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1 Introduction

The nonlinear Schrödinger (NLS) equation (for a review, see e.g. [1]) is one of
the most studied system in quantum integrable systems, and its simplest version
played an important role in the development of the Quantum Inverse Scattering
Method (QISM) [2]. It is known [3] that the quantum NLS model with spin 1
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fermions and repulsive interaction on the line has a Yangian symmetry Y (sl(2)).
More generally, its vectorial version, based on N -component bosons or fermions,
was shown to possess an Y (gl(N)) symmetry [4].

It was thus natural to seek a supersymmetric version of these models. Indeed,
different versions of such a generalization were proposed, from the simple boson-
fermion systems related to NLS [5, 6], or superfields formulation [7] of NLS, up to
more algebraic studies of these models [8, 9]. The difficulty with such generalizations
is to keep the fundamental notion of integrability while allowing for the existence
of supersymmetry. Even when some of the suggested supersymmetric systems were
shown to pass some integrability conditions [10], the status of such models remained
not clearly established, and one is still looking for e.g. their Lax presentation.

Another Z2-graded version of NLS has been introduced by Kulish [11]. The fields
are matrix valued and only the finite interval was studied, using the Thermodynam-
ical Bethe Ansatz (see also [12]).

The aim of this article is to present a vectorial version (close to the matricial
version introduced by Kulish) of the NLS model on the infinite line which includes
both a boson and a fermion field. It is integrable and admits a Lax presentation
without using a superfield formalism. We will construct the classical and quantum
solutions of the model under consideration, and exhibit a symmetry superalgebra
containing fermionic operators which close on the impulsion operator. However, this
supersymmetry algebra is different from the ones already proposed, and is actually
embedded into a super-Yangian based on gl(1|1).

The article is organized as follows: in section 2, we review basic results on the
classical version of the NLS equation, and present the (classical) supersymmetric
version we will deal with. Then, in section 3, we will define the formalism needed
for the quantization of our model, and which appears to rely essentially on the notion
of Zamolodchikov-Faddeev (ZF) algebras. In section 4, we show how to construct
canonical quantum fields starting from the previously introduced ZF algebra as well
as the quantum version of our model, and in section 5 we propose a Lax construction
for our model.
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2 Classical approach

We first review very briefly some of the standard results for the classical nonlinear
Schrödinger (CNLS) equation and then develop a super-version to describe bosons
and fermions at the same time.

2.1 The nonlinear Schrödinger equation and classical results

The CNLS equation

(
i∂t + ∂2

x

)
Φ(x, t) = 2g|Φ(x, t)|2Φ(x, t) with g > 0 (2.1)

is obtained via a Hamiltonian formalism as follows. We first need a Poisson bracket
defined over the space of functionals F (Φ, Φ) where the classical field Φ is the con-
jugate of Φ and these two fields are regarded as independent.

If F and G are two such functionals, we define their Poisson brackets by

{F,G} = i

∫ ∞

−∞
dx

(
δF

δΦ(x)

δG

δΦ(x)
− δF

δΦ(x)

δG

δΦ(x)

)
(2.2)

The time dependence is omitted until we explicitly need it.
This provides the usual canonical Poisson brackets for the basic functionals Φ(x)

and Φ(x):

{Φ(x), Φ(y)} = {Φ(x), Φ(y)} = 0, {Φ(x), Φ(y)} = iδ(x− y) (2.3)

Now, given a Hamiltonian H(Φ, Φ), one gets the Hamiltonian equation of motion
for a functional F :

∂tF = {H, F}
With F = Φ(x, t) and the (time-independent) CNLS Hamiltonian given by

H(Φ, Φ) =

∫ ∞

−∞
dx

(
∂xΦ(x)∂xΦ(x) + gΦ

2
(x)Φ2(x)

)
(2.4)

one recovers the CNLS equation (2.1).
The important feature of the CNLS is that it is a completely integrable system

and Rosales in [13] found an explicit solution of the form

Φ(x, t) =
∞∑

n=0

(−g)nΦ(n)(x, t) , g > 0 (2.5)
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where

Φ(n)(x, t) =

∫

R2n+1
dnpdn+1qλ(p1) . . . λ(pn)λ(qn) . . . λ(q0)

eiΩn(x,t;p,q)

Qn(p,q, 0)
(2.6)

Ωn(x, t;p,q) =
n∑

j=0

(qjx− q2
j t)−

n∑
i=1

(pix− p2
i t) (2.7)

Qn(p,q, ε) =
n∏

i=1

(pi − qi−1 + iε)(pi − qi + iε) (2.8)

dnpdn+1q =
n∏

i=1
j=0

dpi

2π

dqj

2π
(2.9)

where we have denoted p = (p1, . . . , pn), q = (q0, . . . , qn).
This solution is well-defined (i.e. the integral (2.6) exists and the series (2.5)

converges) for a large class of functions containing at least the space of Schwartz
test functions on R, S(R) for all x as long as g is sufficiently small (see e.g. [14]).

As was noted in [15], the Rosales solution is of first importance since its structure
is preserved upon quantization and directly provides the solution of the quantum
nonlinear Schrödinger (QNLS) equation, formally replacing λ, λ by their quantized
counterparts. We also remind the reader that λ and λ are related to the so-called
scattering data of the inverse scattering method (see [16, 15, 17]). We shall see below
that this situation extends to our Z2-graded formalism.

