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Abstract. A succinct SAT solver is presented that exploits the control
provided by delay declarations to implement watched literals and unit
propagation. Despite its brevity the solver is surprisingly powerful and
its elegant use of Prolog constructs is presented as a programming pearl.

1 Introduction

The Boolean satisfiability problem, SAT, is of continuing interest because a
variety of problems are naturally expressible as a SAT instance. Much effort has
been expended in the development of algorithms for, and implementations of,
efficient SAT solvers. This has borne fruit with a number of solvers that are
either for specialised applications or are general purpose [5].

Recently, it has been demonstrated how a dedicated external SAT solver
coded in C can be integrated with Prolog [2] and this has been utilised for a
number of applications. This work was published as a pearl owing to its elegant
use of Prolog to transform logical formulae to Conjunctive Normal Form (CNF).
This work begs the question of the suitability of Prolog as a medium for coding
a SAT solver. In this short paper it is argued that a SAT solver can not only
be coded in Prolog, but that this solver is a so-called natural pearl. That is,
the key concepts of efficient SAT solving can be formulated in a logic program
using a combination of logic and control features [11] that lie at the heart of the
paradigm. This pearl was discovered when implementing an efficient groundness
analyser [8], naturally emerging from the representation of Boolean functions
using logical variables; the solver has not been previously described.

The logic and control features exemplified in this pearl are the use of logical
variables, backtracking and the suspension and resumption of execution via delay
declarations [15]. A delay declaration is a control mechanism that provides a way
to delay the selection of an atom in a goal until some condition is satisfied. They
provide a way to handle, for example, negated goals and non-linear constraints.
Delay declarations are now an integral part of Prolog systems, though their
centrality in the paradigm has only recently been formally established [10]. This
paper demonstrates just how good the match between Prolog and SAT is, when
implementing the Davis, Putnam, Logemann, Loveland (DPLL) algorithm [3]
with watched literals [14]. Watched literals are one of the most powerful features
in speeding up SAT solvers. The resulting solver is elegant and concise, coded in
twenty lines of Prolog, it is self-contained and it will be argued that it is efficient



) function DPLL(f: CNF formula, 6 : truth assignment)
) begin

) 01 := 0 U unit-propagation(f, 6);
) if (is-satisfied(f, 01)) then

) return 61;

) else if (is-conflicting(f, 61)) then
) return L;

) endif

) x := choose-free-variable(f, 01);
0 02 := DPLL(f, 01 U {x > true});

1 if (2 # L) then

2 return Os;

3 else

4 return DPLL(f, 01 U {z — false});
5 endif

6
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end

Fig. 1. Recursive formulation of the DPLL algorithm

enough for solving some interesting, albeit modest, SAT instances [8,9]. The
solver can be further developed in a number of ways, a few of which are discussed
here, and provides an easy entry into SAT solving for the Prolog programmer.
The rest of the paper contains a short summary of relevant background on SAT
solving, gives the code for the solver and comments upon it, presents a short
empirical evaluation to demonstrate its power, discusses extensions to the solver
and concludes with a discussion of the limitations of the solver and its approach.

2 Background

This section briefly outlines the SAT problem and the DPLL algorithm with
watched literals [14] that the solver implements.

The Boolean satisfiability problem is the problem of determining whether
or not, for a given Boolean formula, there is a truth assignment to the vari-
ables under which the formula evaluates to true. Most recent Boolean satisfia-
bility solvers have been been based on the Davis, Putnam, Logemann, Loveland
(DPLL) algorithm [3]. Figure 1 presents a recursive formulation of the algorithm
adapted from that given in [16]. The first argument of the function DPLL is a
formula, f, defined over a set of propositional variables X. As usual f is as-
sumed to be in CNF. The second argument, 6, is a partial (truth) function over
X — {true, false}. The call DPLL(f, @) decides the satisfiability of f where )
denotes the empty truth function. If the call returns the special symbol L then
f is unsatisfiable, otherwise the call returns a truth function 6 that satisfies f.



