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Abstra
tBoolean fun
tions 
an be used to express the groundness of, and tra
e grounding depen-den
ies between, program variables in (
onstraint) logi
 programs. In this paper, a varietyof issues pertaining to the eÆ
ient Prolog implementation of groundness analysis are in-vestigated, fo
using on the domain of de�nite Boolean fun
tions, Def . The systemati
design of the representation of an abstra
t domain is dis
ussed in relation to its impa
ton the algorithmi
 
omplexity of the domain operations; the most frequently 
alled op-erations should be the most lightweight. This methodology is applied to Def , resultingin a new representation, together with new algorithms for its domain operations utilisingpreviously unexploited properties of Def { for instan
e, quadrati
-time entailment 
he
k-ing. The iteration strategy driving the analysis is also dis
ussed and a simple, but verye�e
tive, optimisation of indu
ed magi
 is des
ribed. The analyser 
an be implementedstraightforwardly in Prolog and the use of a non-ground representation results in an ef-�
ient, s
alable tool whi
h does not require widening to be invoked, even on the largestben
hmarks. An extensive experimental evaluation is given.Keywords: Abstra
t interpretation, groundness analysis, de�nite Boolean fun
tions, �x-point algorithms.
1 Introdu
tionGroundness analysis is an important theme of logi
 programming and abstra
t in-terpretation. Groundness analyses identify those program variables bound to termsthat 
ontain no variables (ground terms). Groundness information is typi
ally in-ferred by tra
king dependen
ies among program variables. These dependen
ies are
ommonly expressed as Boolean fun
tions. For example, the fun
tion x ^ (y  z)des
ribes a state in whi
h x is de�nitely ground, and there exists a grounding de-penden
y su
h that whenever z be
omes ground then so does y.Groundness analyses usually tra
k dependen
ies using either Pos, the 
lass ofpositive Boolean fun
tions (Bagnara & S
ha
hte, 1999; Baker & S�ndergaard, 1993;Codish & Demoen, 1995; Fe
ht & Seidl, 1999; Marriott & S�ndergaard, 1993; VanHentenry
k et al., 1995), or Def , the 
lass of de�nite positive fun
tions (Armstronget al., 1998; Gar
��a de la Banda et al., 1996; Genaim & Codish, 2001; Howe &



2 Ja
ob M. Howe and Andy KingKing, 2000). Pos is more expressive than Def , but studies have shown that Defanalysers 
an be faster than 
omparable Pos analysers (Armstrong et al., 1998) and,in pra
ti
e, the loss of pre
ision for goal-dependent groundness analysis is usuallysmall (Heaton et al., 2000). This paper is a development of (Howe & King, 2000)and is an exploration of the representation of Boolean fun
tions for groundnessanalysis and the use of Prolog as a medium for implementing all the 
omponentsof a groundness analyser.The rationale for this work was to develop an analyser with 
on
eptually sim-ple domain operations, with a small and simple (thus easily maintained) Prologimplementation based on a meta-interpreter and with performan
e 
omparable tothat of BDD-based analysers. Moreover, sin
e Prolog is well suited to symboli
 ma-nipulation, it should provide an appropriate medium for implementing a symboli
analysis, su
h as groundness analysis. Any analysis that 
an be qui
kly prototypedin Prolog is parti
ularly attra
tive. The main drawba
k of this approa
h has tra-ditionally been performan
e. The eÆ
ien
y of an analyser 
an be guaranteed byin
luding a widening (the 
ontrolled ex
hange of pre
ision for s
alability). How-ever, a su

essful analyser should �re widening infrequently to maximise pre
ision.The eÆ
ien
y of groundness analysis depends 
riti
ally on the way dependen-
ies are represented. Representation has two aspe
ts: the theoreti
al representa-tion (BDDs, Blake Canoni
al Form, et
.) of the Boolean fun
tions and the data-stru
tures of the implementation language that are used to support this represen-tation. The theoreti
al representation determines the 
omplexity of the domainoperations, but the implementation requires the spe
i�
 data-stru
tures used to beamenable to eÆ
ient implementation in the 
hosen language. That is, the imple-mentation 
an push the 
omplexity into a higher 
lass, or introdu
e a prohibitive
onstant fa
tor in the 
omplexity fun
tion. This paper 
onsiders how a represen-tation should be 
hosen for the intended appli
ation (groundness analysis) by bal-an
ing the size of the representation (and its impa
t) with the 
omplexity of theabstra
t operations and the frequen
y with whi
h these operations are applied. Thepaper also explains how Prolog 
an be used to implement a parti
ularly eÆ
ientDef -based groundness analysis. The orthogonal issue of the iteration strategy usedto drive the analysis is also 
onsidered. Spe
i�
ally, this paper makes the following
ontributions:
� A representation of Def formulae as non-
anoni
al 
onjun
tions of 
lauses is
hosen by following a methodology that advo
ates: 1) ensuring that the most
ommonly 
alled domain operations are the most lightweight; 2) that theabstra
tions that arise in pra
ti
e should be dense; 3) that, where possible,expensive domain operations should be �ltered by lightweight spe
ial 
ases.� A fast Prolog implementation of Def -based groundness analysis is givenfounded on the methodology above, using a 
ompa
t, fa
torised represen-tation.� Representing Boolean fun
tions as non-ground formulae allows su

in
t im-plementation of domain operations. In parti
ular a 
onstant-time meet is
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hieved using di�eren
e lists and a quadrati
-time entailment 
he
k is builtusing delay de
larations.� A new join algorithm is presented whi
h does not require formulae to beprepro
essed into a 
anoni
al form.� The use of entailment 
he
king as a �lter for join is des
ribed, as is the useof a �ltered proje
tion.� Various iteration strategies are systemati
ally 
ompared and it is suggested(at least for groundness analysis) that good performan
e 
an be obtained bya surprisingly simple analysis framework.� An extensive experimental evaluation of groundness analysis using a varietyof 
ombinations of domains, representations and iteration strategies is given.� As a whole, the work presented in this paper strongly suggests that theimplementor 
an produ
e a robust, fast, pre
ise, s
alable analyser for goal-dependent groundness analysis written in Prolog. The analyser presented doesnot require widening to be applied for any programs in the ben
hmarks suite.The rest of the paper is stru
tured as follows: Se
tion 2 details the ne
essarypreliminaries. Se
tion 3 reviews the methods used for 
hoosing the representation ofDef . It goes on to des
ribe various representations of Def in relation to a frequen
yanalysis of the operations; a non-
anoni
al representation as 
onjun
tions of 
lausesis detailed. Se
tion 4 des
ribes a new join algorithm, along with �ltering te
hniquesfor join and for proje
tion. Se
tion 5 dis
usses a variety of iteration strategiesfor driving an analysis. Se
tion 6 gives an experimental evaluation of the various
ombinations of domain representations and iteration strategy for Def (and alsofor the domains EPos and Pos). Se
tion 7 surveys related work and Se
tion 8
on
ludes.
2 PreliminariesA Boolean fun
tion is a fun
tion f : Booln ! Bool where n � 0. Let V denotea denumerable universe of variables. A Boolean fun
tion 
an be represented by apropositional formula over X � V where jXj = n. The set of propositional formulaeover X is denoted by BoolX . Throughout this paper, Boolean fun
tions and propo-sitional formulae are used inter
hangeably without worrying about the distin
tion.The 
onvention of identifying a truth assignment with the set of variables M thatit maps to true is also followed. Spe
i�
ally, a map  X(M) : }(X) ! BoolX isintrodu
ed de�ned by:  X(M) = (^M)^:(_(XnM)). In addition, the formula ^Yis often abbreviated as Y .De�nition 1The (bije
tive) map modelX : BoolX ! }(}(X)) is de�ned by: modelX(f) =fM � X j  X(M) j= fg.Example 1If X = fx; yg, then the fun
tion fhtrue; truei 7! true, htrue; falsei 7! false,hfalse; truei 7! false, hfalse; falsei 7! falseg 
an be represented by the formulax ^ y. Also, modelX(x ^ y) = ffx; ygg and modelX(x _ y) = ffxg; fyg, fx; ygg.



4 Ja
ob M. Howe and Andy KingThe fo
us of this paper is on the use of sub-
lasses of BoolX in tra
ing groundnessdependen
ies. These sub-
lasses are de�ned below:De�nition 2A fun
tion f is positive i� X 2 modelX(f). PosX is the set of positive Booleanfun
tions over X. A fun
tion f is de�nite i� M \M 0 2 modelX(f) for all M;M 0 2modelX(f). Def X is the set of positive fun
tions overX that are de�nite. A fun
tionf is GE i� f is de�nite positive and for all M;M 0 2 modelvar(f)(f), jM nM 0j 6= 1.EPosX is the set of GE fun
tions over X.Note that EPosX � Def X � PosX . One useful representational property of Def Xis that ea
h f 2 Def X 
an be des
ribed as a 
onjun
tion of de�nite (propositional)
lauses, that is, f = ^ni=1(yi  ^Yi) (Dart, 1991). Note that the yis are notne
essarily distin
t. Finally, Def abbreviates Def V . Also noti
e that EPosX =f^F j F � X [EXg, where EX = fx$ y j x; y 2 Xg.Example 2Suppose X = fx; y; zg and 
onsider the following table, whi
h states, for someBoolean fun
tions, whether they are in EPosX , Def X or PosX and also givesmodelX .f EPosX Def X PosX modelX(f)false ;x ^ y � � � f fx; yg; fx; y; zggx _ y � f fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggx y � � f;; fxg; fzg; fx; yg; fx; zg; fx; y; zggx _ (y  z) � f;; fxg; fyg; fx; yg; fx; zg; fy; zg; fx; y; zggtrue � � � f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg; fx; y; zggNote, in parti
ular, that x _ y is not in Def X (sin
e its set of models is not 
losedunder interse
tion) and that false is neither in EPosX , nor PosX nor Def X .De�ning f1 __f2 = ^ff 2 Def X j f1 j= f ^ f2 j= fg, the 4-tuple hDef X ; j=;^; __i isa �nite latti
e (Armstrong et al., 1998), where true is the top element and ^X isthe bottom element. Existential quanti�
ation is de�ned by S
hr�oder's EliminationPrin
iple, that is, 9x:f = f [x 7! true℄ __f [x 7! false℄. Note that if f 2 Def X then9x:f 2 Def X (Armstrong et al., 1998).Example 3If X = fx; yg then x __(x $ y) = ^f(x  y); trueg = (x  y), as 
an be seenin the Hasse diagram for dyadi
 Def X (Fig. 1). Note also that x __y = ^ftrueg =true 6= (x _ y).The set of (free) variables in a synta
ti
 obje
t o is denoted by var(o). Also,9fy1; : : : ; yng:f (proje
t out) abbreviates 9y1: : : : :9yn:f and 9Y:f (proje
t onto)denotes 9var(f)nY:f . Let �1; �2 be �xed renamings su
h thatX\�1(X) =X\�2(X)= �1(X) \ �2(X) = ;. Renamings are bije
tive and therefore invertible.Downward 
losure, #, relates Pos and Def and is useful when tra
king sharingwith Boolean fun
tions (Codish et al., 1999). It is de�ned by #f = model�1X (f\S j
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EPosfx;ygx ^ y��� ���x x$ y y��� ���true
Def fx;ygx ^ y

