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Approximate pricing of swaptions in affine and

quadratic models

Anna Maria Gambaro? Ruggero Caldana‘and Gianluca Fusai

Abstract

This paper proposes new bounds on the prices of European-style swaptions for affine and quadratic
interest rate models. These bounds are computable whenever the joint characteristic function of the
state variables is known. In particular, our lower bound involves the computation of a one-dimensional
Fourier transform independently of the swap length. In addition, we control the error of our method by
providing a new upper bound on swaption price that is applicable to all considered models. We test our
bounds on different affine models and on a quadratic Gaussian model. We also apply our procedure to
the multiple-curve framework. The bounds are found to be accurate and computationally efficient.!

JEL classification codes: G12, G13.

KEYWORDS: Pricing, swaptions, affine-quadratic models, Fourier transform, bounds.

1 Introduction

The accurate pricing of swaption contracts is fundamental in interest rate markets. Swaptions
are among the most liquid over-the-counter (OTC) derivatives and are largely used for hedging
purposes. Many applications also require efficient computation of swaption prices, such as
calibration, estimation of risk metrics and credit and debit value adjustment (CVA and DVA)

valuation. In the calibration of interest rate models, a large number of swaptions with different
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maturities, swap lengths and strikes are priced using iterative procedures aimed at fitting market
quotations. Similarly, in the estimation of risk metrics for a portfolio of swaptions, if a full
revaluation setting is used and millions of possible scenarios are considered, a fast pricing
algorithm is essential to obtain results in a reasonable time. In addition, the Basel III accords
introduced the CVA and DVA charge for OTC contracts, and for the simplest and most popular
kind of interest rate derivative, i.e. interest rate swap, the two adjustments can be estimated
by pricing a portfolio of forward start European swaptions (see Brigo and Masetti (2005)).
Hence, the appeal of a fast and exact closed-form solution for the swaption pricing problem is
explained.

The famous Jamshidian (1989) formula is applicable only when the short rate depends on a
single stochastic factor while for multi-factor interest rate models, several approximate methods
have been developed in the literature. Munk (1999) approximates the price of an option on
a coupon bond by a multiple of the price of an option on a zero-coupon bond with time to
maturity equal to the stochastic duration of the coupon bond. The method of Schrager and
Pelsser (2006) is based on approximating the affine dynamics of the swap rate under the relevant
swap measure. These methods are fast but not very accurate for out-of-the-money options. The
method of Collin-Dufresne and Goldstein (2002) is based on an Edgeworth expansion of the
density of the swap rate and requires a time-consuming calculation of the moments of the coupon
bond and it provides reliable estimation only for a low volatility level. An estimation of the error
of the Collin-Dufresne and Goldstein (2002) has been provided in Zheng (2013). Singleton and
Umantsev (2002) (henceforth S&U) introduce the idea of approximating the exercise region in
the space of the state variables. This method has the advantage of producing accurate results
across a wide range of strikes, in particular for out-of-the-money swaptions. However, it does not
allow a simple extension to general affine interest rate models because it requires the knowledge
of the joint probability density function of the state variables in the closed form. Kim (2014)
generalizes and simplifies the S&U method. Up to now, Kim’s method seems to be the most
efficient proposed in the literature. Nevertheless, Kim’s method requires the calculation of as
many Fourier transforms as the number of cash flows in the underlying swap, which implies that
the run time of the algorithm increases with the swap length. Moreover, none of these papers
discusses the direction of the error, i.e. whether the price is overestimated or underestimated.
Further, except for Collin-Dufresne and Goldstein (2002), none of the methods proposed in
the literature is able to estimate or control the approximation error. Recently, a lower and an
upper bound on swaption prices was proposed in Nunes and Prazeres (2014), but these are

applicable only to Gaussian models.



Similar to S&U and Kim, we propose a lower bound that is based on an approximation of
the exercise region via an event set defined through a function of the model factors. Our pricing
formula consists of the valuation of an option on the approximate exercise region and requires
a single Fourier transform. Our procedure gives a new perspective with respect to existing
methods, such as those of S&U and Kim. Indeed, we prove that their approximations are also
lower bounds to the swaption price. To the best of our knowledge, this has not been reported
previously. Moreover, we develop methods to control the approximation error by deriving a
new upper bound on swaption prices.

Finally, we extend the lower and upper bounds to multiple-curve models that reflect the
presence of various interest curves in the market after the 2007 crisis. Multiple-curve interest
rate models are widely discussed in the literature (see, among others Ametrano and Bianchetti
(2009), Morini (2009) and recently Moreni and Pallavicini (2014) and Fanelli (2016)). In par-
ticular, we concentrate on the affine multiple-curve model developed in Moreni and Pallavicini
(2014). To the best of our knowledge, none of the approximated methods previously described
for pricing swaptions has been developed for a multiple-curve interest rate framework.

The paper is organized as follows. Section 2 introduces a general formula for the lower
bound on swaption prices based on an approximation of the exercise region. In addition, the
popular methods of S&U and Kim are proved to be included in our setting. Then we apply the
general lower bound formula to the case of affine models and Gaussian quadratic interest rate
models and we find an efficient algorithm to calculate analytically the approximated swaption
price. In section 3, the new upper bound is presented for affine-quadratic models. Section 4
extends the previously described bounds to a multiple-curve model. Section 5 shows the results

of numerical tests. Conclusions and remarks are presented in the last section.

2 Lower bound on swaption prices

In this section, we discuss the general pricing formula for a receiver European-style swaption
and the approximations presented in S&U and Kim. In particular, we prove that these approx-
imations are lower bounds.

A European swaption is a contract that gives the right to its owner to enter into an underlying
interest rate swap, i.e. it is a European option on a swap rate. It can be equivalently interpreted
as an option on a portfolio of zero-coupon bonds (or as an option on a coupon bond). Let ¢t be
the current date, T the option expiration date, 17, ...,T;, the underlying swap payment dates

(by construction t < T' < T7 < ... < T,) and R the fixed rate of the swap. The payoff of a



receiver swaption is

n +
(Z wy P(T, Ty,) — 1) :

h=1

where wy, = R (1}, — Th—1) for h =1,...,n — 1, w, = R (T;, — T,,—1) + 1, and P(T,T},) is the
price at time T of a zero-coupon bond expiring at time 7}. The time t no-arbitrage price is the

risk-neutral expected value of the discounted payoff,
n +
T
CO(t) = Ey [e— v T(X(s))ds (Z wy P(T, Ty,) — 1) ] (1)
h=1

where 7(X(s)) is the short rate at time s, and X(s) denotes the state vector at time s of a
multi-factor stochastic model. The price formula (1) after a change of measure to the T-forward

measure becomes

C(t) = P(t,T)E]

(znj W P(T, Ty) - 1) I<A>] @)

h=1

with I denoting the indicator function, and A is the exercise region, which is seen as a subset

of the space events (2,

A={weQ:> wyP(T,T}) > 1}.
h=1

By changing the measure of each expected value from the T forward measure to the Ty,

measure, the pricing formula in expression (2) can be written as

n
C(t) =Y wnP(t, Ty) B*[A] — P(¢,T) P{ [A]
h=1
where P?[A] denotes the time ¢ probability of the exercise set A under the S-forward measure.
S&U and Kim replace the exercise set A in the above formula by a new set G that makes the
computation of the swaption price much simpler, and then their approximated pricing formula

reads as (see Singleton and Umantsev (2002) and Kim (2014) for further details)

n
Cg(t) = Y wnP(t,Ty) B,*[G] - P(t.T) P} [G]. (3)
h=1
The choice of the approximated exercise region is made so that the above probabilities can be
computed by performing n + 1 Fourier inversions, where n is the number of payments in the

underlying swap. We can now show that Cg(t) is a lower bound approximation to the true



price. Indeed, we observe that for any event set G C 2:

n + n +
E" (Z wp P(T, Ty) — 1) ] > E! (Z wp P(T, Tp,) — 1> 1(g)]
h=1 h=1
> B/ (Z w P(T, Th) — 1) I(@]
h=1

Then by discounting we obtain:

O(t) > LBg(t) := P(t,T) ET

(i ’U)hP(T, Th) - 1> I(g)] y (4)

h=1

i.e. LBg(t) is a lower bound to the swaption price for all possible sets G. Using the same change

of measures as in S&U and Kim, it immediately follows that
LBg(t) = Cg(t).

