

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2000). Implementing Groundness Analysis with Definite

Boolean Functions. Lecture Notes in Computer Science, 1782, pp. 200-214.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1698/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Implementing Groundness Analysis withDe�nite Boolean FunctionsJacob M. Howe and Andy KingComputing Laboratory, University of Kent, CT2 7NF, UKfj.m.howe, a.m.kingg@ukc.ac.ukAbstract. The domain of de�nite Boolean functions, Def , can be usedto express the groundness of, and trace grounding dependencies between,program variables in (constraint) logic programs. In this paper, previ-ously unexploited computational properties of Def are utilised to developan e�cient and succinct groundness analyser that can be coded in Prolog.In particular, entailment checking is used to prevent unnecessary leastupper bound calculations. It is also demonstrated that join can be de�nedin terms of other operations, thereby eliminating code and removing theneed for preprocessing formulae to a normal form. This saves space andtime. Furthermore, the join can be adapted to straightforwardly imple-ment the downward closure operator that arises in set sharing analyses.Experimental results indicate that the new Def implementation givesfavourable results in comparison with BDD-based groundness analyses.Keywords. Abstract interpretation, (constraint) logic programs, de�-nite Boolean functions, groundness analysis.1 IntroductionGroundness analysis is an important theme of logic programming and abstractinterpretation. Groundness analyses identify those program variables bound toterms that contain no variables (ground terms). Groundness information is typ-ically inferred by tracking dependencies among program variables. These depen-dencies are commonly expressed as Boolean functions. For example, the functionx ^ (y z) describes a state in which x is de�nitely ground, and there exists agrounding dependency such that whenever z becomes ground then so does y.Groundness analyses usually track dependencies using either Pos [3, 4, 8, 15,21], the class of positive Boolean functions, or Def [1, 16, 18], the class of de�nitepositive functions. Pos is more expressive than Def , but Def analysers can befaster [1] and, in practise, the loss of precision for goal-dependent groundnessanalysis is usually small [18]. This paper is a sequel to [18] and is an explorationof using Prolog as a medium for implementing a Def analyser. The rationalefor this work was partly to simplify compiler integration and partly to deliveran analyser that was small and thus easy to maintain. Furthermore, it has beensuggested that the Prolog user community is not large enough to warrant acompiler vendor to making a large investment in developing an analyser. Thus

any analysis that can be quickly prototyped in Prolog is particularly attractive.The main drawback of this approach has traditionally been performance.The e�ciency of groundness analysis depends critically on the way dependen-cies are represented. C and Prolog based Def analysers have been constructedaround two representations: (1) Armstrong et al [1] argue that Dual Blake Canon-ical Form (DBCF) is suitable for representing Def . This represents functionsas conjunctions of de�nite (propositional) clauses [12] maintained in a normal(orthogonal) form that makes explicit transitive variable dependencies. For ex-ample, the function (x y)^ (y z) is represented as (x (y _ z))^ (y z).Garc��a de la Banda et al [16] adopt a similar representation. It simpli�es joinand projection at the cost of computing and representing the (extra) transitivedependencies. Introducing redundant dependencies is best avoided since pro-gram clauses can (and sometimes do) contain large numbers of variables; thespeed of analysis is often related to its memory usage. (2) King et al show howmeet, join and projection can be implemented with quadratic operations basedon a Sharing quotient [18]. Def functions are essentially represented as a setof models and widening is thus required to keep the size of the representationmanageable. Widening trades precision for time and space. Ideally, however, itwould be better to avoid widening by, say, using a more compact representation.This paper contributes to Def analysis by pointing out that Def has impor-tant (previously unexploited) computational properties that enable Def to beimplemented e�ciently and coded straightforwardly in Prolog. Speci�cally, thepaper details:{ how functions can be represented succinctly with non-ground formulae.{ how to compute the join of two formulae without preprocessing the formulaeinto orthogonal form [1].{ how entailment checking and Prolog machinery, such as di�erence lists anddelay declarations, can be used to obtain a Def analysis in which the mostfrequently used domain operations are very lightweight.{ that the speed of an analysis based on non-ground formulae can comparewell against BDD-based Def and Pos analyses whose domain operations arecoded in C [1]. In addition, even without widening, a non-ground formulaeanalyser can be signi�cantly faster than a Sharing-based Def analyser [18].Finally, a useful spin-o� of our work is a result that shows how the downwardclosure operator that arises in BDD-based set sharing analysis [10] can be im-plemented straightforwardly with standard BDD operations. This saves the im-plementor the task of coding another BDD operation in C.The rest of the paper is structured as follows: Section 2 details the necessarypreliminaries. Section 3 explains how join can be calculated without resorting toa normal form and also details an algorithm for computing downward closure.Section 4 investigates the frequency of various Def operations and explains howrepresenting functions as (non-ground) formulae enables the frequently occurringDef operations to be implemented particularly e�ciently using, for example,entailment checking. Section 5 evaluates a non-ground Def analyser against two

