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Under 
onsideration for publi
ation in Math. Stru
t. in Comp. S
ien
eProof Sear
h in Lax Logi
Ja
ob M. HoweyComputing Laboratory, University of KentRe
eived 13 June 2000A Gentzen sequent 
al
ulus for Lax Logi
 is presented, the proofs in whi
h naturally
orrespond in a 1{1 way to the normal natural dedu
tions for the logi
. The propositionalfragment of this 
al
ulus is used as the basis for another 
al
ulus, one whi
h uses ahistory me
hanism in order to give a de
ision pro
edure for propositional Lax Logi
.1. Introdu
tion and Ba
kgroundProof sear
h 
an be used with either of two meanings. It 
an either be used to meanthe sear
h for all proofs of a formula (proof enumeration), or to mean the sear
h fora yes/no answer to a query (theorem proving). This paper des
ribes two new sequent
al
uli for Lax Logi
. One 
al
ulus is for proof enumeration for quanti�ed Lax Logi
, theother 
al
ulus is for theorem proving in propositional Lax Logi
.Lax Logi
 is an intuitionisti
 modal logi
 �rst introdu
ed by Curry (Curry, 1952)to illustrate 
ut-elimination in the presen
e of modalities. The logi
 was redis
overedby Mendler, who developed the logi
 in the 
ontext of hardware veri�
ation to enableabstra
t veri�
ation of 
ir
uits (Mendler, 1993). The logi
 has a single modality (Æ,somehow) axiomatised byS � ÆS; Æ Æ S � ÆS; (S � T ) � (ÆS � ÆT )The modality is unusual in having properties of both ne
essity and possibility. It 
anbe thought of as expressing 
orre
tness up to a 
onstraint, abstra
ting away from thedetail (hen
e the 
hoi
e of name, Lax Logi
). A formula ÆP 
an be read as \for some
onstraint 
, P holds under 
". The proof theory and semanti
s of Lax Logi
, in
ludingGentzen 
al
uli, natural dedu
tion 
al
uli and Kripke semanti
s, are further developedin (Fairtlough and Mendler, 1997; Fairtlough and Walton, 1997; Benton et al., 1998).The ability of Lax Logi
 to give an abstra
t expression of 
onstraints has been utilisedboth in hardware veri�
ation and to give a proof theoreti
 semanti
s for 
onstraint logi
programming languages. In hardware veri�
ation, the timing 
onstraints that need to besatis�ed in a 
ir
uit 
an be abstra
ted away as instan
es of the modality and reasonedabout separately from the logi
al analysis of the 
ir
uit (Mendler, 1993; Fairtlough andMendler, 1994). In 
onstraint logi
 programming, Lax Logi
 has been used to extend theview of logi
 programming as ba
kwards proof sear
h in 
onstru
tive logi
s (Miller et al.,y This work was partly supported by EPSRC grant GR/MO8769



Ja
ob M. Howe 21991). In essen
e, this approa
h takes normal natural dedu
tion as the proof theoreti
semanti
s for logi
 programming. Constraints 
an be abstra
ted away as modalities andthe query 
an be reasoned about logi
ally. The logi
 is used to give proofs of queries.In turn, these proofs give the 
onstraints to be satis�ed. The 
onstraints 
an then beanalysed separately (Fairtlough et al., 1997; Walton, 1998).Natural dedu
tion has a pragmati
 drawba
k. In sear
hing ba
kwards for a proof ofa formula, it is not always obvious whi
h rule to apply. For example, in Intuitionisti
Logi
 it is not obvious from the 
on
lusion that rule (�") should be applied. Even whenthe rule has been �xed, it is hard to determine the formulae in the premiss. Cut-freeGentzen sequent 
al
ulus systems (Gentzen, 1969) are mu
h better from this point ofview. When a prin
ipal formula has been 
hosen, the rules appli
able are restri
ted. Theappli
ation of logi
al rules is dire
ted by the syntax of the prin
ipal formula. Stru
turalrules 
an often be built into the sequent system. In su
h a system, when a prin
ipalformula has been 
hosen, the next rule appli
ation is exa
tly determined by the syntaxof that formula.There are well known translations (Prawitz, 1965) between normal natural dedu
tionsand sequent proofs. Therefore, one 
an sear
h for proofs in sequent 
al
ulus systemsand then translate the resulting proofs to normal natural dedu
tions. The drawba
k isthat many sequent proofs translate to the same normal natural dedu
tion. Hen
e whenone is trying to enumerate all proofs of a formula, the same proof is found many times.This gives one motivation for `permutation-free' sequent 
al
uli (introdu
ed in (Herbelin,1995) for Intuitionisti
 Logi
). These are sequent 
al
uli (enabling syntax dire
ted proofsear
h) whose proofs 
an be translated in a 1{1 way with the normal natural dedu
tionsfor the logi
. Permutation-free 
al
uli have the advantages of a sequent 
al
ulus system,whilst re
e
ting the stru
ture of normal natural dedu
tions. The �rst 
al
ulus des
ribedin this paper, PFLAX, is a proof enumeration 
al
ulus for �rst-order quanti�ed LaxLogi
. PFLAX is a permutation-free 
al
ulus for Lax Logi
 { the sequent proofs naturally
orrespond in a 1{1 way to the normal natural dedu
tions.Propositional logi
s are usually de
idable and therefore it is desirable to �nd e�e
tivede
ision pro
edures for su
h logi
s. Here, by studying the nature of non-terminating ba
k-wards sear
h to see where one 
an stop the sear
h, a de
ision pro
edure for propositionalLax Logi
 is given; this theorem proving 
al
ulus is 
alled PFLAXHist. The 
al
ulus usesa te
hnique for dete
ting loops using a history me
hanism, building on work of Heuerd-ing et al (Heuerding et al., 1996; Heuerding, 1998; Howe, 1997). It uses the propositionalfragment of PFLAX as the base 
al
ulus to whi
h a history me
hanism is added, giv-ing the de
ision pro
edure. The te
hnique is general and may be applied to many otherpropositional logi
s. We know of no other de
ision pro
edure for propositional Lax Logi
.2. Natural Dedu
tionThis se
tion gives the relevant material on natural dedu
tion needed to develop thepermutation-free 
al
ulus for Lax Logi
 (the proofs in whi
h 
orrespond in a 1{1 way tonormal natural dedu
tions). A natural dedu
tion 
al
ulus for Lax Logi
 (with rules forquanti�ers and falsum added) taken from (Benton et al., 1998), 
an be seen in Figure 1.