Therefore, the approximated pricing formula presented in S&U and Kim are indeed lower
bounds. This was not previously noted. In particular, our new framework allows us to control
the approximation error by providing an upper bound. In addition, we show how to speed
up the computation of the formula (4) by performing a single Fourier transform. This allows
a reduction of the computational cost, mainly when we have to price swaptions written on

long-maturity swaps.

2.1 Affine and Gaussian quadratic models

In affine and quadratic interest rate models, the price at T" of a zero-coupon bond with expiration

T}, can be written as the exponential of a quadratic form of the state variables,

P(T,T},) = e X (D)CLX(T)+b)] X(T)+an (5)

for X(T') a d-dimensional state vector and ap, = A(T —1},), by, = B(T'—1T}) and Cj, = C(T'—1T},)
functions of the payment date T}, which are model specific. Fixing a date Ty, by is a d-
dimensional vector and CY}, is a d X d symmetric matrix.

From the literature (Ahn et al.  (2002), Leippold and Wu (2012) and Kim (2014)), we
know that if the risk-neutral dynamics of the state variates are Gaussian, then the functions
A(7), B(7) and C(7) are the solution of a system of ordinary differential equations with initial

condition A(0) = 0, B(0) = 0, C(0) = 04xq4. Affine models can be obtained by forcing Cj, to



be a null matrix. For affine models, under certain regularity conditions, the functions A(7) and
B(7) are the solution of a system of d + 1 ordinary differential equations that are completely
determined by the specification of the risk-neutral dynamics of the short rate (see Duffie and
Kan (1996) and Duffie, Pan and Singleton (2000) for further details). The solutions of these
equations are known in closed form for most common affine models.

From Duffie, Pan and Singleton (2000) and Kim (2014), we know that the quadratic

T-forward joint characteristic function of the model factors X has the form

B, A) =EF [6)\TX(T)+X(T)TAX(T) (6)
_ eA(T—t,A,A)—A(T—t)+(B(T—t,A,A)—B(T—t))TX(t)+X(t)T(é(T—t,A,A)—C(T—t))X(t)
where A € C? and A is a complex d x d symmetric matrix. If X(¢) is a Gaussian quadratic
process (or an affine process, i.e. A, C' and C are null matrices), the functions A(r, X, A),
B(T, A, A) and C’(T, A, A) are the solutions of the same ODE system of the zero-coupon bond
functions, but with initial conditions A(0, A, A) = 0, B(0,X,A) = X, and C(0, X, A) = A.
In the case of a quadratic model, it is convenient to define the approximate exercise region

G using a quadratic form of the state vector,
G={weQ:X(T)'TX(T)+8"X(T) >k},

where T' is a constant d x d symmetric matrix, 8 € R? and k € R.

Proposition 2.1. The lower bound to the European swaption price for quadratic interest rate

models is given by the following formula:

LB(t) = LBgr(k;1), 7
( ) keR, ﬁERgl,?“)éSymd(R) B,l"( ) ( )
where
efék +o0 )
LBpr(k;t) = P(t,T) — / Re (e_”kd}@ + w)) d, (8)
0
and
~ |
P(z) = (Z wpe™® (by, + 20,Ch, + 2I') — @ (20, zF)) g 9)
h=1

with ¢(z) defined for Re(z) > 0 for receiver swaptions and for Re(z) < 0 for payer swaptions.

The integral in formula (8) must be interpreted as a Cauchy principal value integral and § is a



positive or negative constant for receiver or payer swaptions, respectively.

Proof: See Appendix A.

For two-factor affine interest rate models, Singleton and Umantsev (2002) propose to ap-
proximate the exercise boundary of an option on a coupon bond with a straight line that
closely matches the exercise boundary where the conditional density of the model factors is
concentrated. Kim (2014) improves on the S&U idea and considers three different types of
approximation for the exercise region. We choose its approximation “A” because it appears to
be the most accurate.? In the approximation “A”, the approximated exercise region is obtained

by a first-order Taylor expansion of the coupon bond price, which is defined as

n
B(X(T)) =Y wiP(T,Ty), (10)
h=1

around the point on the true exercise boundary where the density function of the model factors
is largest. Moreover, Kim (2014) extends his approximation “A” to Gaussian quadratic inter-
est rate models using a second-order Taylor expansion of the coupon bond. In this way, the
optimization of the lower bound (formula (7)), which can be very expensive, is not performed.
It is instead replaced by a preliminary search of the parameters I', 3 and k, which are chosen

via the Taylor expansion of the coupon bond price.
In particular, for affine models, the first-order Taylor expansion of the coupon bond is a

tangent hyperplane approximation. In fact, the approximated exercise boundary is defined as
B'X(T) +a =0,
with
a=-VB(X*)'X*, 3=VB(X*) and k= —a. (11)

Hence, it is a tangent hyperplane to the true exercise boundary at the point, X(7') = X*, where
the density function of the model factors is the largest. In order to calculate the point X*, we
use the equation (2.20) of Kim (2014). A two-dimensional visualization of the approximate

exercise region is shown in Figure 1.

[Figure 1 approximately here]

2 The three approximations presented in Kim (2014) are lower bounds, as proved in section 2. Therefore,
the most precise is the one that produces the highest price, which was not discussed in the Kim paper.



Once I', B and k are found, the Kim approximation requires the computation of n 4+ 1 forward
probability IP’?L [G], as in formula (3). This is done by performing n + 1 one-dimensional Fourier
inversions. In contrast, our lower bound is calculated as in formula (8), i.e. performing a single

one-dimensional Fourier transform with respect to the parameter k.

3 Upper bound on swaption price

In this section, we define a new upper bound to swaption prices that is applicable to all affine
and quadratic interest rate models. First of all, it is straightforward to see that for a lower
bound defined by a generic approximated exercise set G, the (undiscounted) approximation

error is

)

(X(T)) = 1)¥] = Ef (B(X(T)) = 1)I(G)]

= E[[(BX(T)) — 1) I(G9)] +E{ [(1 = B(X(T)))T1(9)]
= A1+ Ay,

where B(X(T')) is the coupon bond price defined as in formula (10). The previous formula
for the approximation error is valid also for payer swaptions. In general, A; and As are not
explicitly computable. However, we can provide upper bounds €; and €5 to them. Hence, an

upper bound to the swaption price easily follows:
UB(t) = LB(t) + P(t,T) (€1 + €2), (12)

for €1 > Al and €2 > AQ.

