

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2000). Specialising finite domain programs with

polyhedra. Paper presented at the Logic Programming Synthesis and Transformation 1999,
22 - 24 September 1999, Venezia, Italy.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1706/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Specialising Finite Domain Programs Using Polyhedra

Jacob M. Howe and Andy King

Computing Laboratory
University of Kent, Canterbury, CT2 7NF, UKfJ.M.Howe, A.M.Kingg@ukc.ac.uk

Abstract. A procedure is described for tightening domain constraintsof finite
domain logic programs by applying a static analysis based onconvex polyhedra.
Individual finite domain constraints are over-approximated by polyhedra to de-
scribe the solution space overn integer variables as ann dimensional polyhedron.
This polyhedron is then approximated, using projection, asan n dimensional
bounding box that can be used to specialise and improve the domain constraints.
The analysis can be implemented straightforwardly and an empirical evaluation
of the specialisation technique is given.

1 Introduction

Finite domain constraint logic programs classically have two components: a constraint
component and a generate component. The constraint component posts to the store
constraints which characterise the problem and define the search space. The generate
component systematically enumerates the search space witha labelling strategy (such
as fail first). Tightening the constraints, for example the domain constraints that bound
the values of the variables, reduces the search space and thereby speeds up the program.

In order to reduce the search space, finite domain constraintsolvers propagate con-
straints on the values that can be taken by the variables. Constraint propagation does
not necessarily have to be applied with labelling and many solvers, for example the
ECLiPSe and SICStus finite domain solvers, can prune the values of variables before
any labelling is applied. This paper describes in detail andempirically evaluates one
technique for performing constraint propagation at compiletime through program spe-
cialisation.

The analysis in this paper is founded on classic work on polyhedral approxima-
tion [5], [6]. Finite domain constraints are interpreted asrelations over sets of points.
These constraints are over approximated and represented asa (possibly unbounded)
polyhedron. The intersection of polyhedra corresponds to composing constraints. Pro-
jection onto an integer grid gives (low-valency) domain constraints that can be added
to the program without compromising efficiency. The main technique for propagating
constraints in finite domain solvers is by bound propagation. This involves substituting
known variable bounds into linear constraints to give new variable bounds. The polyhe-
dral analysis described here is a stronger compiletime technique than bound propaga-
tion; compiletime bound propagation over linear finite domain constraints is subsumed
by the technique described in this paper. The example in Figure 1 illustrates that poly-
hedral analysis can give considerably tighter approximations than those resulting from

-
6
0 1 2 3 4 5

0

1

2

3

4

5
:- use module(library(clpfd)).
main:-

domain([X, Y], 0, 6),
Y#>=X-1,
Y#=<X+1,
Y#>=4-X,
Y#=<6-X.

Fig. 1. The polyhedron represented byfy � x � 1; y � x + 1; y � 4 � x; y � 6 � xg with
variable domainsx 2 [0; 6℄; y 2 [0; 6℄.
bound propagation. In this example, projection onto each ofthe variables gives bounds3=2 � x � 7=2; 3=2 � y � 7=2. Tightening to integers defines the finite domain so-
lution setx 2 [2; 3℄; y 2 [2; 3℄, which can be used to specialise the domain constraints
of the original program todomain([X, Y], 2, 3). Bound propagation does not
tighten the variable bounds at all.

The polyhedral analysis described in this paper develops the static analysis of con-
straint logic programs outlined in [14]. However, the analysis in this paper is specifi-
cally tailored to specialise finite domain programs. In particular, the analysis is designed
to complement runtime constraint propagation techniques.As the example above il-
lustrates, polyhedra capture deep inter-variable relationships which cannot always be
traced in bound propagation. Note, however, that the technique is, to a certain extent,
dependent on the data being present in the program – a static analysis cannot reason
about runtime data. This paper makes the following contributions:� it presents a deterministic algorithm (not involving labelling) based on polyhedra

for refining domain constraints and it shows that the analysis can be easily imple-
mented using constraint solving machinery;� it shows how interval and polyhedral approximating techniques can be combined
to reason about non-linear constraints;� the analysis and the associated program transformation areshown to be correct;� an empirical study and evaluation of the technique applied to SICStus finite domain
programs is given. The analysis can significantly improve the speed of programs
(sometimes by several orders of magnitude);� applying the analysis through specialisation means that the solver does not need
to be modified. Specialisation never impedes built-in constraint propagation tech-
niques and comes with a no slow down guarantee. Moreover, theimproved domain
constraints often interact with built-in constraint propagation techniques resulting
in further pruning. Interestingly, the analysis can be interpreted as a compiletime
solution to combining constraint solvers.

