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A Gentzen sequent calculus for Lax Logic is presented, the proofs in which naturally
correspond in a 1-1 way to the normal natural deductions for the logic. The propositional
fragment of this calculus is used as the basis for another calculus, one which uses a
history mechanism in order to give a decision procedure for propositional Lax Logic.

1. Introduction and Background

Proof search can be used with either of two meanings. It can either be used to mean
the search for all proofs of a formula (proof enumeration), or to mean the search for
a yes/no answer to a query (theorem proving). This paper describes two new sequent
calculi for Lax Logic. One calculus is for proof enumeration for quantified Lax Logic, the
other calculus is for theorem proving in propositional Lax Logic.

Lax Logic is an intuitionistic modal logic first introduced by Curry (Curry, 1952)
to illustrate cut-elimination in the presence of modalities. The logic was rediscovered
by Mendler, who developed the logic in the context of hardware verification to enable
abstract verification of circuits (Mendler, 1993). The logic has a single modality (o,
somehow) axiomatised by

S D oS, ooS DoS, (SDT)D (oS DoT)
The modality is unusual in having properties of both necessity and possibility. It can
be thought of as expressing correctness up to a constraint, abstracting away from the
detail (hence the choice of name, Lax Logic). A formula oP can be read as “for some
constraint ¢, P holds under ¢”. The proof theory and semantics of Lax Logic, including
Gentzen calculi, natural deduction calculi and Kripke semantics, are further developed
in (Fairtlough and Mendler, 1997; Fairtlough and Walton, 1997; Benton et al., 1998).

The ability of Lax Logic to give an abstract expression of constraints has been utilised
both in hardware verification and to give a proof theoretic semantics for constraint logic
programming languages. In hardware verification, the timing constraints that need to be
satisfied in a circuit can be abstracted away as instances of the modality and reasoned
about separately from the logical analysis of the circuit (Mendler, 1993; Fairtlough and
Mendler, 1994). In constraint logic programming, Lax Logic has been used to extend the
view of logic programming as backwards proof search in constructive logics (Miller et al.,
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1991). In essence, this approach takes normal natural deduction as the proof theoretic
semantics for logic programming. Constraints can be abstracted away as modalities and
the query can be reasoned about logically. The logic is used to give proofs of queries.
In turn, these proofs give the constraints to be satisfied. The constraints can then be
analysed separately (Fairtlough et al., 1997; Walton, 1998).

Natural deduction has a pragmatic drawback. In searching backwards for a proof of
a formula, it is not always obvious which rule to apply. For example, in Intuitionistic
Logic it is not obvious from the conclusion that rule (D) should be applied. Even when
the rule has been fixed, it is hard to determine the formulae in the premiss. Cut-free
Gentzen sequent calculus systems (Gentzen, 1969) are much better from this point of
view. When a principal formula has been chosen, the rules applicable are restricted. The
application of logical rules is directed by the syntax of the principal formula. Structural
rules can often be built into the sequent system. In such a system, when a principal
formula has been chosen, the next rule application is exactly determined by the syntax
of that formula.

There are well known translations (Prawitz, 1965) between normal natural deductions
and sequent proofs. Therefore, one can search for proofs in sequent calculus systems
and then translate the resulting proofs to normal natural deductions. The drawback is
that many sequent proofs translate to the same normal natural deduction. Hence when
one is trying to enumerate all proofs of a formula, the same proof is found many times.
This gives one motivation for ‘permutation-free’ sequent calculi (introduced in (Herbelin,
1995) for Intuitionistic Logic). These are sequent calculi (enabling syntax directed proof
search) whose proofs can be translated in a 1-1 way with the normal natural deductions
for the logic. Permutation-free calculi have the advantages of a sequent calculus system,
whilst reflecting the structure of normal natural deductions. The first calculus described
in this paper, PFLAX, is a proof enumeration calculus for first-order quantified Lax
Logic. PFLAX is a permutation-free calculus for Lax Logic — the sequent proofs naturally
correspond in a 1-1 way to the normal natural deductions.