For every set of strikes (K7, ..., K,) such that ), Kj = 1, upper bounds to the errors are

A< e =Y Ef [(wpP(T,Ty) — Kn)* 1(G°)), (13)
h=1

Ay < eg =Y Ef[(Ky—wnP(T,Ty))* 1(G)], (14)
h=1

where P(T,T}) is the price at time T of the zero-coupon bond with maturity 7. However,
without a proper choice of the strikes (K7, ..., K, ), the approximations can be very rough and

so we want to find the values of (K7, ..., K,) that reduce the error without performing a time-



consuming multidimensional numerical minimization. Given that

1 +
B -0 = BED) (1 5 )

as B(X(T)) > 0 and wy, P(T,T}) > 0 VX(T'), we note that the following equality holds:

Ef [(BX(T)) — )" 1(G°)] = Y B [(wn P(T, T1) — Kn(X(T)))" 1(G°)],
h=1
for
wpP(T,Ty)

By similar reasoning, we also have:
E/[(1 - BX(T))* 1(9)] = zn:EtT[(Kh(X(T)) —w P(T, Ty))" 1(G)]-
h=1
Hence, if in formula (13) and (14), we choose the strikes (K71, ..., K;) in the following way:
Ky = Kp(X*) = wp, P(T, Th)|x(1)=x* (16)

then the equalities e, = A; and €3 = Ay hold in X(7') = X*, the point on the true exercise
boundary where the density function of the model factors is largest. The computation of X* is
explained in section 2.1.

This allows us to avoid a multidimensional optimization with respect to (K71, ...K}).

3.1 Affine and Gaussian quadratic models

The following proposition explains how to compute the quantities €; and €5 defined in expressions

(13) and (14), and hence the upper bound in formula (12), using the Fourier Transform method.

Proposition 3.1. The upper bound to the European swaption price for quadratic interest rate

models is given by the following formula:

UB(t) = LB(t) + P(t,T) (e1(—a) + e2(—a)) (17)



where

1 +oo +oo n s )
ei(k) = 53 dv Re (/ dewheah e~ Ok =tidkn (5 4 iy, m + zw)) ,
™ Jo o h=1
I Hoe . an (6—in)k (n—iw)k ‘ .
ea(k) = =y dvy Re / dewhe ho 0T Rl R (=0 + iy, —n + iw) |,
e h=1

and

D (z8+ (y+ )by, 2T+ (y + 1)C)
zy(y +1)

Un(z,y) = - ) (18)

where fE(t) is given in Proposition 2.1, kp, = log(K}y) —log(wy,) —ay, Kj are defined in equation
(16) and ®(X, A) is defined in equation (6). The upper bound formula is valid for both receiver
and payer swaptions. If Re(z) < 0 and Re(y) > 0, ¥(z,y) is the double Fourier transform of

E[(ePr TXAXTOX _ ehiyt [(XTTX + BTX < k)],
and if Re(z) > 0 and Re(y) < —1, ¢p(z,y) is the transform of
EZ[(ebr — Pn TXAXTO X+ 1(XTTX 4+ 87TX > k),

with § > 0, n > 1 constants.

Proof: See Appendix B.

We note some important mathematical features of the swaption pricing problem in the affine
interest rate model case. In this set up, C}, and I are null matrices, which simplifies the upper
bound formula. The coupon bond B(X(T')) seen as a function of the model factors X(T') is
convex as it is a positive linear combination of convex functions, the ZCBs. In fact, the zero-

coupon price seen as a function of the state vector, i.e. P(T,T}) = ePr X(T)+an

, 1s a convex
function because it is composed of convex monotone functions, the exponential, and a linear
function of X. Thus, the convexity of the sub-level {B(X(T)) < 1} ensues from the previous
argument.

Choosing the tangent hyperplane approximation as the lower bound and resorting to the

hyperplane separation theorem, it follows immediately that the approximate exercise region is

included in the true region, as graphically illustrated in Figure 2 for a two-factor case,

G = {B"X +a >0} C{BX(T)) > 1},

10



provided that a and 8 are defined as in formula (11).
[Figure 2 approximately here]

Hence, the separation theorem guarantees that A is zero, which allows us to compute only
the term €; in Proposition 3.1.
It is possible to show that for one-factor affine interest rate models, the upper bound coin-

cides with the Jamshidian (1989) formula.

4 Bounds for affine Gaussian specification

For the affine Gaussian model, the lower bound can be calculated analytically as follows:

LBg(k;t) = P(t,T) w (Z wy, e PR TRVt 3dl N (w (dy, — d)) — N(—w d)) ,
h=1

where w = 1 for receiver swaptions and w = —1 for payer swaptions. The upper bound formula

can be simplified to

d 2 \7 _ _
e1(k) :/ dz 1 e~z theah (th*Th N (—Mh log Y + Vh) —Y,N <7Mh IOgYh>> ,
o V2T Pyl vV Vh vV Vi

where d = %E;V';, dp = blv, Vi = bl (V —vwwi)by, v = ﬁ%@’ M, = bl p + zb]v,

Y, = S5 and p = EI'[X(T)] and V = Vary(X(T)) are the mean and covariance matrix of

wpe%h

the variable X(7") that is multivariate normal under the T-forward measure. N(x) represents
the standard Gaussian cumulative distribution function. Proofs of the simplified bounds are in

Appendix C and D.

5 Approximate pricing of swaption in a multiple-curve frame-
work
In this section, we extend the previously described lower and upper bounds to multiple-curve

models, which better reflect the real behaviour of the interest rate market after the 2007 crisis.

The (payer) swaption formula in the multi-curve framework becomes

N
C(t)=P(t,T)E || D P(T,Ty) = (F*(T,Tj,z) — K) (19)
j=1

11



where © =T — T;_1 is the tenor Vj = 1,...,n and Ty =T. F*(t,T,x) is the fair rate of a FRA
contract written on the Libor rate between T'— x and T and tenor z (usually z = 1M, 3M, 6M
or 12M). P(¢,T) is the price at time ¢ of a risk-free zero-coupon bond with maturity 7.

We test the lower and upper bounds with reference to the Gaussian specification of the
multiple-curve model presented in Moreni and Pallavicini (2014). In this model, the FRA rate
and the risk-free ZCB price have affine forms. The Markovian-affine representation of the FRA

rate is

1 Frt, T
log< +az F*(t,T,x)

1+ F=(0,T, x)) = G(t,T,2)" X(t) + a(t, T, ), (20)

where a(t,T,z) is a deterministic coefficient, G(¢,T, z) is a deterministic d-dimensional vector
and X(t) is a vector of the Markovian process and it is multivariate normal. A similar Markovian

representation can be obtained for the ZCB price:

log <P(t,T) 5&?”%) = —G@t,T)" X(t)+a(t,T), (21)

where a(t,T) is a deterministic coefficient and G(¢,T') is a deterministic d-dimensional vector.

More model details are given in Appendix H.

5.1 Lower bound formula applied to a multi-curve weighted Gaussian model

Using the Markovian representation of the FRA rate and of the risk-free ZCBs in the swaption

pricing formula (19), we obtain:

)

C(t) = P(t,T) ET |:<Zw1 e(G“ (T)+ar; _ wa; G(Gm) x(T )+a21> I(A)

where

A is the exercise region and is in the form

A={weQ: Zwlj e(G1a) X(D)tar; _ 0 o(G23) T X(T)Faz; 5 )
j=1

wij = P((tT))(l +a F*(t,Tj,x)) and wy; = P((tt?))(l + zK),

Gij = G(T)Tj,x) — G(T,Tj) and Gaj = —G(TaTj)>

CLlj = a(ijjjwr) + CL(T,]}) and a’2j = a(T71})

12



If we substitute the set A with any other event set G € §2, we obtain a lower bound of the
true price. In the affine class models, it is convenient to define the set G using a linear function

of the state variates,
G={weQ:B"X(T) >k},

with 3 and « defined in formula (11). The lower bound is provided in the following proposition.
Proposition 5.1. The lower bound to the European swaption price, for the multiple-curve

weighted Gaussian model, is given by the following formula:

LB() = max  LBa(k:t). (22)

For fixed parameters k and (3, the lower bound is

. 1 1
LBg(k;t) = PtT)w > (wlj exp <(G1j)Tu +ayj + §ij + Q(dlj)Q) N(w (dy; — d))
j=1
1 1
~ g oxp ((Go) T any 5V 4 (005 ) N () ) (23)
where w = —1 for receiver swaption and w = 1 for payer swaption, d = M, dij = (Gij) v

VB'vVp
fori=1,2and j=1,...,d,v= \/;/Tﬁivﬁ’ V”G = (Gij)T(V—UvT) Gijfori=1,2and j =1,...,d

and u = E]'[X(T)] and V = Vary(X(T)) are the mean and covariance matrix of the variable

X(T'), which is multivariate normal under the T-forward measure.