Proof Sear
h in Lax Logi
 3�; P ` P (ax) � ` > (>I) � ` ?� ` P (?")�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1 ) � ` Q� ` P _Q (_I2) � ` P _Q �; P ` R �; Q ` R� ` R (_")� ` P� ` ÆP (ÆI) � ` ÆP �; P ` ÆQ� ` ÆQ (Æ")� ` P [u=x℄� ` 8xP (8I)y � ` 8xP� ` P [t=x℄ (8") � ` P [t=x℄� ` 9xP (9I) � ` 9xP �; P [u=x℄ ` R� ` R (9")yy u not free in �Fig. 1. Sequent style presentation of natural dedu
tion for Lax Logi
.Normal natural dedu
tions are the obje
ts of interest. The �-redu
tion and 
ommuting
onversion steps of normalisation are given in (Benton et al., 1998). The extra 
ases for?" and 9" 
an be added, and are to be found in (Howe, 1998; Howe, 1999).De�nition 1 A natural dedu
tion is said to be in �; 
-normal form when no �-redu
tionsand no 
ommuting 
onversions are appli
able.We present a restri
ted version of natural dedu
tion for Lax Logi
. In this 
al
ulus, theonly dedu
tions possible are in �; 
-normal form. This 
al
ulus has two kinds of `sequent',di�erentiated by their 
onsequen
e relations, � and ��. Rules are appli
able only whenthe premisses have the appropriate 
onsequen
e relation. The 
on
lusions have a �xed
onsequen
e relation. Thus valid dedu
tions are of a restri
ted form. This 
al
ulus, whi
hwe 
all NLAX, is given (with the proof terms given in the next se
tion) in Figure 2.Proposition 1 The 
al
ulus NLAX only allows dedu
tions to whi
h no �-redu
tions andno 
ommuting 
onversions are appli
able. Moreover, it allows all �; 
-normal dedu
tions.2.1. Term AssignmentWe give a proof term system for NLAX. The term system is needed to prove the re-sults given in se
tion 4. In (Moggi, 1989) Moggi gave a �-
al
ulus, whi
h he 
alled the
omputational �-
al
ulus. As is shown in (Benton et al., 1998), this 
al
ulus naturallymat
hes Lax Logi
. More about the 
omputational �-
al
ulus and Lax Logi
 (there 
alled
omputational logi
) 
an be found in (Benton et al., 1998).Proof terms for unrestri
ted natural dedu
tion for Lax Logi
 
an be found in (Howe,1998; Moggi, 1989). We are interested in the `real' proofs for Lax Logi
 { the normalnatural dedu
tions. We restri
t the terms that 
an be built, in order that they mat
hour restri
ted natural dedu
tion 
al
ulus NLAX, giving proof obje
ts. The proof terms



Ja
ob M. Howe 4�; x : P � var(x) : P (ax) ��A : P���an(A) : P (M) ���� : > (>I) ��A : ?���efq(A) : P (?")�; x : P ��N : Q����x:N : P � Q (�I) ��A : P � Q ���N : P�� ap(A;N) : Q (�")���N1 : P ���N2 : Q���pr(N1; N2) : P ^Q (^I) ��A : P ^Q�� fst(A) : P (^"1) ��A : P ^Q�� snd(A) : Q (^"2)���N : P���i(N) : P _Q (_I1) ���N : Q���j(N) : P _Q (_I2 )��A : P _Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R���wn(A;x1:N1; x2:N2) : R (_")���N : P���smhi(N) : ÆP (ÆI) ��A : ÆP �; x : P ��N : ÆQ���smhe(A;x:N) : ÆQ (Æ")���N : P [u=x℄����u:N : 8xP (8I)y ��A : 8xP�� apn(A; t) : P [t=x℄ (8")���N : P [t=x℄���prq(t;N) : 9xP (9I) ��A : 9xP �; y : P [u=x℄��N : R���ee(A;u:y:N) : R (9")yy u not free in �Fig. 2. NLAX with proof annotations.
ome in two synta
ti
 