 ##x x$ y y�� ��x y y  x## 

true

Posfx;ygx ^ y

 ##x x$ y y�� ��x y x _ y y  x## 

## 

true

Fig. 1. Hasse Diagrams
; � S � modelX(f)g). Note that #f has the useful 
omputational property that#f = ^ff 0 2 Def X j f j= f 0g if f 2 PosX . That is, # takes a Pos formula to itsbest Def approximation. Finally, for any f 2 BoolX , 
oneg(f) = model�1X (fX nM jM 2 modelX(f)g) (Codish et al., 1999).The following pie
es of logi
 programming terminology will also be needed. LetT denote the set of terms 
onstru
ted from V and a set of fun
tion symbols F .An equation e is a pair (s = t) where s; t 2 T . A substitution is a (total) map� : V ! T su
h that fv 2 V j �(v) 6= vg is �nite. Let Sub denote the set ofsubstitutions and let E denote a �nite set of equations. Let �(t) denote the termobtained by simultaneously repla
ing ea
h o

urren
e of v in t with �(v), and let�(E) = f�(s) = �(t) j (s = t) 2 Eg.Composition of substitutions indu
es the (more general than) relation � de�nedby: � �  if there exists Æ 2 Sub su
h that  = Æ Æ �. More general than lifts toterms by s � t i� there exists � 2 Sub su
h that �(s) = t. The set of uni�ers ofE, unify(E), is de�ned by: unify(E) = f� 2 Sub j 8(s = t) 2 E:�(s) = �(t)g andthe set of most general uni�ers, mgu(E), is de�ned by: mgu(E) = f� 2 unify(E) j8 2 unify(E):� �  g. Finally, the set of generalisations of two terms is de�nedby: gen(t1; t2) = ft 2 T jt � t1 ^ t � t2g and the set of most spe
i�
 generalisationsis de�ned by: msg(t1; t2) = ft 2 gen(t1; t2)j8s 2 gen(t1; t2):s � tg.

3 Choosing a Representation for Def3.1 Review of Design MethodsThe eÆ
ien
y of an analyser depends 
riti
ally on the algorithmi
 
omplexities ofits abstra
t domain operations. These in turn are determined by the representationof the abstra
t domain. The representation also determines the size of the inputsto the domain operations, as well as impa
ting on memory usage. Be
ause of this,the 
hoi
e of representation is fundamental to the eÆ
ien
y of an analyser andis therefore of great importan
e. The remainder of this subse
tion reviews threefa
tors whi
h should help the implementor arrive at a suitable representation andsuggest where domain operations might be re�ned.
3.1.1 Frequen
y Analysis of the Domain OperationsThere are typi
ally many degrees of freedom in designing an analyser, even for agiven domain. Furthermore, work 
an often be shifted from one abstra
t operation



6 Ja
ob M. Howe and Andy Kinginto another. For example, Boolean formulae 
an be represented in either 
onjun
-tive normal form (CNF) or disjun
tive normal form (DNF). In CNF, 
onjun
tionis 
onstant-time and disjun
tion is quadrati
-time, whereas in DNF, 
onjun
tionis quadrati
-time and disjun
tion is 
onstant-time. Ideally, an analysis should bedesigned so that the most frequently used operations have low 
omplexity and aretherefore fast. This motivates the following approa
h:1. Prototype an analyser for the given domain.2. Instrument the analyser to 
ount the number of times ea
h domain operationis invoked.3. Generate these 
ounts for a number of programs (the bigger the better).4. Choose a representation whi
h gives a good mat
h between the frequen
y andthe 
omplexity of the domain operations.Be
ause the frequen
y analysis is solely 
on
erned with generated instru
tion 
ounts,the eÆ
ien
y of the prototype analyser is not a signi�
ant issue. The obje
tive isto 
hoose a representation for whi
h the most frequently o

urring operations arealso the fastest. However, this 
riterion needs to be balan
ed with others, su
h asthe density of the representation.
3.1.2 Density of the Domain RepresentationThe 
omplexity of the domain operations is a fun
tion of the size of their inputs.Large inputs nullify the value of good 
omplexities, hen
e a balan
e between sizeof representation and 
omplexity of domain operations is needed. The followingfa
tors impa
t on this relationship:1. The abstra
tions whi
h typi
ally arise should be represented 
ompa
tly.2. A fa
torised representation with an expressive, high density, low maintenan
e
omponent is attra
tive.3. Maintaining the representation (for example, as a 
anoni
al form) should not
ome with a high overhead.4. The representation should �t with ma
hinery available in the implementationlanguage.A domain is said to be fa
torised if its information is represented as a produ
t ofsubdomains. It may not always be possible to ful�ll all these requirements. More-over, these fa
tors needs to balan
ed with others, su
h as their impa
t on the
omplexities of frequently 
alled domain operations.

3.1.3 Filtering the Domain OperationsIn many analyses it is inevitable that some domain operations will have high 
om-plexity. However, it is sometimes possible to redu
e the impa
t of this by �lteringthe operation, as follows:1. For a high 
omplexity domain operation identify spe
ial 
ases where the op-eration 
an be 
al
ulated using a lower 
omplexity algorithm.
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ient Groundness Analysis in Prolog 72. Instrument the analyser to quantify how often the lower 
omplexity algorithm
an be applied.3. If it appears that the spe
ial 
ase o

urs frequently, then implement the spe
ial
ase and measure the impa
t on performan
e.The bottom line is that the 
ost of dete
ting the spe
ial 
ase should not outweighthe bene�t of applying the spe
ialised domain algorithm.
3.2 Frequen
y Analysis for DefIn order to balan
e the frequen
y of abstra
t operations against their 
ost, anexisting Def analyser was instrumented to 
ount the number of 
alls to the var-ious abstra
t operations. The analyser used for this is based on Armstrong andS
ha
hte's BDD-based domain operations for Pos and Sharing (Armstrong et al.,1998; S
ha
hte, 1999). Using the domain operations provided for these domains, aDef analyser 
an easily be derived. This analyser is 
oded in Prolog as a simplemeta-interpreter that uses indu
ed magi
-sets (Codish, 1999a) and eager evaluation(Wunderwald, 1995) to perform goal-dependent bottom-up evaluation and 
all theC implemented domain operations.Indu
ed magi
 is a re�nement of the magi
 set transformation, avoiding mu
hof the re-
omputation that arises be
ause of the repetition of literals in the bodiesof magi
ked 
lauses (Codish, 1999a). Eager evaluation (Wunderwald, 1995) is a�xpoint iteration strategy whi
h pro
eeds as follows: whenever an atom is updatedwith a new (weaker) abstra
tion, a re
ursive pro
edure is invoked to ensure thatevery 
lause that has that atom in its body is re-evaluated. An advantage of indu
edmagi
 is that it 
an be 
oded straightforwardly in Prolog.Table 1 gives a breakdown of the relative frequen
y (in per
entages) of the 
allsto ea
h abstra
t operation in the BDD-based Def analysis of eight large programs.Meet, join, equiv, proje
t and rename are the obvious Boolean operations. Join(di�) is those 
alls to a join f1 __f2 where f1 __f2 6= f1 and f1 __f2 6= f2 (this willbe useful in se
tion 4). Total details the total number of 
alls to these domainoperations.�le rubik 
hat parser sim v5-2 peval air
raft essln 
hat 80 aqua 
meet 30.9 31.6 35.9 32.5 28.5 42.7 34.0 34.2join 10.4 10.4 8.8 9.7 11.1 8.4 10.2 10.5join (di�) 1.1 1.7 0.0 2.9 0.1 0.9 1.5 1.6equiv 10.4 10.4 8.8 9.7 11.1 8.4 10.2 10.5proje
t 12.6 12.5 13.0 12.5 13.0 10.5 12.1 11.7rename 34.7 33.4 33.6 32.8 36.2 29.2 32.0 31.6total 14336 14124 5943 6275 24758 19051 45444 280485Table 1. Frequen
y Analysis: BDD-based Def Analyser (Figures in %)Observe that meet and rename are 
alled most frequently. Join, equiv and proje
tare 
alled with a similar frequen
y, but less frequently than meet and rename. Notethat it is rare for a join to di�er from both its arguments. Join is always followed



8 Ja
ob M. Howe and Andy Kingby an equivalen
e and this explains why the join and equiv rows 
oin
ide. Sin
emeet and rename are the most frequently 
alled operations, ideally they should bethe most lightweight. As join, equiv and proje
t are 
alled less frequently, a higheralgorithmi
 
omplexity is more a

eptable for these operations.
3.3 Representations of DefThis se
tion reviews a number of representations of Def in terms of the algorithmi

omplexity of the domain operations. The representations 
onsidered are redu
edordered binary de
ision diagrams, dual Blake 
anoni
al form (spe
ialised for Def(Armstrong et al., 1998)) and a non-
anoni
al de�nite propositional 
lause repre-sentation.ROBDD A redu
ed ordered binary de
ision diagram (ROBDD) is a rooted, di-re
ted a
y
li
 graph. Terminal nodes are labelled 0 or 1 and non-terminal nodesare labelled by a variable and have edges dire
ted towards two 
hild nodes.ROBDDs have the additional properties that: 1) ea
h path from the root toa node respe
ts a given ordering on the variables, 2) a variable 
annot o

urmultiply in a path, 3) no subBDD o

urs multiply. ROBDDs give a unique rep-resentation for every Boolean fun
tion (up to variable ordering).DBCF Dual Blake Canoni
al Form (DBCF) represents Def fun
tions as 
onjun
-tions of de�nite (propositional) 
lauses (Armstrong et al., 1998; Dart, 1991;Gar
��a de la Banda et al., 1996) maintained in a 
anoni
al (orthogonal) formthat makes expli
it transitive variable dependen
ies and uses a redu
ed mono-toni
 body form. For example, the fun
tion (x y) ^ (y  z) is represented as(x  (y _ z)) ^ (y  z). Again, DBCF gives a unique representation for everyDef fun
tion (up to variable ordering).Non-
anoni
al The non-
anoni
al 
lausal representation expresses Def fun
tions as
onjun
tions of propositional 
lauses, but does not maintain a 
anoni
al form.This does not give a unique representation.Table 2 details the 
omplexities of the domain operations for Def for the threerepresentations. Noti
e that the 
omplexities are in terms of the size of the repre-sentations and that these are all potentially exponential in the number of variables.Also, observe that sin
e DBCF maintains transitive dependen
ies, whereas the non-
anoni
al representation does not, the DBCF of a Def fun
tion has the potentialto be 
onsiderably larger than the non-
anoni
al representation. As ROBDDs arerepresented in a fundamentally di�erent way, their size 
annot be dire
tly 
omparedwith 
lausal representations.Both ROBDDs and DBCF are maintained in a 
anoni
al form. Canoni
al formsredu
e the 
ost of operations su
h as equivalen
e 
he
king and proje
tion by fa
-toring out sear
h. However, 
anoni
al forms need to be maintained and this main-tenan
e has an asso
iated 
ost in meet and join. That is, ROBDDs and DBCF buylow 
omplexity equivalen
e 
he
king and proje
tion at the 
ost of higher 
omplexitymeet and join.
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ient Groundness Analysis in Prolog 9Representation meet join equiv rename proje
tROBDD O(N2) O(N2) O(1) O(N2) O(N2)DBCF O(N4) O(22N ) O(N) O(N) O(N)Non-
anoni
al O(1) O(22N ) O(N2) O(N) O(2N )Table 2. Complexity of Def Operations for Various Representations (where N isthe size of the representation { number of nodes/variable o

urren
es).
As dis
ussed in the previously, the lowest 
ost operations should be those thatare most frequently 
alled. Table 1 shows that for Def based groundness analysis,meet and renaming are 
alled signi�
antly more often than the other operations.Hen
e these should be the most lightweight. This suggests that the non-
anoni
alrepresentation is better suited to Def -based goal-dependent groundness analysisthan ROBDDs and DBCF. The following se
tions will detail the non-
anoni
alrepresentation.