Proof: See Appendix E.

5.2 Upper bound formula applied to a multi-curve weighted Gaussian model

In a multiple-curve framework, the swaption price can also be written as
C(t) = P(t,T) E{ [(B1(X(T)) — Ba(X(T)))"] (24)

where

Bi(X(T)) = Z P(T, T]) (1+ 2 FY(T, T, x)) = Zwlj 6(01,7')TX(T)+(11]'7
Jj=1 j=1
By(X(T)) = (1+aK)> P(T.Tj) =) wy; o(G2))TX(T)+as;
Jj=1 j=1

13



Hence, the (undiscounted) approximation error of the lower bound defined in Proposition 5.1 is

P(t,T) <C(t) B fE(t))
= E{[(Bi(X(T)) — B2(X(T)))"1(G%)] + E{ [(B2(X(T)) — BL(X(T))) " I(G)]

= A1+ As.

The previous equality holds for both receiver and payer swaptions. Applying the same reasoning

as in the single-curve case, we find that the upper bound is
UB(t) = LB(t) + P(t,T)(e1 + €2), (25)
where €1 and €9 are the upper bounds for Ay and As and their expressions are as follows:
n
o = SCETP(,T) (1+ (T, Tj,x) — K;)* 1(G°)]
j=1
" T T +
J=1

& = ijf [P(T,Ty) (K =1 — 2 (T, T, 2)) " 1(G)]
j=1

= ZET [(zsz G2 X(T)+az; _ wij eGLX(THalj)JF I(g)] ) (27)

j=1

where 'lDQj = %Kj and
Kj = l—i-.xF(T,Tj,:UﬂX(T):X*, (28)

where X* is the point on the true exercise boundary (i.e. B1(X(T)) — B2(X(T) = 0)) where

the density function of the model factors is largest.

Proposition 5.2. The upper bound to the European swaption price for the multiple-curve

weighted Gaussian model is given by the following formula:

UB(t) = LB(t) + P(,T) (e1(—a) + e2(—a)), (29)
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where

d n

1 2 . . . .

e(k) = dz e Y wy et MITIVG N (dy;) — oy 2 MRV N (dyy),
o V2T =

log (wlj> + Mlj + a1 — ng —agzj + Vl? — COUj

d Waj
15 = )
\/Vgv + Vg —2Cov;

dgj = dl] — \/Vl(j + VQ? — 2002}]‘,
+ n
Ez(k) _ / o) " 1 6,% Z w2j €&2j+M2j+%V26j N ((51j) — Wy ealj“erj‘f'%Vl? N (52]') ’
d V2T =
—log (1?;]) — Myj — a1j + Maj + azj + VQC; — COUJ'

0y = ;
\/Vg + VQCJ; —2Cov;

52]' = (51]‘ - \/‘/fj + Vé? - 2007)]',

and fE(t) is given in Proposition 5.1, d = LS AT VA GL(V —vw)Gy; and Cov; =

GL(V — va)ng fori=1,2and j =1,..,d, M;; = G;rju—i— ZG;;U fori=1,2and j=1,...,d
_ _Vvs _ wT _ . .

v = TFve and p = E; [X(T)] and V = Var (X(T')) are the mean and covariance matrix of

the variable X(7'), which is multivariate normal under the T-forward measure and N(z) is the

standard Gaussian cumulative distribution function. The upper bound formula holds for both

receiver and payer swaption.

Proof: See Appendix F.

6 Numerical results

For each model, we fix a set of parameters and we calculate a matrix of swaption prices with
different maturities, swap lengths and three different strikes, i.e. ATMF (at-the-money forward),
ITMF (0.85 x ATMF for affine models and ATMF - 0.75% for the quadratic model) and OTMF
(1.15 x ATMF for affine models and ATMF + 0.75% for the quadratic model). This is a common
choice in the literature (see, for instance, Schrager and Pelsser (2006), Singleton and Umantsev
(2002) and Kim (2014)). The description and values of the parameters for each model are
reported, respectively, in Appendix G and I. The tested models are a three-factor affine Gaussian
model, a two-factor affine Cox, Ingersoll and Ross (CIR) model, a two-factor affine Gaussian
model with double exponential jumps, a two-factor Gaussian quadratic model and a two-factor
affine multiple-curve Gaussian model.
Monte Carlo is used as a benchmark for the computation of the true swaption price. The

97.5% mean-centred Monte Carlo confidence interval is used as a measure of the accuracy. For

15



the affine three-factor Gaussian model, we add as a benchmark the lower bound proposed in
Nunes and Prazeres (2014), which is extremely accurate.

For the affine three-factor Gaussian model and the Gaussian multi-curve model, the lower
bounds are obtained via the closed formula described in sections 4 and 5.1. Kim’s prices are
calculated using the closed price formula for the T-forward probabilities (formula (3.9) and
(3.16), Kim (2014)). For the two-factor CIR model, the Gaussian model with jumps and the
Gaussian quadratic model, the integrals involved in the lower bound and in Kim’s method are
evaluated by a Gauss-Kronrod quadrature rule using Matlab’s built-in function quadgk.

The Matlab function quadgk is also used for the integral appearing in the upper bound
formula for the three-factor Gaussian model and for the Gaussian multi-curve model (see section
4 and 5.2). For the two-factor CIR model, the Gaussian model with jumps and the Gaussian
quadratic model, the upper bound formula requires the calculus of double integrals that are
evaluated using Matlab’s function quad2d, an iterative algorithm that divides the integration
region into quadrants and approximates the integral over each quadrant by a two-dimensional
Gauss quadrature rule.

Another important fact is that our lower bound formula is suitable for use as a control variate
to reduce the Monte Carlo simulation error. The approximated formula is easily implemented
in a Monte Carlo scheme and turns out to be very effective. In this way, the simulation error is
considerably reduced.

Numerical results obtained with parameters reported in Appendix I are shown in Tables

1-5. Computational time for each pricing method is also given in Table 7.

6.1 Test with random parameters

In this section, we test the robustness of the bounds’ approximation to parameter changes. We
use 100 randomly simulated parameters for the two-factor CIR model. The model parame-
ters are independent and uniformly distributed within a reasonable range, which is shown in
Appendix L.

For each set of simulated parameters, we calculate a matrix of swaption prices with different
maturities and swap lengths and three different strikes, i.e. ATM, ITMF (0.85 x ATMF) and
OTMF (1.15 x ATMF).