2.1 Unit propagation

At line (3) the function extends the truth assignment 6 to 6; by applying so-
called unit propagation on f and 6. For instance, suppose f = (-z V z) A (u V
“wVw)A(~wVyV-z)so that X = {u,v,w,z,y, 2z} and 0 is the partial function
0 = {x — true,y — false}. Unit propagation examines each clause in f to
deduce a truth assignment #; that extends # and necessarily holds for f to be
satisfiable. For example, for the clause (—z V z) to be satisfiable, and hence f
as a whole, it is necessary that z — true. Moreover, for (—w V y V —z) to be
satisfiable, it follows that w — false. The satisfability of (uV—vVw) depends on
two unknowns, v and v, hence no further information can be deduced from this
clause. The function unit-propagation( f, ) encapsulates this reasoning returning
the bindings {w — false, z — true}. Extending 6 with these necessary bindings
gives 6.

2.2 Watched literals

Information can only be derived from a clause if it does not contain two un-
knowns. This is the observation behind watched literals [14], which is an imple-
mentation technique for realising unit propagation. The idea is to keep watch
on a clause by monitoring only two of its unknowns. Returning to the previous
example, before any variable assignment is made suitable monitors for the clause
(uV —w Vw) are the unknowns u and v, suitable monitors for (-w V yV —z) are
w and z and (—z V z) must have monitors x and z. When the initial empty 6 is
augmented with x — true, a new monitor for the third clause is not available
and unit propagation immediately applies to infer z — true. The new binding
on z is detected by the monitors on the second clause, which are then updated
to be w and y. If 0 is further augmented with y — false, the change in y is again
detected by the monitors on (—w V y V —z). This time there are no remaining
unbound variables to monitor and unit propagation applies, giving the binding
w +— false. Now notice that the first clause, (u V —v V w), is not monitoring w,
hence no action is taken in response to the binding on w. Therefore, watched lit-
erals provide a mechanism for controlling propagation without inspecting clauses
unnecessarily.

2.3 Termination and the base cases

Once unit propagation has been completely applied, it remains to detect whether
sufficient variables have be bound for f to be satisfiable. This is the role of
the predicate is-satisfied(f, ). This predicate returns true if every clause of f
contains at least one literal that is satisfied. For example, is-satisfied(f,6;) =
false since (u V —w V w) is not satisfied under 6; because v and v are unknown
whereas w is bound to false. If is-satisfied(f, #1) were satisfied, then 6; could be
returned to demonstrate the existence of a satisfying assignment.

Conversely, a conflict can be observed when inspecting f and 67, from which
it follows that f is unsatisfiable. To illustrate, suppose f = (—z) A (zVy) A (—y)



sat(Clauses, Vars) :-
problem_setup(Clauses), elim_var(Vars).

elim_var([]).
elim_var([Var | Vars]) :-
elim_var(Vars), (Var = true; Var = false).

problem_setup([]).

problem_setup([Clause | Clauses]) :-
clause_setup(Clause),
problem_setup(Clauses).

clause_setup([Pol-Var | Pairs]) :- set_watch(Pairs, Var, Pol).

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Vari, Poll):-
watch(Varl, Poll, Var2, Pol2, Pairs).

:= block watch(-, 7, -, 7, 7).
watch(Varl, Poll, Var2, Pol2, Pairs) :-
nonvar (Varl) ->
update_watch(Varl, Poll, Var2, Pol2, Pairs);
update_watch(Var2, Pol2, Varl, Poll, Pairs).

update_watch(Varl, Poll, Var2, Pol2, Pairs) :-
Varl == Poll -> true; set_watch(Pairs, Var2, Pol2).

Fig. 2. Code for SAT solver

and 6 = . From the first and third clauses it follows that 0; = {x — false,y —
false}. The predicate is-conflicting(f, 0) detects whether f contains a clause in
which every literal is unsatisfiable. The clause (x V y) satisfies this criteria under
01, therefore it follows that f is unsatisfiable, which is indicated by returning L.

