-naive iteration. Neither of these analysers has exploited
condensing [16, 21].

6 Experimental Evaluation

To assess the feasibility of multiheaded clauses as a representation of positive
Boolean functions, the Pos-based groundness analysers were tested on a large
benchmark suite.

BDD representations of Boolean functions have been popular for the imple-
mentation of Pos-based groundness analysers. For this reason an analyser using
a BDD package has also been instrumented. The BDD package available does
not employ a GER factorisation. However, it should be noted that turning off
the GEP factorisation with the multiheaded clause analyser does not greatly
affect its performance. This is a strength of clausal representations. An RCNF
analyser was also implemented in Prolog to aid the assessment of MHC. The
three goal-dependent analysers share the same fixpoint algorithm and therefore
run in lock-step.

The analysers are coded in SICStus Prolog 3.8.6 with the exception for the
domain operations for BDD-based Pos, which were written in C by Schachte
[23], and compiled with O2 level of optimisation. The analysers were run on a
296MHz Sun UltraSPARC-II with 1GByte of RAM running Solaris 7. Programs
are abstracted following the elegant (two program) scheme of [4] to guarantee
correctness. Programs containing disjunctions are normalised to definite clauses.
Timeouts were set at two minutes.

Table 1 presents the experimental results for the larger programs in the
benchmark suite. The columns detail the following information, file: the pro-
gram name; size: the number of abstract clauses; abs: the time require to read,
parse, normalise and abstract the program. For goal-dependent analysis the fix-
point times for the MHC, RCNF and BDD analysers are given, along with count:
the number of ground argument positions in the call and answer patterns found
by the analyser. For goal-independent analysis, the fixpoint times for MHC are
given, along with the number of ground arguments in the success patterns. Time-
out is denoted by ‘~’. The goal-independent counts are occasional larger than
the goal-dependent counts owing to the presence of code unreachable from the
initial query.

Multiheaded clauses perform consistently better than RCNF for goal-
dependent analysis. This is unsurprising given the cost of meet and the relative
expense of equivalence checking via dual Blake canonical form, together with the
filtering applied to join in MHC. MHC compares favourably with BDDs, espe-
cially considering that the BDD operations exploit memoisation and are coded
in C. In terms of runtime, MHC and BDDs give similar results, although as
would be expected, the different representations performed differently on differ-
ent programs. For example, BDD perform well on sim.pl, whereas MHC perform
well on sim_v5-2.pl. The MHC analyser appears to scale smoothly for both goal-



goal-dep. goal-indep.
file| size abs|MHC RCNF BDD count| MHC count
bridge.clpr| 68 0.09| 0.00 0.12 0.03 24| 0.08 34
conman.pl| 76 0.05| 0.00 0.00 0.03 6| 0.01 6
unify.pl| 770.05| 0.07 0.29 0.08 70| 0.09 19
kalah.pl| 78 0.05| 0.02 0.11 0.04 199| 0.02 42
nbody.pl| 850.07| 0.05 0.13 0.06 113 0.04 57
peep.pl| 850.12( 0.03 0.08 0.04 10| 0.02 8
sdda.pl| 89 0.06| 0.04 0.07 0.05 17| 0.02 4
bryant.pl| 940.07| 0.32 2.38 0.15 99| 0.28 9
boyer.pl| 95 0.08| 0.05 0.07 0.04 3| 0.02 5
read.pl| 101 0.09| 0.05 0.23 0.08 99| 0.03 37
gplan.pl| 108 0.09 0.03 0.25 0.07 216| 0.05 27
trs.pl| 108 0.13| 0.10 2.28 0.26 13| 0.04 7
press.pl|{ 109 0.09| 0.11 0.27 0.12 53| 0.04 32
reducer.pl| 113 0.07| 0.08 0.17 0.09 41| 0.05 21
parser_dcg.pl| 122 0.09| 0.09 0.29 0.08 43| 0.04 24
simple_analyzer.pl| 140 0.10| 0.16 0.48 0.13 89| 0.10 31
dbqas.pl| 143 0.09| 0.03 0.04 0.04 18| 0.03 24
ann.pl| 146 0.11| 0.16 0.43 0.10 71| 0.09 12
asm.pl| 160 0.17| 0.05 0.19 0.09 90| 0.14 16
nand.pl| 179 0.14| 0.05 1.46 0.14 402| 0.68 16
Inprolog.pl| 220 0.10( 0.08 0.19 0.12 143| 0.07 31
ili.pl| 221 0.15| 0.55 1.63 0.13 4| 0.15 5
strips.pl| 240 0.22| 0.03 0.07 0.08 142| 0.06 36
sim.pl| 244 0.22| 1.09 24.78 0.25 100| 0.62 33
rubik.pl| 255 0.21| 0.22 25.32 0.20 158| 0.16 51
chat_parser.pl| 281 0.36| 0.29 1.75 0.26 505| 0.30 128
sim_v5-2.pl| 288 0.23| 0.07 0.33 0.16 457| 0.10 37
peval.pl| 3320.18| 0.64 4.62 0.16 27| 1.30 17
aircraft.pl| 395 0.54| 0.15 0.70 0.41 687| 0.12 196
essln.pl| 595 0.48| 0.19 20.72 0.37 162| 0.30 75
chat_80.pl| 883 1.43| 0.88 4.28 0.84 855| 0.64 339
aqua_c.pl|3928 3.55| 7.68 67.04 - 1285| 6.59 458

Table 1. Timing and Precision Results

dependent and goal-independent analysis. Of course, any Pos-based analyser can
be broken using the schema from [6, 14]; the analyser can deal with the arity 14
case of [6] before timeout (that is, a single predicate requiring 16384 iterations).