BDD analysers. Sections 6 and 7 describe the related and future work, andsection 8 concludes.2 PreliminariesA Boolean function is a function f : Booln ! Bool where n � 0. A Booleanfunction can be represented by a propositional formula over X where jX j = n.The set of propositional formulae over X is denoted by BoolX . Throughout thispaper, Boolean functions and propositional formulae are used interchangeablywithout worrying about the distinction [1]. The convention of identifying a truthassignment with the set of variables M that it maps to true is also followed.Speci�cally, a map X(M) : }(X)! BoolX is introduced de�ned by: X(M) =(^M) ^ (: _XnM). In addition, the formula ^Y is often abbreviated as Y .De�nition 1. The (bijective) map modelX : BoolX ! }(}(X)) is de�ned by:modelX(f) = fM � X j X(M) j= fg.Example 1. IfX = fx; yg, then the function fhtrue; truei 7!true, htrue; falsei 7!false, hfalse; truei 7! false, hfalse; falsei 7! falseg can be represented by theformula x ^ y. Also, modelX(x ^ y) = ffx; ygg and modelX (x _ y) = ffxg; fyg,fx; ygg.The focus of this paper is on the use of sub-classes of BoolX in tracinggroundness dependencies. These sub-classes are de�ned below:De�nition 2. PosX is the set of positive Boolean functions over X . A functionf is positive i� X 2 modelX(f). Def X is the set of positive functions overX that are de�nite. A function f is de�nite i� M \ M 0 2 modelX(f) for allM;M 0 2 modelX(f).Note that Def X � PosX . One useful representational property of Def X is thateach f 2 Def X can be described as a conjunction of de�nite (propositional)clauses, that is, f = ^ni=1(yi Yi) [12].Example 2. SupposeX = fx; y; zg and consider the following table, which states,for some Boolean functions, whether they are in Def X or PosX and also givesmodelX .f Def X PosX modelX(f)false ;x ^ y � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx _ (y z) � f;; fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggtrue � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote, in particular, that x_y is not in Def X (since its set of models is not closedunder intersection) and that false is neither in PosX nor Def X .

Def fx;ygx ^ ycc ##x x$ y y@@ ��x y y x## cctrue
Posfx;ygx ^ ycc ##x x$ y y@@ ��x y x _ y y x## cc## cctrue

Fig. 1. Hasse diagramsDe�ning f1 __f2 = ^ff 2 Def X j f1 j= f ^f2 j= fg, the 4-tuple hDef X ; j=;^; __i isa �nite lattice [1], where true is the top element and ^X is the bottom element.Existential quanti�cation is de�ned by Schr�oder's Elimination Principle, that is,9x:f = f [x 7! true] _ f [x 7! false]. Note that if f 2 Def X then 9x:f 2 Def X[1].Example 3. If X = fx; yg then x __(x $ y) = ^f(x y); trueg = (x y), ascan be seen in the Hasse diagram for dyadic Def X (Fig. 1). Note also that x __y= ^ftrueg = true 6= (x _ y).The set of (free) variables in a syntactic object o is denoted var(o). Also,9fy1; : : : ; yng:f (project out) abbreviates 9y1: : : : :9yn:f and 9Y:f (project onto)denotes 9var(f) n Y:f . Let �1; �2 be �xed renamings such that X \ �1(X) =X\�2(X) = �1(X)\�2(X) = ;. Renamings are bijective and therefore invertible.The downward and upward closure operators # and " are de�ned by # f =model�1X (f\S j ; � S � modelX(f)g) and " f = model�1X (f[S j ; � S �modelX(f)g) respectively. Note that #f has the useful computational propertythat #f = ^ff 0 2 Def X j f j= f 0g if f 2 PosX . Finally, for any f 2 BoolX ,coneg(f) = model�1X (fX nM jM 2 modelX(f)g).Example 4. Note that coneg(x _ y) = model�1fx;yg(ffxg; fyg; ;g) and therefore"coneg(x _ y) = true. Hence coneg("coneg(x _ y)) = true =# x _ y.This is no coincidence as coneg("coneg(f)) =#f . Therefore coneg and " can beused to calculate #.3 Join and downward closureCalculating join in Def is not as straightforward as one would initially think,because of the problem of transitive dependencies. Suppose f1; f2 2 Def X sothat fi = ^Fi where Fi = fyi1 Y i1 ; : : : ; yini Y inig. One naive tactic tocompute f1 __f2 might be F = fy Y 1j ^ Y 2k j y Y 1j 2 F1 ^ y Y 2k 2 F2g.Unfortunately, in general, ^F 6j= f1 __f2 as is illustrated in the following example.Example 5. Put F1 = fx u; u yg and F2 = fx v; v yg so thatF = fx u ^ vg, but f1 __f2 = (x (u ^ v)) ^ (x y) 6= ^F . Note, however,that if F1 = fx u; u y; x yg and F2 = fx v; v y; x yg thenF = fx (u ^ v); x (u ^ y); x (v ^ y); x yg so that f1 __f2 = ^F .