ategories, A and N. V is the 
ategory of variables (proofs), Uis the 
ategory of variables (individuals in formulae), and T the 
ategory of terms. Theproof terms are given with an abstra
t syntax, with the notation 
hosen to be suggestiveof the asso
iated proof rules. Hen
e smhi(N) for the term asso
iated with the somehowintrodu
tion rule. The extra 
onstru
tor an(A) mat
hes the (M) rule of NLAX.A::= var(V ) j ap(A;N) j fst(A) j snd(A) j apn(A; T )N ::= � j efq(A) j an(A) j �V:N j pr(N;N) j i(N) j j(N) j wn(A; V:N; V:N)smhi(N) j smhe(A; V:N) j �U:N j prq(T;N) j ee(A;U:V:N)NLAX together with proof annotations for normal terms 
an be seen in Figure 2.3. Sequent Cal
ulusIn this se
tion we present a new Gentzen sequent 
al
ulus for Lax Logi
, PFLAX. Theproofs allowed by PFLAX naturally 
orrespond in a 1{1 way to normal natural dedu
-tions for Lax Logi
 { i.e. the proofs of NLAX. In Figure 3 we remind the reader of thesequent 
al
ulus, extending those in (Fairtlough and Mendler, 1997; Benton et al., 1998)to quanti�ers.We give a new sequent 
al
ulus, PFLAX (`permutation-free' Lax Logi
). PFLAX ex-tends the permutation-free 
al
ulus MJ for Intuitionisti
 Logi
 (Herbelin, 1995; Dy
kho�and Pinto, 1998; Dy
kho� and Pinto, 1999) to a 
al
ulus for Lax Logi
. Like MJ this
al
ulus has two forms of judgment, �) R and � Q�! R. The �rst looks like the usualkind of sequent; however, only right rules and 
ontra
tion are appli
able to this kind of
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h in Lax Logi
 5�; P ) P (ax) �; P; P ) R�; P ) R (C) �) > (>R) �;?) P (?L)�; P ) Q�) P � Q (�R) �) P �; Q) R�; P � Q) R (�L)�) P �) Q�) P ^Q (^R) �; P ) R�; P ^Q) R (^L1) �; Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P ) R �; Q) R�; P _Q) R (_L)�) P�) ÆP (ÆR) �; P ) ÆR�; ÆP ) ÆR (ÆL)�) P [u=x℄�) 8xP (8R)y �; P [t=x℄) R�; 8xP ) R (8L) �) P [t=x℄�) 9xP (9R) �; P [u=x℄) R�; 9xP ) R (9L)yy u not free in �Fig. 3. Sequent 
al
ulus for Lax Logi
.sequent in ba
kwards proof sear
h. The se
ond kind of sequent has a formula (on theleft) in a privileged position 
alled the stoup, following (Girard, 1991). The formula inthe stoup is always prin
ipal in the 
on
lusion of an inferen
e rule. The stoup is a formof fo
using; proof sear
h is restri
ted so that, whenever possible, the a
tive formulae ofan inferen
e are prin
ipal in the premiss. In ba
kwards proof sear
h, left rules are onlyappli
able to stoup sequents. PFLAX (together with the proof terms given in the nextse
tion) is displayed in Figure 4. We give a simple example of a derivation in PFLAX:B;B; ÆB ^ (B � A) B�! B (ax)B;B; ÆB ^ (B � A)) B (C) B;B; ÆB ^ (B � A) A�! A (ax)B;B; ÆB ^ (B � A) B�A�! A (�L)B;B; ÆB ^ (B � A) ÆB^(B�A)�! A (^L2)B;B; ÆB ^ (B � A)) A (C)B;B; ÆB ^ (B � A)) ÆA (ÆR)B; ÆB ^ (B � A) ÆB�! ÆA (ÆL)B; ÆB ^ (B � A) ÆB^(B�A)�! ÆA (^L1)B; ÆB ^ (B � A)) ÆA (C)3.1. Term Assignment for Sequent Cal
ulusWe give a term assignment system for PFLAX. The term system is a simple extension ofthat given in (Herbelin, 1995; Dy
kho� and Pinto, 1996; Dy
kho� and Pinto, 1998). Theterm 
al
ulus has two synta
ti
 
ategories, M and Ms. V is the 
ategory of variables(proofs), U is the 
ategory of variables (individuals) and T is the 
ategory of terms. Theproof terms are given with an abstra
t syntax suggestive of the asso
iated proof rules.