Propositional logics are usually decidable and therefore it is desirable to find effective
decision procedures for such logics. Here, by studying the nature of non-terminating back-
wards search to see where one can stop the search, a decision procedure for propositional
Lax Logic is given; this theorem proving calculus is called PFLAXH#t, The calculus uses
a technique for detecting loops using a history mechanism, building on work of Heuerd-
ing et al (Heuerding et al., 1996; Heuerding, 1998; Howe, 1997). It uses the propositional
fragment of PFLAX as the base calculus to which a history mechanism is added, giv-
ing the decision procedure. The technique is general and may be applied to many other
propositional logics. We know of no other decision procedure for propositional Lax Logic.

2. Natural Deduction

This section gives the relevant material on natural deduction needed to develop the
permutation-free calculus for Lax Logic (the proofs in which correspond in a 1-1 way to
normal natural deductions). A natural deduction calculus for Lax Logic (with rules for
quantifiers and falsum added) taken from (Benton et al., 1998), can be seen in Figure 1.
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Fig. 1. Sequent style presentation of natural deduction for Lax Logic.

Normal natural deductions are the objects of interest. The S-reduction and commuting
conversion steps of normalisation are given in (Benton et al., 1998). The extra cases for
1. and 3. can be added, and are to be found in (Howe, 1998; Howe, 1999).

Definition 1 A natural deduction is said to be in 3, c-normal form when no B-reductions
and no commuting conversions are applicable.

We present a restricted version of natural deduction for Lax Logic. In this calculus, the
only deductions possible are in 3, c-normal form. This calculus has two kinds of ‘sequent’,
differentiated by their consequence relations, > and >>. Rules are applicable only when
the premisses have the appropriate consequence relation. The conclusions have a fixed
consequence relation. Thus valid deductions are of a restricted form. This calculus, which
we call NLAX, is given (with the proof terms given in the next section) in Figure 2.

Proposition 1 The calculus NLAX only allows deductions to which no S-reductions and
no commuting conversions are applicable. Moreover, it allows all B, c-normal deductions.

2.1. Term Assignment

We give a proof term system for NLAX. The term system is needed to prove the re-
sults given in section 4. In (Moggi, 1989) Moggi gave a A-calculus, which he called the
computational A-calculus. As is shown in (Benton et al., 1998), this calculus naturally
matches Lax Logic. More about the computational A-calculus and Lax Logic (there called
computational logic) can be found in (Benton et al., 1998).

Proof terms for unrestricted natural deduction for Lax Logic can be found in (Howe,
1998; Moggi, 1989). We are interested in the ‘real’ proofs for Lax Logic — the normal
natural deductions. We restrict the terms that can be built, in order that they match
our restricted natural deduction calculus NLAX, giving proof objects. The proof terms
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Fig. 2. NLAX with proof annotations.

come in two syntactic categories, A and N. V is the category of variables (proofs), U
is the category of variables (individuals in formulae), and T the category of terms. The
proof terms are given with an abstract syntax, with the notation chosen to be suggestive
of the associated proof rules. Hence smhi(N) for the term associated with the somehow
introduction rule. The extra constructor an(A) matches the (M) rule of NLAX.

A= war(V) | ap(A,N) | fst(A) | snd(A) | apn(A,T)

N:= x|efq(A) | an(A) | \V.N | pr(N,N) | i(N) | j(N) | wn(4,V.N,V.N)

smhi(N) | smhe(A,V.N) | AU.N | prq(T,N) | ee(A,U.V.N)
NLAX together with proof annotations for normal terms can be seen in Figure 2.

3. Sequent Calculus

In this section we present a new Gentzen sequent calculus for Lax Logic, PFLAX. The
proofs allowed by PFLAX naturally correspond in a 1-1 way to normal natural deduc-
tions for Lax Logic — i.e. the proofs of NLAX. In Figure 3 we remind the reader of the
sequent calculus, extending those in (Fairtlough and Mendler, 1997; Benton et al., 1998)
to quantifiers.