The structure of the paper is as follows: section 2 works through an example pro-
gram to illustrate the way in which the analysis works and itspower; section 3 for-
malises the analysis in terms of abstract interpretation; section 4 describes the various

mathematical techniques utilised in the analysis; section5 compares the approach taken
by this paper with bound propagation; section 6 works through another example pro-
gram to illustrate all of the techniques introduced in the paper; section 7 describes the
implementation of the analysis and gives the results of its application to some bench-
mark programs; section 8 reviews related work; section 9 concludes and outlines future
work.

2 Example: Magic Square

This example illustrates the approach taken by this analysis, as well as its power relative
to compiletime bound propagation.

The magic square puzzle takes a three by three grid and the numbers one to nine
and sets the challenge of placing the numbers in the grid so that all of the rows, columns
and diagonals sum to the same number. The solutions are ordered so as to reduce the
number of solutions identical up to symmetry which can be found. A SICStus finite
domain program to solve this problem is:
:- use module(library(clpfd)).
square(A, B, C, D, E, F, G, H, I):-

domain([A, B, C, D, E, F, G, H, I], 1, 9),
all different([A, B, C, D, E, F, G, H, I]),
A#<C, A#<G, A#<I, %symmetry constraints
A+B+C #= D+E+F, A+B+C #= G+H+I,
A+B+C #= A+D+G, A+B+C #= B+E+H, A+B+C #= C+F+I,
A+B+C #= A+E+I, A+B+C #= C+E+G,
labeling([], [A, B, C, D, E, F, G, H, I]).

(In SICStus,domain(List, Inf, Sup) abbreviatesInf#=<X, X#=<Sup, for
each variableX in List.) The finite domain constraints in this program are approx-
imated by a polyhedron (each constraint is interpreted as a non-strict inequality with
rational coefficients, these inequalities define the polyhedron). Theall different
constraint cannot be captured in an informative way by a polyhedron, hence is ignored.
The finite domain constraints are abstracted to the polyhedron defined by the following
linear inequalities (an equality can be understood as a pairof inequalities):1 � A;B;C;D;E; F;G;H; I � 9A � C � 1 A � G� 1 A � I � 1A+B + C = D +E + F A+B + C = G+H + IA+B + C = A+D +G A+B + C = B +E +HA+B + C = C + F + I A+B + C = A+E + IA+B + C = C +E +G
The above inequalities define a polyhedron in nine (the number of variables) dimen-
sional rational space. Projection onto each variable will give rational bounds on those
variables. The result of this is as follows:3=2 � A � 11=2 4 � B � 8 7=2 � C � 15=25 � D � 9 3 � E � 7 1 � F � 55=2 � G � 13=2 2 � H � 6 9=2 � I � 17=2

A specialised finite domain program is obtained by reinterpreting these new rational
bounds as finite domain bounds, by tightening to integer values. The constraintdo-
main([A, ..., I], 0, 9) is replaced in the program by the finite domain con-
straints given below. The bounds in the left column below arethose obtained by the
above procedure, those on the right are those that SICStus finds by bound propagation.

%Polyhedral %Bound Propagation
2 #=< A, A #=< 5, 1 #=< A, A #=< 8,
4 #=< B, B #=< 8, 1 #=< B, B #=< 8,
4 #=< C, C #=< 7, 2 #=< C, C #=< 9,
5 #=< D, D #=< 9, 2 #=< D, D #=< 9,
3 #=< E, E #=< 7, 1 #=< E, E #=< 9,
1 #=< F, F #=< 5, 1 #=< F, F #=< 9,
3 #=< G, G #=< 6, 2 #=< G, G #=< 9,
2 #=< H, H #=< 6, 1 #=< H, H #=< 9,
5 #=< I, I #=< 8, 2 #=< I, I #=< 9,

Notice that the propagation of constraints by the polyhedral method is better than that
of bound propagation. That the improvement is a large one canbe seen by calculating
the number of points in each of the search spaces. The finite domain which results from
the polyhedral analysis has8� 105 points, whereas the domain resulting from bounds
propagation has approximately1:9�108 points, nearly 240 times larger a search space.

3 Formalised Analysis

This section formalises both the analysis and the program transformation described in
this paper, then states their correctness. Details and proofs can be found in [9].