2.2 Extension to the classical nonlinear super-Schrödinger
equation and solution

In this section, we introduce a graded formalism allowing us to deal with a classical
field containing one bosonic and one fermionic component. We define

Φ(x) =

(
φ1(x)
φ2(x)

)
, x ∈ R (2.10)

which we rewrite as

Φ(x) = φi(x)ei , where e1 =

(
1
0

)
and e2 =

(
0
1

)
(2.11)

and summation is understood for repeated indices. φ1 and φ2 are the bosonic and
fermionic components respectively. Similarly, we define

λ(x) =

(
λ1(x)
λ2(x)

)
= λi(x)ei , x ∈ R (2.12)
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We shall also need adjoints of these quantities

Φ†(x) = (φ1(x), φ2(x)) = φi(x)e†i , x ∈ R (2.13)

λ†(x) = (λ1(x), λ2(x)) = λi(x)e†i , x ∈ R (2.14)

with
e†1 = (1, 0) and e†2 = (0, 1) (2.15)

Here and below, the vectors ei, e†i , and the matrices Eij which enter into the for-
malism of auxiliary spaces are Z2-graded:

[ei] = [e†i ] = [i] ; [Eij] = [i] + [j] with [1] = 0 and [2] = 1

Accordingly, the tensor product of auxiliary spaces will also be Z2-graded, e.g.

(I⊗ ei)(Ejk ⊗ I) = (−1)[i]([j]+[k]) Ejk ⊗ ei

We will consider even objects in the following sense: v = viei and M = MijEij are
even iff [vi] = [i] and [Mij] = [i] + [j]. For example, the field Φ in (2.11) is even.

The bosonic or fermionic aspect of the components is then encoded by a graded
commutation relation as follows: if we consider λ(x) with components λi(x), we
have

λi(x)λj(y) = (−1)[i][j]λj(y)λi(x) (2.16)

For i = j = 2, we recover the fermionic nature of our classical field and λ2 is a
Grassmann-valued function. This arises naturally when using a graded formalism
in auxiliary spaces. If we consider λ1(x) and λ2(y) where, by definition,

λ1(x) = λ(x)⊗ 1I and λ2(x) = 1I⊗ λ(x) (2.17)

the Z2-graded commutativity (2.16) is gathered into:

λ1(x)λ2(y) = λ2(y)λ1(x) (2.18)

This discussion extends to the various objects that we will use throughout this
article and we will switch from the global fields to the components to emphasize its
strength: formally, there is no difference between the classical results and our global
formalism while all the novelties spring when translating into components.

Note also that, when dealing with tensor product of auxiliary spaces, one has to
be careful not to confuse (even) objects like λ1 = λ ⊗ I =

∑2
i=1 λiei ⊗ I with their

(Z2-graded) components λi, i = 1, 2. For clarity, we will use boldface letters for the
even objects, and ordinary letters for their components.

Our next task is to generalize the Hamiltonian formalism described in the previ-
ous section. We first introduce the usual Z2-graded Poisson bracket over the space
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of functionals F(Φ, Φ†). For two such functionals, their super-Poisson bracket is
given by

{F ,G} = i

2∑

`=1

∫ ∞

−∞
dx(−1)[F ][`]

(
(−1)[`] δF

δφ`(x)

δG
δφ`(x)

− δF
δφ`(x)

δG
δφ`(x)

)
(2.19)

This bracket is a graded Poisson bracket i.e. it has the following properties (proved
by direct calculation):

i) {F ,G} is bilinear.

ii) [{F ,G}] = [F ] + [G] mod 2.

iii) {F ,G} = −(−1)[F ][G]{G,F}: graded antisymmetry.

iv) {F ,GH} = {F ,G}H + (−1)[F ][G]G{F ,H}: graded Leibniz rule.

v) {F , {G,H}} = {{F ,G},H}+ (−1)[F ][G]{G, {F ,H}}: graded Jacobi identity.

One can also associate to the graded Poisson bracket, a “global” Poisson bracket
for even functionals F and G. Their bracket is given by

{F1,G2} = {Fi, Gj}(ei ⊗ ej) (2.20)

Besides bilinearity, it has the following properties:

i) {F1,G2} = −{G2,F1}: antisymmetry.

ii) {F1,G2H3} = {F1,G2}H3 + G2{F1,H3}: Leibniz rule.

iii) {F1, {G2,H3}}+ {H3, {F1,G2}}+ {G2, {H3,F1}} = 0: Jacobi identity.

The reader clearly realizes now that our formalism is totally transparent at the
“global” level but nevertheless contains all the information about the various com-
ponents encoded in the graded calculus on the auxiliary spaces. As we shall see,
this entails the conservation of the form of the equations and solutions “globally”
at the classical level as well as at the quantum level.