We give a new sequent calculus, PFLAX (‘permutation-free’ Lax Logic). PFLAX ex-
tends the permutation-free calculus MJ for Intuitionistic Logic (Herbelin, 1995; Dyckhoff
and Pinto, 1998; Dyckhoff and Pinto, 1999) to a calculus for Lax Logic. Like MJ this

calculus has two forms of judgment, I' = R and T’ 2, R. The first looks like the usual
kind of sequent; however, only right rules and contraction are applicable to this kind of
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Fig. 3. Sequent calculus for Lax Logic.

sequent in backwards proof search. The second kind of sequent has a formula (on the
left) in a privileged position called the stoup, following (Girard, 1991). The formula in
the stoup is always principal in the conclusion of an inference rule. The stoup is a form
of focusing; proof search is restricted so that, whenever possible, the active formulae of
an inference are principal in the premiss. In backwards proof search, left rules are only
applicable to stoup sequents. PFLAX (together with the proof terms given in the next
section) is displayed in Figure 4. We give a simple example of a derivation in PFLAX:
(azx)

B,B,oBA(B>A) 2B o (az)
B,B,oBA(BD A) = B (©) B,B,oBA(B> A) 2 A

B,B,oBA (B> A) 228 4

(/\£2)
(@)
R)
L

(/\[,1)
(@)

oBA

B,B,oB A (B> A) *PAE2Y 4
B,B,oBA(B>A) = A

(o]

B,B,oBA (B> A) = oA (

(o]

B,oBA (B> A) 25 o4

oBA(BDA)

B,oBA(BDA) oA

B,oBA(BDA)=o0A

3.1. Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX. The term system is a simple extension of
that given in (Herbelin, 1995; Dyckhoff and Pinto, 1996; Dyckhoff and Pinto, 1998). The
term calculus has two syntactic categories, M and Ms. V is the category of variables
(proofs), U is the category of variables (individuals) and T is the category of terms. The
proof terms are given with an abstract syntax suggestive of the associated proof rules.
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Fig. 4. The sequent calculus PFLAX, with proof annotations.

In particular, [ ] is used for the axiom term and (M :: Ms) for the term associated with
implication on the left, giving a list of M terms suggestive of the ordering of rules in the
calculus.
M:u=x | (V;Ms) |A\V.M | pair(M, M) | inl(M) | inr(M) | smhr(M) |AU.M | pairg(T, M)
Ms:=[]|ae| (M :: Ms) | p(Ms) | ¢(Ms) | when(V.M,V.M)
smhl(V.M) | apg(T, Ms) | spl(U.V.M)
These terms can easily be typed by PFLAX, as seen in Figure 4.

4. Equivalence of the Calculi

We prove the equivalence of the term calculi and the soundness and adequacy of PFLAX.
These results prove the desired correspondence. The proofs are extensions of those for
the MJ calculus for Intuitionistic Logic (Dyckhoff and Pinto, 1998), hence most detail is
omitted. We start by giving pairs of functions that define translations between the term
assignment systems for natural deduction (NLAX) and sequent calculus (PFLAX), ex-
tending to Lax Logic those of (Herbelin, 1995; Dyckhoff and Pinto, 1998) for Intuitionistic
Logic.
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Sequent Calculus — Natural Deduction:

0:M— N 0 :AxMs—N

0(x; M s)=0"(var(z), Ms) 0'(A,[ ])=an(A)

O(Az.M)=\z.60(M) 0" (A, (M :: Ms))=0"(ap(A,0(M)), Ms)
O(smhr(M))=smhi(0(M)) 0" (A, smhl(x.Ms))=smhe(A, z.60(M))
0(x)=x ¢'(A, ae)= 6fq( )

O(pair(My, M2))=pr(0(M1),0(M2))  0'(A, p(Ms))=0"(fst(A), Ms)
0(inl(M))=i(6(M)) ¢'(A,q(Ms))= '(Sn (A), Ms)
0(inr(M))=5(0(M)) 6'(A, apq(t, Ms))=0"(apn(A,t), Ms)
O(Au.M)=Iu.60(M) 0" (A, spl(u.y.M)) = (A,u.y.@(M))
0(pairq(t, M))=prq(t,0(M))