3.1 Polyhedral Analysis

In order to have confidence in the analysis a mathematical justification is essential. The
formalisation is an application of thes-approach detailed in [4] and is fairly dense and
complicated. Thus, before giving the formal analysis, an informal overview of the re-
mainder of the section is given, indicating where the operations described in section
4 are required. Abstract interpretation is used to connect a(concrete) ground seman-
tics for finite domain constraint programs [11], [12] to an (abstract)s-semantics [4]. A
Galois insertion links the concrete domain (the set of ground interpretations) and the
abstract domain (the set of interpretations over constrained unit clauses). The concrete
semantics is essentially the set of solutions for a given program. The abstract semantics
(formulated in terms of a fixpoint) is an over-approximationof this set of solutions,
with each predicate constrained by the conjunction of the constraints on its body atoms.
The abstract operator approximates non-linear constraints as linear constraints. In or-
der that the formalised analysis is the same as that implemented, the number of unit
clauses is kept small by over-approximation in the form of a convex hull calculation.
The termination of the fixpoint calculation is ensured by theuse of a widening. The
analysis is proved to be correct, as is the program transformation (which involves the
use of projection with the fixpoint).

Concrete Domain For a (finite domain) programP , let� denote the set of predicate
symbols that occur inP and let� denote the set of integer (Z) and function symbols
that occur inP . LetDFD be the set of finite trees over the signature�. LetRFD be the
set of constraint predicates. LetV be a countable set of variables.CFD is the system
of finite domain constraints generated fromDFD, RFD , V and the function symbols.
Elements ofCFD are regarded modulo logical equivalence andCFD is ordered by
entailment,j=FD. (CFD ; j=FD;^) is a (bounded) meet-semilattice with bottom and top
elementstrue andfalse.CFD is closed under variable elimination and9fx1; :::; xng

(projection out) abbreviates9x1 : : : 9xn:
. 9X
 (projection onto) is used as a shorthand
for 9(var(
)nX)
, wherevar(o) denotes the set of variables occurring in the syntactic
objecto. The interpretation base forP is BFD = fp(t) j p 2 �; t 2 (DFD)ng. The
concrete domain is(P(BFD);�;\;[), a complete lattice.

Abstract Domain Let DLin be the set of rational numbers,Q. Let CLin be the sys-
tem of linear constraints overDLin, V , the set of constraint predicatesRLin and the
function symbols.CLin is quotiented by equivalence and ordered by entailment,j=Lin.(CLin; j=Lin;^) is a (bounded) meet-semilattice and is closed under projection out,9, and projection onto,9. Unit clauses have the formp(x)
 where
 2 CLin.
Equivalence on clauses,�, is defined as follows:(p(x)
) � (p(x0)
0) iff9var(x)
 = 9var(x)(
0 ^ (x = x0)). The interpretation base for programP isBLin =f[p(x)
℄�jp 2 �;
 2 CLing. Entailment induces an order relation,v, onP(BLin)
as follows:I v I 0 iff 8[p(x)
℄� 2 I:9[p(x)
0℄� 2 I 0:
 j=Lin
0. P(BLin)
ordered byv is a preorder. Quotienting by equivalence,�, gives the abstract domain(P(BLin)=�;v;t), a complete join-semilattice, wheret1i=1[Ii℄� = [[1i=1Ii℄�.

Concretisation The concretisation map
 : CLin ! CFD , interprets a linear constraint
over the rationals as a finite domain constraint as follows:
 mXi=1 nidi xi � nd! = mXi=1 D:nidi xi � D:nd ; whereD = d: mYi=1 di
Note that the coefficients of
(
Lin) are inZ. The abstraction map,� : CFD ! CLin
can be defined in terms of
 by �(
FD) = ^f
Linj
FD j=FD
(
Lin)g. Observe that�,
 form a Galois insertion.

The concretisation map
 : P(BLin)=� ! P(BFD) on interpretations is defined
in terms of the concretisation map for constraints:
([I ℄�) = fp(t)j[p(x)
℄� 2 I; (x = t) j=FD
(
)g:
The abstraction map� : P(BFD)! P(BLin)=� is defined as follows:�(J) = [f[p(x)
℄�jp(t) 2 J; �(x = t) =
g℄�
Proposition 1 �;
 on interpretations form a Galois insertion.

Concrete SemanticsThe fixpoint semantics,FFD, is defined in terms of an immediate
consequences operatorT gP : P(BFD)! P(BFD), defined byT gP (I) = �p(t) ����w 2 P;w = p(x)
; p1(x1); :::; pn(xn);pi(ti) 2 I; (x = t) j=FD 9var(x)(^ni=1(xi = ti) ^
) �T gP is continuous, thus the least fixpoint exists andFFD[[P ℄℄ = lfp(T gP).
Abstract Semantics To define the immediate consequences operator for the abstract
semantics, a special conjunction operator^FL : CFD � CLin ! CLin is introduced.
The operator̂ FL is assumed to satisfy the property
FD ^
(
Lin) j=FD
(
FD ^FL
Lin). This operator allows the approximation of non-linear finite domain constraints.