2.4 Search and the recursive cases

If neither satisfiability nor unsatisfiability have been detected thus far, a variable
x is selected for labelling. The DPLL algorithm is then invoked with 6, aug-
mented with the new binding x — true. If satisfability cannot be detected with
this choice, DPLL is subsequently invoked with #; augmented with x — false.
Termination is assured because the number of unassigned variables strictly re-
duces on each recursive call.

3 The SAT Solver

The code for the solver is give in Figure 2. It consists of just twenty lines of
Prolog. Since a declarative description of assignment and propagation can be



fully expressed in Prolog, execution can deal with all aspects of controlling the
search, leading to the succinct code given in the figure.

3.1 Invoking the solver

The solver is called with two arguments. The first represents a formula in CNF
as a list of lists, each constituent list representing a clause. The literals of a
clause are represented as pairs, Pol-Var, where Var is a logical variable and Pol
is true or false, indicating that the literal has positive or negative polarity. The
formula =z V (y A =z) would thus be represented in CNF as (mz Vy) A (-z V —z)
and presented to the solver as the list L = [[false-X, true-Y], [false-X,
false-Z]] where X, Y and Z are logical variables. The second argument is a list
of the variables occurring in the problem. Thus the query sat(L, [X, Y, Z])
will succeed and bind the variables to a solution, for example, X = false, Y
= true, Z = true. As a by-product, L will be instantiated to [[false-false,
true-true], [false-false, false-truel]. This illustrates that the interpre-
tation of true and false in L depends on whether they are left or right of the
- operator: to the left they denote polarity; to the right they denote truth val-
ues. If L is unsatisfiable then sat (L, Vars) will fail. If necessary, the solver can
be called under a double negation to check for satisfiability, whilst leaving the
variables unbound.

3.2 Watched literals

The solver is based on launching a watch goal for each clause that monitors two
literals of that clause. Since the polarity of the literals is known, this amounts
to blocking execution until one of the two uninstantiated variables occurring
in the clause is bound. The watch predicate thus blocks on its first and third
arguments until one of them is instantiated to a truth value. In SICStus Prolog,
this requirement is stated by the declaration : - block watch(-, 7, -, 7, 7).
If the first argument is bound, then update_watch will diagnose what action, if
any, to perform based on the polarity of the bound variable and its binding. If
the polarity is positive, and the variable is bound to true, then the clause has
been satisfied and no further action is required. Likewise, the clause is satisfied
if the variable is false and the polarity is negative. Otherwise, the satisfiability
of the clause depends on those variables of the clause which have not yet been
inspected. They are considered in the subsequent call to set_watch.

3.3 Unit propagation

The first clause of set_watch handles the case when there are no further variables
to watch. If the remaining variable is not bound, then unit propagation occurs,
assigning the variable a value that satisfies the clause. If the polarity of the
variable is positive, then the variable is assigned true. Conversely, if the polarity
is negative, then the variable is assigned false. A single unification is sufficient



to handle both cases. If Var and Pol are not unifiable, then the bindings to Vars
do not satisfy the clause, hence do not satisfy the whole CNF formula.

Once problem_setup(Clauses) has launched a process for each clause in
the list Clauses, elim_var (Vars) is invoked to bind each variable of Vars to
a truth value. Control switches to a watch goal as soon as its first or third
argument is bound. In effect, the (Var = true; Var = false) sub-goals of
elim_vars(Vars) coroutine with the watch sub-goals of problem_setup(Clauses).
Thus, for instance, elim_var(Vars) can bind a variable which transfers control
to a watch goal that is waiting on that variable. This goal can, in turn, call
update_watch and thus invoke set_watch, the first clause of which is responsi-
ble for unit propagation. Unit propagation can instantiate another variable, so
that control is passed to another watch goal, thus leading to a sequence of bind-
ings that eminate from a single binding in elim_vars(Vars). Control will only
return to elim_var (Vars) when unit propagation has been maximally applied.