Finally, in order to apply our formalism to derive the classical nonlinear super-
Schrödinger (CNLSS) equation, we need to introduce the “global” Kronecker symbol:

δ12 = δij(ei ⊗ 1I)(1I⊗ e†j) = (ei ⊗ e†i ) (2.21)

and, accordingly
δ21 = (−1)[i](e†i ⊗ ei) (2.22)
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Using the expression (2.19), one immediately computes that the canonical Pois-
son brackets for the basic fields Φ(x), Φ†(y) with corresponding components φi(x),
φj(y) take the following form

{Φ1(x), Φ†
2(y)} = iδ12δ(x− y) (globally) (2.23)

{φj(x), φk(y)} = iδjkδ(x− y) (in components) (2.24)

We now proceed with the derivation of the equation of motion, globally and in
components, by introducing the generalization of the Hamiltonian (2.4):

H(Φ, Φ†) =

∫ ∞

−∞
dx

(
∂xΦ

†(x)∂xΦ(x) + g
(|Φ(x)|2)2

)
(2.25)

The field Φ(x, t) of components φi(x, t) satisfies the following Hamiltonian equa-
tion of motion which we call the Classical Nonlinear super-Schrödinger equation:

i∂tΦ(x, t) = −∂2
xΦ(x, t) + 2g|Φ(x, t)|2 Φ(x, t) (globally) (2.26)

i∂tφj(x, t) = −∂2
xφj(x, t) + 2g (φk(x, t)φk(x, t)) φj(x, t) (in components) (2.27)

These equations are simply derived from the Hamiltonian equations of motion

∂tΦ(x, t) = {H, Φ(x, t)}

using the Hamiltonian (2.25). We remind the reader of the component form for H:

H(Φ, Φ†) =

∫ ∞

−∞
dx

(
∂xφi(x)∂xφi(x) + g φj(x)φk(x)φk(x)φj(x)

)

The important feature in the equations (2.26-2.27) is that they both are exactly
the same as the usual one. This means that the solution à la Rosales (2.5), (2.6) is
still valid in our case, as one can check explicitly.

2.3 Supersymmetry of the CNLSS

Although the present equation is not supersymmetric in the sense studied in [5]-[10],
one can, owing to the presence of both bosons and fermions, construct fermionic
operators which generate a supersymmetry in the following sense.

As a first step, we introduce the fermionic operator

Q =

∫

R
dx

(
φ1(x)

δ

δφ2(x)
− φ2(x)

δ

δφ1(x)
+ φ1(x)

δ

δφ2(x)
+ φ2(x)

δ

δφ1(x)

)
(2.28)

one can compute

Qφ1(x) = −φ2(x) ; Qφ2(x) = φ1(x) ; Qφ1(x) = φ2(x) ; Qφ2(x) = φ1(x)
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which shows that QH = 0.
The form of Q implies that on functionals F (Φ, Φ), one has Q2 = N , where N

is the particle number operator

N φ1(x) = −φ1(x) ; N φ2(x) = −φ2(x) ; N φ1(x) = φ1(x) ; N φ2(x) = φ2(x)

Note that using the PB, one gets for

Q = −
∫

R
dx

(
φ1(x)φ2(x)+φ2(x)φ1(x)

)
= −

∫

R
dx Φ(x) σ Φ(x) with σ =

(
0 1
1 0

)

the following identity for any functional: QF (Φ, Φ) = i{Q,F (Φ, Φ)}. It is then easy
to see that

{Q,H} = 0

One also has

{Q, Q} = −2iN with N = −
∫

R
dx

(
φ1(x)φ1(x)+φ2(x)φ2(x)

)
= −

∫

R
dx Φ(x)Φ(x)

N satisfies NF (Φ, Φ) = i{N,F (Φ, Φ)} as well as

{N, H} = 0

At the end of the first step, we get two functionals Q and N which Poisson-commute
with the Hamiltonian H. Although it is fermionic, Q is not a supersymmetry gener-
ator because it does not close on the impulsion P . However, one can make a second
step in the construction, introducing a second fermionic functional Q(2), given by

Q(2) = i

∫

R
dx Φ(x) σ ∂xΦ(x) +

ig

2

∫

R
dx dy sg(y − x)

(
Φ(x)σΦ(y)

)(
Φ(y)Φ(x)

)

where sg(x) is the sign function. This additional functional satisfies

{Q(2), N} = 0 {Q(2), H} = 0

together with
{Q(2), Q} = −2iP

where P is associated to the impulsion operator. It is given by

P = i

∫

R
dx

(
φ1(x)∂xφ1(x) + φ2(x)∂xφ2(x)

)
= i

∫

R
dx Φ(x)∂xΦ(x)

and acts as
P φ1(x) = ∂xφ1(x) ; P φ2(x) = ∂xφ2(x)

P φ1(x) = ∂xφ1(x) ; P φ2(x) = ∂xφ2(x)
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with as above PF (Φ, Φ) = {P, F (Φ, Φ)}. Again, one can define the operator
Q(2)F (Φ, Φ) = {Q(2), F (Φ, Φ)}, and, at the end of the second step, we get a new
fermionic operator such that

QQ(2) +Q(2)Q = P (2.29)

In that sense, one can say that we have a supersymmetry algebra which is symmetry
of our model (since it commutes with H). In fact, one can compute the remaining
PB:

{P,Q} = 0 {P,Q(2)} = 0 {P, N} = 0

The above PB are also valid, as (anti-)commutators, for the corresponding operators
N , Q, . . .We have chosen the normalisation in such a way that

N̄ = N ; P̄ = P ; H̄ = H ; Q̄ = Q ; Q̄(2) = Q(2)

Note that N , P and H are central in the above algebra.
It is clear that one can repeat this procedure as much as needed, with, at each

step, a new fermionic generator Q(n) and a new (central) bosonic operator. In
such a way, one produces an infinite dimensional superalgebra which is a symmetry
of the CNLSS and generates supersymmetry in the sense mentioned above. This
superalgebra is related to the super-Yangian Y (gl(1|1)) (see section 5).