The problem is that Fi must be explicit about transitive dependencies (this ideais captured in the orthogonal form requirement of [1]). This, however, leads toredundancy in the formula which ideally should be avoided. (Formulae which notnecessarily orthogonal will henceforth be referred to as non-orthogonal formulae.)It is insightful to consider __ as an operation on the models of f1 and f2. Sinceboth modelX(fi) are closed under intersection, __ essentially needs to extendmodelX(f1) [modelX(f2) with new models M1 \M2 where Mi 2 modelX(fi)to compute f1 __f2. The following de�nition expresses this observation and leadsto a new way of computing __ in terms of meet, renaming and projection, thatdoes not require formulae to be �rst put into orthogonal form.De�nition 3. The map _g : BoolX 2 ! BoolX is de�ned by: f1 _gf2 = 9Y:f1gf2where Y =var(f1)[var(f2) and f1gf2=�1(f1)^�2(f2)^^y2Y y $ (�1(y)^�2(y)).Note that _g operates on BoolX rather than Def X . This is required for thedownward closure operator. Lemma 1 expresses a key relationship between _gand the models of f1 and f2.Lemma 1. Let f1; f2 2 BoolX . M 2 modelX(f1 _gf2) if and only if there existsMi 2 modelX(fi) such that M =M1 \M2.Proof. Put X 0 = X [�1(X) [�2(X).Let M 2 modelX(f1 _gf2). There exists M � M 0 � X 0 such that M 0 2modelX0(f1g f2). Let Mi = ��1i (M 0 \ �i(Y)). Observe that M �M1 \M2 since(�1(y)^ �2(y)) y. Also observe that M1 \M2 �M since y (�1(y)^ �2(y)).Thus Mi 2 modelX(fi) and M =M1 \M2, as required.LetMi 2 modelX(fi) and putM =M1\M2 andM 0 =M[�1(M1)[�1(M2).Observe M 0 2 modelX0(f1 g f2) so that M 2 modelX(f1 _gf2). �From lemma 1
ows the following corollary and also the useful result that _g ismonotonic.Corollary 1. Let f 2 PosX . Then f = f _gf if and only if f 2 Def X .Lemma 2. _g is monotonic, that is, f1 _gf2 j= f 01 _gf 02 whenever fi j= f 0i .Proof. LetM 2 modelX (f1 _gf2). By lemma 1, there existMi 2 modelX(fi) suchthat M = M1 \M2. Since fi j= f 0i , Mi 2 modelX(f 0i) and hence, by lemma 1,M 2 modelX(f 01 _gf 02). �The following proposition states that _g coincides with __ on Def X . This gives asimple algorithm for calculating __ that does not depend on the representationof a formula.Proposition 1. Let f1; f2 2 Def X . Then f1 _gf2 = f1 __f2.Proof. Since X j= f2 it follows by monotonicity that f1 = f1 _gX j= f1 _gf2 andsimilarly f2 j= f1 _gf2. Hence f1 __f2 j= f1 _gf2 by the de�nition of __.Now let M 2 modelX(f1 _gf2). By lemma 1, there exists Mi 2 modelX(fi)such that M =M1 \M2 2 modelX(f1 __f2). Hence f1 _gf2 j= f1 __f2. �

Downward closure is closely related to _g and, in fact, _g can be used repeat-edly to compute a �nite iterative sequence that converges to #. This is stated inproposition 2. Finiteness follows from bounded chain length of PosX .Proposition 2. Let f 2 PosX . Then #f = _i�1fi where fi 2 PosX is theincreasing chain given by: f1 = f and fi+1 = fi _gfi.Proof. Let M 2 modelX(# f). Thus there exists Mj 2 modelX(f) such thatM = [mj=1Mj . Observe M1 \ M2;M3 \ M4; : : : 2 modelX(f2) and thereforeM 2 modelX(fdlog2(m)e). Since m � 22n where n = jX j it follows that #f j= f2n .Proof by induction is used for the opposite direction. Observe that f1 j=#f .Suppose fi j=#f . Let M 2 modelX(fi+1). By lemma 1 there exists M1;M2 2modelX(fi) such that M = M1 \M2. By the inductive hypothesis M1;M2 2modelX(#f) thus M 2 modelX(#f). Hence fi+1 j=#f .Finally, _i=1fi 2 Def X since f1 2 PosX and _g is monotonic and thusX 2 modelX(_i=1fi). �The signi�cance of this is that it enables # to be computed in terms of existingBDD operations thus freeing the implementor from more low level coding.4 Design and implementationThere are typically many degrees of freedom in designing an analyser, evenfor a given domain. Furthermore, work can often be shifted from one abstractoperation into another. For example, Garc��a de la Banda et al [16] maintainDBCF by a meet that uses six rewrite rules to normalise formulae. This gives alinear time join and projection at the expense of an exponential meet. Conversely,King et al [18] have meet, join and projection operations that are quadratic inthe number of models. Note, however, that the numbers of models is exponential(explaining the need for widening). Ideally, an analysis should be designed so thatthe most frequently used operations have low complexity and are therefore fast.4.1 Frequency analysisIn order to balance the frequency of an abstract operation against its cost, aBDD-based Def analyser was implemented and instrumented to count the num-ber of calls to the various abstract operations. The BDD-based Def analyser iscoded in Prolog as a simple meta-interpreter that uses induced magic-sets [7]and eager evaluation [22] to perform goal-dependent bottom-up evaluation.Induced magic is a re�nement of the magic set transformation, avoiding muchof the re-computation that arises because of the repetition of literals in thebodies of magicked clauses [7]. It also avoids the overhead of applying the magicset transformation. Eager evaluation [22] is a �xpoint iteration strategy whichproceeds as follows: whenever an atom is updated with a new (less precise)abstraction, a recursive procedure is invoked to ensure that every clause that