Natural Deduction — Sequent Calculus:
Y:N-—->M P AXxMs > M

P(an(A4))=y'(4,[]) V' (var(x), Ms)=(z; Ms)
Y(Az.N)=Az.¢)(N) V' (ap(4,N), Ms)=1'(A, (Y(N) :: Ms))
Y(smhe(A,z.N))=y' (A, smhl(z.p(N))) P'(fst(A), Ms)=y'(A,p(Ms))
Y(smhi(N))=smhr(p(N)) Y'(snd(A), M s)=1'(A,q(Ms))
P(x)=x V' (apn(A,t), M )Z@ZJ'(A,GPQ(LMS))
Y(efa(A))=y'(4, ae)
Y (pr(Ni, N2))=pair(y(N1),(N2))
P(i(N))=inl(p(N))
Y (N))=inr(y(N))
w(wn(A,.’L'l.Nl,.’L'g.Ng)):

' (A, when(x1.9(N1), 2.9 (N2)))
Y(Au.N)=Au.(N)

Y(prq(t, N))=pairq(t, ¢ (N))

Plee(A, uy.N))=y'(A, spl(u.y.(N)))

We give two lemmas demonstrating the equivalence of the term calculi, that is, the
translations from one system to the other are 1-1.

Lemma 1 i) ¢(0(M)) = M; ii) ¢(0'(4,Ms)) = ¢'(4, Ms).

Proof. By simultaneous induction on the structure of M and M s. For full details see
(Howe, 1999). U

Lemma 2 i) 8(¢(N)) = N; i) 0(¢'(4, Ms)) = 6'(A, Ms).

Proof. By simultaneous induction on the structure of N and A. For full details see
(Howe, 1999). O

The following two theorems state soundness and adequacy. They show that the trans-
lations respect provability, that is, no ‘sequent’ (and hence its associated term) can be
proved in one system, but not its translation in the other.
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Theorem 1 (SOUNDNESS) The following rules are admissible:

L>M:R , IpA:P r 2 Ms:R
FepO(M): R P (A, Ms) : R

ii)

Proof. By simultaneous induction on the structure of M and M s. For full details see
(Howe, 1999). O

Theorem 2 (ADEQUACY) The following rules are admissible:

PooN:R_ I'>A:P FLMs:RM.)
I=¢(N):R T = /'(A,Ms): R

Proof. By simultaneous induction on the structure of A and N. For full details see
(Howe, 1999). [

Since the term systems are in 1-1 correspondence (lemma 1 and lemma 2) and the
translations preserve provability (theorem 1 and theorem 2), the 1-1 correspondence
between PFLAX and NLAX has been established. This is stated in the following theorem.

Theorem 3 The normal natural deductions of Lax Logic (the proofs of NLAX) are in
1-1 correspondence to the proofs of PFLAX.

An immediate corollary of theorem 3 is that PFLAX is sound and complete with respect
to natural deduction for Lax Logic. Quantified Lax Logic is demonstrated to be sound
and complete with respect to certain classes of Kripke model-structures in (Fairtlough
and Walton, 1997).

4.1. Cut Elimination

We now briefly discuss cut for PFLAX. In the usual sequent calculus, cut may be for-

mulated as follows:
I'=sP ILP=Q

'@

In PFLAX, the two judgment forms lead to the following four cut rules (as for Intuition-
istic Logic in (Herbelin, 1995; Dyckhoff and Pinto, 1998)):

(cut)

r%p rtnr IS F,P&R
(cuty)

(cuts)
r-% R r %R

r=P r2nr 'sP I''P=>R
I'=R I'=R

We call PFLAX extended with the four cut rules PFLAX“¢. We can give reduction rules
for PFLAX®¥t and prove the weak cut elimination theorem for the logic. We can also
prove strong normalisation for the term system associated with the logic, hence strong
cut-elimination. Details and proofs (extending those for Intuitionistic Logic in (Herbelin,
1995; Dyckhoff and Pinto, 1998)) can be found in (Howe, 1998).

(cuts) (cuty)
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Theorem 4 The rules (cuty), (cuts), (cuts), (cuts) are admissible in PFLAX.

Theorem 5 The cut reduction system for PFLAX strongly normalises.