Let us also remark that similar towers of supersymmetry operators have been
constructed in [6]. However, the underlying algebras are different, as can be seen
by looking for instance at the scaling dimension of the operator content: indeed, in
[6], the scaling dimension of the bosonic and fermionic fields are respectively 1 and
1
2
, while here they both have dimension 1. Consequently, the operators Q(n) have

dimension n− 1, n ∈ Z+, while they have dimension n + 1
2

in [6].

3 ZF algebra and super-formalism

3.1 Graded ZF algebra

We start from the ZF algebra [18] and write a graded version using auxiliary spaces
and entities containing one bosonic and one fermionic component which will be
identified as the quantum versions of λ, λ†. With the same notations as before
these entities read

A(k) =

(
a1(k)
a2(k)

)
= ai(k)ei and A†(k) = (a†1(k), a†2(k)) = a†i (k)e†i (3.1)

Definition 3.1 The graded ZF algebra reads

A1(k1)A2(k2) = R21(k2 − k1)A2(k2)A1(k1) (3.2)

A†
1(k1)A

†
2(k2) = A†

2(k2)A
†
1(k1)R21(k2 − k1) (3.3)

A1(k1)A
†
2(k2) = A†

2(k2)R12(k1 − k2)A1(k1) + δ12δ(k1 − k2) (3.4)

8



where
A1(k) = A(k)⊗ 1I and A2(k) = 1I⊗A(k)

and

R12(u) =
u1I⊗ 1I− igP12

u + ig

is the R-matrix for the super-Yangian Y (gl(1|1)) ≡ Y (1|1).
R21(x) = P12 R12(x) P12, and P12 is the super-permutation operator:

P12 =
2∑

i,j=1

(−1)[j]Eij ⊗ Eji (3.5)

Note that for even vectors u, v and even matrices B, C (as defined in section 2.2),
one has P12 (u⊗ v) = v ⊗ u and P12 (B ⊗ C) P12 = C ⊗B.

The R-matrix has the following useful properties

R12(p1 − p2)R21(p2 − p1) = 1I⊗ 1I (3.6)

R†
12(p1 − p2) = R21(p2 − p1) (3.7)

In terms of components, we shall see below that this graded algebra contains
both commutation and anticommutation relations for the bosonic and fermionic
oscillators a1(k), a†1(k) and a2(k), a†2(k) respectively.

For quantities of definite Z2-grade, we define their super-commutator by

[[B, C]] = BC − (−1)[B][C]CB (3.8)

Then, the component version of the ZF algebra reads (j, k = 1, 2):

[[
aj(k1), ak(k2)

]]
=

−ig

k2 − k1 + ig

(
aj(k2)ak(k1) + (−1)[j][k]ak(k2)aj(k1)

)
(3.9)

[[
a†j(k1), a

†
k(k2)

]]
=

−ig

k2 − k1 + ig

(
a†j(k2)a

†
k(k1) + (−1)[j][k]a†k(k2)a

†
j(k1)

)
(3.10)

[[
aj(k1), a

†
k(k2)

]]
=

−ig

k1 − k2 + ig

(
(−1)[j][k]a†k(k2)aj(k1) + δjk

2∑

`=1

a†`(k2)a`(k1)

)

+δjk δ(k1 − k2) (3.11)

3.2 Fock representation

The previous algebra can be represented on a Fock space, which is most useful for
our quantization of CNLSS, and we follow here the basic ideas developed in e.g. [19]
and [14]. This Fock space FR has the following properties
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1. FR =
⊕∞

n=0Hn
R where H0

R = C, H1
R = L2(R)⊕L2(R) ≡ 2L2(R), i.e.

H1
R =

{
ϕ(p) = ϕj(p)ej s.t. ϕj ∈ L2(R), j = 1, 2

}

and for n ≥ 2, Hn
R ⊂ 2nL2(Rn) ≡ L2(Rn)⊕ . . .⊕ L2(Rn)︸ ︷︷ ︸

2n

is given by:

Hn
R =

{
ϕ1...n(p1, ..., pn) =

2∑
i1,...,in=1

ϕi1,...,in(p1, ..., pn)(ei1 ⊗ . . .⊗ ein)

s.t. ϕi1,...,in ∈ L2(Rn), i1, ..., in = 1, 2 and

ϕ1...i,i+1...n(p1, ..., pi, pi+1, ..., pn) = Ri,i+1(pi − pi+1)ϕ1...i+1,i...n(p1, ..., pi+1, pi, ..., pn)
}

2. The generators A(k), A†(k) are operator-valued distributions acting on a com-
mon domain D dense in FR.

3. There exists a (vacuum) vector Ω ∈ D which is cyclic with respect to A†(k)
and annihilated by A(k).

4. The scalar product which we define below on Hn
R provides the usual L2 topol-

ogy and FR is the completed vector space over C for this topology: FR is a
Hilbert space. This last point will be most useful since we will first regard
our operators as bilinear forms on FR and deduce their properties using the
non-degeneracy of the scalar product.