3.4 Search

In addition to supporting coroutining, Prolog permits a conflicting binding to be
undone through backtracking. Suppose a single binding in elim_var (Vars) trig-
gers a sequence of bindings to be made by the watch goals and, in doing so, the
watch goals encounter a conflict: the unification Var = Pol in set_watch fails.
Then backtracking will undo the original binding made in elim_var(Vars), as
well as the subsequent bindings made by the watch goals. The watch goals them-
selves are also rewound to their point of execution immediately prior to when
the original binding was made in elim var(Vars). The goal elim var (Vars)
will then instantiate Vars to the next combination of truth values, which may
itself cause a watch goal to be resumed, and another sequence of bindings to be
made. Thus monitoring, propagation and search are seamlessly interwoven.

Note that backtracking can enumerate all the satisfying assignments, unlike
most SAT solvers (therefore also [2]). For example, the query sat(L, [X, Y,
Z]) will give the solutions:

X = false,Y = true,Z = true; X = false,Y = false, Z = true;
X = true, Y = true, Z false; X false, Y = true, Z false;

and X = false, Y = false, Z = false.

4 Extensions

The development of SAT solvers over the last decade has resulted in numerous
heuristics that dramatically improve the performance of general purpose solvers.
This section outlines how a number of these refinements might be incorporated
into the solver presented above. However, discussion of the popular learning
heuristic [13] is left until section 6 as its integration into the solver is more
problematic.



— The first and simplest heuristic is to use a static variable ordering. Vari-
ables are ordered by frequency of occurrence in the input problem, with the
most frequently occurring assigned first. This wins in two ways: the problem
size is quickly reduced by satisfying clauses and the amount of propaga-
tion achieved is greater. Both reduce the number of assignments required
to reach a satisfying assignment or a conflict. This tactic, of course, can be
straightforwardly implemented in Prolog.

— Static variable ordering is the simplest preprocessing tactic aimed at dis-
covering and exploiting structure in a problem. As well as analysing the
structure of a problem, another popular tactic is to change the problem by
restructuring it using limited applications of resolution steps [4]. Again, these
preprocessing steps can clearly be achieved satisfactorily in Prolog.

— Many SAT solvers use non-chronological backtracking, or backjumping, in
order to avoid exploration of fruitless branches of the search tree [13]. Back-
jumping for depth-first search algorithms in Prolog has been explored in [1]
and this approach carries over to the solver presented in this paper.

— Dynamically ordering variables during search [14] has also been widely in-
corporated in SAT solvers. This too can be incorporated into the solver pre-
sented in this paper. The approach has some similarities to the backjumping
of [1] using the blackboard to hold conflict information which is then used
after backtracking to select the next variable for assignment.

5 Experimental Results

In order to illustrate the problems that the solver can tackle, empirical results
for a small benchmark suite are included and are tabulated below. In the table,
benchmark names the SAT instance, whilst vars and clauses give the number
of variables and clauses respectively, satisfiable indicates whether or not the in-
stance is satisfiable, time gives the time taken to find a first satisfying assignment,
or to establish that no such assignment exist, mini gives the time for the bench-
mark using MiniSat and assigns gives the total number of variable assignments
made in elim var. The MiniSat results have been included for reference and
are unsurprisingly considerably faster, owing to its C implementation and use
of many heuristics. Also note that the timing granularity of SICStus is different
to MiniSat. The implementation is in SICStus 4.0.4 and these experiments were
run on a single core of a MacBook with a 2.4GHz Intel Core 2 Duo processor
and 4GB of memory. Timeout was set at one minute. Finally, note that these
results utilise a static variable ordering as described in section 4 and that this
significantly speeds up the solver of these benchmarks.