has that atom in its body is re-evaluated. Induced magic may not be as e�cientas, say, GAIA [19] but it can be coded easily in Prolog.The BDD-based Def analysis is built on a ROBDD package coded by Arm-strong and Schachte [1]. The package is intended for Pos analysis and there-fore supplies a _ join rather than a __ join. The package did contain, however,a hand-crafted C upward closure operator " enabling __ to be computed byf1 __f2 =#(f1_f2) where #f = coneg("coneg(f)). The operation coneg(f) can becomputed simply by interchanging the left and right (true and false) branchesof an ROBDD. The analyser also uses the environment trimming tactic used bySchachte to reduce the number of variables that occur in a ROBDD. Speci�-cally, clause variables are numbered and each program point is associated with anumber, in such a way that if a variable has a number less than that associatedwith the program point, then it is redundant (does not occur to the right of theprogram point) and hence can be projected out. This optimisation is importantin achieving practical analysis times for some large programs.The following table gives a breakdown of the number of calls to each abstractoperation in the BDD-based Def analysis of eight large programs. Meet, join,equiv, project and rename are the obvious Boolean operations. Join (di�) is thenumber of calls to a join f1 __f2 where f1 __f2 6= f1 and f1 __f2 6= f2. Project (trim)are the number of calls to project that stem from environment trimming.�le strips chat parser sim v5-2 peval aircraft essln chat 80 aqua cmeet 815 4471 2192 2198 7063 8406 15483 112455join 236 1467 536 632 2742 1668 4663 35007join (di�) 33 243 2 185 26 177 693 5173equiv 236 1467 536 632 2742 1668 4663 35007project 330 1774 788 805 3230 2035 5523 38163project (trim) 173 1384 770 472 2082 2376 5627 42989rename 857 4737 2052 2149 8963 5738 14540 103795Observe that meet and rename are called most frequently and therefore,ideally, should be the most lightweight. Project, project (trim), join and equivcalls occur with similar frequency but note that it is rare for a join to di�er fromboth its arguments. Join is always followed by an equivalence and this explainswhy the join and equiv rows coincide.Next, the complexity of ROBDD and DBCF (specialised for Def [1]) oper-ations are reviewed in relation to their calling frequency. Suggestions are madeabout balancing the complexity of an operation against its frequency by using anon-orthogonal formulae representation.For ROBDDs (DBCF) meet is quadratic (exponential) in the size of its argu-ments [1]. For ROBDDs (DBCF) these arguments are exponential (polynomial)in the number of variables. Representing Def functions as non-orthogonal for-mulae is attractive since meet is concatenation which can be performed in con-stant time (using di�erence lists). Renaming is quadratic for ROBDDs (linearfor DBCF) in the size of its argument [1]. Renaming a non-orthogonal formula isO(m log(n)) where m (n) is the number of symbols (variables) in its argument.

For ROBDDs (DBCF), join is quadratic (quartic) in the size of its argu-ments [1]. For non-orthogonal formulae, join is exponential. Note, however, thatthe majority of joins result in one of the operands and hence are unnecessary.This can be detected by using an entailment check which is quadratic in thesize of the representation. Thus it is sensible to �lter join through an entailmentcheck so that join is called comparatively rarely. Therefore its complexity is lessof an issue. Speci�cally, if f1 j= f2 then f1 __f2 = f2. For ROBDDs, equivalencechecking is constant time, whereas for DBCF it is linear in the size of the rep-resentation. For non-orthogonal formulae, equivalence is quadratic in the sizeof the representation. Observe that meet occurs more frequently than equalityand therefore a gain should be expected from trading an exponential meet anda linear join for a constant time meet and an exponential join.For ROBDDs (DBCF), projection is quadratic (linear) in the size of its ar-guments [1]. For a non-orthogonal representation, projection is exponential, butagain, entailment checking can be used to prevent the majority of projections.4.2 The GEP representationA call (or answer) pattern is a pair ha; fi where a is an atom and f 2 Def var(a).Normally the arguments of a are distinct variables. The formula f is a con-junction (list) of propositional Horn clauses in the Def analysis described inthis paper. In a non-ground representation the arguments of a can be instanti-ated and aliased to express simple dependency information [9]. For example, ifa = p(x1; :::; x5), then the atom p(x1; true; x1; x4; true) represents a coupled withthe formula (x1 $ x3)^x2^x5. This enables the abstraction hp(x1; :::; x5); f1i tobe collapsed to hp(x1; true; x1; x4; true); f2i where f1 = (x1 $ x3)^x2 ^x5 ^f2.This encoding leads to a more compact representation and is similar to the GERfactorisation of ROBDDs proposed by Bagnara and Schachte [3]. The represen-tation of call and answer patterns described above is called GEP (groundness,equivalences and propositional clauses) where the atom captures the �rst twoproperties and the formula the latter. Note that the current implementation ofthe GEP representation does not avoid ine�ciencies in the representation suchas the repetition of Def formulae.4.3 Abstract operationsThe GEP representation requires the abstract operations to be lifted from Booleanformulae to call and answer patterns.Meet The meet of the pairs ha1; f1i and ha2; f2i can be computed by unifyinga1 and a2 and concatenating f1 and f2.Renaming The objects that require renaming are formulae and call (answer)pattern GEP pairs. If a dynamic database is used to store the pairs [17], thenrenaming is automatically applied each time a pair is looked-up in the database.Formulae can be renamed with a single call to the Prolog builtin copy term.