For each swaption, we calculate the root mean square deviation (RMSD) of the lower and

upper bounds with respect to the Monte Carlo estimation, which is used as the benchmark:

1 [N (B — MCy)? SN MG
(\/1 _D = i=1 [\/1 avg — 7l—1 v
RALS \FN\/ (MCavg)® Covs N
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where N is the number of random trials, B; = LB; or B; = UB; (lower or upper bound) and
MC; is the Monte Carlo estimation of the swaption price with the i*" set of random parameters
and My, is the average of Monte Carlo prices over all random trials. Monte Carlo values are

estimated using 107 simulations. Numerical results of this test are shown in Table 6.

6.2 Comments on numerical results

Numerical results are presented across a wide class of affine models for the Gaussian quadratic
model and for a multiple-curve model. The tangent hyperplane lower bound and the approxima-
tion “A” of Kim (2014) produce the same prices because they are two different implementations
of the same approximation. However, the new algorithm, which requires the computation of a
single Fourier inversion, is faster across all models for which the characteristic function is known
in its closed form. In fact, in Table 7, our implementation of the lower bound is faster than
Kim’s method except for the Gaussian quadratic model for which the characteristic function
is available in a semi-analytical form (see Appendix G). The improvement in computational
performance is more evident for swaptions with a large number of cash flows, as illustrated in
Table 8. For the three factor Gaussian affine model, Nunes and Prazeres (2014) conditioning
approach is more efficient than our bounds, however our aim is to find approximations that are
applicable to a wider class of models and not only to Gaussian affine models. Comparing the
speed of different methods is not simple because each algorithm should be optimized. However,
our considerations about the efficiency of an algorithm are also justified by theoretical reasoning
and confirmed by our estimations of the computational time.

Our upper bound is applicable to all affine-quadratic models, both in single- and multiple-
curve frameworks, and it is particularly efficient for affine models. In the literature, upper
bounds are available only for Gaussian affine models. In particular, for the three-factor affine
Gaussian model, we compare our bounds with the ones proposed by Nunes and Prazeres (2014).
Lower bound proposed by Nunes and Prazeres (2014) is comparable to our lower bound for all
maturities and strikes. We find that our upper bound is less accurate for ATMF options but it
seems to be more accurate for OTMF options (see Table 1). We observe that for the given set
of parameters, price estimated using our bounds and the conditioning approach are very close.
On the other hand, with reference to computational time (see Table 7), Nunes and Prazeres
(2014) approach is more efficient than our bounds. However, our aim is to find approximations
that are applicable to a wider class of models and not only to Gaussian affine models.

The computation of the upper bound is slower than the lower bound calculation, but it is

still faster than Monte Carlo simulations for a comparable accuracy (see Table 7). In addition,
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the range between the lower and upper bound is always narrow so, in practice, the combined
use of the two bounds provides an accurate estimate of the true price.

For the multiple-curve model, we compare our bounds with an approximate method that
is widely used in the market, i.e. the freezing drift approximation (see Moreni and Pallavicini
(2014)) and we find that the lower and upper bounds perform better for swaptions with long
maturities (2Y and 5Y in Table 5) with comparable computational times. Moreover, the freezing
technique is a generic approximation, i.e. we cannot know a priori if the approximated price
underestimates or overestimates the true price.

In each table we compute the mean absolute percentage error (MAPE) of bounds with
respect to Monte Carlo prices, taken as a benchmark, for fixed maturity and strike.

The RMSD computation performed for the two-factor CIR model and reported in Table
6 is an important validation for the stability of the accuracy of the bounds to changes in the
parameter set. The RMSD of the lower bound for at-the-money and in-the-money options is
less than 0.1% of the Monte Carlo average price, which is a good result. The relative error is
larger for out-of-the-money options, in particular for the swaptions with a long swap length.
Indeed, the maximum error is around 0.3% of the Monte Carlo price. The RMSDs of the upper
bound are greater than the RMSDs of the lower bound, in particular for swaptions with longer
swap lengths. However, the maximum RMSD of the upper bound is about 0.8% of the Monte

Carlo price, which is also confirmation of the good performance of the upper bound.

Conclusions

In this paper, we propose a general lower bound formula of the swaption price based on an
approximation of the exercise region. We note that previous approximations, such as the Kim
(2014) and Singleton and Umantsev (2002) methods, represent a particular case of our general
formula and so they can also be interpreted as lower bounds. Moreover, we provide a new
algorithm to implement the lower bound that is found to be more efficient for interest rate
models in which the joint characteristic function of state variables is known in analytical form.
Further, this work provides a new upper bound to swaption prices that is applicable to all
affine-quadratic models and that is accurate and computable in a reasonable time. Therefore,
the lower bound approximation error is controlled. Finally, we extend lower and upper bounds
to multiple-curve models. Numerical results confirm our hypothesis about the performance of
the new algorithm in terms of computational times for the calculus of the lower bound, except
for quadratic models in which the characteristic function is not analytic. Moreover, numerical

tests show a very good accuracy of the new upper bound for different models across tenors,
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maturities and strikes.

7 Tables
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2-factor CIR model: RMSD calculation

RMSD - LB
ATM 1 2 5 ITM 1 2 ) OTM | 1 2 5
1 10.05% 0.07% 0.08%| 1 0.01% 0.02% 0.02% 1 102% 0.2% 0.2%
0.05% 0.07% 0.08% | 2 | 0.01% 0.01% 0.01%| 2 |0.2% 0.2% 0.2%
5 10.05% 0.07% 0.09% | 5 |0.004% 0.01% 0.01%| 5 ]0.2% 0.3% 0.3%
10 0.05% 0.07% 0.09% | 10 {0.004% 0.01% 0.01% | 10 |0.2% 0.3% 0.3%

RMSD - UB
ATM 1 2 5 IT™M 1 2 5 OTM | 1 2 5
0.05% 0.07% 0.08% | 1 |0.01% 0.02% 0.01% 1 102% 0.2% 0.2%
2 10.06% 0.09% 0.11%| 2 |0.01% 0.02% 0.02%| 2 [0.2% 0.3% 0.3%
5 10.14% 0.20% 0.28% | 5 |0.03% 0.05% 0.08% | 5 [0.3% 0.5% 0.6%
10 1 0.15% 0.22% 0.32% | 10 |0.04% 0.06% 0.09% | 10 |0.3% 0.5% 0.7%

Table 6: These tables report for each swaption the RMSD value of the bounds with respect to
the Monte Carlo value obtained by randomly sampling 100 parameter sets.

3 factor Gaussian model

Overall time (sec) MC LB (HP) UB LB (CA) UB(CA)
ATMF 32 x 102 0.084 0.140 0.024 0.024
ITMF 32 x 102 0.170 0.223 0.035 0.035
OTMF 32 x 102 0.169 0.223 0.037 0.037

2 factor CIR model
Overall time (sec) MC LB (HP) UB Kim
ATMF 23 x 10°  0.146  17.054 0.391
ITMF 23 x 102 0.150 17.015 0.341
OTMF 23 x 102 0.152  17.018 0.395

2 factor Gaussian model with exponential jumps

Overall time (sec) MC LB (HP) UB Kim
ATMF 35 x 103 1.957 132.229 1.968
ITMF 35 x 103 0.868 129.218 0.977
OTMF 35 x 103 0.845 149.071  0.966

2 factor Gaussian quadratic model
Overall time (sec) MC LB (HP) UB Kim
ATMF 1.472 x 10° 0.861 587.403 0.665
ITMF 1.472 x 103 1.124 635.807 0.717
OTMF 1.472 x 103 1.019 509.202 0.633

2 factor multiple-curve Gaussian model

Overall time (sec) MC LB (HP) UB Kim
ATMF 43.280 0.094 0.416 0.346
ITMF 43.3603 0.114 0.403 0.309
OTMF 42.040 0.116 0.409 0.315