Ja
ob M. Howe 6� P�! [ ℄ : P (ax) �; x : P P�!Ms : R�; x : P ) (x;Ms) : R (C) �) � : > (>R) � ?�! ae : ? (?L)�; x : P )M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M :: Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R) � P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P )M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P�) smhr(M) : ÆP (ÆR) �; x : P )M : ÆR� ÆP�! smhl(x:M) : ÆR (ÆL)�)M : P [u=x℄�) �u:M : 8xP (8R)y � P [t=x℄�! Ms : R� 8xP�! apq(t;Ms) : R (8L)�)M : P [t=x℄�) pairq(t;M) : 9xP (9R) �; y : P [u=x℄)M : R� 9xP�! spl(u:y:M) : R (9L)yy u not free in �Fig. 4. The sequent 
al
ulus PFLAX, with proof annotations.In parti
ular, [ ℄ is used for the axiom term and (M ::Ms) for the term asso
iated withimpli
ation on the left, giving a list of M terms suggestive of the ordering of rules in the
al
ulus.M ::= � j (V ;Ms) j�V:M j pair(M;M) j inl(M) j inr(M) j smhr(M) j�U:M j pairq(T;M)Ms::= [ ℄ j ae j (M ::Ms) j p(Ms) j q(Ms) j when(V:M; V:M)smhl(V:M) j apq(T;Ms) j spl(U:V:M)These terms 
an easily be typed by PFLAX, as seen in Figure 4.4. Equivalen
e of the Cal
uliWe prove the equivalen
e of the term 
al
uli and the soundness and adequa
y of PFLAX.These results prove the desired 
orresponden
e. The proofs are extensions of those forthe MJ 
al
ulus for Intuitionisti
 Logi
 (Dy
kho� and Pinto, 1998), hen
e most detail isomitted. We start by giving pairs of fun
tions that de�ne translations between the termassignment systems for natural dedu
tion (NLAX) and sequent 
al
ulus (PFLAX), ex-tending to Lax Logi
 those of (Herbelin, 1995; Dy
kho� and Pinto, 1998) for Intuitionisti
Logi
.
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 7Sequent Cal
ulus ! Natural Dedu
tion:� :M! N �0 : A�Ms! N�(x;Ms)=�0(var(x);Ms) �0(A; [ ℄)=an(A)�(�x:M)=�x:�(M) �0(A; (M ::Ms))=�0(ap(A; �(M));Ms)�(smhr(M))=smhi(�(M)) �0(A; smhl(x:Ms))=smhe(A; x:�(M))�(�)=� �0(A; ae)=efq(A)�(pair(M1;M2))=pr(�(M1); �(M2)) �0(A; p(Ms))=�0(fst(A);Ms)�(inl(M))=i(�(M)) �0(A; q(Ms))=�0(snd(A);Ms)�(inr(M))=j(�(M)) �0(A; apq(t;Ms))=�0(apn(A; t);Ms)�(�u:M)=�u:�(M) �0(A; spl(u:y:M)) = ee(A; u:y:�(M))�(pairq(t;M))=prq(t; �(M))Natural Dedu
tion ! Sequent Cal
ulus: : N!M  0 : A�Ms!M (an(A))= 0(A; [ ℄)  0(var(x);Ms)=(x;Ms) (�x:N)=�x: (N)  0(ap(A;N);Ms)= 0(A; ( (N) ::Ms)) (smhe(A; x:N))= 0(A; smhl(x: (N)))  0(fst(A);Ms)= 0(A; p(Ms)) (smhi(N))=smhr( (N))  0(snd(A);Ms)= 0(A; q(Ms)) (�)=�  0(apn(A; t);Ms)= 0(A; apq(t;Ms)) (efq(A))= 0(A; ae) (pr(N1; N2))=pair( (N1);  (N2)) (i(N))=inl( (N)) (j(N))=inr( (N)) (wn(A; x1:N1; x2:N2))= 0(A;when(x1: (N1); x2: (N2))) (�u:N)=�u: (N) (prq(t;N))=pairq(t;  (N)) (ee(A; u:y:N))= 0(A; spl(u:y: (N)))We give two lemmas demonstrating the equivalen
e of the term 
al
uli, that is, thetranslations from one system to the other are 1{1.Lemma 1 i)  (�(M)) = M ; ii)  (�0(A;Ms)) =  0(A;Ms).Proof. By simultaneous indu
tion on the stru
ture of M and Ms. For full details see(Howe, 1999).Lemma 2 i) �( (N)) = N ; ii) �( 0(A;Ms)) = �0(A;Ms).Proof. By simultaneous indu
tion on the stru
ture of N and A. For full details see(Howe, 1999).The following two theorems state soundness and adequa
y. They show that the trans-lations respe
t provability, that is, no `sequent' (and hen
e its asso
iated term) 
an beproved in one system, but not its translation in the other.
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ob M. Howe 8Theorem 1 (Soundness) The following rules are admissible:�)M : R����(M) : R i) ��A : P � P�!Ms : R����0(A;Ms) : R ii)Proof. By simultaneous indu
tion on the stru
ture of M and Ms. For full details see(Howe, 1999).Theorem 2 (Adequa
y) The following rules are admissible:���N : R�)  (N) : R i) ��A : P � P�!Ms : R�)  0(A;Ms) : R ii)Proof. By simultaneous indu
tion on the stru
ture of A and N . For full details see(Howe, 1999).Sin
e the term systems are in 1{1 
orresponden
e (lemma 1 and lemma 2) and thetranslations preserve provability (theorem 1 and theorem 2), the 1{1 
orresponden
ebetween PFLAX and NLAX has been established. This is stated in the following theorem.Theorem 3 The normal natural dedu
tions of Lax Logi
 (the proofs of NLAX) are in1{1 
orresponden
e to the proofs of PFLAX.An immediate 
orollary of theorem 3 is that PFLAX is sound and 
omplete with respe
tto natural dedu
tion for Lax Logi
. Quanti�ed Lax Logi
 is demonstrated to be soundand 
omplete with respe
t to 
ertain 
lasses of Kripke model-stru
tures in (Fairtloughand Walton, 1997).4.1. Cut EliminationWe now brie
y dis
uss 
ut for PFLAX. In the usual sequent 
al
ulus, 
ut may be for-mulated as follows: �) P �; P ) Q�) Q (
ut)In PFLAX, the two judgment forms lead to the following four 
ut rules (as for Intuition-isti
 Logi
 in (Herbelin, 1995; Dy
kho� and Pinto, 1998)):� Q�! P � P�! R� Q�! R (
ut1) �) P �; P Q�! R� Q�! R (
ut2)�) P � P�! R�) R (
ut3) �) P �; P ) R�) R (
ut4)We 
all PFLAX extended with the four 
ut rules PFLAX
ut. We 
an give redu
tion rulesfor PFLAX
ut and prove the weak 
ut elimination theorem for the logi
. We 
an alsoprove strong normalisation for the term system asso
iated with the logi
, hen
e strong
ut-elimination. Details and proofs (extending those for Intuitionisti
 Logi
 in (Herbelin,1995; Dy
kho� and Pinto, 1998)) 
an be found in (Howe, 1998).
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 9Theorem 4 The rules (
ut1); (
ut2); (
ut3); (
ut4) are admissible in PFLAX.Theorem 5 The 
ut redu
tion system for PFLAX strongly normalises.5. De
iding Lax Logi
It is useful and interesting to have a de
ision pro
edure for any logi
. This se
tion de-s
ribes a de
ision pro
edure for propositional Lax Logi
. To the best of our knowledge,no de
ision pro
edure for propositional Lax Logi
 has been presented before.The new 
al
ulus uses a history me
hanism to ensure termination of ba
kwards proofsear
h. History me
hanisms were introdu
ed in (Heuerding et al., 1996; Heuerding, 1998).The re�ned history me
hanism used here 
an be found in (Howe, 1997; Howe, 1998).Another approa
h to de
iding propositional logi
s is by the use of `
ontra
tion-free'sequent 
al
uli, su
h as the one for propositional Intuitionisti
 Logi
 given in (Dy
kho�,1992; Hudelmaier, 1993). If su
h a de
ision pro
edure for Lax Logi
 