The major cost in entailment checking is incurred through case splitting in
entailsheavy. Instrumentation has revealed that the total number of times entail-
slite is invoked in checking F' |= f almost never exceeds |var(F')|. Therefore in
practice entailsheavy exhibits cubic behaviour in the size of the input formulae.
Further instrumentation has shown that the maximum number of heads observed
in a clause is four. These maxima occur infrequently. Since most clauses have few
heads, typically only a small number of bindings have to be made before prop-



agation binds sufficient variables to return the Flag. The calls to entailsheavy
typically do not detect entailment, as the vast majority of entailments are de-
tected using entailslite. As disentailment is demonstrated by the discovery of a
single countermodel, the binding of a small number of variables to their value
in a countermodel is often enough to generate the rest of this countermodel via
propagation. This helps to explain the success of the stratified entailment check.

7 Related Work

The efficiency of groundness analysis depends on the way dependencies are repre-
sented and implemented. The representation decides the algorithmic complexity
of the domain operations but the implementation can introduce a prohibitive
constant factor or even push the complexity into a higher class if there is not a
good match between the representation and the implementation language. Effi-
cient BDD-based Pos analysis are usually implemented in languages with muta-
ble data-structures such as C [24] or SML [10, 11]. State-of-the-art BDD-based
groundness analysers employ a GE factorisation [2] which keeps simple definite
information separate from dependency information. This leads to a particularly
dense representation (meant informally, a small number of nodes/clauses in the
representation) and is therefore an important implementation tactic.

The density of the representation is as important to Prolog as it is to C: the
density determines the size of the inputs to the domain operations, as well as im-
pacting on memory usage. The dual Blake canonical form representation of Def
functions [1,9] is attractive as it is amenable to Prolog implementation [12] and
it gives a unique representation for every Def function (up to variable ordered).
However, its requirement to make transitive variable dependencies explicit can
compromise density. For example, the function (z < y) A (y < 2) is represented
as (z < (yV 2)) A (y < z). Because of this Howe and King [19] present a (non-
orthogonal [1]) clausal representation of Def as conjunctions of propositional
clauses, but do not maintain a canonical form. Therefore entailment checking is
required to detect stability.

Recently, Genaim and Codish [13] have proposed a dual representation for
Def. For function f, the models of coneg(f) are named and f is represented by
a tuple recording for each variable of f which of these models the variable is
in. For example, the models of coneg(z — y) are {{z,y},{z},0}. Naming the
three models a, b, ¢ respectively, f is represented by (ab,a). This representation
cleverly allows ACI1 unification theory to be used for the domain operations
and elegantly supports a GE factorisation. Promising experimental results are
reported [13], but a widening is required to analyse the aqua_c benchmark.

Codish and Demoen [7] describe a model based Prolog implementation tech-
nique for Pos that would encode x; <> (x2 Ax3) as three tuples (true, true, true),
(false,_, false), (false, false, ). The technique performs well against BDD-
based Pos analysis of its era [24] but it does not scale smoothly to the larger
benchmarks. Heaton et al. [17] therefore propose EPos, a sub-domain of Def, that
can only propagate dependencies of the form (x; <> x2) A 3 across procedure



boundaries. This information is precisely that contained in one of the fields of
the GE factorisation. The main finding of [17] is that this sub-domain retains
reasonably precision for goal-dependent analysis and possesses good scaling be-
haviour.

8 Conclusion

Positive Boolean functions can be naturally expressed as multiheaded clauses
which are straightforward to understand, manipulate and code in Prolog. Multi-
headed clauses have been used as the basis for efficient goal-dependent and goal-
independent Pos-based groundness analysers. The key to the success of these
analysers is their constant time meet and their use of entailment checking suc-
cinctly and efficiently coded using block declarations. Entailment checking is
stratified so that many entailments are detected using a low complexity algo-
rithm. The full exponential algorithm is only applied when necessary for detect-
ing stability, and even then the number of case splits is typically very small. The
analysers do not require widening for any of the benchmarks; however, natural
widenings to Def or to EPos are available if required [6, 14]. This work illustrates
the subtlety of choosing a representation and its associated operations, even for
a well known domain. Minor changes to the representation can have a signif-
icant impact on performance if they affect frequently occurring operations. It
also demonstrates the effectiveness of stratifying high complexity operations to
avoid expensive computation whenever possible. The intelligent application of
the simple entailment checking algorithm is the heart of the analyser presented
in this paper.
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