Table 7: Computational times shown in the table are the overall time needed for calculating
the matrices of swaption prices reported in Tables 1-5.
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2-factor CIR model: comparison of the algorithms’ performance

Swap length (y) | LB (HP) (sec) | Kim (sec) | LB (HP) (%) | Kim (%)
1 0.024 0.022 - -
2 0.023 0.026 0% 20%
) 0.023 0.034 0% 55%
10 0.032 0.051 34% 132%
15 0.040 0.071 69% 225%
20 0.048 0.089 102% 305%

Table 8: For each swaption, we report in the first two columns the run time in seconds and in
the last two columns the percentage variation between the run times and the first row. The
maturity of the swaptions is two years and the frequency of payments is six months.
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A Proof Proposition 2.1

We consider the lower bound to the swaption price as in formula (4) for quadratic models:

LBgr(k;t) = P(t,T)E}

<Z wy, XD T LX)+ X (T)+an _ 1) I(Q)]

h=1

where the set G = {w € Q: X(T)'T X(T) + 8" X(T) > k}.
We apply the extended Fourier transform (refer to Titchmarsh (1975) for a comprehensive
treatment and to Hubalek et al.  (2006) for examples of financial applications) with respect to

the variable k& to the T-forward expected value,
J’_
W(z) = / e ET KZ wy, X O X(T)+b X (T) tan _ 1) I(X(T) T X(T) + BTX(T) > k)| dk.

Assuming that we can apply Fubini’s Theorem, which is verified in concrete cases, we have

¥(2)

(Z wy, X T)TCLX(T)4b X(T)+an _ 1)

/+OO R IX(T) T X(T) 4+ B'X(T) > k) dk] :

—00

The function (z) is defined for k& — —oo if Re(z) > 0 and
W(z) = EF [(Z wy, XD T ORX(D)+b X(T)+an, _ 1) AX(M)TT X(T)+BTX(T))] 1
z
h=1

Using the (quadratic) characteristic function of X, @, calculated under the T-forward measure,

the function 1 (z) can be written as

W(z) = (Z wpe® (b, + 26,Cp + 2I") — @ (2, zF)) 1 (30)

z
h=1

Finally, the lower bound is the inverse transform of ¢(z) in the sense of the Chauchy principal

value integral,
1
LBgr(k;t) = P(t,T)—— lim e 24 (2)dz

where 0 is a positive constant. The function ¢ (§ + i) is the Fourier transform of the real

function 6_6kLB57F(k‘; t), then ¥ (J + i) has an even real part and an odd imaginary part. This
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is useful to simplify the expression above to

e—ék

LBgr(k;t) = P(t,T) /0+0° Re (e—iwk¢(5 + w)) dry.

™

The proof for a payer swaption follows the same reasoning.

B Proof of Proposition 3.1

Here, we show the calculation of the quantity €1, defined in equation (13). The computation of
the quantity e follows the same reasoning. Hence, we have to calculate a sum of terms that

have the following form:
Ef [(wn P(T, Th,) — Kn)* 1(G°)].

Substituting into the previous expression the definition of the zero-coupon bond price P(T,T},)
as in formula (5), the strike K} as in formula (16) and the complement of the approximate

exercise region G as defined in section 2.1, we obtain the following formulation:
E{ [(wn P(T, Tp) — Kp) " 1(G%)] = wpe™ f(k, kn),
where
£k Jo) = B (XD OXDELXD — knyt 1(X(T)TTX(T) + BTX(T) < b))

and kp, = log(K}) —log(wyp) — ap,. We apply the extended Fourier transform with respect to the

variable k to the function f(k, kj,) and by Fubini’s theorem we obtain

z T T
(eXDTCX(D)+BTX(T) _ kgt (X(T) T X(D)+B"X(T))

—+00
/ e* fk, ky) dk = —ET

—00

z

The integral converges for k — 400 if Re(z) < 0, then we apply a second extended Fourier

transform with respect to the variable &y,
oo kn Lo X(T) " CLX(T)+b,} X(T) Eny+ 2z (X(T) T X(T)+8" X(T))
— eV —E, [(e h h —e"™)Te } dkp,
o z

—+oo
_ 1 T K/ o ki (ex(T)Tchx(T)er[x(T) B ekh)
< — 00

I(X(T)TCLX(T) + by X(T) > k) dkzh) e <X<T>TFX<T)+ﬂTX(T>>} :
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The integral converges for kp, — —oo if Re(y) > 0. Then the function ¢ (z,y) is in the form

“+o0 “+00
W(ey) = / dk / iy eV f(k, ky)

D(zB8+ (y+ )by, 2T+ (y + 1)Ch)
zy(y +1)

and it is defined for Re(z) < 0 and Re(y) > 0.
Finally, f(k,kp) is the inverse transform of 1(z,y) in the sense of a Cauchy principal value
integral,

1 5+’L§ 7]+i§
f(k,ky) = —— lim lim dzeZk/ dy e Y% (z2,y),
n

(12m)? e=005—00 J5 ¢ —i

where 6 < 0 and > 0 are constants. Noting that 1 (J + iy,n + iw) is the double Fourier

transform of the function e?*e"» f(k, ky), we obtain

e—0k g—nkp +£ ke + ke
f(kkp) = ——— lim lim dye ™ / dw e " (6 + iy, m + iw),

472 ¢l c0s—00 ¢ e

where 0 < 0 and 7 > 0 are constants. The inner integral of the above formula is the Fourier
transform of a real function, and so we can use the same symmetry properties explained in

Appendix A and we obtain

o0k g —1kn +¢ ) +e ,
f(k,kp) = ————— lim dy Re (e”k lim dw e~ "Fnap(§ 4 iy, m + zw)) .

212 500 Jy s |

C Proof of the analytical lower bound for Gaussian affine mod-

els

Since X(T') ~ N(p, V) in T-forward measure, then the approximate exercise region G becomes

G={weQ:B"X(T) >k} ={weQ:2z>d}

k=B
VBTV3

The lower bound expression can be written using the law of iterative expectation,

where z is a standard normal random variable and d =

LBg(k;t) = P(t,T) Ef

El [(Z wpePr XD tan _ 1) |z] I(z > d)

Conditionally to the random variable z, the variable X is distributed as a multivariate normal
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with mean and variance

El'[X|z] = p+ zv and Var(X|z) =V —vv', with v = _VB_

VBTvE
We can now compute the inner expectation,
° T T 1
LBs(kit) = P(t,T) (Z wpy, ET [e“h”Lbh b VA VA (> d)} BT Iz > d)]>
h=1

= P(t,T) (Z wp, €LVt 3 A N (g, — ) — N(—d)) :
h=1

where Vj, = b (V — vv )by, d;, = b v and N(z) is the cumulative distribution function of

standard normal variable. The proof for a payer swaption follows the same reasoning.

D Proof of the upper bound formula for Gaussian affine models

Since X ~ N (u, V) in T-forward measure and using the law of iterative expectations, then

EY [(wne ™ XT) — )Y I(BTX < k)
= ET[EL [(wpe™ XM — K,)F| Z)1(Z < d))],

d

1 22

:/ dz =e” = Ef[(wne X0 — K|z = 2]
—o0

where Z ~ N(0,1) and d = \k/_ﬁi;‘/’;

Since bZX conditioned to the variable Z is a normal random variable with mean and

variance,

My, =ElI'b!X|Z=z2]=b] u+zbjv,

Vi, = Varbl X|Z = 2] = b (V —vv )b,
VB

VaTve

then the conditioned expectation can be evaluated with a Black formula,

E?[(wheah+b;X(T) o Kh)+|Z — Z]

= e (eszhN (Mh ~log ¥} + Vh> YN (M—ng)) |
vV VVi

where Y, = and N(z) is the cumulative distribution function of a standard normal

Ky
wpe®h
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variable.