5. Deciding Lax Logic

It is useful and interesting to have a decision procedure for any logic. This section de-
scribes a decision procedure for propositional Lax Logic. To the best of our knowledge,
no decision procedure for propositional Lax Logic has been presented before.

The new calculus uses a history mechanism to ensure termination of backwards proof
search. History mechanisms were introduced in (Heuerding et al., 1996; Heuerding, 1998).
The refined history mechanism used here can be found in (Howe, 1997; Howe, 1998).

Another approach to deciding propositional logics is by the use of ‘contraction-free’
sequent calculi, such as the one for propositional Intuitionistic Logic given in (Dyckhoff,
1992; Hudelmaier, 1993). If such a decision procedure for Lax Logic could be found,
we would expect it to be faster than one involving a history mechanism. An investi-
gation of contraction-free calculi for Lax Logic can be found in (Avellone and Ferrari,
1996). Unfortunately, this investigation did not succeed in finding a contraction-free
calculus. We believe that a contraction-free calculus for Lax Logic cannot be found,
as (for arbitrary n) examples can be constructed which require an entire formula in
a sequent to be contracted n times in a proof. As an example, consider the sequent
B> (0cADC)DoA,0B,0A D C = C, where oA D C needs to duplicated in its entirety
in order to prove the sequent.

5.1. Deciding Propositional Logics Using History Mechanisms

One approach to finding a decision procedure for a propositional logic is to place con-
ditions on the sequent calculus to ensure termination of search. It is elegant to be able
to build the content of these conditions into the sequent calculus itself. This is how the
calculus for theorem proving in this section is developed.

In order to ensure termination of backward proof search, we need to check that the
same sequent (modulo number of occurrences of identical formulae) does not appear
again on a branch, that is, proof search does not loop. Avoiding loops can also prevent
the unnecessary computation arising from a finite number of passes through a loop in a
successful derivation. We need a mechanical way to detect such loops. One way to do this
is to add a history to a sequent. The history is the set of all sequents to have occurred so
far on a branch of a proof tree. After each backwards inference the new sequent (without
its history) is checked to see whether it is a member of this set. If it is we have looping
and backtrack. If not, the new history is the extension of the old history by the old
sequent (without the history component), and we try to prove the new sequent, and so
on. Unfortunately, this method is space inefficient as it requires long lists of sequents to
be stored by the computer, and all of this list has to be checked at each stage. When
the sequents are stored, far more information than necessary is kept. Efficiency would be
improved by cutting down the amount of storage and checking needed to prevent looping.
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The basis of the reduced history is the realisation, as in (Heuerding et al., 1996), that
one need only store goal formulae (a goal formula is the succedent of a sequent) in order
to loop-check. In the calculi dealt with in this paper, once a formula is in the context it
will be in the context of all sequents above it in the proof tree. We say that the calculus
has increasing context. For two sequents to be the same they need to have the same
context (up to multiple occurrences of formulae). Therefore we may empty the history
every time the context is (properly) extended. All we need store in the history are goal
formulae. If we come to a sequent whose goal is already in the history, then it has the
same goal and the same context as another sequent — there is a loop.

There are two slightly different approaches capturing this. There is the straightforward
extension of the calculus described in (Heuerding et al., 1996), which we call the ‘Swiss
history’; more on this loop-checking method can be found in (Heuerding, 1998). There is
also related work on histories for Intuitionistic Logic in (Gabbay, 1991). Another approach
involves storing slightly more formulae in the history, but which for some calculi detects
loops more quickly. This we describe as the ‘Scottish history’ (Howe, 1997); it can, in
many cases, be more efficient than the Swiss method. In this paper we give a calculus
for Lax Logic using the Scottish history as we believe this to be the better method for
intuitionistic logics (Howe, 1997).

The generality of this approach is attractive. The history mechanism can be attached
to many calculi to give decision procedures; applications can be found in (Howe, 1998).