The fixpoint semantics,FLin, is defined in terms of an immediate consequences
operator,T sP : P(BLin)=�! P(BLin)=�, defined byT sP ([I ℄�) = [J ℄�, whereJ = 8>>>><>>>>:[p(x)
℄� ����������w 2 P;w = p(x)
0; p1(x1); :::; pn(xn);[wi℄� 2 I; wi = pi(yi)
i;8i:(var(w) \ var(wi) = �);8i 6= j:(var(wi) \ var(wj) = �);
 =
0 ^FL (^ni=1((xi = yi) ^
i)) 9>>>>=>>>>;T sP is continuous, thuslfp(T sP) exists. SinceP(BLin)=� is a complete partial order,
Kleene iteration [5] can be used to computeFLin[[P ℄℄ = lfp(T sP) = t1i=1T sP " i, whereT sP " 0 = � andT sP " i+ 1 = T sP (T sP " i).
Space-Efficient Over-Approximation To keep the number of unit clauses inT sP " k
small, hence the fixpoint calculation manageable,T sP " k is over-approximated by an
interpretationI (that is,T sP " k v I) containing at most one unit clause for each
predicate symbol.

The join for the domain of linear constraints,_ : CLin � CLin ! CLin, is defined
by
1 _
2 = ^f
 2 CLinj
1 j=Lin
;
2 j=Lin
g. When the constraints are interpreted
as defining polyhedra, the meet corresponds to the closure ofthe convex hull. The op-
erator is lifted in stages to an operator on the abstract domain. First it is lifted to the
interpretation base,_ : B?Lin�B?Lin ! B?Lin, whereB?Lin = BLin[f?g, as follows:[p(x)
1℄� _ [p(x)
2℄� = [p(x)
1 _
2℄�[p(x)
1℄� _ [q(y)
2℄� = ? if p 6= q[p(x)
℄� _ ? = [p(x)
℄�? _ [p(x)
℄� = [p(x)
℄�
This in turn defines the unary function,_ : P(BLin)=�! P(BLin)=�, on the abstract
domain given by_([I ℄�) = [[w2If_u2I(w_u)g℄�. Since for everyI 2 P(BLin)=�,T sP (I) v _ Æ T sP (I), it follows thatlfp(T sP) v lfp(_ Æ T sP). Hence_ does not com-
promise safety.

Termination of the Polyhedral Analysis As before, Kleene iteration can be used to
computelfp(_ Æ T sP). However, the chain of iterates_ Æ T sP " k may not stabilise in a
finite number of steps. In order to obtain convergence, widening (a fixpoint acceleration
technique) [5], is applied.

Given a standard widening on polyhedra [3], [5], [6] (or equivalently, on linear
constraints),O : CLin�CLin ! CLin, a widening,O : B?Lin�B?Lin ! B?Lin, (whereB?Lin = BLin [f?g) on the interpretation base is induced as follows:[p(x)
1℄� O [p(x)
2℄� = [p(x)
1O
2℄�[p(x)
1℄� O [q(y)
2℄� = ? if p 6= q[p(x)
℄� O ? = [p(x)
℄�? O [p(x)
℄� = [p(x)
℄�
This lifts to the abstract domain,O : P(BLin)=� � P(BLin)=�! P(BLin)=�[I1℄�O[I2℄� = [[w2I2f_u2I1(wOu)g℄�
3.2 Correctness of the Polyhedral Analysis

This section states the correctness of the analysis. That is, upward iteration of_ Æ T sP ,
with widening, stabilises at an interpretationI with lfp(T gP) v
(I). The result is a
corollary of Proposition 13 in [5].

Proposition 2 The upward iteration sequence of_ Æ T sP with wideningO is ultimately
stable with limitI andI is safe, that is,_ Æ T sP (I) v I andlfp(T gP) �
(I).
3.3 Program Transformation and its Correctness

Once an upper approximation toFFD[[P ℄℄ is computed, it can be used to transform the
program. This is done by projecting the convex polyhedron resulting from the fixpoint
calculation onto each variable in turn, tightening this interval constraint to integer values
and adding it to the initial program. The following theorem details the transformation
and also asserts safety.