The sesquilinear form 〈 , 〉 defined on Hn
R ×Hn

R, n ≥ 1 by

〈ϕ, ψ〉 =

∫

Rn
dnp ϕ†

1...n(p1, ..., pn)ψ1...n(p1, ..., pn) (3.12)

ϕ†
1...n(p1, ..., pn) = (−1)

n−1P
k=1

([i1]+...+[ik])[ik+1]
ϕ i1...in (e†i1 ⊗ e†i2 ⊗ ...⊗ e†in) (3.13)

is a (hermitian) scalar product.
Indeed, from the identity ϕ†

1...nψ1...n = ϕ i1...inψi1...in one realizes that (3.12) is
nothing but the usual L2-scalar product restricted to Hn

R.

Let F0
R ⊂ FR be the finite particle space spanned by the sequences (ϕ, ϕ1, ...,

ϕ1...n, ...) with ϕ1...n ∈ Hn
R and ϕ1...n = 0 for n large enough. As (3.12) is defined

for all n, it extends naturally to F0
R. In this context, the vacuum state is Ω =

(1, 0, ..., 0, ...), so that it is normalized to 1.
We are now able to define the action of the creation and annihilation operators

{A(f), A†(f) for f ∈ H1
R} on F0

R through their action on each Hn
R:

A(f)Ω = 0
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A(f) :

{ Hn+1
R → Hn

R

ϕ0...n 7→ [A(f)ϕ]1...n

with [A(f)ϕ]1...n(p1, ..., pn) =
√

n + 1

∫

R
dp0 f †0(p0) ϕ0...n(p0, p1, ..., pn) (3.14)

A†(f) :

{ Hn
R → Hn+1

R

ϕ1...n 7→ [A†(f)ϕ]0...n

with [A†(f)ϕ]0...n(p0, ..., pn) =
1√

n + 1
ϕ1...n(p1, ...pn)f0(p0) (3.15)

+
1√

n + 1

n∑

k=1

Rk−1,k(pk−1 − pk)...R0k(p0 − pk)ϕ0...k̂...n(p0, ..., p̂k, ..., pn)fk(pk)

where the hatted symbols are omitted.
It is easily checked that (3.14) and (3.15) are indeed elements of Hn

R and Hn+1
R

respectively. Therefore, we have operators acting on F0
R (linearity in ϕ obvious)

with the additional property that they are bounded (i.e. continuous) on each finite
particle sector Hn

R with the estimates

∀ϕ ∈ Hn
R, ‖A(f)ϕ‖ ≤ √

n ‖f‖ ‖ϕ‖, ‖A†(f)ϕ‖ ≤ √
n + 1 ‖f‖ ‖ϕ‖ (3.16)

where ‖ ‖ is the norm associated to the scalar product (3.12). Another essential
feature is the adjointness of these operators with respect to 〈 , 〉

∀ϕ ∈ Hn
R, ∀ψ ∈ Hn+1

R , ∀f ∈ H1
R, 〈ϕ, A(f)ψ〉 = 〈A†(f)ϕ,ψ〉 (3.17)

At this stage, the Fock representations A(p), A†(p) of the generators of the ZF
algebra appear as operator-valued distributions through the definition

A(f) =

∫

R
dp f †(p)A(p), A†(f) =

∫

R
dpA†(p)f(p) (3.18)

where f is from now on restricted to live in the space of Schwartz test functions
2S(R) ≡ S(R)⊕S(R) ⊂ H1

R. It is readily shown from these definitions that A(p)
and A†(p) satisfy the exchange relations (3.2-3.4) thus providing the desired repre-
sentation. The explicit action in this representation reads

A0(p0)Ω = 0

∀ϕ ∈ Hn
R, [A1(p1)ϕ]2...n (p2, ..., pn) =

√
n ϕ12...n(p1, ..., pn)

∀ϕ ∈ Hn−1
R ,

[
A†

n+1(pn+1)ϕ
]

1...n
(p1, ..., pn) =

1√
n

ϕ2...n(p2, ..., pn)δ(p1 − pn+1)δ1,n+1

+
1√
n

n∑

k=2

Rk−1,k(pk−1 − pk)...R1k(p1 − pk)ϕ1...k̂...n(p1, ..., p̂k, ..., pn)δ(pk − pn+1)δk,n+1
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so that
[
A†

2(p2)Ω
]
1
(p1) = δ(p1 − p2)δ12. One can notice that, while F0

R is stable

under A(p), A†(p) takes ϕ out of F0
R because of the appearance of a δ-function.

It remains to show that Ω is cyclic with respect to A†(p) i.e.