Join Calculating the join of the pairs ha1; f1i and ha2; f2i is complicated by theway that join interacts with renaming. Speci�cally, in a non-ground represen-tation, call (answer) patterns would be typically stored in a dynamic databaseso that var(a1) \ var(a2) = ;. Hence ha1; f1i (or equivalently ha2; f2i) haveto be appropriately renamed before the join is calculated. This is achieved asfollows. Plotkin's anti-uni�cation algorithm [20] is used to compute the mostspeci�c atom a that generalises a1 and a2. The basic idea is to reformulate a1 asa pair ha01; f 01i which satis�es two properties: a01 is a syntactic variant of a; thepair represents the same dependency information as ha1; truei. A pair ha02; f 02i islikewise constructed that is a reformulation of a2. The atoms a, a01 and a02 areuni�ed and then the formula f = (f1^f 01) _g(f2^f 02) is calculated as described insection 3 to give the join ha; fi. In actuality, the computation of ha01; f 01i and theuni�cation a = a01 can be combined in a single pass as is outlined below. Supposea = p(t1; : : : ; tn) and a1 = p(s1; : : : ; sn). Let g0 = true. For each 1 � k � n, oneof the following cases is selected. (1) If tk is syntactically equal to sk, then putgk = gk�1. (2) If sk is bound to true, then put gk = gk�1 ^ (tk true). (3) Ifsk 2 var(hs1; : : : ; sk�1i), then unify sk and tk and put gk = gk�1. (4) Otherwise,put gk = gk�1 ^ (tk sk) ^ (sk tk). Finally, let f 01 = gn. The algorithm isapplied analogously to bind variables in a and construct f 02. The join of the pairsis then given by ha; (f1 ^ f 01) _g(f2 ^ f 02)i.Example 6. Consider the join of the GEP pairs ha1; truei and ha2; y1 y2iwhere a1 = p(true; x1; x1; x1) and a2 = p(y1; y2; true; true). The most speci�cgeneralisation of a1 and a2 is a = p(z1; z2; z3; z3). The table below illustrates theconstruction of ha01; f 01i and ha02; f 02i in the left- and right-hand columns.k case gk �k case0 g0k �0k0 true � true �1 2 z1 true � 4 y1 $ z1 �2 4 g1 ^ (z2 $ x1) �1 4 g01 ^ (y2 $ z2) �13 3 g2 fx1 7! z3g 2 g02 ^ (z3 true) �14 1 g2 �3 2 g03 ^ (z3 true) �1Putting � = �04 � �4 = fx1 7! z3g, the join is given by h�(a); �(g4 ^ true) _g�(g04 ^y1 y2)i = ha; (z1 true) ^ (z2 $ z3) _g(y1 $ z1) ^ (y2 $ z2) ^ (z3 true) ^ (y1 y2)i = hp(z1; z2; z3; z3); (z1 z2) ^ (z3 z2)i.Note that often a1 is a variant of a2. This can be detected with a lightweightvariance check, enabling join and renaming to be reduced to unifying a1 and a2and computing f = f1 _gf2 to give the pair ha1; fi.Projection Projection is only applied to formulae. Each of the variables to beprojected out is eliminated in turn, as follows. Suppose x is to be projected out off . First, all those clauses with x as their head are found, giving fx Xi j i 2 Igwhere I is a (possibly empty) index set. Second, all those clauses with x in thebody are found, giving fy Yj j j 2 Jg where J is a (possibly empty) index

set. Thirdly these clauses of f are replaced by fy Zi;j j i 2 I ^ j 2 J ^Zi;j =Xi [(Yj n fxg) ^ y 62 Zi;jg (syllogizing). Fourthly, a compact representationis maintained by eliminating redundant clauses (absorption). By appropriatelyordering the clauses, all four steps can be performed in a single pass over f . A�nal pass over f retracts clauses such as x true by binding x to true and alsoremoves clause pairs such as y z and z y by unifying y and z.Entailment Entailment checking is only applied to formulae. A forward chain-ing decision procedure for propositional Horn clauses (and hence Def) is usedto test entailment. A non-ground representation allows chaining to be imple-mented e�ciently using block declarations. To check that ^ni=1yi Yi entailsz Z the variables of Z are �rst grounded. Next, a process is created for eachclause yi Yi that blocks until Yi is ground. When Yi is ground, the processresumes and grounds yi. If z is ground after a single pass over the clauses, then(^ni=1yi Yi) j= z Z. By calling the check under negation, no problematicbindings or suspended processes are created.5 Experimental evaluationA Def analyser using the non-ground techniques described in this paper has beenimplemented. This implementation is built in Prolog using the same inducedmagic framework as for the BDD-based Def analyser, therefore the analyserswork in lock step and generate the same results. (The only di�erence is thatthe non-ground analyser does not implement environment trimmed since therepresentation is far less sensitive to the number of variables in a clause.) Thecore of the analyser (the �xpoint engine) is approximately 400 lines of code andtook one working week to write, debug and tune.In order to investigate whether entailment checking, the join (_g) algorithm,and the GEP representation are enough to obtain a fast and scalable analysis,the non-ground analyser was compared with the BDD-based analyser for speedand scalability. Since King et al [18] do not give precision results for Pos forlarger benchmarks, we have also implemented a BDD-based Pos analyser inthe same vein, so that �rmer conclusions about the relative precision of Defand Pos can be drawn. It is reported in [2], [3] that a hybrid implementationof ROBDDs, separating maintenance of de�niteness information and of variousforms of dependency information can give signi�cantly improved performance.Therefore, it is to be expected that an analyser based on such an implementationof ROBDDs would be faster than that used here.The comparisons focus on goal-dependent groundness analysis of 60 Prologand CLP(R) programs. The results are given in the table below. In this table,the size column gives the number of distinct (abstract) clauses in the programs.The abs column gives the time for parsing the �les and abstracting them, thatis, replacing built-ins, such as arg(x, t, s), with formulae, such as x ^ (s t).