5.2, PFLAXHist

This section describes a history calculus for propositional Lax Logic. The calculus is
an extension of that for Intuitionistic Logic given in (Howe, 1997). The modality is
handled similarly to disjunction (disjunction is not covered in (Heuerding et al., 1996),
and requires special treatment). It uses the calculus PFLAX as a base on which to build
the calculus as this calculus has already reduced the search space to a certain extent.
PFLAX has the increasing context required for the application of the history mechanism.
However, a more usual formulation could have been used instead. PFLAXH%? can be seen
in Figure 5. Observe the two rules for (O ). These correspond to the two cases where
the new formula is or is not in the context. As noted above, this is very important for
history mechanisms. Notice that the number of formulae in the history is at most equal
to the length of the formula we check for provability.

A sequent is matched against the conclusions of right rules until the goal formula is
either a propositional variable, falsum, disjunction or a o formula This has been ensured
by the restriction on goal formulae given in the calculus (note that the rules for disjunction
on the right and somehow on the right are only possible on backtracking, or with an empty
context). A formula from the context is then selected using the rule (C) and matched
against the left rules of the calculus. The Scottish calculus keeps (as a set) a complete
record of goal formulae between context extensions. At each of the places where the
history might be extended, the new goal is checked against the history. If it is in the
history, then there is a loop, hence failure and backtracking.

There are other places where the rules are restricted to prevent looping. Where nec-
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W (_'Rl) lfP¢F W (_le) 1fP€Fa,ndJ_¢'H
Q
'sP,(PH) I' — D;H . I's P;(PH .
(P)Q) (D[,) 1fP¢'H % (_‘L) 1fP¢H
I''=—D:H I == D;H
Pop. Q .
I'= P (PH) T'=Q:(QH) () HPQEH F;;ﬂ (Ac, FPT;& (Acy)
I'=PANQ;H ’ I —= D;H I — D;H
I'= P;(P,H) . I'=Q;(Q,H) .
rspvon m) HPER sopuggy (V) HQEH

I''P= D;{D} TQ= D;{D}

(V) ifP¢land Q¢0T
FPL?D;'H

I'P = oR;{oR
L= BB (or) ifP¢H — po o) (cg) ifP¢T
I =oP,H - ° 2% oR:
D is either an atom, L, disjunction or a o formula. Where the history has been extended
we have parenthesised (P, H) for emphasis.

Fig. 5. The calculus PFLAX" ¢ (Scottish).

essary, the left rules have side conditions to ensure that the context is increasing. For
the (D) rule (which attempts to extend the context) there are two cases corresponding
to when the context is and when it is not extended. Something similar is happening in
the left rules. Take (V) as an example. In both premisses of the rule a formula may
be added to context. If both contexts really are extended, then we continue building
the proof tree. If one or both contexts are not extended then the sequent, S, with the
non-extended context, will be the same as some sequent at a lesser height in the proof
tree — there is a loop (which we describe as a trivial loop). This is easy to see: since the
context and the goal of S are the same as that of the conclusion, there must be a lower
sequent (the conclusion of an instance of (C')) the same as the premiss S. As an example
we give a derivation in PFLAX%? of the sequent in the example in section 3:
—— (a)
B,oBA(BD>A)—B ©) (az)
B,oBA(BDA) = B B,OBA(BDA)imD)

c

B,oBA(BD A) 228 4

oBA

B,oB A (B > A) *PMERY 4
B,oBAN(BDA) = A
B,oBA(BDA)=o0A

(/\£2)
(©)
(or)
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Note that the derivation of this sequent given in section 3 would be prevented by the
history mechanism, as it contains a loop.

It is now demonstrated that PFLAXH*? is equivalent to PFLAX, in terms of prov-
ability. The equivalence is proved via an intermediate calculus PFLAXP?. The calculus
PFLAXPY is the calculus PFLAX where the rule (C) is restricted so that it is only ap-
plicable when the goal formula is an atom, a disjunction, falsum or a somehow formula.

Proposition 2 The calculus PFLAX is equivalent to the calculus PFLAXP. That is,
sequent T' = G is provable in PFLAX iff I = G is provable in PFLAXP?,

The following lemma is needed in the proof of theorem 6.