The first six chat_80 benchmarks are a selection of the largest SAT instances
solved in the Pos-based analysis of [8]. It is worth pointing out that these are
encodings of entailment checks for stability in fixpoint calculations, therefore are
not themselves necessarily positive Boolean formulae (which would be satisfiable
by definition). The remaining benchmarks come from [7]. The uf* and uuf*
benchmarks are random 3SAT instances at the phase transition boundary and



benchmark wars clauses satisfiable time (ms) mini (ms) assigns

chat_80_1.cnf 13 31 true 0 1 9
chat_80_2.cnf 12 30 true 0 1 5
chat_80_3.cnf 8 14 true 0 1 7
chat_80_4.cnf 7 16 true 0 1 3
chat_80_5.cnf 7 16 true 0 1 4
chat_80_6.cnf 8 14 true 0 1 6
uf20-0903.cnf 20 91 true 0 1 8
uf50-0429.cnf 50 218 true 10 1 89
uf100-0658.cnf 100 430 true 20 1 176
uf150-046.cnf 150 645 true 290 15 3002
uf250-091.cnf 250 1065 true 2850 171 13920
uuf50-0168.cnf 50 218 false 0 1 79
uuf100-0592.cnf 100 430 false 50 6 535
uufl150-089.cnf 150 645 false 770 18 8394
uuf250-016.cnf 250 1065 false t/o 1970
2bitcomp_5.cnf 125 310 true 130 1 7617
flat200-90.cnf 600 2237 true 380 12 1811

Fig. 3. Experimental evaluation of the SAT solver

are included to illustrate behaviour on problems likely to involve large amounts
of search; the individual problems were chosen at random from larger suites. The
remaining problems were chosen to illustrate behaviour on structured problems.
Observe that the problems arising from the context where this solver was
discovered are all solved quickly, requiring very few variable assignments. On
these problems, where there can be thousands of calls to the solver in a single
run of the analysis [8], the time to solve the larger SAT instances are beneath
the granularity of the clock, thus the solver is clearly fast enough. As expected,
on the phase transition problems the amount of search grows sharply with the
size of the problem. However, instances with hundreds of clauses are still solved,
and this observation is confirmed by the results for the structured problems.

6 Concluding Discussion

Thus far this paper has highlighted the ways in which Prolog provides an easy
entry point into SAT solving. This section begins by highlighting the limitations
of the approach taken, before concluding with a discussion of the strengths of
this implementation technique.

The challenge of SAT solving grows with the size of the problem. This can
manifest itself in two ways: the storage of the SAT instance and the growth of
the search space. The first of these is perhaps the greatest obstacle to solving
really large problems in Prolog — the programmer does not have the fine-grained
memory control required to store and access hundreds of thousands of clauses.
To address the second issue search heuristics, such as those outlined in section 4,



are needed. One popular kind of heuristic is learning in which clauses are added
to the problem that express regions of the search space that do not contain a
solution [13]. Unfortunately, it is not clear how to achieve this cleanly in this
Prolog solver, as calls to the learnt clauses would be lost on backtracking. One
approach would be to store a learnt clause on a blackboard and then add it
to the problem at an appropriate point on backtracking, but the approach is
both restrictive and unattractive (although it does fit well with random restarts
that are used in some solvers). A final point to note is in the implementation of
watched literals. The literals being watched change during search and changes
made during propagation are undone on backtracking. This makes maintenance
of the clauses easy, but loses one advantage that watched literals potentially
have, namely that the literals being watched do not need to be changed on
backtracking [6].

Owing to the drawbacks outlined above, the solver presented in this paper
is not going to be competitive on the large, difficult problems set as challenges
presented in the international SAT competitions [12]. However, the solver does
provide a declarative description of SAT solving with watched literals in a suc-
cinct and self-contained manner, and one which can be extended in a number of
ways. In addition it performs well enough to be of use for small and medium-
size problems, an example being detecting stability in fixpoint calculations in
Pos-based program analysis [8]. In this context, a SAT engine coded in Prolog
itself is attractive since it avoids using a foreign language interface (note that [2]
hides this interface from the user), simplifies distribution issues, and avoids the
overhead of converting a Prolog representation of a SAT instance to the internal
C representation used by the external SAT solver.

Finally, the solver is available at www.soi.city.ac.uk/~jacob/solver/.
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