�xpoint precision�le size abs Def NG Def BDD Pos Def Pos %rotate.pl 3 0.00 0.00 0.00 0.00 3 6 50circuit.clpr 20 0.02 0.02 0.03 0.02 3 3 0air.clpr 20 0.02 0.02 0.03 0.02 9 9 0dnf.clpr 23 0.02 0.01 0.01 0.01 8 8 0dcg.pl 23 0.02 0.01 0.01 0.02 59 59 0hamiltonian.pl 23 0.02 0.01 0.01 0.01 37 37 0poly10.pl 29 0.02 0.00 0.00 0.01 0 0 0semi.pl 31 0.03 0.03 0.28 0.28 28 28 0life.pl 32 0.02 0.01 0.02 0.02 58 58 0rings-on-pegs.clpr 34 0.02 0.02 0.04 0.04 11 11 0meta.pl 35 0.01 0.01 0.02 0.01 1 1 0browse.pl 36 0.02 0.01 0.02 0.02 41 41 0gabriel.pl 38 0.02 0.01 0.03 0.03 37 37 0tsp.pl 38 0.03 0.01 0.04 0.04 122 122 0nandc.pl 40 0.03 0.01 0.03 0.03 37 37 0csg.clpr 48 0.04 0.01 0.02 0.02 12 12 0disj r.pl 48 0.02 0.01 0.04 0.04 97 97 0ga.pl 48 0.06 0.01 0.04 0.04 141 141 0critical.clpr 49 0.03 0.03 0.04 0.04 14 14 0scc1.pl 51 0.03 0.01 0.06 0.04 89 89 0mastermind.pl 53 0.04 0.01 0.04 0.04 43 43 0ime v2-2-1.pl 53 0.04 0.03 0.09 0.08 101 101 0robot.pl 53 0.03 0.00 0.01 0.01 41 41 0cs r.pl 54 0.05 0.01 0.04 0.04 149 149 0tictactoe.pl 56 0.06 0.01 0.03 0.04 60 60 0
atten.pl 56 0.03 0.04 0.09 0.08 27 27 0dialog.pl 61 0.02 0.01 0.03 0.03 70 70 0map.pl 66 0.02 0.01 0.08 0.08 17 17 0neural.pl 67 0.05 0.01 0.05 0.05 123 123 0bridge.clpr 69 0.08 0.01 0.02 0.03 24 24 0conman.pl 71 0.04 0.00 0.02 0.02 6 6 0kalah.pl 78 0.04 0.02 0.04 0.04 199 199 0unify.pl 79 0.04 0.07 0.12 0.10 70 70 0nbody.pl 85 0.07 0.06 0.10 0.11 113 113 0peep.pl 86 0.11 0.03 0.06 0.05 10 10 0boyer.pl 95 0.06 0.04 0.04 0.05 3 3 0bryant.pl 95 0.07 0.20 0.15 0.15 99 99 0sdda.pl 99 0.05 0.06 0.06 0.06 17 17 0read.pl 105 0.07 0.06 0.11 0.10 99 99 0press.pl 109 0.07 0.11 0.16 0.18 53 53 0qplan.pl 109 0.08 0.02 0.08 0.07 216 216 0trs.pl 111 0.11 0.11 0.31 0.60 13 13 0reducer.pl 113 0.07 0.11 0.16 0.14 41 41 0simple analyzer.pl 140 0.09 0.13 0.34 0.44 89 89 0dbqas.pl 146 0.09 0.02 0.05 0.05 43 43 0ann.pl 148 0.09 0.11 0.24 0.23 74 74 0asm.pl 175 0.14 0.06 0.14 0.13 90 90 0nand.pl 181 0.12 0.04 0.21 0.19 402 402 0rubik.pl 219 0.16 0.15 0.39 0.40 158 158 0lnprolog.pl 221 0.10 0.08 0.14 0.14 143 143 0ili.pl 225 0.15 0.25 0.23 0.24 4 4 0sim.pl 249 0.18 0.39 0.56 0.52 100 100 0strips.pl 261 0.17 0.01 0.11 0.11 142 142 0chat parser.pl 281 0.21 0.45 0.59 0.60 505 505 0sim v5-2.pl 288 0.17 0.05 0.20 0.20 455 457 0.4peval.pl 328 0.16 0.28 0.27 0.27 27 27 0aircraft.pl 397 0.48 0.14 0.55 0.59 687 687 0essln.pl 565 0.36 0.21 0.58 0.58 163 163 0chat 80.pl 888 0.92 1.31 1.89 2.27 855 855 0aqua c.pl 4009 2.48 11.29 104.99 897.10 1288 1288 0