3.4 GEP RepresentationThis se
tion outlines how the non-
anoni
al representation is used in an analysisfor 
all and answer patterns. Implementing 
all and answer patterns with a non-ground representation enables the non-
anoni
al representation to be fa
torised atlittle overhead.A 
all (or answer) pattern is a pair ha; fi where a is an atom and f 2 Def .Normally the arguments of a are distin
t variables. The formula f is a 
onjun
tion(list) of propositional 
lauses. In a non-ground representation the arguments of a
an be instantiated and aliased to express simple dependen
y information (Heatonet al., 2000). For example, if a = p(x1; :::; x5), then the atom p(x1; true; x1; x4; true)represents a 
oupled with the formula (x1 $ x3) ^ x2 ^ x5. This enables theabstra
tion hp(x1; :::; x5); (x1 $ x3) ^ x2 ^ x5 ^ (x4 ! x1)i to be 
ollapsed tohp(x1; true; x1; x4; true); x4 ! x1i. This en
oding leads to a more 
ompa
t repre-sentation and is similar to the GER fa
torisation of ROBDDs proposed by Bagnaraand S
ha
hte (Bagnara & S
ha
hte, 1999). The representation of 
all and answerpatterns des
ribed above is 
alled GEP (groundness, equivalen
es and propositional
lauses) where the atom 
aptures the �rst two properties and the formula the latter.Formally, let GEP = fhp(t1; :::; tn); fi j p 2 �; ti 2 V [ ftrueg; f 2 Def nGEg.De�ne j= by hp(~a1); f1i j= hp(~a2); f2i i� 9~x:((~a1 $ ~x) ^ f1) j= 9~x:((~a2 $ ~x) ^ f2)and var(~x) \ (var(~a1) [ var(~a2) [ var(f1) [ var(f2)) = ;. Then hGEP; j=i is apreorder. The preorder indu
es the equivalen
e relation � de�ned by hp(~a1); f1i �hp(~a2); f2i i� hp(~a1); f1i j= hp(~a2); f2i and hp(~a2); f2i j= hp(~a1); f1i. Let GEP�denotes GEP quotiented by the equivalen
e. De�ne ^ : GEP� �GEP� ! GEP�by [ha1; f1i℄� ^ [ha2; f2i℄� = [h�(a1); �(f1) ^ �(f2)i℄�, where � 2 mgu(a1; a2). ThenhGEP�; j=;^i is a �nite latti
e.The meet of the pairs hp(~a1); f1i and hp(~a2); f2i 
an be 
omputed by unifying a1and a2 and 
on
atenating f1 and f2. The uni�
ation is nearly linear in the arity ofp (using rational tree uni�
ation (Ja�ar, 1984)) and 
on
atenation is 
onstant-time(using di�eren
e lists). Sin
e the arguments ~a1 and ~a2 are ne
essarily distin
t, the



10 Ja
ob M. Howe and Andy Kinganalyser would unify ~a1 and ~a2 even in a non-fa
torised representation, hen
e noextra overhead is in
urred. The obje
ts that require renaming are formulae and
all (answer) pattern GEP pairs. If a dynami
 database is used to store the pairs(Hermenegildo et al., 1992), then renaming is automati
ally applied ea
h time apair is looked-up in the database. Formulae 
an be renamed with a single 
all tothe Prolog builtin 
opy term. Renaming is therefore linear.The GEP fa
torisation de�ned above is true, that is, all the GE dependen
ies arefa
tored into the atom. An alternative de�nition would beGEP = fhp(t1; :::; tn); fi jp 2 �; ti 2 V [ftrueg; f 2 Def g. Here the fa
torisation is not ne
essarily true, in thesense that GE dependen
ies may exists in the P 
omponent, e.g. hp(x; x; true); trueimay also be 
orre
tly expressed as hp(u; v; w); (u$ v)^wi. A non-true fa
torisationmay be adventageous when it 
omes to implementing the domain and from hen
e-forth GEP will refer to the non-true fa
torisation version unless stated otherwise.The P 
omponent may 
ontain redundant (indeed, repeated) 
lauses and these mayimpa
t adversely on performan
e. In order to avert un
onstrained growth of P, aredundan
y removal step may be applied to P at a 
onvenient point (via entail-ment 
he
king). Sin
e the non-
anoni
al formulae do not need to be maintained in a
anoni
al form and sin
e the fa
torisation is not ne
essarily true, the representationis 
exible in that it 
an be maintained on demand, that is, the implementor 
an
hoose to move dependen
ies from P into GE at exa
tly those points in the analysiswhere true fa
torisation gives a performan
e bene�t.
4 Filtering and AlgorithmsThe non-
anoni
al representation has high 
ost join and proje
tion algorithms.Therefore it is sensible to fo
us on improving the eÆ
ien
y of these operations.This is a

omplished through �ltering following the strategy des
ribed in se
tion3.1. This se
tion presents a new approa
h to 
al
ulating join and des
ribes the useof entailment 
he
king as a �lter in the join algorithm. It also des
ribes a �lteringmethod for proje
tion.

4.1 JoinThis se
tion des
ribes a new approa
h to 
al
ulating join, inspired by a 
onvexhull algorithm for polyhedra used in disjun
tive 
onstraint solving (De Ba
ker &Beringer, 1993). The new join algorithm is �rst des
ribed for formulae and is thenlifted to the GEP representation.
4.1.1 Join for FormulaeCal
ulating join in Def is not straightforward. It is not enough to take the joinea
h possible pair of 
lauses and 
onjoin them { transitive dependen
ies also needto be taken into a

ount. This is illustrated by the following example (adapted from(Armstrong et al., 1998)).Example 4



EÆ
ient Groundness Analysis in Prolog 11Put f1 = (x  u) ^ (u  y) and f2 = (x  v) ^ (v  y). Then f1 __f2 = (x  (u^ v))^ (x y). The 
lause (x (u^ v)) 
omes from (x u) __(x v), but the
lause x  y is not the result of the join of any pair of 
lauses in f1; f2. It arisessin
e f1 j= x y and f2 j= x y, that is, from 
lauses whi
h appear in transitive
losure.One way in whi
h to address the problem of ensuring that the transitive dependen-
ies are 
aptured is to make the expli
it in the representation (this idea is 
apturedin the orthogonal form requirement of (Armstrong et al., 1998)). However, this leadsto redundan
y in the formula whi
h ideally should be avoided.It is insightful to 
onsider __ as an operation on the models of f1 and f2. Sin
e bothmodelX(fi) are 
losed under interse
tion, __ essentially needs to extendmodelX(f1)[modelX(f2) with new models M1 \M2 where Mi 2 modelX(fi) to 
ompute f1 __f2.The following de�nition expresses this observation and leads to a new way of 
om-puting __ in terms of meet, renaming and proje
tion, that does not require formulaeto be �rst put into orthogonal form.De�nition 3The map _g : BoolX2 ! BoolX is de�ned by: f1 _gf2 = 9Y:f1g f2 where Y =var(f1) [ var(f2) and f1gf2=�1(f1) ^ �2(f2) ^ ^y2Y y $ (�1(y) ^ �2(y)).The following example illustrates the _g operator.Example 5Let f1 = (x  u) ^ (u  y), f2 = (x  v) ^ (v  y). Then Y = fu; v; x; yg.The following substitutions rename the fun
tions apart, �1 = fu 7! u0; v 7! v0; x 7!x0; y 7! y0g, �2 = fu 7! u00; v 7! v00; x 7! x00; y 7! y00g. Using De�nition 3, f1 g f2 =(x0  u0)^ (u0  y0)^ (x00  v)00 ^ (v00  y00)^u$ (u0^u00)^ v $ (v0 ^ v00)^x$(x0 ^ x00) ^ y $ (y0 ^ y00). Proje
tion onto Y gives f1 _gf2 = 9fu; v; x; yg:f1 g f2 =(x (u ^ v)) ^ (x y).Note that _g operates on BoolX rather than Def X . This is required for the downward
losure operator in se
tion 5.3. Lemma 1 expresses a key relationship between _gand the models of f1 and f2.Lemma 1Let f1; f2 2 BoolX .M 2 modelX(f1 _gf2) if and only if there existsM1 2 modelX(f1)and M2 2 modelX(f2) su
h that M =M1 \M2.ProofPut X 0 = X[�1(X)[�2(X). LetM 2 modelX(f1 _gf2). There existsM �M 0 � X 0su
h that M 0 2 modelX0(f1 g f2). Let Mi = ��1i (M 0 \ �i(Y )), for i 2 f1; 2g. ThusMi 2 modelX(Fi) for i 2 f1; 2g. Observe that M � M1 \M2 sin
e f1 g f2 j= y !(�1(y)^�2(y)). Also observe thatM1\M2 �M sin
e f1gf2 j= (�1(y)^�2(y))! y.Thus M =M1 \M2, as required.Let Mi 2 modelX(fi) for i 2 f1; 2g and put M = M1 \M2 and M 0 = M [�1(M1) [ �1(M2). Observe M 0 2 modelX0(f1 g f2) so that M 2 modelX(f1 _gf2).
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ob M. Howe and Andy KingFrom lemma 1 
ows the following 
orollary and also the useful result that _g ismonotoni
.Corollary 1Let f 2 PosX . Then f = f _gf if and only if f 2 Def X .Lemma 2_g is monotoni
, that is, f1 _gf2 j= f 01 _gf 02 whenever f1 j= f 01 and f2 j= f 02.ProofLet M 2 modelX(f1 _gf2). By lemma 1, there exist Mi 2 modelX(fi) su
h thatM = M1 \M2. Sin
e fi j= f 0i , Mi 2 modelX(f 0i) and hen
e, by lemma 1, M 2modelX(f 01 _gf 02).The following proposition states that _g 
oin
ides with __ on Def X . This gives asimple algorithm for 
al
ulating __ that does not depend on the representation of aformula.Proposition 1Let f1; f2 2 Def X . Then f1 _gf2 = f1 __f2.ProofSin
e X j= f2 it follows by monotoni
ity that f1 = f1 _gX j= f1 _gf2 and similarlyf2 j= f1 _gf2. Hen
e f1 __f2 j= f1 _gf2 by the de�nition of __.Now let M 2 modelX(f1 _gf2). By lemma 1, there exists Mi 2 modelX(fi) su
hthat M =M1 \M2 2 modelX(f1 __f2). Hen
e f1 _gf2 j= f1 __f2.
4.1.2 Join for GEPJoin, _ : GEP� � GEP� ! GEP�, in the GEP representation 
an be de�ned interms of ^ and j= in the usual way, i. e.[ha1; f1i℄� _ [ha2; f2i℄� = ^�[ha; fi℄� 2 GEP� ���� [ha1; f1i℄� j= [ha; fi℄�;[ha2; f2i℄� j= [ha; fi℄� �

In pra
ti
e quotienting manifests itself through the dynami
 database. Ea
h timea pattern is read from the database it is renamed. Join is lifted to quotients byreformulated GEP pairs as follows: hp(~a1); f1i be
omes hp(~a); (~a$ ~a1)^ f1i wherep(~a) = msg(p(~a1); p(~a2)). p(~a) is 
omputed using Plotkin's anti-uni�
ation algo-rithm in O(N log(N)) time, where N is the arity of p (Plotkin, 1970). The followinglemma formalises this lifting of the join algorithm to the GEP representation.Lemma 3[hp(~t1); f1i℄� _ [hp(~t2); f2i℄� = [hp(~t); (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))i℄�, where~t 2 msg(~t1;~t2).Proof



EÆ
ient Groundness Analysis in Prolog 13The �rst equality holds by the de�nition of � in GEP�, the se
ond by the de�nitionof join in GEP�, the third by the de�nition of j= in GEP�, the fourth by thede�nition of ^ in GEP�, and the last by Proposition 1.[hp(~t1); f1i℄� _ [hp(~t2); f2i℄�= [hp(~t); (~t1 $ ~t) ^ f1i℄� _ [hp(~t); (~t2 $ ~t) ^ f2i℄�= ^�[hp(~t0); f 0i℄� ���� [hp(~t); (~t1 $ ~t) ^ f1i℄� j= [hp(~t0); f 0i℄�;[hp(~t); (~t2 $ ~t) ^ f2i℄� j= [hp(~t0); f 0i℄� �
= ^�[hp(~t); f 0i℄� ���� [hp(~t); (~t1 $ ~t) ^ f1i℄� j= [hp(~t); f 0i℄�;[hp(~t); (~t2 $ ~t) ^ f2i℄� j= [hp(~t); f 0i℄� �
= [hp(~t);^ff 0 2 Def j (~t1 $ ~t) ^ f1 j= f 0; (~t2 $ ~t) ^ f2 j= f 0gi℄�= [hp(~t); (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))i℄�

4.2 Filtering Join using Entailment Che
kingIn se
tion 3.3 it was observed that some high 
omplexity domain operations havespe
ial 
ases where the operation 
an be 
al
ulated using a lower 
omplexity algo-rithm. Join for Def in the non-
anoni
al GEP representation is one su
h operation.Spe
i�
ally, __ is exponential (see Table 2), however, if f1 j= f2, then f1 __f2 = f2.Entailment 
he
king is quadrati
 in the number of variable o

urren
es (using aforward 
haining algorithm), hen
e by using this test, join 
an be re�ned. Table 1shows that the majority of 
alls to join will be 
aught by the 
heaper entailment
he
king 
ase. The following proposition explains how this �ltering is lifted to theGEP representation. Observe that this proposition has three 
ases. The third 
aseis when the entailment 
he
k fails. The �rst 
ase is when entailment 
he
king re-du
es to a lightweight mat
h on the GE 
omponent followed by an entailment 
he
kon the P 
omponent. The se
ond 
ase is more expensive, requiring a most spe
i�
generalisation to be 
omputed as well as an entailment 
he
k on more 
ompli
atedformulae. In the 
ontext of the analyser, the pair [hp(~t2); f2i℄� 
orresponds to anabstra
tion in the database and these abstra
tions have the property that the vari-ables in the P 
omponent are 
ontained in those of the GE 
omponent. This isnot ne
essarily the 
ase for [hp(~t1); f1i℄�, sin
e in the indu
ed magi
 framework f1represents the state of the variables of the 
lause to the left of the 
all to p(~t1).Variable disjointness follows sin
e renaming automati
ally o

urs every time a fa
tis read from the dynami
 database.
Proposition 2Suppose var(f2) � var(p(~t2)) and var(hp(~t1); f1i) \ var(hp(~t2); f2i) = ;. Then,
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ob M. Howe and Andy King[hp(~t1); f1i℄� _ [hp(~t2); f2i℄�
=
8>>>>>>>>><>>>>>>>>>:

[hp(~t2); f2i℄� if � 2 mgu(p(~t1); p(~t2));p(~t1) = �(p(~t2));�(f1) j= �(f2)[hp(~t2); f2i℄� if p(~t) 2 msg(p(~t1); p(~t2));f1 ^ (~t1 $ ~t) j= f2 ^ (~t2 $ ~t)[hp(~t); fi℄� otherwise where p(~t) = msg(p(~t1); p(~t2));f = (f1 ^ (~t1 $ ~t)) _g(f2 ^ (~t2 $ ~t))ProofCase 1 �(f1) j= �(f2)) (�(~t1)$ ~x) ^ �(f1) j= (�(~t2)$ ~x) ^ �(f2) by assumption) (~t1 $ ~x) ^ �(f1) j= (�(~t2)$ ~x) ^ �(f2) ~t1 = �(~t2) = �(~t1)) (~t1 $ ~x) ^ f1 j= (�(~t2)$ ~x) ^ �(f2) var(f1) \ var(~t2) = ;) (~t1 $ ~x) ^ f1 j= (~t2 $ ~x) ^ f2 j= is transitive) 9~x:((~t1 $ ~x) ^ f1) j= 9~x:((~t2 $ ~x) ^ f2) 9 is monotoni
) [hp(~t1); f1i℄� j= [hp(~t2); f2i℄� by de�nitionCase 2 (~t1 $ ~t) ^ f1 j= (~t2 $ ~t) ^ f2) (~t$ ~x) ^ (~t1 $ ~t) ^ f1 j= (~t$ ~x) ^ (~t2 $ ~t) ^ f2) 9~x:((~t$ ~x) ^ (~t1 $ ~t) ^ f1) j= 9~x:((~t$ ~x) ^ (~t2 $ ~t) ^ f2) 9 is monotoni
) 9~x:((~t1 $ ~x) ^ f1) j= 9~x:((~t2 $ ~x) ^ f2) sin
e ~x are fresh) [hp(~t1); f1i℄� j= [hp(~t2); f2i℄� by de�nitionCase 3 Immediate from lemma 3.A non-ground representation allows 
haining to be implemented eÆ
iently usingblo
k de
larations. To 
he
k that ^ni=1yi  Yi entails z  Z the variables of Z are�rst grounded. Next, a pro
ess is 
reated for ea
h 
lause yi  Yi that suspends untilYi is ground. When Yi is ground, the pro
ess resumes and grounds yi. If z is groundafter a single pass over the 
lauses, then (^ni=1yi  Yi) j= z  Z. Suspending andresuming a pro
ess de
lared by a blo
k is 
onstant-time (in SICStus). By 
alling the
he
k under negation, no problemati
 bindings or suspended pro
esses are 
reated.
4.3 Downward ClosureA useful spin-o� of the join algorithm in se
tion 5.1 is a result that shows how to
al
ulate su

in
tly the downward 
losure operator that arises in BDD-based setsharing analysis (Codish et al., 1999). Downward 
losure is 
losely related to _gand, in fa
t, _g 
an be used repeatedly to 
ompute a �nite iterative sequen
e that
onverges to #. This is stated in proposition 3. Finiteness follows from bounded
hain length of PosX .Proposition 3



EÆ
ient Groundness Analysis in Prolog 15Let f 2 PosX . Then #f = _i�1fi where fi 2 PosX is the in
reasing 
hain givenby: f1 = f and fi+1 = fi _gfi.ProofLet M 2 modelX(#f). Thus there exists Mj 2 modelX(f) su
h that M = [mj=1Mj .ObserveM1\M2;M3\M4; : : : 2 modelX(f2) and thereforeM 2 modelX(fdlog2(m)e).Sin
e m � 22n where n = jXj it follows that #f j= f2n .Proof by indu
tion is used for the opposite dire
tion. Observe that f1 j=#f . Sup-pose fi j=#f . LetM 2 modelX(fi+1). By lemma 1 there existsM1;M2 2 modelX(fi)su
h that M = M1 \M2. By the indu
tive hypothesis M1;M2 2 modelX(#f) thusM 2 modelX(#f). Hen
e fi+1 j=#f .Finally, _i=1fi 2 Def X sin
e f1 2 PosX and _g is monotoni
 and thus X 2modelX(_i=1fi).The signi�
an
e of this is that it enables # to be implemented straightforwardlywith standard BDD operations. This saves the implementor the task of 
odinganother BDD operation.
4.4 Proje
tionProje
tion is only applied to the P 
omponent of the GEP representation (sin
eproje
tion is onto the variables of the GE 
omponent). Proje
tion is another ex-ponential operation. Again, this operation 
an be �ltered by re
ognising spe
ial
ases where the proje
tion 
an be 
al
ulated with lower 
omplexity. The proje
tionalgorithm implemented is based on a Fourier-Motzkin style algorithm (as opposedto a S
hr�oder variable elimination algorithm). The algorithm is synta
ti
 and ea
hof the variables to be proje
ted out is eliminated in turn. The �rst two steps 
olle
t
lauses with the variable to be proje
ted out o

urring in them, the third performsthe proje
tion by syllogising and the fourth in
reases eÆ
ien
y by removing redun-dant 
lauses. Suppose that f = ^F , where F is a set of 
lauses, and suppose x isto be proje
ted out of f .1. All those 
lauses with x as their head are found, giving H = fx Xi j i 2 Ig,where I is a (possibly empty) index set.2. All those 
lauses with x in the body are found, giving B = fy  Yj j j 2 Jg,where J is a (possibly empty) index set and x 2 Yj for ea
h j 2 J .3. Let Zi;j = Xi [ (Yj n fxg). Then N = fy  Zi;j j i 2 I ^ j 2 J ^ y 62 Zi;jg(syllogising). Put F 0 = ((F nH) nB) [N . (Then 9x:f = ^F 0.)4. A 
ompa
t representation is maintained by eliminating redundant 
lausesfrom F 0 (
ompa
tion).All four steps 
an be performed in a single pass over f . A �nal pass over f retra
ts
lauses su
h as x  true by binding x to true and also removes 
lause pairs su
has y  z and z  y by unifying y and z.At ea
h pass the 
ost of step 4, the 
ompa
tion pro
ess, is quadrati
 in the sizeof the formula to be 
ompa
ted (sin
e the 
ompa
tion 
an be redu
ed to a linearnumber of entailment 
he
ks, ea
h of whi
h is linear). The point of 
ompa
tion is to
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ob M. Howe and Andy Kingkeep the representation small. Therefore, if the result of proje
ting out a variable(prior to 
ompa
tion) is smaller than the original formula, then 
ompa
tion appearsto be unne
essary. Thus, step 4 is only applied when the number of 
lauses in theresult of the proje
tion is stri
tly greater than the number of 
lauses in the originalformula. Noti
e also that in the �ltered 
ase the number of syllogisms is linear inthe number of o

urren
es of the variable being proje
ted out. Table 3 details therelative frequen
y with whi
h the �ltered and 
ompa
tion 
ases are en
ountered.Observe that the vast majority of 
ases do not require 
ompa
tion. Finally noti
ethat join is de�ned in terms of proje
tion, hen
e the �lter for proje
tion is inheritedby join. �le strips 
hat parser sim v5-2 peval air
raft essln 
hat 80 aqua 
�lt 100.0 99.8 100.0 97.4 100.0 99.4 99.7 96.1elim 0.0 0.2 0.0 2.6 0.0 0.6 0.3 3.9Table 3. Frequen
y Analysis of Compa
tion in Proje
tion (indu
ed magi
)Noti
e that �ltered algorithms break up an operation into several 
omponents ofin
reasing 
omplexity. The �ltered algorithm then suggests natural pla
es at whi
hto widen, i. e. the high 
omplexity 
omponent is widened from above using a 
heapapproximation. This approximation might be a