ould be found,we would expe
t it to be faster than one involving a history me
hanism. An investi-gation of 
ontra
tion-free 
al
uli for Lax Logi
 
an be found in (Avellone and Ferrari,1996). Unfortunately, this investigation did not su

eed in �nding a 
ontra
tion-free
al
ulus. We believe that a 
ontra
tion-free 
al
ulus for Lax Logi
 
annot be found,as (for arbitrary n) examples 
an be 
onstru
ted whi
h require an entire formula ina sequent to be 
ontra
ted n times in a proof. As an example, 
onsider the sequentB � (ÆA � C) � ÆA; ÆB; ÆA � C ) C, where ÆA � C needs to dupli
ated in its entiretyin order to prove the sequent.5.1. De
iding Propositional Logi
s Using History Me
hanismsOne approa
h to �nding a de
ision pro
edure for a propositional logi
 is to pla
e 
on-ditions on the sequent 
al
ulus to ensure termination of sear
h. It is elegant to be ableto build the 
ontent of these 
onditions into the sequent 
al
ulus itself. This is how the
al
ulus for theorem proving in this se
tion is developed.In order to ensure termination of ba
kward proof sear
h, we need to 
he
k that thesame sequent (modulo number of o

urren
es of identi
al formulae) does not appearagain on a bran
h, that is, proof sear
h does not loop. Avoiding loops 
an also preventthe unne
essary 
omputation arising from a �nite number of passes through a loop in asu

essful derivation. We need a me
hani
al way to dete
t su
h loops. One way to do thisis to add a history to a sequent. The history is the set of all sequents to have o

urred sofar on a bran
h of a proof tree. After ea
h ba
kwards inferen
e the new sequent (withoutits history) is 
he
ked to see whether it is a member of this set. If it is we have loopingand ba
ktra
k. If not, the new history is the extension of the old history by the oldsequent (without the history 
omponent), and we try to prove the new sequent, and soon. Unfortunately, this method is spa
e ineÆ
ient as it requires long lists of sequents tobe stored by the 
omputer, and all of this list has to be 
he
ked at ea
h stage. Whenthe sequents are stored, far more information than ne
essary is kept. EÆ
ien
y would beimproved by 
utting down the amount of storage and 
he
king needed to prevent looping.
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ob M. Howe 10The basis of the redu
ed history is the realisation, as in (Heuerding et al., 1996), thatone need only store goal formulae (a goal formula is the su

edent of a sequent) in orderto loop-
he
k. In the 
al
uli dealt with in this paper, on
e a formula is in the 
ontext itwill be in the 
ontext of all sequents above it in the proof tree. We say that the 
al
ulushas in
reasing 
ontext. For two sequents to be the same they need to have the same
ontext (up to multiple o