Lemma 3 (CONTRACTION) The following rules are admissible in PFLAXHst;

PP -2 RH

I''P,P= R;H (C') (CII)
T,P= R H r,P-% RH
Proof. By simultaneous induction on the heights of derivations of premisses. ]

The equivalence proof below, although long, has a simple structure. An algorithm to
turn a PFLAX proof tree into a PFLAXHt proof tree is described in detail. A simple
induction argument shows that the algorithm terminates, proving the result.

Theorem 6 The calculi PFLAX and PFLAXHt gre equivalent. That is, sequentT = G
is provable in PFLAX iff sequent I' = G;{G} is provable in PFLAXHist,

Proof. From Proposition 2 we know that it is enough to show that PFLAXP is equiv-
alent to PFLAXH#t_ Tt is trivial that any sequent provable in PFLAXH#? is provable
in PFLAXP. (Use contraction (C') above instances of (Dx,) and then simply drop the
history part of the sequent). We prove the converse.

Take any proof tree for sequent I' = G in PFLAXP. By definition this proof tree is
finite, with n > 0 nodes. Using this proof tree, we construct (from the root up) a proof
tree for the sequent I' = G; {G'} in PFLAX#!_ The major difference between PFLAXP
and PFLAX %t is that the former permits loops, whereas the latter does not. Essentially
we take the PFLAXP proof tree and give a recipe for ‘snipping out’ the loops: removing
the sequents that form the loop.

The construction uses ‘hybrid trees’. A hybrid tree is a fragment of a PFLAXHt proof
tree with all branches that do not have (az), (T) or (L) leaves ending with PFLAX"
proof trees. These PFLAXP proof trees have roots which can be obtained by backwards
application of a PFLAXP rule to the top history sequent (ignoring its history). We
analyse each case of a topmost history sequent with non-history premiss(es) resulting
from application of rule (R) in the sequent tree. We write I' ~ I when the set of
formulae in multisets I' and I are the same (although the number of occurrences may
be different). We denote a series of zero or more instances of rule (R) by (R)*. We give
the proof for the o, D fragment.
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— The root of the PFLAXP? tree. We change (non-history) sequent I' = G to history
sequent I' = G; {G}.

— (R) is one of (az), (C), i.e. a rule which in PFLAX? has no side conditions. The
premiss is changed by adding the appropriate history. It becomes the history sequent
obtained by applying (backwards) the PFLAX%? rule to the original conclusion. For
example, if the situation we are analysing is

r,p5D

P2 DA
IP= D;H

() then it becomes T PSDH

(@)
We now have a new hybrid tree.

— (R) is (Dr). If the context is extended, then add the appropriate history, allowing
the replacement of the instance of (D) in PFLAXY by an instance of (D%,) in
PFLAX* %t If the context is not extended and the new goal is not in the history,
then again add the appropriate history, allowing the replacement of the instance of
(D®) in PFLAXP® by an instance of (Dx,) with a (C') in PFLAX#%! If the new
goal is in the history, there is a loop, which the history mechanism prevents. If the
history condition is not met, then below the conclusion the hybrid tree has the form:

LP=G (5n)
T=P>GH "

I = G H

where G € H', H' C H and ' ~ I'". The history is not reset at any point in this
fragment. This can easily be seen to contain the loop which is the reason for the
history condition not being met. It is transformed by removing all sequents above,
but not including, I = G;H' (along with any subtrees above excised sequents) up
to I', P = G. Adding the appropriate history to this sequent and using (one or more
instances of) (C") gives the new hybrid tree:

. !
Rf:aﬂ(ay
I'=GH
— (R) is (D). If the history condition is satisfied, then add the appropriate history,

allowing the replacement of instance of (D) in PFLAX® by an instance of (D) in
PFLAXH#t If the history condition is not satisfied, then below the conclusion the
hybrid tree has the form:

= P F&R(

FIEQR;H

D)

I'= P;H
where P € H', H' C H and I' ~ I". The history is not reset at any point in this
fragment. It is transformed by removing all the sequents above, but not including,
I'" = P;H' (along with any subtrees above excised sequents) up to I' = P. The se-

quent T’ ﬁ) R and the subtree above it are also removed. Adding the appropriate
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history to I' = P and using (zero or more instances of) (C’) gives the new hybrid
tree:
' PyH .,
"= P;H ()