eptable sin
e the high 
omplexity
ase will be 
alled infrequently. For example, widening might be used to improvethe worst 
ase 
omplexity of proje
tion (and hen
e join) for non-
anoni
al Def .
5 Implementation of the Iteration StrategySe
tions 3 and 4 are 
on
erned with the representation of the abstra
t domain andthe design and implementation of domain operations. The overall eÆ
ien
y of ananalyser depends not only on these operations, but also on the iteration strategy em-ployed within the �xpoint engine. A �xpoint engine has to trade o� the 
omplexityof its data-stru
tures against the degree of re
omputation that these data-stru
turesfa
tor out. For example, semi-na��ve iteration (Ban
ilhon & Ramakrishnan, 1986)has very simple data-stru
tures, but entails a degree of re
omputation, whereasPLAI (Hermenegildo et al., 2000) tra
ks dependen
ies with dynami
ally generatedgraphs to dramati
ally redu
e the amount of re
omputation.Fixpoint engines with dependen
y tra
king whi
h have been applied to logi
 pro-gramming analyses in
lude: PLAI (Muthukumar & Hermenegildo, 1992; Hermenegildoet al., 2000), GAIA (Le Charlier & Van Hentenry
k, 1994), the CLP(R) engine(Kelly et al., 1998) and GENA (Fe
ht & Seidl, 1996; Fe
ht, 1997; Fe
ht & Seidl,1999). An alternative to on-the-
y dependen
y tra
king is to use semi-na��ve it-eration driven by a redo worklist detailing whi
h 
all and answer patterns needto be re-evaluated and (possibly) in whi
h order. One instan
e of this is indu
edmagi
 (Codish, 1999a) under eager evaluation (Wunderwald, 1995), whi
h fa
torsout mu
h of the re
omputation that arises through magi
 transformation. Otherinstan
es use knowledge of the dependen
ies to help order the redo list and therebyredu
e unne
essary 
omputation { this is typi
ally done by stati
ally 
al
ulating
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ient Groundness Analysis in Prolog 17SCCs (Gallagher & de Waal, 1994), possibly re
ursively (Bourdon
le, 1993), on the
all graph or on the 
all graph of the magi
 program.The bene�t of redu
ed re
omputation is dependent upon the 
ost of the abstra
tdomain operations. Therefore the sophisti
ation of the iteration strategies of en-gines su
h as PLAI and GENA is of most value when the domain operations are
omplex. The present paper has designed its analysis so that heavyweight domainoperations are infrequently 
alled, hen
e an iteration strategy employing simplerdata-stru
tures, but possibly introdu
ing extra 
omputation, is worthy of 
onsid-eration. The analyser des
ribed in (Howe & King, 2000) used indu
ed magi
 undereager evaluation. The 
urrent analyser builds on this work by adopting ta
ti
s in-spired by PLAI, GAIA and GENA into the indu
ed magi
 framework. Importantlythese ta
ti
s require no extra data-stru
tures and little 
omputational e�ort. Ex-perimental results suggest that this 
hoi
e of iteration strategy is well suited toDef -based groundness analysis.
5.1 Ordered Indu
ed Magi
Indu
ed magi
 was introdu
ed in (Codish, 1999a), where a meta-interpreter forsemi-na��ve, goal-dependent, bottom-up evaluation is presented. The analyser de-s
ribed in (Howe & King, 2000) implements a variant of this s
heme using eagerevaluation. In that paper, eager evaluation was implemented without an expli
itredo list as follows: ea
h time a new 
all or answer pattern is generated, the meta-interpreter invokes a predi
ate, solve, whi
h re-evaluates the appropriate 
lauses.The re-evaluation of a 
lause may in turn generate new 
alls to solve so that one
all may start before another �nishes. The status of these 
alls is maintained on thesta
k, whi
h simulates a redo list. Hen
eforth, this strategy is referred to as eagerindu
ed magi
.As noted by other authors, simple optimisations 
an signi�
antly impa
t on per-forman
e. In parti
ular, as noted in (Hermenegildo et al., 2000), evaluations result-ing from new 
alls should be performed before those resulting from new answers,and a 
all to solve for one rule should �nish before another 
all to solve for an-other rule starts. These optimisations 
annot be integrated with sta
k based eagerevaluation be
ause they rely on reordering the 
alls to solve. Hen
e a redo list isreintrodu
ed in order to make these optimisations.The meta-interpreter listed in Fig. 2 illustrates how a redo list 
an be integratedwith indu
ed magi
. Four of the predi
ates are represented as atoms in the dy-nami
 database: redo/2, the redo list; fa
t/4, the 
all and answer patterns, wherepropositional formulae are represented as di�eren
e lists { spe
i�
ally, the fourthargument is an open list with the third argument being its tail; head to 
lause/2,representing the head and body for ea
h 
lause; atom to 
lause/4, representingthe 
lauses with a given atom in the body. Before invoking oim solve/0, a 
allto 
ond assert/3 is required. This has the e�e
t of adding the top-level 
all tothe fa
t/4 database and adding the 
all pattern to the redo/2 database, therebyinitialising the �xpoint 
al
ulation. Evaluation is driven by the redo list. If theredo list 
ontains 
all patterns, then the �rst (most re
ently introdu
ed) is removed
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ob M. Howe and Andy Kingoim_solve :-retra
t(redo(
all, Atom)), !, (
all_solve(Atom); oim_solve).oim_solve :-retra
t(redo(answ, Atom)), !, (answ_solve(Atom); oim_solve).
all_solve(Head) :-head_to_
lause(Head, Body), fa
t(
all, Head, [℄, Form1),solve_right(Body, Form1, Form2), 
ond_assert(answ, Head, Form2), fail.answ_solve(Atom) :-atom_to_
lause(Atom, Head, Left, Right),fa
t(
all, Head, [℄, Form1), fa
t(answ, Atom, Form1, Form2),solve_left(Left, Form2, Form3), solve_right(Right, Form3, Form4),
ond_assert(answ, Head, Form4), fail.solve_left([℄, Form, Form).solve_left([Atom | Atoms℄, Form1, Form3) :-fa
t(answ, Atom, Form1, Form2), solve_left(Atoms, Form2, Form3).solve_right([℄, Form, Form).solve_right([Atom | Atoms℄, Form1, Form2) :-solve_right(Atom, Atoms, Form1, Form2).solve_right(Atom, _, Form, _) :-
ond_assert(
all, Atom, Form), !, redo_assert(answ, Atom), fail.solve_right(Atom, Atoms, Form1, Form3) :-fa
t(answ, Atom, Form1, Form2), solve_right(Atoms, Form2, Form3).Fig. 2. A Meta-interpreter for Ordered Indu
ed Magi

and 
all solve/1 is invoked. If the redo list 
ontains only answer patterns, thenthe �rst is removed and 
ontrol is passed to answ solve/1. The meta-interpreterterminates (with failure) when the redo list is empty.The predi
ate 
all solve/1 re-evaluates those 
lauses whose heads mat
h anew 
all pattern. It �rst looks up a body for a 
lause with a given head followedby the 
urrent 
all pattern for head, then solves the body in indu
ed magi
 fashionwith solve right/3. If 
ond assert/3 is 
alled with a 
all (answer) pattern thatdoes not entail the 
all (answer) pattern in fa
t/4, then it su

eeds, updatingfa
t/4 with the join of the 
all (answer) patterns. In this event, the new 
all(answer) pattern is added to the beginning of the redo/2 database. The predi
ateansw solve/1 re-evaluates those 
lauses 
ontaining a body atom whi
h mat
hes anew answer pattern. It looks up a 
lause with a body that 
ontains a given atom,solves the body to the left of the atom and then to the right of the atom. If a new
all pattern is en
ountered in solve right/4, then the evaluation of the 
lause isaborted, as the new 
all may give a new answer for this body atom. In this situation,
al
ulating an answer for the head with the old body answer will result in an answerthat needs to be re-
al
ulated. To ensure that the 
lause is re-evaluated, an answerfor the body atom is put in the redo list by redo assert/2. This iteration strategyis referred to as ordered indu
ed magi
.
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ient Groundness Analysis in Prolog 195.2 SCC-based StrategiesIn order to assess the suitability of ordered indu
ed magi
 as a �xpoint strategyfor Def -based groundness analysis, it has been 
ompared with a variety of popularSCC-based methods. The �xpoint engine 
an be driven either by 
onsidering thetop-level SCCs (Gallagher & de Waal, 1994) or by 
onsidering the re
ursive nestingof SCCs, for example (Bourdon
le, 1993). The SCCs 
an be stati
ally 
al
ulatedeither on the 
all graph of the magi
ked program or on the 
all graph of the originalprogram.SCCs for the 
all graph of the magi
ked program (in topologi
al order) are 
al-
ulated using Tarjan's algorithm (Tarjan, 1972). The �xpoint 
al
ulation then pro-
eeds bottom-up, stabilising on the (
all and answer) predi
ates in ea
h SCC intopologi
al order. If an SCC 
ontains a single, non-re
ursive, (
all or answer) pred-i
ate, then the predi
ate must stabilise immediately, hen
e no �xpoint 
he
k isneeded. This strategy is hen
eforth referred to as SCC magi
.A more sophisti
ated SCC-based ta
ti
 is to 
al
ulate SCCs within an SCC, assuggested by Bourdon
le (Bourdon
le, 1993). The `re
ursive strategy' des
ribed byBourdon
le re
ursively applies Tarjan's algorithm to ea
h non-trivial SCC havingremoved an appropriate node (the head node) and 
orresponding edges. The �xpoint
al
ulation pro
eeds bottom-up, stabilising on the (
all and answer) predi
ates inea
h 
omponent re
ursively. The �xpoint 
he
k need only be made at the headnode. This is strategy has potential for rea
hing a �xpoint in a parti
ularly smallnumber of updates. This strategy is hen
eforth referred to as Bourdon
le magi
.Sin
e both SCC magi
 and Bourdon
le magi
 work on the 
all graph of themagi
 program, they 
annot be 
ombined with indu
ed magi
; the ordering of there-evaluations 
on
i
ts. Cal
ulating SCCs on the 
all graph of the original programmay be 
ombined with (ordered) indu
ed magi
. The order in whi
h the 
alls areen
ountered is determined by the top-down left-to-right exe
ution of the programand the evaluation of a 
all may add new answers to the redo list. SCCs 
an beused to order new answers as they are added to the redo list. This strategy ishen
eforth referred to as SCC indu
ed magi
. However, sin
e 
alls are re-evaluatedin preferen
e to answers, the order of answers in the redo list is largely determinedby the order of the 
alls. Consequently, SCCs should have a negligible e�e
t onperforman
e.
5.3 Dynami
 Dependen
y Tra
kingOne test of the eÆ
a
y of an iteration strategy is the number of iterations requiredto rea
h the �xpoint. In order to assess how well ordered indu
ed magi
 behaves, amore sophisti
ated iteration strategy based on dynami
 dependen
y tra
king wasimplemented. The strategy 
hosen was that of WRT solver of GENA (Fe
ht, 1997;Fe
ht & Seidl, 1999) sin
e this re
ent work is parti
ularly well des
ribed, has ex-tensive experimental results and 
onveniently �ts with the worklist model.The WRT strategy utilises a worklist, whi
h is e�e
tively reordered on-the-
y.To quote Fe
ht and Seidl (Fe
ht & Seidl, 1996), \The worklist now is organized as
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hat parser sim v5-2 peval air
raft essln 
hat 80 aqua 
meet 39.3 40.5 41.5 44.6 35.4 48.3 41.0 43.5join 8.7 8.7 10.0 6.4 10.5 8.0 9.1 8.7join (di�) 1.0 2.0 0.1 2.6 0.2 0.7 1.8 1.3equiv 8.7 8.7 10.0 6.4 10.5 8.0 9.1 8.7proj 5.8 4.7 4.5 7.1 4.1 4.0 4.4 4.2rename 36.5 35.4 34.1 33.0 39.3 31.0 34.5 33.6total 6646 11324 5748 3992 12550 11754 32906 109612Table 4. Frequen
y Analysis: Non-
anoni
al Def Analyser with Ordered Indu
edMagi