∀ϕ ∈ Hn
R, n ≥ 1,

(
∀pi, i = 1, ..., n, 〈ϕ,A†

1(p1)...A
†
n(pn)Ω〉 = 0

)
⇒ ϕ = 0 (3.19)

We want to emphasize that, strictly speaking, 〈 , 〉 is not defined in (3.19) since
A†

1(p1)...A
†
n(pn)Ω is not in F0

R. However, maintaining the definition for 〈 , 〉, one
easily computes

〈ϕ,A†
1(p1)...A

†
n(pn)Ω〉 =

√
n! ϕ†

1...n(p1, ..., pn)

which shows the result. We just note that when evaluating 〈 , 〉 on A†
1(p1)...A

†
n(pn)Ω,

it is no longer a scalar product but it produces an element of F0
R. Bearing that in

mind, we will indifferently use both concepts in what follows.
We now have all the ingredients to deduce results for the whole Fock space

FR while working on smaller and more intuitive spaces dense in FR, using the
continuity of the operators. Keeping that in mind, it is interesting to introduce
the equivalent of a state space, a basis of which is usually denoted by |k1, ..., kn〉 =
a†(k1)...a

†(kn)|0〉, k1 > ... > kn. In our case, this is not directly obtained since
A†(k)Ω is not an element of H1

R (it contains a δ-function) and one has to define
such a state space D ⊂ FR in the sense of distributions as follows

D0 = C, (3.20)

Dn =

{∫

Rn
dnp A†

1(p1)...A
†
n(pn)Ωf(p1, ..., pn); f ∈ 2nS(Rn), n ≥ 1

}
(3.21)

and D is spanned by the sequences χ = (χ, χ1, ..., χ1...n, ...), where χ1...n ∈ Dn and
χ1...n = 0 for n large enough.

We can go further in the analogy with the state space by restricting f in (3.21)
to be of the form

f1...n(p1, ..., pn) = f1(p1)⊗ f2(p2)⊗ ...⊗ fn(pn), fi ∈ 2S(R), i = 1, ..., n (3.22)

Anticipating the next section, we define therefore

D0
0 = C, Dn

0 =
{

Ã†
1(f1, t)...Ã

†
n(fn, t)Ω, f1 Â ... Â fn

}
⊂ Hn

R, n ≥ 1 (3.23)

where

Ã†(f , t) =

∫

R
dx Ã†(x, t)f(x), f ∈ 2S(R) (3.24)

Ã†(x, t) =

∫

R
dp A†(p)eipx−ip2t, x, t ∈ R (3.25)

12



and the space D0 is the linear span of sequences χ = (χ, χ1, ..., χ1...n, ...), where
χ1...n ∈ Dn

0 and χ1...n = 0 for n large enough. We also introduced the following
partial ordering relation on 2S(R)

f Â g ⇔ ∀i, j = 1, 2, ∀x ∈ supp(fi), ∀y ∈ supp(gj), x > y

which is just the extension of the ordering of the momenta ki in the definition of a
state space basis |k1, ..., kn〉.

Then, one shows that D and D0 are dense in FR (see the line of argument given
in [14]).

Summarizing, we have constructed a graded ZF algebra and its Fock representa-
tion FR and, inspired by earlier works [16, 17, 15, 20], we shall see that this allows
to construct the quantum version of CNLSS and its solution.

4 Quantizing CNLSS

4.1 Quantization of the fields

Following [15] and [20], we simply write the quantum version of φ
(n)
j (x, t) as

φ
(n)
j (x, t) =

∫

R2n+1
dnpdn+1q

2∑

k1,...,kn=1

a†k1
(p1) . . . a†kn

(pn)akn(qn) . . . ak1(q1)aj(q0)

× eiΩn(x,t;p,q)

Qn(p,q, ε)
(4.1)

using the same notations as in (2.6) and an iε contour prescription. And then the
global field reads

Φ(x, t) =
∞∑

n=0

(−g)nΦ(n)(x, t) with Φ(n)(x, t) = φ
(n)
j (x, t)ej (4.2)

As such, we know that Φ(x, t) is ill-defined because of the nature of A(p), A†(p)
but this is easily cured by regarding Φ(x, t) as bilinear form on D. Actually, for the
rest of this section, we follow the constructions given in [15, 20], and implemented
later in [14] (in a different context): we refer to these articles for detailed proofs.
Our aim is to define properly the fields Φ(x, t) and Φ†(x, t) and to show that they
are canonical fields for the quantum theory satisfying the canonical commutation
relations (CCR).

Let ϕ,ψ ∈ D, then the function (x, t) 7→ 〈ϕ, Φ(n)(x, t)ψ〉 is C∞ for all n.
Therefore, Φ(x, t) is also a bilinear form on D smooth in (x, t) (since D contains

only finite particle vectors, the sum in (4.2) is actually finite). And the same holds
for Φ†(x, t) defined by

∀ϕ,ψ ∈ D, 〈ϕ, Φ†(x, t)ψ〉 = 〈ψ, Φ(x, t)ϕ〉 (4.3)
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From (3.17), we deduce

Φ†(x, t) =
∞∑

n=0

(−g)nΦ†(n)(x, t) (4.4)

with Φ†(n)(x, t) =

∫

R2n+1
dnpdn+1q A†(q0)A

†
1(q1) . . .A†

n(qn)An(pn) . . .A1(p1)

× e−iΩn(x,t;p,q)

Qn(p,q,−ε)
(4.5)