The abstracter deals with meta-calls, asserts and retracts following the ele-gant (two program) scheme detailed by Bueno et al [6]. The �xpoint columnsgive the time, in seconds, to compute the �xpoint for each of the three analysers(Def NG and Def BDD denote respectively the non-ground and BDD-based Defanalyser). The precision columns give the total number of ground arguments inthe call and answer patterns (and exclude those ground arguments for predicatesintroduced by normalising the program into de�nite clauses). The % column ex-press the loss of precision by Def relative to Pos . All three analysers were codedin SICStus 3.7 and the experiments performed on a 296MHz Sun UltraSPARC-IIwith 1GByte of RAM running Solaris 2.6.The experimental results indicate the precision of Def is close to that ofPos . Although rotate.pl is small it has been included in the table because itwas the only program for which signi�cant precision was lost. Thus, whilst it isalways possible to construct programs in which disjunctive dependency informa-tion (which cannot be traced in Def) needs to be tracked to maintain precision,these results suggest that Def is adequate for top-down groundness analysis ofmany programs.The speed of the non-ground Def analyser compares favourably with boththe BDD analysers. This is surprising because the BDD analysers make useof hashing and memoisation to avoid repeated work. In the non-ground Defanalyser, the repeated work is usually in meet and entailment checking, and theseoperations are very lightweight. In the larger benchmarks, such as aqua c.pl, theBDD analysis becomes slow as the BDDs involved are necessarily large.Wideningfor BDDs can make such examples more manageable [15]. Notice that the timespent in the core analyser (the �xpoint engine) is of the same order as that spentin the abstracter. This suggests that a large speed up in the analysis time needsto be coupled with a commensurate speedup in the abstracter.To give an initial comparison with the Sharing -based Def analyser of King etal [18], the clock speed of the Sparc-20 used in the Sharing experiments has beenused to scale the results in this paper. These �ndings lead to the preliminaryconclusion that the analysis presented in this paper is about twice as fast as theSharing quotient analyser. Furthermore, this analyser relies on widening to keepthe abstractions small, hence may sacri�ce some precision for speed.6 Related workVan Hentenryck et al [21] is an early work which laid a foundation for BDD-basedPos analysis. Corsini et al [11] describe how variants of Pos can be implementedusing Toupie, a constraint language based on the �-calculus. If this analyserwas extended with, say, magic sets, it might lead to a very respectable goal-dependent analysis. More recently, Bagnara and Schachte [3] have developed theidea [2] that a hybrid implementation of a ROBDD that keeps de�nite informa-tion separate from dependency information is more e�cient than keeping thetwo together. This hybrid representation can signi�cantly decrease the size of anROBDD and thus is a useful implementation tactic.

Armstrong et al [1] study a number of di�erent representations of Booleanfunction for both Def and Pos . An empirical evaluation on 15 programs suggeststhat specialising Dual Blake Canonical Form (DBCF) for Def leads to the fastestanalysis overall. This representation of a Def function f is in orthogonal formsince it is constructed from all the prime consequents that are entailed by f . Itthus includes redundant transitive dependencies. Armstrong et al [1] also performinteresting precision experiments. Def and Pos are compared, however, in abottom-up framework that is based on condensing which is therefore biasedtowards Pos . The authors point out that a top-down analyser would improvethe precision of Def relative to Pos and our work supports this remark.Garc��a de la Banda et al [16] describe a Prolog implementation of Def that isalso based on an orthogonal DBCF representation (though this is not explicitlystated) and show that it is viable for some medium sized benchmarks. Fecht [15]describes another groundness analyser that is not coded in C. Fecht adopts MLas a coding medium in order to build an analyser that is declarative and easy tomaintain. He uses a sophisticated �xpoint solver and his analysis times comparefavourably with those of Van Hentenryck et al [21].Codish and Demoen [8] describe a non-ground model based implementa-tion technique for Pos that would encode x1 $ (x2 ^ x3) as three tupleshtrue; true; truei, hfalse; ; falsei, hfalse; false; i. Codish et al [9] propose asub-domain of Def that can only propagate dependencies of the form (x1 $x2) ^ x3 across procedure boundaries. The main �nding of Codish et al [9] isthat this sub-domain loses only a small amount of precision for goal-dependentanalysis.King et al [18] show how the equivalence checking, meet and join of Def canbe e�ciently computed with a Sharing quotient. Widening is required to keepthe representation manageable.Finally, a curious connection exists between the join algorithm described inthis paper and a relaxation that occurs in disjunctive constraint solving [14].The relaxation computes the join (closure of the convex hull) of two polyhedraP1 and P2 where Pi = fx 2 Rn j Aix � Big. The join of P1 and P2 can beexpressed as:P = �x 2 Rn ���� A1�1(x) � B1 ^ A2�2(x) � B2 ^0 � � � 1 ^ x = ��1(x) + (1� �)�2(x) �which amounts to the same tactic of constructing join in terms of meet (con-junction of linear equations), renaming (�1 and �2) and projection (the variablesof interest are x).7 Future workInitial pro�ling has suggested that a signi�cant proportion of the analysis time isspent projecting onto (new) call and answer patterns, so recoding this operationmight impact on the speed of the analysis. Also, a practical comparison with aDBCF analyser would be insightful. This is the immediate future work. In the