�le strips 
hat parser sim v5-2 peval air
raft essln 
hat 80 aqua 
�lt 100.0 99.7 100.0 98.4 100.0 99.7 99.7 98.0elim 0.0 0.3 0.0 1.6 0.0 0.3 0.3 2.0Table 5. Frequen
y Analysis of Compa
tion in Proje
tion (Ordered Indu
edMagi
)

a (max) priority queue where the priority of an element [
all pattern℄ is given byits time stamp," where the time stamp re
ords the last time the solver was 
alledfor that 
all pattern. If, whilst solving for a 
all pattern, new 
all patterns areen
ountered, then the bottom answer pattern is not simply returned. Instead thesolver tries to re
ursively 
ompute a better approximation to this answer pattern.This ta
ti
 is also applied in PLAI and GAIA, though realised di�erently.The WRT strategy of GENA gives a small number of updates, hen
e is anattra
tive iteration strategy. However, its implementation in a ba
ktra
k drivenmeta-interpreter requires extensive use of the dynami
 database for the auxiliarydata-stru
tures. In Prolog this is potentially expensive (Hermenegildo et al., 1992).
5.4 Frequen
y Analysis for Def : RepriseIn se
tion 4 a frequen
y analysis of the abstra
t domain operations in Def -basedgroundness analysis was given. It was then argued that in light of these results
ertain 
hoi
es about the abstra
t domain operations should be made. These resultsare dependent on the iteration strategy of the analyser. In this se
tion severaldi�erent iteration strategies have been proposed and it needs to be 
he
ked thatthese give similar proportions of 
alls to the abstra
t domain operations { that is,that the 
hoi
es for the abstra
t domain operations remain justi�ed. Table 4 givesthe frequen
y analysis for ordered indu
ed magi
 driving non-
anoni
al Def andindi
ates that the 
hoi
es of domain operation remain valid. Note that for the BDDanalyser, ea
h rename is a

ompanied by a proje
tion { this is not the 
ase fornon-
anoni
al Def , explaining the lesser frequen
y of proje
tion. This makes thenon-
anoni
al Def representation appear even more suitable. Table 5 demonstratesthat proje
tion still almost always avoids 
ompa
tion. Similar distributions arefound with the other iteration strategies and for brevity these tables are omitted.
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ient Groundness Analysis in Prolog 216 Experimental EvaluationThis se
tion gives experimental results for a number of analysers with the obje
tiveof 
omparing the analysis proposed in the previous se
tions with existing te
hniquesand evaluating the impa
t of the various ta
ti
s utilised. These analysers are builtby sele
ting appropriate 
ombinations of: abstra
t domain, domain representation,iteration strategy and optimisations. The analysers are evaluated in terms of bothexe
ution time and the underlying behaviour (i. e. the number of updates). Allimplementations are 
oded in SICStus Prolog 3.8.3 with the ex
eption of the domainoperations for Pos, whi
h were written in C by S
ha
hte (S
ha
hte, 1999). Theanalysers were run on a 296MHz Sun UltraSPARC-II with 1GByte of RAM runningSolaris 2.6. Programs are abstra
ted following the elegant (two program) s
heme of(Bueno et al., 1996) to guarantee 
orre
tness. Programs are normalised to de�nite
lauses. Timings are the arithmeti
 mean over 10 runs. Timeouts were set at �veminutes.
6.1 Domains: Timings and Pre
isionTables 6 and 7 give timing and pre
ision results for the domains EPos, Def rep-resented in DBCF, non-
anoni
al Def (denoted GEP after the representation) andPos. In these tables, �le is the name of the program analysed; size is the numberof abstra
t 
lauses in the normalised program; abs is the time taken to read, parseand normalise the input �le, produ
ing the abstra
t program; �xpoint details theanalysis time for the various domains; pre
ision gives the total number of groundarguments in the 
all and answer patterns found by ea
h analysis (ex
luding thoseintrodu
ed by normalising the program); % pre
. loss gives the loss of pre
ision ofEPos and Def as 
ompared to Pos { to emphasise where pre
ision is lost, entriesare only made when there is a pre
ison loss. All the analyses were driven by theordered indu
ed magi
 iteration strategy.First 
onsider pre
ision. As is well known, in pra
ti
e, for goal-dependent ground-ness analysis, the pre
ision of Def is very 
lose to that of Pos . In the ben
hmarksuite used here, Def loses ground arguments in only two programs: rotate.pl, whi
hloses three arguments, and sim v5-2.pl, where two arguments are lost. EPos losespre
ision in several programs, but still performs reasonably well. (Goal-independentanalysis pre
ision 
omparisons for EPos and Def are given in (Heaton et al., 2000)and (Genaim & Codish, 2001). These show that EPos loses signi�
ant pre
ision,whereas Def gives pre
ision 
lose to that of Pos .)The non-
anoni
al Def analyser appears to be fast and s
alable { taking morethan a se
ond to analyse only the largest ben
hmark program. This analyser doesnot employ widening (however, in
orporating a widening would guarantee robust-ness of the analyser, even for pathologi
al programs (Genaim et al., 2001)). Noti
ethat the analysis times for all the programs is 
lose to the abstra
tion time { thissuggests that a large speed up in the analysis time needs to be 
oupled with a
ommensurate speedup in the abstra
ter.The non-
anoni
al Def analysis times are 
omparable to those for EPos for
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ision % pre
. loss�le size abs EPos DBCF GEP Pos EPos DBCF GEP Pos EPos Defappend.pl 2 0.00 0.00 0.01 0.01 0.01 3 4 4 4 25.0rotate.pl 3 0.00 0.00 0.01 0.01 0.01 2 3 3 6 66.6 50.0mortgage.
lpr 4 0.00 0.00 3.31 0.00 0.04 6 6 6 6qsort.pl 6 0.01 0.00 0.00 0.00 0.01 11 11 11 11rev.pl 6 0.01 0.00 0.01 0.01 0.01 0 0 0 0queens.pl 9 0.00 0.00 0.04 0.00 0.02 3 3 3 3zebra.pl 9 0.01 0.00 0.06 0.01 0.10 19 19 19 19lapla
e.
lpr 10 0.01 0.00 0.08 0.01 0.01 0 0 0 0shape.pl 11 0.00 0.00 0.04 0.00 0.03 6 6 6 6parity.pl 12 0.01 0.00 3.24 0.52 { 0 0 0 { { {treeorder.pl 12 0.00 0.00 0.20 0.01 0.03 0 0 0 0fast
olor.pl 13 0.04 0.00 0.00 0.01 0.01 14 14 14 14musi
.pl 13 0.01 0.01 { 0.02 0.07 2 { 2 2serialize.pl 13 0.01 0.00 0.12 0.00 0.06 3 3 3 3
rypt wam

.pl 19 0.02 0.01 0.03 0.01 0.04 31 31 31 31option.
lpr 19 0.02 0.00 1.27 0.02 0.07 42 42 42 42
ir
uit.
lpr 20 0.02 0.00 52.69 0.02 0.12 3 3 3 3air.
lpr 20 0.01 0.00 44.63 0.02 0.09 9 9 9 9dnf.
lpr 22 0.02 0.01 0.01 0.00 0.03 8 8 8 8d
g.pl 23 0.02 0.00 0.01 0.00 0.02 59 59 59 59hamiltonian.pl 23 0.02 0.00 0.01 0.00 0.02 37 37 37 37nand
.pl 31 0.03 0.02 0.03 0.01 0.05 34 37 37 37 8.1semi.pl 31 0.03 0.02 0.75 0.04 0.23 28 28 28 28life.pl 32 0.02 0.00 0.03 0.01 0.05 58 58 58 58poly10.pl 32 0.03 0.00 0.02 0.00 0.04 45 45 45 45meta.pl 33 0.02 0.01 0.02 0.02 0.03 1 1 1 1rings-on-pegs.
lpr 34 0.02 0.02 1.20 0.02 0.11 11 11 11 11browse.pl 35 0.02 0.01 0.04 0.02 0.04 41 41 41 41gabriel.pl 38 0.03 0.02 0.06 0.02 0.07 37 37 37 37tsp.pl 38 0.02 0.02 0.07 0.02 0.11 122 122 122 122map.pl 41 0.02 0.02 0.03 0.01 0.05 17 17 17 17
sg.
lpr 42 0.04 0.01 0.00 0.00 0.02 8 8 8 8disj r.pl 48 0.03 0.01 0.02 0.02 0.08 97 97 97 97ga.pl 48 0.08 0.00 0.03 0.02 0.09 141 141 141 141
riti
al.
lpr 49 0.03 0.01 { 0.04 0.21 14 { 14 14robot.pl 51 0.04 0.00 0.01 0.00 0.03 41 41 41 41s