urren
es of formulae). Therefore we may empty the historyevery time the 
ontext is (properly) extended. All we need store in the history are goalformulae. If we 
ome to a sequent whose goal is already in the history, then it has thesame goal and the same 
ontext as another sequent { there is a loop.There are two slightly di�erent approa
hes 
apturing this. There is the straightforwardextension of the 
al
ulus des
ribed in (Heuerding et al., 1996), whi
h we 
all the `Swisshistory'; more on this loop-
he
king method 
an be found in (Heuerding, 1998). There isalso related work on histories for Intuitionisti
 Logi
 in (Gabbay, 1991). Another approa
hinvolves storing slightly more formulae in the history, but whi
h for some 
al
uli dete
tsloops more qui
kly. This we des
ribe as the `S
ottish history' (Howe, 1997); it 
an, inmany 
ases, be more eÆ
ient than the Swiss method. In this paper we give a 
al
ulusfor Lax Logi
 using the S
ottish history as we believe this to be the better method forintuitionisti
 logi
s (Howe, 1997).The generality of this approa
h is attra
tive. The history me
hanism 
an be atta
hedto many 
al
uli to give de
ision pro
edures; appli
ations 
an be found in (Howe, 1998).5.2. PFLAXHistThis se
tion des
ribes a history 
al
ulus for propositional Lax Logi
. The 
al
ulus isan extension of that for Intuitionisti
 Logi
 given in (Howe, 1997). The modality ishandled similarly to disjun
tion (disjun
tion is not 
overed in (Heuerding et al., 1996),and requires spe
ial treatment). It uses the 
al
ulus PFLAX as a base on whi
h to buildthe 
al
ulus as this 
al
ulus has already redu
ed the sear
h spa
e to a 
ertain extent.PFLAX has the in
reasing 
ontext required for the appli
ation of the history me
hanism.However, a more usual formulation 
ould have been used instead. PFLAXHist 
an be seenin Figure 5. Observe the two rules for (�R). These 
orrespond to the two 
ases wherethe new formula is or is not in the 
ontext. As noted above, this is very important forhistory me
hanisms. Noti
e that the number of formulae in the history is at most equalto the length of the formula we 
he
k for provability.A sequent is mat
hed against the 
on
lusions of right rules until the goal formula iseither a propositional variable, falsum, disjun
tion or a Æ formula This has been ensuredby the restri
tion on goal formulae given in the 
al
ulus (note that the rules for disjun
tionon the right and somehow on the right are only possible on ba
ktra
king, or with an empty
ontext). A formula from the 
ontext is then sele
ted using the rule (C) and mat
hedagainst the left rules of the 
al
ulus. The S
ottish 
al
ulus keeps (as a set) a 
ompletere
ord of goal formulae between 
ontext extensions. At ea
h of the pla
es where thehistory might be extended, the new goal is 
he
ked against the history. If it is in thehistory, then there is a loop, hen
e failure and ba
ktra
king.There are other pla
es where the rules are restri
ted to prevent looping. Where ne
-
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 11� P�! P ;H (ax) �; P P�! D;H�; P ) D;H (C) �) >;H (>R) � ?�! D;H (?L)�; P ) Q; fQg�) P � Q;H (�R1) if P =2 � �) Q; (Q;H)�) P � Q;H (�R2) if P 2 � and Q =2 H�; P ) ?; f?g�) :P ;H (:R1) if P =2 � �) ?; (?;H)�) :P ;H (:R2) if P 2 � and ? =2 H�) P ; (P;H) � Q�! D;H� P�Q�! D : H (�L) if P =2 H �) P ; (P;H)� :P�! D;H (:L) if P =2 H�) P ; (P;H) �) Q; (Q;H)�) P ^Q;H (^R) if P;Q =2 H � P�! D;H� P^Q�! D;H (^L1) � Q�! D;H� P^Q�! D;H (^L2)�) P ; (P;H)�) P _Q;H (_R1) if P =2 H �) Q; (Q;H)�) P _Q;H (_R2) if Q =2 H�; P ) D; fDg �; Q) D; fDg� P_Q�! D;H (_L) if P =2 � and Q =2 ��) P ; (P;H)�) ÆP ;H (ÆR) if P =2 H �; P ) ÆR; fÆRg� ÆP�! ÆR;H (ÆL) if P =2 �D is either an atom, ?, disjun
tion or a Æ formula. Where the history has been extendedwe have parenthesised (P;H) for emphasis.Fig. 5. The 
al
ulus PFLAXHist (S
ottish).essary, the left rules have side 
onditions to ensure that the 
ontext is in
reasing. Forthe (�R) rule (whi
h attempts to extend the 
ontext) there are two 
ases 
orrespondingto when the 
ontext is and when it is not extended. Something similar is happening inthe left rules. Take (_L) as an example. In both premisses of the rule a formula maybe added to 
ontext. If both 
ontexts really are extended, then we 
ontinue buildingthe proof tree. If one or both 
ontexts are not extended then the sequent, S, with thenon-extended 
ontext, will be the same as some sequent at a lesser height in the prooftree { there is a loop (whi
h we des
ribe as a trivial loop). This is easy to see: sin
e the
ontext and the goal of S are the same as that of the 
on
lusion, there must be a lowersequent (the 
on
lusion of an instan
e of (C)) the same as the premiss S. As an examplewe give a derivation in PFLAXHist of the sequent in the example in se
tion 3:B; ÆB ^ (B � A) B�! B (ax)B; ÆB ^ (B � A)) B (C) B; ÆB ^ (B � A) A�! A (ax)B; ÆB ^ (B � A) B�A�! A (�L)B; ÆB ^ (B � A) ÆB^(B�A)�! A (^L2)B; ÆB ^ (B � A)) A (C)B; ÆB ^ (B � A)) ÆA (ÆR)
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ob M. Howe 12Note that the derivation of this sequent given in se
tion 3 would be prevented by thehistory me
hanism, as it 
ontains a loop.It is now demonstrated that PFLAXHist is equivalent to PFLAX, in terms of prov-ability. The equivalen
e is proved via an intermediate 
al
ulus PFLAXD . The 
al
ulusPFLAXD is the 
al
ulus PFLAX where the rule (C) is restri
ted so that it is only ap-pli
able when the goal formula is an atom, a disjun
tion, falsum or a somehow formula.Proposition 2 The 
al
ulus PFLAX is equivalent to the 
al
ulus PFLAXD. That is,sequent �) G is provable in PFLAX i� �) G is provable in PFLAXD.The following lemma is needed in the proof of theorem 6.Lemma 3 (Contra
tion) The following rules are admissible in PFLAXHist:�; P; P ) R;H�; P ) R;H (C 0) �; P; P Q�! R;H�; P Q�! R;H (C 00)Proof. By simultaneous indu
tion on the heights of derivations of premisses.The equivalen
e proof below, although long, has a simple stru
ture. An algorithm toturn a PFLAX proof tree into a PFLAXHist proof tree is des
ribed in detail. A simpleindu
tion argument shows that the algorithm terminates, proving the result.Theorem 6 The 
al
uli PFLAX and PFLAXHist are equivalent. That is, sequent �) Gis provable in PFLAX i� sequent �) G; fGg is provable in PFLAXHist.Proof. From Proposition 2 we know that it is enough to show that PFLAXD is equiv-alent to PFLAXHist. It is trivial that any sequent provable in PFLAXHist is provablein PFLAXD. (Use 
ontra
tion (C 0) above instan
es of (�R2) and then simply drop thehistory part of the sequent). We prove the 
onverse.Take any proof tree for sequent �) G in PFLAXD. By de�nition this proof tree is�nite, with n > 0 nodes. Using this proof tree, we 
onstru
t (from the root up) a prooftree for the sequent �) G; fGg in PFLAXHist. The major di�eren
e between PFLAXDand PFLAXHist is that the former permits loops, whereas the latter does not. Essentiallywe take the PFLAXD proof tree and give a re
ipe for `snipping out' the loops: removingthe sequents that form the loop.The 
onstru
tion uses `hybrid trees'. A hybrid tree is a fragment of a PFLAXHist prooftree with all bran
hes that do not have (ax), (>) or (?) leaves ending with PFLAXDproof trees. These PFLAXD proof trees have roots whi
h 
an be obtained by ba
kwardsappli
ation of a PFLAXD rule to the top history sequent (ignoring its history). Weanalyse ea
h 
ase of a topmost history sequent with non-history premiss(es) resultingfrom appli
ation of rule (R) in the sequent tree. We write � � �0 when the set offormulae in multisets � and �0 are the same (although the number of o