E Proof of Proposition 5.1

The proof is similar to the single-curve affine Gaussian case. As in that case, X(T') ~ N(u, V)

in T-forward measure and the approximate exercise region G becomes

G={weQ:B"X(T) >k} ={weQ:z>d}

k=B p
BTVE
The lower bound expression can be written using the law of iterative expectation,

where z is a standard normal random variable and d =

n
LBg(k;t) = P(t,T)E] |E] ZwljeGUTX(THaU - ngeG%TX(THan |z| I(z > d)
j=1

Conditionally to the random variable z, the variable X is distributed as a multivariate normal

with mean and variance

El'[X|z] = p+ 2zv and Var(X|z) =V —vv', with v = _VB_

VBTva

We can now compute the inner expectation,

n
LBa(k:it) = Pt.T) > wyEF [ealf+GE“+ZGEV+%VSJ(z>d)}
j=1
n
_ 2:1MUE3'Fa%+G;u+zG;v+%KgI@:>(D}
j=1

n
. T 1y,G 1 g2 . T 1y,G 1 g2
= > wyy eTCUHTIVITIN N (dy; — d) — wy; e FETIV 2% N (dy; — d).
=1

where VZJG = GZ-Tj(V —vv )Gy, dij = Giij and N (x) is the cumulative distribution function of

the standard normal variable. The proof for a receiver swaptions follows the same reasoning.

F Proof of Proposition 5.2

The proof is similar to the single-curve affine Gaussian case except that instead of the Black
formula, we apply Margrabe’s formula (Margrabe (1978)) for exchange options. Here, we

show the computation of the quantity €; defined in proposition (5.2). The evaluation of ey
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follows the same steps. Since X ~ A (u, V) in T-forward measure and using the law of iterative

expectations, then

]EtT[(’w ) a1J+G X(T )_w2j a2]+G2]X )JFI(BTX < ]{7)]

= EJ[E] [(wij et CLXD) _ iy o220t CEXDNH 717( 7 < d)),
d 2
= dz L6_% El [(w1; e i tGX(T) _ Wa; 29+ G X(T) )T Z = 2].

V2r

~ _ k=BTu
where Z ~ N(0,1) and d = NTh

G;;X conditioned to the variable Z is a normal random variable with mean and variance

M;; =El[G)X|Z = 2] = Gjp + 2G}v,

VY =Var|GX|Z =2 = GL(V — v )Gy
VB
VB'VE

Hence, considering for each fixed j the following two underlying variables

VvV =

a1j+GL~X(T)

)

S1;, = wyje

az; +G;—JX(T)

)

SQj = '[I)Qj (&
the conditional expectation can be evaluated with the Margrabe formula

T +G X ~ i+GL.X(T
E/ [(wlj aij () _ Wa; e®2i TG ( ))+|Z = z]
_ ar;+My+3VE = agj+Maj+3VE
= wy; VTV N (dyj) — gy e TTE TN (dy;)
log <w1J> + Ml] +ay; — ng —agz; + VlgTV — Covj

dlj =
\/Vlj + VQ? — 2Cov;

)

de = dlj—\/V1?+‘/v2§—2COUj,

where Cov; = GlTj(V — v )Gy fori =1,2 and j = 1,...,d and N(z) is the standard Gaussian

cumulative distribution function.

G Models description

This section presents the considered affine and quadratic models.
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G.1 Affine Gaussian models

Affine Gaussian models assign the following stochastic differential equation (SDE) to the state

variable X,
dX(t) = K(0 —X(t)) dt+XdW (t) and X(0) = x¢

where W, is a standard d-dimensional Brownian motion, K is a d x d diagonal matrix and ¥ is
a d x d triangular matrix. The short rate is obtained as a linear combination of the state vector
X it is always possible to rescale the components X;(¢) and assume that r(t) = ¢+ Z?zl X (),
¢ € R without loss of generality.

The ZCB formula (5) and T-forward characteristic function (6) of X can be obtained in
closed form using the moment-generating function of a multivariate normal variable or solving
the ODE system in Duffie, Pan and Singleton (2000), and the solution is given, for example,

in Collin-Dufresne and Goldstein (2002).

G.2 Multi-factor CIR model

In this model, the risk-neutral dynamics of the state variates are
dX;(t) = a;i(0; — X;(t))dt + 0;/X;(£)dW'(t) and X(0) = xo,

where i = 1,...,d, W(t) are independent standard Brownian motions, and a;, 6; and o; are
positive constants. The short rate is obtained as r(t) = ¢ + Zle Xi(t), where ¢ € R.
In multi-factor CIR models, the bond price (5) and the characteristic function (6) have

closed-form expressions, which are given, for example, in Collin-Dufresne and Goldstein (2002).

G.3 Gaussian model with double exponential jumps

In this model, the risk-neutral dynamics of the state variates are
dX(t) = K(0 —X(t)) dt + X dW(t) +dZ"(t) — dZ~(t) and X(0) = xo,

where W; is a standard d-dimensional Brownian motion, K is a d x d diagonal matrix, X is a
d x d triangular matrix and Z* are pure jump processes whose jumps have fixed probability
distribution v on R¢ and constant intensity p*. The short rate is obtained as a linear combi-

nation of the state vector X. In particular, Z* are compounded Poisson processes with jump
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sizes that are exponentially distributed, i.e.

NE(t)

ZRD T

j=1

+
where [ = 1,...,d is the factor index, N*(t) are Poisson processes with intensity £ and Yﬁ,

for a fixed [, are independent identically distributed exponential random variables of mean
+
parameters m;-.

Since pt do not depend on X, we know that
(I)(A) — E’f |:6ATX(T)] — (I)D()\) eAJ(T—t,)\)—AJ(T—t) (31)

where ®P(X) is the T-forward characteristic function of the affine Gaussian model and the
function A”7(7,\) is available in closed form (see Duffie, Pan and Singleton (2000) for further

details).

G.4 Gaussian quadratic model

In this model, the risk-neutral dynamics of the state variates are
dX(t) = K(6 —X(t)) dt + X dW; andX(0) = xo,

where W; is a standard d-dimensional Brownian motion, 8 is a d-dimensional constant vector,
K and ¥ are d x d matrix. The short rate is a quadratic function of the state variates, r(t) =
ar + b X(t) + X(t)TC, X(t), ar € R, b, € R? and C, is a d x d symmetric matrix.

We solve the system of ordinary differential equation for the functions fl(T, ANA), B(T, ANA),
C(7, A, A) in formula (6), using the method proposed in Cheng and Scaillet (2007). The closed-
form evaluation of these functions proposed in Cheng and Scaillet (2007) requires the calculus
of a matrix exponentiation and a numerical integration. However, numerical tests show that

this method is much faster than numerically solving the ODE system using the Runge-Kutta

or Dormand-Prince schemes.

H Multiple-curve model

We test the lower and upper bounds to the multiple-curve weighted Gaussian model presented

in Moreni and Pallavicini  (2014). In this model, the zero-coupon bond price process has the
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following dynamic:

P 07T t S — S T S t S — S S
P(.T) = P((Ot))efom( =S AW (5)+ [ (Als)~A(s. 7)) ds (32)

where
(t,T) = ftT o(t,u) du is a d-dimensional vector volatility function,
W (t) is a d-dimensional standard Brownian motion,
A(t,T) = 32(¢,T)"S(¢,T).