Just like we dealt with A(f) and A†(f), we are naturally led to introduce

Φ(f , t) =

∫

R
f †(x)Φ(x, t), Φ†(f , t) =

∫

R
Φ†(x, t)f(x), f ∈ 2S(R) (4.6)

Again following the case of NLS, one then shows that for ϕ, ψ ∈ D, one has

1. for f Â g
〈ϕ, Φ†(g, t)Ã†(f , t)ψ〉 = 〈ϕ, Ã†(f , t)Φ†(g, t)ψ〉 (4.7)

2. for g Â fi, i = 1, ..., n

〈ϕ, Φ†(g, t)Ã†(f1, t)...Ã†(fn, t)Ω〉 = 〈ϕ, Ã†(g, t)Ã†(f1, t)...Ã†(fn, t)Ω〉 (4.8)

3. for any f1 Â f2 Â ... Â fn

〈ϕ, Φ(g, t)Ã†(f1, t)...Ã†(fn, t)Ω〉 =
n∑

j=1

〈g, fj〉〈ϕ, Ã†(f1, t)...
̂̃A†(fj, t)...Ã†(fn, t)Ω〉

(4.9)
We remind that hatted symbols are omitted.

The next step is to show that Φ(f , t) and Φ†(f , t) are indeed well-defined operators
on a common invariant domain which turns out to be D0. Still following the NLS
case, one has the estimate

∀ϕ ∈ Dn
0 , ∀ψ ∈ Dn+1

0 , ∀f ∈ 2S(R), |〈ϕ, Φ(f , t)ψ〉| ≤ (n + 1)‖f‖‖ϕ‖‖ψ‖ (4.10)

which shows that Φ(f , t), considered so far as a bilinear form, is bounded on Dn
0 ×

Dn+1
0 for each n. Using the usual continuity argument, this gives rise to a bounded

operator Φ(f , t) : Hn+1
R 7→ Hn

R for any n. Thus, by linearity Φ(f , t) : F0
R 7→ F0

R is
a linear operator with the following properties

• Φ(f , t)Ω = 0, Φ(f , t) : Hn+1
R 7→ Hn

R, n ≥ 0

• ∀ϕ,ψ ∈ F0
R, (f , t) 7→ 〈ϕ, Φ(f , t)ψ〉 is antilinear and continuous (for the

topology of ‖.‖) in f ∈ 2S(R) and continuous in t ∈ R.
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• ∀ϕ,ψ ∈ D, (f , t) 7→ 〈ϕ, Φ(f , t)ψ〉 is smooth in t ∈ R
Of course, analogous results hold for the adjoint Φ†(f , t):

• Φ†(f , t)Ω = Ã†(f , t)Ω, Φ†(f , t) : Hn
R 7→ Hn+1

R , n ≥ 0

• ∀ϕ,ψ ∈ F0
R, 〈ϕ, Φ(f , t)ψ〉 = 〈Φ†(f , t)ϕ,ψ〉

Now that the nature of Φ(f , t), Φ†(f , t) is clear, we can proceed to show that they
are canonical (non-relativistic) quantum fields. The first requirement deals with the
cyclicity of Ω with respect to Φ†(f , t). From (4.7-4.8), one deduces

for f1 ≺ ... ≺ fn, Φ†(f1, t)...Φ†(fn, t)Ω = Ã†(fn, t)...Ã†(f1, t)Ω (4.11)

so the first requirement is satisfied. We now turn to the second requirement embod-
ied in the following theorem

Theorem 4.1 The quantum fields Φ(f , t), Φ†(g, t) satisfy the equal time canonical
commutation relations as operators on F0

R

[Φ(f , t), Φ(g, t)] = [Φ†(f , t), Φ†(g, t)] = 0 (4.12)

[Φ(f , t), Φ†(g, t)] = 〈f ,g〉 (4.13)

for any f ,g ∈ 2S(R)

Proof: the proof is the same as in the ordinary NLS equation: it uses extensively
(4.7-4.9) and the non-degeneracy of 〈 , 〉 to get non-bracketed terms.

The real novelty now appears when writing the equal time CCR in components
for the operator-valued distributions φj(x, t), φk(y, t):

[[φj(x, t), φk(y, t)]] = [[φj(x, t), φk(y, t)]] = 0 (4.14)

[[φj(x, t), φk(y, t)]] = δjkδ(x− y) (4.15)

where for j, k = 2, the above CCR correspond to anticommutator.

4.2 Time evolution

We first wish to emphasize that the form of the Hamiltonian (2.25) cannot be re-
produced here owing to the nature of the fields (products of distributions are not
defined). Fortunately, the power of the ZF algebra and the quantum inverse method
(leading to (4.1-4.2)) rescues us by delivering a simple, free-like Hamiltonian in terms
of oscillators. Indeed, one easily checks that the Hamiltonian defined by

H =

∫

R
dp p2A†(p)A(p) (4.16)
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is self-adjoint, i.e. H† = H. Moreover,

∀ϕ ∈ D, [Hϕ]1...n(p1, ..., pn) = (p2
1 + ... + p2

n)ϕ1...n(p1, ..., pn) (4.17)

which shows that D is also an invariant domain for H and that this operator has
the correct eigenvalues. Finally, H generates the time evolution of the field:

Φ(f, t) = eiHtΦ(f, 0)e−iHt (4.18)

Therefore, H, so defined, is the Hamiltonian of our quantum system.
Note that (4.17) and (4.18) have to be understood as operator equalities and

must be evaluated on D.