urren
es maybe di�erent). We denote a series of zero or more instan
es of rule (R) by (R)�. We givethe proof for the Æ;� fragment.
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hange (non-history) sequent �) G to historysequent �) G; fGg.{ (R) is one of (ax), (C), i.e. a rule whi
h in PFLAXHist has no side 
onditions. Thepremiss is 
hanged by adding the appropriate history. It be
omes the history sequentobtained by applying (ba
kwards) the PFLAXHist rule to the original 
on
lusion. Forexample, if the situation we are analysing is�; P P�! D�; P ) D;H (C) then it be
omes �; P P�! D;H�; P ) D;H (C)We now have a new hybrid tree.{ (R) is (�R). If the 
ontext is extended, then add the appropriate history, allowingthe repla
ement of the instan
e of (�R) in PFLAXD by an instan
e of (�R1) inPFLAXHist. If the 
ontext is not extended and the new goal is not in the history,then again add the appropriate history, allowing the repla
ement of the instan
e of(�R) in PFLAXD by an instan
e of (�R2) with a (C 0) in PFLAXHist. If the newgoal is in the history, there is a loop, whi
h the history me
hanism prevents. If thehistory 
ondition is not met, then below the 
on
lusion the hybrid tree has the form:�; P ) G�) P � G;H (�R)....�0 ) G;H0where G 2 H0, H0 � H and � � �0. The history is not reset at any point in thisfragment. This 
an easily be seen to 
ontain the loop whi
h is the reason for thehistory 
ondition not being met. It is transformed by removing all sequents above,but not in
luding, �0 ) G;H0 (along with any subtrees above ex
ised sequents) upto �; P ) G. Adding the appropriate history to this sequent and using (one or moreinstan
es of) (C 0) gives the new hybrid tree:�; P ) G;H0�0 ) G;H0 (C 0)�{ (R) is (�L). If the history 
ondition is satis�ed, then add the appropriate history,allowing the repla
ement of instan
e of (�L) in PFLAXD by an instan
e of (�L) inPFLAXHist. If the history 
ondition is not satis�ed, then below the 
on
lusion thehybrid tree has the form: �) P � Q�! R� P�Q�! R;H (�L)....�0 ) P ;H0where P 2 H0, H0 � H and � � �0. The history is not reset at any point in thisfragment. It is transformed by removing all the sequents above, but not in
luding,�0 ) P ;H0 (along with any subtrees above ex
ised sequents) up to �) P . The se-quent � Q�! R and the subtree above it are also removed. Adding the appropriate
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ob M. Howe 14history to �) P and using (zero or more instan
es of) (C 0) gives the new hybridtree: �) P ;H0�0 ) P ;H0 (C 0)�{ (R) is (ÆR). If the history 
ondition is satis�ed, then add the appropriate history,allowing the repla
ement of the instan
e of (ÆR) in PFLAXD by an instan
e of (ÆR)in PFLAXHist. If the history 
ondition is not satis�ed, then below the 
on
lusion thehybrid tree has form: �) P�) ÆP ;H (ÆR)....�0 ) P ;H0where P 2 H0, H0 � H and � � �0. The history is not reset at any point in this frag-ment. It is transformed by removing all sequents from, but not in
luding, �0 ) P ;H0(along with any subtrees above ex
ised sequents) up to �) P . Adding the appropri-ate history and using (zero or more instan
es of) (C 0) gives the new hybrid tree:�) P ;H0�0 ) P ;H0 (C 0)�{ (R) is (ÆL). If the side 
ondition is satis�ed, then add the appropriate history, al-lowing the repla
ement of the instan
e of (ÆL) in PFLAXD by an instan
e of (ÆL)in PFLAXHist. If the side 
ondition is not satis�ed, then below the 
on
lusion thehybrid tree has form: �; P ) ÆR� ÆP�! ÆR;H (ÆL)....�) ÆR;Hwhere P 2 �. This is transformed by removing all sequents from, but not in
luding,�) ÆR;H (along with any subtrees above ex
ised sequents) up to �; P ) ÆR. Addingthe appropriate history and using a single instan
e of (C 0) gives the new hybrid tree:�; P ) ÆR;H�) ÆR;H (C 0)Sin
e the number of sequents without a history in a hybrid tree is �nite and as every stepstri
tly de
reases the number of sequents without a history, this pro
ess is terminating.The instan
es of (C 0) may be eliminated from the 
onstru
ted derivation.Note that the PFLAX derivation given in se
tion 3 is transformed by the algorithmdes
ribed in the proof to the derivation of the same sequent in PFLAXHist given above.We have shown that PFLAXHist is sound and 
omplete. To prove that it is a de
isionpro
edure, we prove that it is also terminating { ba
kwards proof sear
h in the 
al
ulusends in su