Moreni and Pallavicini (2014) define the risk-free forward rate F°, which can be identified in
the market using the overnight rate. It is built as the simple compounded forward rate in a
classical single-curve framework. The risk-free forward rate at time ¢ for the interval [T'— z, T
is

1 (P(t,T—x)
FO(t,T,z) = - (W - 1) . (33)

Substituting equation (32) into (33), the following dynamic under the risk-neutral measure is

obtained:

POt T,2) = © [(1 4+ 2 OO, T a))els 2670 T W@ 06T a i) - (g

8|~

where
¥0(s,T,2) = %(s,T) — X(s, T — x) = fg_m o(s,u) du,
A(s, T 2) = A(s,T) — A(s, T — ) = 35(s,T) " 5(s,T) — 35(s, T — 2) " ©(s, T — x).

The Libor FRA rate F*(¢,T,z) is the fair rate of a FRA contract written on the Libor rate
with tenor z (usually x = 1M, 3M, 6M or 12M). It is defined as

F*(t,T,z) = B [L(T — 2,T)], (35)

where
L(T — z,T) is the spot Libor rate, fixed at time 7" — z for the time interval [T'— z,T],
E[] denotes the expectation under T-forward measure, P

To model the FRA rate, these constraints have to be respected:
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(i) F*(t,T,x) has to be a martingale under the T-forward measure,
(i) limg_o F(¢, T, 7) = lim,_,0 FO(¢,T,x) and F*(¢,T,x) ~ FO(¢,T,x) if z ~ 0.

Hence, under the risk-neutral P measure, the FRA rate is in the form

Fe(t,T,z) =

8=

[(1 +z Fx((), T, x))efo' Z“‘(s,T’I)T dW(s)«l»fOt A%(s,T,x)ds _ 1:| , (36)

where
- X%(s, T, x) = f;ﬁx o(s,u; T,z) du is a d-dimensional volatility function,
- in order to satisfy condition (ii) o(s,T;7T,0) = o(s,T),

- to satisfy condition (i)
1
A*(s,Tox) = —5%%(s, T, z)" X(s, T,z) + X%(s, T, z) " B(s,T). (37)

H.1 Volatility specification

The weighted Gaussian specification of the multiple-curve model assumes a deterministic volatil-

ity in the form

ot,u;T,xz) = h(t)q(w;T,z)g(t, u),
g(t,u) = exp(=ANu-—1t)),

h(t) = e(t)hR,

where A is a deterministic array function, h is a diagonal matrix, and R is an upper triangular
matrix such that p = R" R is a correlation matrix. The model allows for a time-varying common

volatility shape €(t) of the form
e(t) =14 (8o — 1+ Brt)e™",
where Sy, 51 and (o are three positive constants. Furthermore, the matrix ¢ is given by
gijw;T,x) = e "m*I(i=j) fori,j=1,..,d

where 7 is a deterministic constant vector.
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H.2 Markovian specification for the weighted Gaussian model

By plugging the expression for the volatility into formula (36), it is possible to work out the

expression leading to the following Markovian representation of the FRA rate:

o <1+$Fx(t,T,x)

T+ 2 F(0,T, x>> =G T.0)" X(0) +alt,T,2), (38)

where a(t, T, x) is a deterministic coefficient and it has the following form:
1
a(t,T,x) = G, T,x)" Y(t) <G(t,T) — 2G(t,T,x)>
t
Yo = [ oo 007 (5) hs)agils.O)ds ik = 1,rd,
0

G(t,T, ) is a deterministic vector with components

T

Gi(t,T,x) = / gii(w; T, x) gi(t,u) du,
T—x

G(t,T) is a deterministic vector with components

T
G;i(t,T) :/ gi(t,u) du,
¢

and X(t) is a vector Markovian process with components, under the risk-neutral measure, in

the form
X,(t) = ; / il 1 (th<s>de<s> (BT () A(s))ig ( / t gl-<s,y>dy) ds> |

A similar Markovian representation can be obtained for the ZCB price,

log <P(t,T) < 8’%) — —G(t,T)T X(t) +a(t, ), (39)

where a(t,T) is a deterministic coefficient and it has the following form:

aot, T) = —%G(t,T)TY(t)G(t,T).
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I Parameters values

1.1 Three-factors Gaussian model and Cox—Ingersoll-Ross model

We verify the accuracy of our bounds using models and parameter values that have already

been examined in the literature?

1.0 0 O
e Three-factor Gaussianmodel: K = | 0 02 0 |,0=1[0,0,0]", ¢ =[0.01,0.005,0.002] ",
0 0 05
1 -0.2 -0.1
p=1-02 1 03]|,2=dag(e) chol(p)! zo = [0.01, 0.005, —0.02]" and ¢ =

01 03 1
0.06;

e Two-factor Cox-Ingersoll-Ross model: a = [0.5080, —0.0010]T, & = [0.4005, —0.7740] ",
o = [0.023, 0.019] ", zo = [0.374, 0.258]" and ¢ = -0.58.

Numerical results for this model are shown in Tables 1 and 2.

Moreover, we specify the interval of parameters of the two-factor CIR model from which
we extract the 100 parameters sets for the RMSD calculation: z € [0.001,0.5] x [0.001,0.5],
¢ € [0.001,1], a € [0.001,1] x [0.001,1], @ € [0.001,1] x [0.001,1], & € [0.001, /2a(1)8(1)] x

[0.001, /2a(2)8(2)).

1.2 Two-factor Gaussian model with double exponential jumps

We test the affine Gaussian model with exponentially distributed jumps using parameter values
obtained by minimization of the least square distance between the model and the market dis-
count curve implied by bootstrapping the Euribor six-month swap curve up to 30 years. The

calibration is performed on January 4", 2015, to obtain the parameters set reported below.

Parameters:

) 0.050926 0 - T
e Gaussian parameters: K = , 0 =10,0]", o =[0.0048887, 0.24025] ',

0 1.3687
1 —0.1482
p= , X = diag(o) chol(p),

—0.1482 1

3Schrager and Pelsser (2006) and Duffic and Singleton (1997) for the two-factor CIR model.

“diag(o) means the diagonalization of the vector o and chol(p) means the Cholesky decomposition of the
correlation matrix p, where o and p are the volatility vector and the correlation matrix, respectively, of the
original paper.
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2o = [0.00035256, 0.00035497] T and ¢ = 4.332 x105;

e Jump parameters: put = 0.4372, m* = [0.027372,0.045667] ",

p~ = 0.1101, m~ = [0.027043,0.012339] .

Figure 3 shows fitting of the calibration. Numerical results for this model are shown in Table 3.
[Figure 3 approximately here]

1.3 Two-factor quadratic Gaussian model

Beyond the affine framework, we test the two-factor quadratic Gaussian model using the fol-

lowing parameter values as proposed by Kim (2007):
—0.0541 0.0361

_1.2113 0.4376]

. 0.0145 0 N
6 = [0.1932, 0.1421]T, © = , 2o = [0.1690, —0.0501] T,
0 0.0236
1 0.4412
a, = 0.0444, b, = [0, 0] and C, = ; Numerical results for this model are
0.4412 1

shown in Table 4.

1.4 Multiple-curve two-factor Gaussian model

We verify the accuracy of our bounds using the following fixed parameters:
A = [0.0073,4.7344], n = [0.1581,0.8894], h = [0.0059,0.0411], p12 = —0.8577, 5y = 1.3160,
£1 = 1.3327 and B = 0.5900. Numerical results for this model are shown in Table 5.
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