— (R) is (og). If the history condition is satisfied, then add the appropriate history,
allowing the replacement of the instance of (og) in PFLAXP? by an instance of (o)
in PELAXH%t_If the history condition is not satisfied, then below the conclusion the
hybrid tree has form:

I (or)
= oP;H R

r ﬁ'P; H'
where P € H', H' C H and " ~ I'". The history is not reset at any point in this frag-
ment. It is transformed by removing all sequents from, but not including, I = P;H'
(along with any subtrees above excised sequents) up to I' = P. Adding the appropri-
ate history and using (zero or more instances of) (C') gives the new hybrid tree:

L= P;H

? Cl *

I'= P;H ()

— (R) is (og). If the side condition is satisfied, then add the appropriate history, al-
lowing the replacement of the instance of (o) in PFLAXP? by an instance of (o)
in PFLAX#%t If the side condition is not satisfied, then below the conclusion the
hybrid tree has form:

I''P=oR

oP (o[')

I' — oR;H

= SR; H
where P € I'. This is transformed by removing all sequents from, but not including,
I' = oR;H (along with any subtrees above excised sequents) up to I', P = oR. Adding
the appropriate history and using a single instance of (C') gives the new hybrid tree:

IP=oR;H

!
I' > oR;H (@)

Since the number of sequents without a history in a hybrid tree is finite and as every step
strictly decreases the number of sequents without a history, this process is terminating.
The instances of (C') may be eliminated from the constructed derivation. ]

Note that the PFLAX derivation given in section 3 is transformed by the algorithm
described in the proof to the derivation of the same sequent in PFLAXH#st

We have shown that PFLAX%! is sound and complete. To prove that it is a decision
procedure, we prove that it is also terminating — backwards proof search in the calculus
ends in success or failure after a finite number of steps.

given above.

Theorem 7 Backwards proof search in the calculus PFLAXH® s terminating.
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Proof. We associate with every sequent a quintuple of natural numbers. With a sequent
without a stoup, I' = R;H, we associate: W = (k — n,k —m,1,0,7r). With a sequent
with a stoup, T’ it R; H, we associate: W = (k —n, k—m,0, s,r). Here, k is the number
of elements in the set of subformulae of (I, R); n is the number of elements in the set of
elements of I'; m is the number of elements in 7; r is the size of goal formula R and s is the
size of the stoup formula P. (Notice that although I' is a multiset, we count its elements
as a set). These quintuples are lexicographically ordered from the left. By inspection we
see that for every inference rule W for the premisses is lower in the lexicographic order
than W for the conclusion. Hence backward proof search is terminating. [

When implementing a theorem prover, knowledge of the invertibility of the inference
rules can be useful. This information is given in the following proposition.

Proposition 3 The following inference rules of PFLAXHt gre invertible: (Or1), (ORr2),
(=r1); ("r2), (DL), (m2), (AR), (Vi), (o). The following inference rules of PFLAX! st
are not invertible: (C), (Az,), (Az,), (Vry), (Vry), (0R).

6. Conclusion

This paper has presented two proof search calculi for Lax Logic. The first, PFLAX,
is a sequent calculus for first-order quantified Lax Logic. The proofs allowed by this
calculus naturally correspond in a 1-1 way to the normal natural deductions for first-order
quantified Lax Logic. The calculus is well suited for enumerating, without redundancy,
all proofs in the logic. This makes the calculus useful in contexts where proof search is
for normal natural deductions, such as in (constraint) logic programming.

The second calculus, PFLAX#¢ bhuilds on the propositional fragment of the first
calculus to give a decision procedure for propositional Lax Logic. Propositional Lax
Logic has been used in hardware verification and PFLAXH%? could be of use in this
area. The calculus works by adding a history mechanism to the propositional calculus
to prevent looping. This technique is general and may be applied to a wide range of
sequent calculi for propositional logics to yield decision procedures. We believe that, to
date, PFLAX*%? is the only effective decision procedure for propositional Lax Logic.

Acknowledgements 1 would like to thank Roy Dyckhoff for his helpful advice during many
useful and interesting discussions.
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