ess or failure after a �nite number of steps.Theorem 7 Ba
kwards proof sear
h in the 
al
ulus PFLAXHist is terminating.



Proof Sear
h in Lax Logi
 15Proof. We asso
iate with every sequent a quintuple of natural numbers. With a sequentwithout a stoup, �) R;H, we asso
iate: W = (k � n; k � m; 1; 0; r). With a sequentwith a stoup, � P�! R;H, we asso
iate:W = (k�n; k�m; 0; s; r). Here, k is the numberof elements in the set of subformulae of (�; R); n is the number of elements in the set ofelements of �;m is the number of elements inH; r is the size of goal formula R and s is thesize of the stoup formula P . (Noti
e that although � is a multiset, we 
ount its elementsas a set). These quintuples are lexi
ographi
ally ordered from the left. By inspe
tion wesee that for every inferen
e rule W for the premisses is lower in the lexi
ographi
 orderthan W for the 
on
lusion. Hen
e ba
kward proof sear
h is terminating.When implementing a theorem prover, knowledge of the invertibility of the inferen
erules 
an be useful. This information is given in the following proposition.Proposition 3 The following inferen
e rules of PFLAXHist are invertible: (�R1), (�R2),(:R1), (:R2), (�L), (:L), (^R), (_L), (ÆL). The following inferen
e rules of PFLAXHistare not invertible: (C), (^L1), (^L2), (_R1 ), (_R2), (ÆR).6. Con
lusionThis paper has presented two proof sear
h 
al
uli for Lax Logi
. The �rst, PFLAX,is a sequent 
al
ulus for �rst-order quanti�ed Lax Logi
. The proofs allowed by this
al
ulus naturally 
orrespond in a 1{1 way to the normal natural dedu
tions for �rst-orderquanti�ed Lax Logi
. The 
al
ulus is well suited for enumerating, without redundan
y,all proofs in the logi
. This makes the 
al
ulus useful in 
ontexts where proof sear
h isfor normal natural dedu
tions, su
h as in (
onstraint) logi
 programming.The se
ond 
al
ulus, PFLAXHist, builds on the propositional fragment of the �rst
al
ulus to give a de
ision pro
edure for propositional Lax Logi
. Propositional LaxLogi
 has been used in hardware veri�
ation and PFLAXHist 
ould be of use in thisarea. The 
al
ulus works by adding a history me
hanism to the propositional 
al
ulusto prevent looping. This te
hnique is general and may be applied to a wide range ofsequent 
al
uli for propositional logi
s to yield de
ision pro
edures. We believe that, todate, PFLAXHist is the only e�e
tive de
ision pro
edure for propositional Lax Logi
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