1.pl 51 0.03 0.01 0.08 0.01 0.14 89 89 89 89ime v2-2-1.pl 53 0.04 0.02 0.30 0.03 0.20 100 101 101 101 0.9
s r.pl 54 0.06 0.01 0.06 0.01 0.09 149 149 149 149ti
ta
toe.pl 55 0.05 0.01 0.08 0.02 0.09 60 60 60 60
atten.pl 56 0.04 0.02 0.22 0.04 0.13 27 27 27 27mastermind.pl 56 0.03 0.02 0.04 0.02 0.09 43 43 43 43dialog.pl 61 0.03 0.01 0.03 0.02 0.05 45 45 45 45neural.pl 67 0.06 0.03 0.13 0.02 0.08 121 123 123 123 1.6bridge.
lpr 68 0.10 0.00 0.07 0.01 0.09 24 24 24 24
onman.pl 76 0.05 0.00 0.00 0.00 0.02 6 6 6 6unify.pl 77 0.05 0.02 0.19 0.05 0.38 70 70 70 70kalah.pl 78 0.04 0.02 0.05 0.02 0.10 199 199 199 199nbody.pl 85 0.07 0.03 0.08 0.04 0.19 113 113 113 113peep.pl 85 0.11 0.02 0.13 0.03 0.14 10 10 10 10sdda.pl 89 0.05 0.02 0.13 0.04 0.12 17 17 17 17bryant.pl 94 0.07 0.06 0.23 0.14 0.76 99 99 99 99boyer.pl 95 0.07 0.02 0.08 0.05 0.08 3 3 3 3read.pl 101 0.09 0.03 0.15 0.05 0.20 99 99 99 99qplan.pl 108 0.09 0.02 0.07 0.02 0.16 216 216 216 216trs.pl 108 0.14 0.06 { 0.09 2.46 13 { 13 13press.pl 109 0.08 0.07 0.40 0.10 0.36 52 53 53 53 1.8redu
er.pl 113 0.07 0.05 3.47 0.04 0.30 41 41 41 41parser d
g.pl 122 0.09 0.04 2.27 0.08 0.24 28 43 43 43 34.8simple analyzer.pl 140 0.11 0.05 0.28 0.10 0.58 89 89 89 89Table 6. Groundness Results: Smaller Programs
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ision % pre
. loss�le size abs EPos DBCF GEP Pos EPos DBCF GEP Pos EPos Defdbqas.pl 143 0.09 0.02 0.54 0.03 0.09 18 18 18 18ann.pl 146 0.10 0.05 0.77 0.09 0.32 71 71 71 71asm.pl 160 0.17 0.04 0.08 0.04 0.17 90 90 90 90nand.pl 179 0.14 0.04 0.19 0.05 0.37 402 402 402 402lnprolog.pl 220 0.10 0.07 0.16 0.07 0.21 110 143 143 143 23.0ili.pl 221 0.15 0.07 1.29 0.17 0.36 4 4 4 4strips.pl 240 0.22 0.02 0.04 0.03 0.14 142 142 142 142sim.pl 244 0.20 0.08 1.69 0.18 1.38 100 100 100 100rubik.pl 255 0.20 0.12 { 0.16 0.46 158 { 158 158
hat parser.pl 281 0.34 0.09 0.47 0.24 1.16 504 505 505 505 0.1sim v5-2.pl 288 0.23 0.05 0.15 0.07 0.32 455 455 455 457 0.4 0.4peval.pl 332 0.17 0.05 0.23 0.18 0.39 27 27 27 27air
raft.pl 395 0.55 0.11 0.21 0.14 0.55 687 687 687 687essln.pl 595 0.48 0.12 2.70 0.19 0.93 158 162 162 162 2.4
hat 80.pl 883 1.53 0.38 8.17 0.76 4.53 852 855 855 855 0.3aqua 
.pl 3928 3.47 1.70 { 4.26 144.62 1222 { 1285 1285 4.9Table 7. Groundness Results: Larger Programs
smaller programs, with EPos outperforming non-
anoni
al Def on some of thelarger ben
hmarks. This is unsurprising given the mu
h better theoreti
al behaviourof EPos, indeed it is mu
h in the favour of non-
anoni
al Def that it is 
ompetitivewith EPos. The DBCF analyser su�ers from the problems dis
ussed in se
tion 4.The 
ost in meet of maintaining the 
anoni
al form often be
omes signi�
ant. In
ases (su
h as in musi
.pl) where the number of variables, the number of body atomsand the size of the representation are all large, the exponential nature of redu
ing to
anoni
al form leads to a massive blowup in analysis time. Hen
e the DBCF anal-yser fails to produ
e a result for several examples and gives poor s
alability. Also,the analysis appears to la
k robustness { the sensitivity of the meet to the formof the program 
lauses leads to widely varying results. Pos performs well on mostprograms, but is still 
onsistently several times slower than non-
anoni
al Def . Posperforms parti
ularly poorly on parity.pl (a program designed to be problemati
for BDD-based Pos analysers) and aqua 
.pl. Again, sin
e the Pos analyser usesBDDs (essentially a 
anoni
al form) there is a 
ost in maintaining the representa-tion. This 
an lead to a la
k of robustness. It should be pointed out that the Posanalyser is not state of the art and that one using the GER representation (Bagnara& S
ha
hte, 1999) would probably give improved results. Of 
ourse, widening 
ouldbe used to give improved times for Pos, but at the 
ost of pre
ision.

6.2 Iteration Strategy: Timings and UpdatesTable 8 gives timing results for non-
anoni
al Def analysis when driven by variousiteration strategies. The 
olumn headers are abbreviations as follows: ord stand forordered indu
ed magi
; eim stands for eager indu
ed magi
; bom stands for Bour-don
le magi
; s
m stands for SCC magi
; s

 stands for SCC indu
ed magi
; dydstands for dynami
 dependen
y. The timings are split into two se
tions. The over-head time is the prepro
essing overhead in
urred in 
al
ulating the SCCs requiredto drive the analyses. For bom and s
m, SCCs are 
al
ulated on the 
all and answergraph of the magi
 program. For s

, SCCs are 
al
ulated on the 
all graph of the
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ob M. Howe and Andy Kingoverhead strategy�le bom s
m s

 ord eim bom s
m s

 dyddbqas.pl 0.02 0.02 0.01 0.03 0.03 0.03 0.06 0.03 0.07ann.pl 0.05 0.04 0.01 0.09 0.14 0.18 0.22 0.09 0.19asm.pl 0.06 0.06 0.02 0.04 0.08 0.09 0.13 0.05 0.15nand.pl 0.10 0.08 0.02 0.05 0.06 0.21 0.13 0.05 0.17lnprolog.pl 0.07 0.06 0.03 0.07 0.10 0.23 0.19 0.07 0.22ili.pl 0.06 0.04 0.02 0.17 0.29 0.73 0.38 0.16 0.68strips.pl 0.10 0.08 0.03 0.03 0.01 0.10 0.06 0.03 0.07sim.pl 0.10 0.07 0.02 0.18 0.35 0.38 0.29 0.19 0.37rubik.pl 0.29 0.15 0.04 0.16 0.19 1.12 0.33 0.15 0.34
hat parser.pl 0.19 0.08 0.05 0.24 0.44 2.31 0.67 0.24 1.89sim v5-2.pl 0.25 0.12 0.04 0.07 0.07 0.57 0.18 0.07 0.22peval.pl 0.06 0.06 0.04 0.18 0.30 0.31 0.29 0.17 0.38air
raft.pl 0.73 0.26 0.14 0.14 0.23 1.13 0.53 0.13 0.44essln.pl 0.40 0.19 0.11 0.19 0.27 1.58 0.61 0.18 0.46
hat 80.pl 0.96 0.34 0.15 0.76 1.36 21.22 2.59 0.73 3.30aqua 
.pl 17.91 1.59 0.84 4.26 10.69 454.22 20.52 4.30 15.74Table 8. Timing Results for Iteration Strategies
original program. The strategies ord, eim and dyd do not require any prepro
ess-ing, hen
e have no overhead. The strategy times are the times for analysing ea
hprogram (that is, the time taken for the �xpoint 
al
ulation, not in
luding the pre-pro
essing overhead). Table 9 gives a se
ond measure of the 
ost of ea
h iterationstrategy; this time in terms of the number of updates (writes to database/extensiontable) required to rea
h the �xpoint.One important measure of the su

ess of an iteration strategy is the number ofupdates required in the analysis. This impa
ts dire
tly on the number of 
alls toabstra
t operations and hen
e the amount of work (speed) of the analysis. Table9 indi
ates that ord, s

 and dyd give the best behaviour over a large number ofprograms. However, all of the other strategies give the best result for some programs,indi
ating that ea
h has its merits. Observe that, as predi
ted in se
tion 5, ord ands

 give very similar results.In measuring performan
e of a parti
ular analysis, the overall time taken is alsoof importan
e. Table 8 indi
ates that the methods based on SCCs in the 
all graphof the magi
 program have problems. Firstly, they require SCCs to be 
al
ulated{ the 
ost of this (in parti
ular for Bourdon
le magi
) is signi�
ant. Se
ondly,the �xpoint times for bom and s
m are mu
h greater than would be expe
tedfrom the results in Table 9. This is partly be
ause the bom and s
m strategies
annot be integrated with indu
ed magi
, whi
h impa
ts heavily on speed. Thebom strategy also has a third drawba
k { the proportion of re-evaluations notresulting in an update rises dramati
ally for larger programs. Larger programsoften give rise to deeply nested SCCs. Suppose an SCC, say A, nests a subSCC,say B. In dete
ting the stability of A, the stability of the head of B needs tobe established. This in turn requires a single pass over B. If n passes over A arerequired to rea
h stability, then n passes over B are also needed (even if B is alreadystable). Extrapolating, the number of times an SCC is passed over is determined
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 dydappend 3 3 3 3 3 3rotate 7 7 7 7 7 6mortgage 6 6 6 6 6 6qsort 8 7 8 8 8 7rev 11 11 11 11 11 11queens 12 12 12 12 12 12zebra 12 12 12 12 12 12lapla
e 12 12 12 12 12 12shape 12 10 10 10 12 10parity 38 47 38 38 38 37treeorder 17 18 17 18 17 14fast
olor 18 19 18 18 18 18musi
 13 13 13 12 13 13serialize 16 18 16 16 16 10
rypt wam

 23 23 23 23 23 23option 30 35 30 30 30 29
ir
uit 32 31 30 34 32 29air 32 35 32 36 32 29dnf 8 8 8 8 8 8d
g 31 30 30 30 31 30hamiltonian 28 28 28 28 28 28nand
 49 51 44 51 49 49semi 53 51 51 54 53 48life 30 30 30 31 30 30poly10 24 24 24 24 24 24meta 46 29 40 40 46 40rings-on-pegs 37 37 37 37 37 37browse 43 43 43 43 43 43gabriel 48 48 48 50 48 47tsp 66 66 65 73 66 65map 68 68 68 68 68 68
sg 12 12 12 12 12 12disj r 58 58 58 58 58 58ga 60 60 59 60 60 59
riti
al 42 39 44 44 42 36robot 28 28 28 28 28 28s

1 51 50 50 50 51 50ime v2-2-1 77 74 72 77 77 70

strategy�le ord eim bom s
m s

 dyd
s r 66 66 66 66 66 66ti
ta
toe 60 56 56 57 60 55
atten 81 95 80 107 81 71mastermind 86 84 82 85 86 82dialog 82 95 79 82 82 77neural 83 78 78 102 83 78bridge 13 13 13 13 13 13
onman 14 14 14 14 14 14unify 92 114 92 97 92 83kalah 91 93 92 93 91 92nbody 125 173 124 162 125 122peep 61 61 62 61 61 58sdda 91 105 96 100 93 94bryant 202 210 189 161 202 214boyer 99 107 102 101 99 105read 119 127 90 114 119 91qplan 95 95 95 94 95 93trs 86 92 88 96 88 69press 224 222 221 217 224 241redu
er 118 173 173 158 118 163parser d
g 170 170 157 168 169 160simple analyzer 200 242 200 321 201 189dbqas 105 105 94 109 105 98ann 207 233 229 281 207 192asm 169 237 174 217 169 181nand 188 188 186 187 188 186lnprolog 253 300 279 281 253 264ili 209 318 318 330 209 312strips 108 101 111 106 108 99sim 280 310 269 277 281 266rubik 372 369 375 383 372 373
hat parser 445 682 659 652 445 621sim v5-2 256 256 254 254 256 256peval 280 331 312 309 281 285air
raft 506 506 506 506 506 506essln 485 547 473 516 485 450
hat 80 1322 1657 1494 1579 1323 1454aqua 
 4751 5779 5667 6106 4842 4611Table 9. Number of Updates for Iteration Strategies
by the sum of the number of passes over ea
h SCC 
ontaining it. If the SCC isdeeply nested and large this involves a large number of re-evaluations produ
ing noupdates. As the s
m strategy does not involve nested SCCs, this problem does notarise. It appears that Bourdon
le's re
ursive strategy is not well suited for drivinggroundness analyses of logi
 programs. Table 8 also indi
ates that whilst SCCson the 
all graph give 
omparable analysis times to ordered indu
ed magi
, theytoo 
ome with an overhead of pre
omputation. Sophisti
ated dynami
 dependen
ygraphs do not pay for themselves in a groundness analysis involving lightweightdomain operations, as re
e
ted by the timings for dyd. However, they are moreamenable to optimisation than ordered indu
ed magi
 (whi
h is itself essentially anoptimisation of indu
ed magi
) and in an analysis where the 
ost of the abstra
toperations is higher it is to be expe
ted that this strategy would be more e�e
tive.Also, by using a di�erent programming paradigm, the dynami
 