The free-like expression for H in terms of creation and annihilation oscillators
may be surprising at first glance but it is actually a mere consequence of the rather
complicated exchange relations (3.2-3.4). One can say that the effect of the non-
linear term has been encoded directly in the oscillators instead of the Hamiltonian
(or equivalently the Lagrangian) of the field theory, yielding a (possibly misleading)
simple expression for H. One may finally wonder about the coupling constant which
seems to disappear. Once again, it is actually present through the R-matrix in the
exchange relations.

4.3 Quantum equation of motion

We follow here the line of argument developed for the NLS equation, focusing on
the nonlinear term |Φ(x, t)|2Φ(x, t) which has to be normal-ordered. In the normal-
ordering of products involving Φ and Φ†, all creation operators A†(p) should be
placed to the left of all the annihilation operators A(p) with the further requirement
that the original order of the creation operators be preserved as well as the original
order of two annihilation operators if they belonged to the same Φ or Φ†. Applying
this procedure, the classical nonlinear term becomes : ΦΦ†Φ : (x, t). Besides, the
quantum nonlinear super-Schrödinger equation holds in the following form:

∀ϕ,ψ ∈ D, (i∂t + ∂2
x)〈ϕ, Φ(x, t)ψ〉 = 2g〈ϕ, : ΦΦ†Φ : (x, t)ψ〉 (4.19)

5 Lax pairs

As in the ordinary NLS equation, one can produce a Lax pair for CNLSS. We define
the Lax even super-matrix

L(λ; x) =
iλ

2
Σ + Ω(x) with Σ = E11 + E22 − E33 (5.1)

and Ω(x) = i
√

g
(
φ1(x)E13 + φ2(x)E23 − φ1(x)E31 − φ2(x)E32

)
(5.2)
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Let us stress that, as above, the elementary matrices Ejk (with 1 at position j, k)
are Z2-graded, with [Ejk] = [j] + [k], [1] = [3] = 0 and [2] = 1. As a consequence,
the above super-matrix is based on gl(2|1), with the fermionic entries on the first
minor diagonals.

Using the PB of the φ’s, it is easy to compute that

{L1(λ; x), L2(µ; y)} = iδ(x− y) [r12(λ− µ), L1(λ; x) + L2(µ; y)] (5.3)

where we have introduced

r12(λ− µ) =
g

λ− µ
Π12 with Π12 =

3∑
i,j=1

(−1)[j] Eij ⊗ Eji (5.4)

{L1(λ; x), L2(µ; y)} =
3∑

j,k,l,m=1

{Ljk(λ; x), Llm(µ; y)}Ejk ⊗ Elm (5.5)

(5.6)

Now, we introduce the transition matrix by

∂xT (λ; x, y) = L(λ; x)T (λ; x, y), x > y (5.7)

One shows that its PB is given by

{T1(λ; x, y), T2(µ; x, y)} = [r12(λ− µ), T (λ; x, y)⊗ T (µ; x, y)] (5.8)

T (λ; x, y) obeys to the iterative equation

T (λ; x, y) = E(λ; x− y) + E(λ; x)

∫ x

y

dz Ω(z)E(λ; z)T (λ; z, y) (5.9)

Like in the usual NLS equation, one now introduces the monodromy matrix T (λ)
as the following well-defined limit

T (λ) = lim
x→∞

y→−∞
E(λ;−x)T (λ; x, y)E(λ; y) (5.10)

Still following what has been done for the usual NLS (see e.g. [21, 22, 1] and ref.
therein), one computes

{T1(λ), T2(µ)} = r+(λ− µ)T (λ)⊗ T (µ)− T (λ)⊗ T (µ)r−(λ− µ)
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with

r+(λ− µ) =
g

λ− µ
(P12 + E3,3 ⊗ E3,3)

+iπgδ(λ− µ)
2∑

j=1

(
Ej,3 ⊗ E3,j − (−1)[j]E3,j ⊗ Ej,3

)
(5.11)

r−(λ− µ) =
g

λ− µ
(P12 + E3,3 ⊗ E3,3)

+iπgδ(λ− µ)
2∑

j=1

(
(−1)[j]E3,j ⊗ Ej,3 − Ej,3 ⊗ E3,j

)
(5.12)

where P12 is the super-permutation in the space of 2× 2 matrices, given in (3.5).

Introducing t(λ), the 2 × 2 sub-matrix of T (λ) with the third row and column
removed, and D(λ) = T33(λ), one finally computes for λ 6= µ:

{t1(λ), t2(µ)} =
g

λ− µ
[P12 , t(λ)⊗ t(µ)] (5.13)

{D(λ), t(µ)} = 0 (5.14)

(5.13) shows that t(λ) defines a classical version of the super-Yangian Y (gl(1|1)).
Moreover, one can show that D(λ) generates the Hamiltonians of the NLSS hier-
archy, the first ones being N , P and H. Thus, (5.14) proves that Y (gl(1|1)) is a
symmetry of this hierarchy.

A detailed analysis of this symmetry, and of its quantum version is currently
under investigation [23].
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