medium term, it would be interesting to apply widening to obtain an analysiswith polynomial guarantees. Time complexity relates to the maximum numberof iterations of a �xpoint analysis and this, in turn, depends on the length of thelongest ascending chain in the underlying domain. For both PosX and Def X thelongest chains have length 2n� 1 where jX j = n [18]. One way to accelerate theanalysis, would be to widen call and answer patterns by discarding the formulaecomponent of the GEP representation if the number of updates to a particularcall or answer pattern exceeded, say, 8 [18]. The abstraction then corresponds toan EPosX function whose chain length is linear in X [9]. Although widening forspace is not as critical as in [18], this too would be a direction for future work. Inthe long term, it would be interesting to apply Def to other dependency analysisproblems, for example, strictness [13] and �niteness [5] analysis.The frequency analysis which has been used in this paper to tailor the costsof the abstract operations to the frequency with which they are called could beapplied to other analyses, such as type, freeness or sharing analyses.8 ConclusionsThe representation and abstract operations for Def have been chosen by follow-ing a strategy. The strategy was to design an implementation so as to ensurethat the most frequently called operations are the most lightweight. Previouslyunexploited computational properties of Def have been used to avoid expensivejoins (and projections) through entailment checking; and to keep abstractionssmall by reformulating join in such a way as to avoid orthogonal reduced mono-tonic body form. The join algorithm has other applications such as computingthe downward closure operator that arises in BDD-based set sharing analysis.By combining the techniques described in this paper, an analyser has beenconstructed that is precise, can be implemented easily in Prolog, and whosespeed compares favourably with BDD-based analysers.Acknowledgements We thank Mike Codish, Roy Dyckho� and Andy Heatonfor useful discussions. We would also like to thank Peter Schachte for help withhis BDD analyser. This work was funded partly by EPSRC Grant GR/MO8769.References1. T. Armstrong, K. Marriott, P. Schachte, and H. S�ndergaard. Two Classes ofBoolean Functions for Dependency Analysis. Science of Computer Programming,31(1):3{45, 1998.2. R. Bagnara. A Reactive Implementation of Pos using ROBDDs. In ProgrammingLanguages: Implementation, Logics and Programs, volume 1140 of Lecture Notesin Computer Science, pages 107{121. Springer, 1996.3. R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-Based Implementations of Pos. In Seventh International Conference on AlgebraicMethodology and Software Technology, volume 1548 of Lecture Notes in ComputerScience, pages 471{485. Springer, 1999.

4. N. Baker and H. S�ndergaard. De�niteness Analysis for CLP(R). In AustralianComputer Science Conference, pages 321{332, 1993.5. P. Bigot, S. Debray, and K. Marriott. Understanding Finiteness Analysis usingAbstract Interpretation. In Joint International Conference and Symposium onLogic Programming, pages 735{749. MIT Press, 1992.6. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan-dard Prolog Programs. In European Symposium on Programming, volume 1058 ofLecture Notes in Computer Science, pages 108{124. Springer, 1996.7. M. Codish. E�cient Goal Directed Bottom-up Evaluation of Logic Programs.Journal of Logic Programming, 38(3):355{370, 1999.8. M. Codish and B. Demoen. Analysing Logic Programs using \prop"-ositional LogicPrograms and a Magic Wand. Journal of Logic Programming, 25(3):249{274, 1995.9. M. Codish, A. Heaton, A. King, M. Abo-Zaed, and P. Hill. Widening PositiveBoolean Functions for Goal-dependent Groundness Analysis. Technical Report 12-98, Computing Laboratory, May 1998. http://www.cs.ukc.ac.uk/pubs/1998/589.10. M. Codish, H. S�ndergaard, and P. Stuckey. Sharing and Groundness Dependenciesin Logic Programs. ACM Transactions on Programming Languages and Systems,1999. To appear.11. M.-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. E�cient Bottom-up Abstract Interpretation of Prolog by means of Constraint Solving over FiniteDomains. In Programming Language Implementation and Logic Programming,volume 714 of Lecture Notes in Computer Science, pages 75{91. Springer, 1993.12. P. Dart. On Derived Dependencies and Connected Databases. Journal of LogicProgramming, 11(1&2):163{188, 1991.13. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical Program Anal-ysis Using General Purpose Logic Programming Systems | A Case Study. InProgramming Language Design and Implementation, pages 117{126. ACM Press,1996.14. B. De Backer and H. Beringer. A CLP Language Handling Disjunctions of LinearConstraints. In International Conference on Logic Programming, pages 550{563.MIT Press, 1993.15. C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-tierung, Generierung. PhD thesis, Universit�at des Saarlandes, 1997.16. M. Garc��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.ACM Transactions on Programming Languages and Systems, 18(5):564{614, 1996.17. M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a PracticalCompilation Tool. Journal of Logic Programming, 13(4):349{366, 1992.18. A. King, J.-G. Smaus, and P. Hill. Quotienting Share for Dependency Analysis. InEuropean Symposium on Programming, volume 1576 of Lecture Notes in ComputerScience, pages 59{73. Springer, 1999.19. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a GenericAbstract Interpretation Algorithm for Prolog. ACM Transactions on ProgrammingLanguages and Systems, 16(1):35{101, 1994.20. G. Plotkin. A Note on Inductive Generalisation. Machine Intelligence, 5:153{163,1970.21. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the domainProp. Journal of Logic Programming, 23(3):237{278, 1995.22. J. Wunderwald. Memoing Evaluation by Source-to-Source Transformation. InLogic Program Synthesis and Transformation, Lecture Notes in Computer Science,pages 17{32. Springer, 1995. 1048.