hanges to the
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ob M. Howe and Andy Kingord dyd�le 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8dbqas.pl 55 21 1 0 1 60 16 2ann.pl 88 39 11 2 100 32 4 4asm.pl 140 13 1 130 21 3nand.pl 172 5 2 173 5 1lnprolog.pl 168 32 7 155 47 5ili.pl 89 24 20 3 41 54 23 5 5 7 1strips.pl 82 10 2 89 5sim.pl 144 43 12 1 2 152 38 10 2rubik.pl 264 54 264 53 1
hat parser.pl 207 78 14 7 1 0 1 101 144 37 14 7 5sim v5-2.pl 248 4 248 4peval.pl 114 45 13 4 3 1 111 52 9 3 2 1 1 1air
raft.pl 468 19 468 19essln.pl 321 59 9 2 1 1 341 48 3 1
hat 80.pl 537 224 70 22 4 2 1 466 261 93 22 10 7 1aqua 
 2135 742 205 64 28 12 2 1 3 2170 781 151 48 26 11 2 3Table 10. Chain Length Distributionsdependen
y graph 
ould be made more eÆ
iently (for example, (Fe
ht & Seidl,1999) use SML).
6.3 Chain LengthTable 10 gives further details of the number of updates required in program analysiswith non-
anoni
al Def . This table gives the distribution of the number of updatesrequired to rea
h the �xpoint for the various program predi
ates. Results are givenfor ord and dyd as it is 
lear from Table 9 that these are the most 
ompetitivestrategies. Ea
h 
olumn gives the number of predi
ates requiring that number ofupdates. Entries beyond the maximum number of updates have been left blank tohighlight the maximum 
hain length.Chain length gives a good indi
ation of the robustness of the iteration strategies.Whilst it is always possible to 
onstru
t programs exhibiting worst 
ase behaviour(Codish, 1999b; Genaim et al., 2001), Table 10 shows that for both ord and dyd,very few 
hains are longer than 4 and that at worst 
hains have length 9. It alsoagain indi
ates that di�erent strategies 
an give signi�
antly di�erent behaviour forthe analysis. 6.4 OptimisationsA number of optimisations have been dis
ussed in this paper. Table 11 details thee�e
t of these, singly and in 
ombination. The �ve optimisations 
onsidered haveea
h been abbreviated by a single letter: e denotes �ltering by entailment 
he
king;g denotes the use of a GEP fa
torisation; p denotes �ltering proje
tion; r denotesthe use of redundan
y removal; t denotes the maintenan
e of a true fa
torisation.The 
olumn headers des
ribe whi
h optimisations have been swit
hed on; for exam-ple, gpr denotes the situation where the analysis uses a GEP fa
torisation, where
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hes�le egpr egprt egp epr gpr egr pr er gr rdbqas.pl 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03ann.pl 0.09 0.09 0.09 0.10 0.10 0.09 0.11 0.10 0.10 0.11asm.pl 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.05 0.04 0.06nand.pl 0.05 0.05 0.05 0.07 0.06 0.05 0.09 0.07 0.06 0.09lnprolog.pl 0.06 0.07 0.07 0.08 0.07 0.07 0.09 0.08 0.07 0.10ili.pl 0.16 0.16 0.16 0.17 0.16 0.16 0.18 0.17 0.18 0.19strips.pl 0.02 0.02 0.02 0.03 0.03 0.02 0.04 0.03 0.03 0.03sim.pl 0.18 0.18 0.18 0.20 0.20 0.20 0.23 0.23 0.22 0.25rubik.pl 0.15 0.16 0.16 0.16 0.17 0.19 0.18 0.20 0.19 0.21
hat parser.pl 0.24 0.24 0.24 0.29 0.27 0.25 0.33 0.30 0.28 0.34sim v5-2.pl 0.06 0.07 0.06 0.08 0.07 0.07 0.10 0.08 0.07 0.10peval.pl 0.17 0.17 0.17 0.18 0.17 0.18 0.19 0.19 0.18 0.20air
raft.pl 0.14 0.14 0.14 0.17 0.16 0.14 0.21 0.17 0.16 0.21essln.pl 0.18 0.19 0.19 0.22 0.20 0.19 0.24 0.22 0.21 0.25
hat 80.pl 0.73 0.74 0.73 0.84 0.81 0.76 0.96 0.89 0.84 0.99aqua 
.pl 4.25 4.20 4.28 4.74 4.73 4.81 5.34 5.36 5.29 5.99Table 11. Timing Results for Combinations of Optimisations
proje
tion is �ltered and where redundan
y removal is used, but the fa
torisationis not true and the entailment 
he
king �lter for join is not applied. Note that theswit
h for the entailment 
he
king does not entirely turn o� the entailment 
he
k�lter for join, as the Def analysers enfor
e termination using the same entailment
he
k whi
h �lters join. In Proposition 2, the �ltering of join has three 
ases; theentailment 
he
k swit
h turns the �rst (most lightweight) 
ase on and o�. The de-fault for the non-
anoni
al Def analyser whi
h has been used for other timings inthis paper is egpr, sin
e this gives the best result for most programs.The �rst three 
olumns of Table 11 all give very similar times, indi
ating that truefa
torisation and redundan
y removal have little e�e
t on analysis times, essentiallypaying for themselves. The next three 
olumns give times for the situation with oneof e, g, p swit
hes o� (relative to the default 
ase). It is 
lear that turning o� anyof these optimisation gives a slow down of, perhaps, 10%. The next three 
olumnsgive results for swit
hing o� optimisations in pairs. Again there is a 
lear slowdownfrom the previous three results (although noti
e that the epr and gr results are verysimilar), a slowdown of 15-20% from the default 
ase. Finally, the last 
olumn showsthat swit
hing o� all the optimisations results in a slowdown of approximately 25%in most programs.One 
on
lusion to be drawn from Table 11 is that the non-
anoni
al Def analysisis extremely robust. By turning o� all the optimisations for both the size of repre-sentation and the eÆ
ien
y of the abstra
t operations, the analysis is still fast. Itis expe
ted that the e�e
t of turning o� these optimisations would be bigger whenusing a less e�e
tive iteration strategy or a less suitable (orthogonal) representation.

7 Related WorkVan Hentenry
k et al. (Van Hentenry
k et al., 1995) is an early work whi
h laid a



28 Ja
ob M. Howe and Andy Kingfoundation for BDD-based Pos analysis. Corsini et al. (Corsini et al., 1993) des
ribehow variants of Pos 
an be implemented using Toupie, a 
onstraint language basedon the �-
al
ulus. If this analyser was extended with, say, magi
 sets, it might leadto a very respe
table goal-dependent analysis. More re
ently, Bagnara and S
ha
hte(Bagnara & S
ha
hte, 1999) have developed the idea (Bagnara, 1996) that a fa
-torised implementation of ROBDDs whi
h keeps de�nite information separatelyfrom dependen
y information is more eÆ
ient than keeping the two together. Thishybrid representation 
an signi�
antly de
rease the size of an ROBDD and thus isa useful implementation ta
ti
.Heaton et al. (Heaton et al., 2000) propose EPos, a sub-domain of Def , that
an only propagate dependen
ies of the form (x1 $ x2) ^ x3 a
ross pro
edureboundaries. This information is pre
isely that 
ontained in one of the �elds of theGEP fa
torised domain. The main �nding of (Heaton et al., 2000) is that thissub-domain performs reasonably well for goal-dependent analysis.Armstrong et al. (Armstrong et al., 1998) study a number of di�erent represen-tations of Boolean fun
tions for both Def and Pos. An empiri
al evaluation on 15programs suggests that spe
ialising Dual Blake Canoni
al Form (DBCF) for Defleads to the fastest analysis overall. Armstrong et al. (Armstrong et al., 1998) alsoperform interesting pre
ision experiments. Def and Pos are 
ompared, however, ina bottom-up framework that is based on 
ondensing and is therefore biased towardsPos. The authors point out that a top-down analyser would improve the pre
isionof Def relative to Pos.Gar
��a de la Banda et al. (Gar
��a de la Banda et al., 1996) des
ribe a Prologimplementation of Def that is also based on an orthogonal DBCF representation(though this is not expli
itly stated) and show that it is viable for some mediumsized ben
hmarks. Fe
ht and Seidl (Fe
ht, 1997; Fe
ht & Seidl, 1999) des
ribe an-other groundness analyser for Pos that is not 
oded in C. They adopt SML asa 
oding medium in order to build an analyser that is de
larative and easy tomaintain. Their analyser employs a widening.Codish and Demoen (Codish & Demoen, 1995) des
ribe a non-ground modelbased implementation te
hnique for Pos that would en
ode x1 $ (x2^x3) as threetuples htrue; true; truei, hfalse; ; falsei, hfalse; false; i. King et al. show how, forDef , meet, join and proje
tion 
an be implemented with quadrati
 operations basedon a Sharing quotient (King et al., 1999). Def fun
tions are essentially representedas a set of models and widening is thus required to keep the size of the representationmanageable. Ideally, however, it would be better to avoid widening by, say, using amore 
ompa
t representation.Most re
ently, Genaim and Codish (Genaim & Codish, 2001) propose a dualrepresentation for Def . For fun
tion f , the models of 
oneg(f) are named and f isrepresented by a tuple re
ording for ea
h variable of f whi
h of these models thevariable is in. For example, the models of 
oneg(x! y) are ffx; yg; fxg; ;g. Namingthe three models a, b, 
 respe
tively, f is represented by hab; ai. This representation
leverly allows the well known ACI1 uni�
ation theory to be used for the domainoperations. (Genaim & Codish, 2001) report promising experimental results, butstill need a widening to analyse the aqua 
 ben
hmark.



EÆ
ient Groundness Analysis in Prolog 298 Con
lusionBy 
onsidering the way in whi
h goal-dependent groundness analyses pro
eed, anintelligent 
hoi
e 
an be made as to how to represent the abstra
t domain and howthe 
ost of the domain operations should be balan
ed. Analysing the relative fre-quen
ies of the domain operations leads to a representation whi
h is 
ompa
t, andwhere the most 
ommonly 
alled domain operations are the most lightweight. Filtersfor the more expensive domain operations are des
ribed whi
h allow these opera-tions to be 
al
ulated by inexpensive spe
ial 
ases. Ways in whi
h a non-groundrepresentation for Boolean fun
tions may exploit the language features of Prolog toobtain an eÆ
ient implementation are des
ribed. The iteration strategy for drivingan analysis is also extremely important. Several strategies are dis
ussed and 
om-pared. It is 
on
luded that for groundness analysis the fastest implementation usesa simple strategy avoiding pre
omputation and sophisti
ated data-stru
tures. Animplementor might �nd some or all of the issues dis
ussed and ideas raised in thispaper useful in designing a program analysis and in implementing it in Prolog.The end produ
t of this work is a highly prin
ipled goal-dependent groundnessanalyser 
ombining the te
hniques des
ribed. It is written in Prolog and is smalland easily maintained. The analyser is a robust, fast, pre
ise and s
alable and doesnot require widening for the largest program in the ben
hmark suite. Experimentalresults show that the speed of the �xpoint 
al
ulation is very 
lose to that of reading,parsing and normalising the input �le. Results also suggest that the performan
e ofthe analyser 
ompares well with other groundness analysers, in
luding BDD-basedanalysers written in C.
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