An auxiliary (partial) map,�t : CLin ! CLin, is defined in order to tighten bounds
on variables to integer values, as follows:
t = u(
) ^ l(
) whereu(
) = �x � bq
 if (x � q) =
true otherwise

; l(
) = �x � dqe if (x � q) =
true otherwise
:

Theorem 1 If lfp(T gP) �
([I ℄�), thenFFD[[P ℄℄ = FFD[[P 0℄℄, whereP 0 =8>>>>>><>>>>>>:w0
������������w 2 P;w = p(x)
; p1(x1); :::; pn(xn);[wi℄� 2 I; wi = pi(yi)
i;8i:(var(w) \ var(wi) = �);8i 6= j:(var(wi) \ var(wj) = �);
0 =
 ^ (^y2var(w)
((9y ^ni=1 ((xi = yi) ^
i))t));w0 = p(x)
0; p1(x1); :::; pn(xn)

9>>>>>>=>>>>>>;

4 Computational Techniques

The analysis and program transformation strategy is parameterised by the operators^FL andO. In this section instances of these operators are specified and algorithms for
computing other operations, such as_ and9, are presented.

In particular this section reviews some computational techniques for: calculating the
convex hull of twon dimensional polyhedra; projecting ann dimensional polyhedra
onto anm dimension space wherem < n; widening chains of polyhedra; approximat-
ing non-linear constraints by polyhedra.

4.1 Projection

The analysis described in this paper requires a projection that takes as input a set of
inequalities inn variables and outputs a set of inequalities in a subset of these variables.
The output is such that all solutions of the original set of inequalities can be specialised
to a solution of the new, and all solutions of the new set of inequalities represent partial
solutions of the original. Less formally, projection is thecalculation of the shadow cast
by the polyhedron represented by the inequalities onto the space defined by the subset of
variables. For example, the projection of a two dimension polyhedron onto the variablex is the shadow cast onto thex-axis when the polyhedron is lit from above.

In the implementation of the analysis given in this paper, projection is performed
using Fourier-Motzkin variable elimination (see, for example, [10], [12], [13], [18]), as
this is the algorithm used by SICStus. Fourier-Motzkin variable elimination takes a set
of linear inequalities and eliminates variables one at a time until the only variable occur-
rences left are of those variables being projected onto. Inequalities are arranged so that
the variable to be eliminated is on the lesser side of all inequalities in which it occurs.
It will either have a positive or negative polarity. All possible ways of eliminating the
variable from a pair of inequalities are explored, giving a new set of inequalities with
one variable fewer. This is illustrated with the following simple example, projecting
onto the single variablez:x+ y � 4x� y � 6z � y shuffle; x � 4� y�x � �6� yz � y eliminate; 0 � �2� 2yz � y shuffle; y � �1�y � �z eliminate; z � �1
4.2 Convex Hull

The convex hull of two polyhedra is the smallest polyhedron containing both polyhedra.
The convex hull calculations are performed as in [3]. Polyhedra are represented as a set
of linear inequalities. The convex hull,PC , of two polyhedra,P1 andP2, is given by
the following (wherex is a vector andAi; Bi are matrices, together giving the linear
inequalities that define the polyhedra):P1 = fx1 2 Qn jA1x1 � B1g; P2 = fx2 2 Qn jA2x2 � B2gPC = �x 2 Qn ����x = y1 + y2 ^ A1y1 � �1B1 ^ A2y2 � �2B2^ �1 + �2 = 1 ^ ��1 � 0 ^ ��2 � 0 �

By projecting out�1; �2; y1; y2, that is, projecting ontox, the linear inequalities for the
convex hull can be found. In this way, the convex hull calculation is reduced to variable
elimination.

Example 1.Figure 2 lists a program giving rise to polyhedra that are a square and
triangle. The trianglePT and the squarePS are described below:

-
6
0 1 2 3 4 5

0

1

2

3

4

5
:- use module(library(clpfd)).
p(X, Y):-

-X+Y#=<1,
X#=<2,
1#=<Y

p(X, Y):-
1#=<X, X#=<3,
2#=<Y, Y#=<4.

Fig. 2. The Convex Hull of trianglePT and squarePSPT = 8<:�xy�������0��1 11 00 �11A�xy� � 0� 12�11A9=; ; PS = 8>><>>:�xy���������0BB��1 01 00 �10 1 1CCA�xy� � 0BB��13�24 1CCA9>>=>>;
Putting these together as in the definition, and then projecting out �1; �2; y1; y2, the
convex hull,PC , is found to bePC =8>>>><>>>>:�xy� ����������0BBBB� 0 �11 �11 00 1�3 1 1CCCCA�xy� � 0BBBB��11341 1CCCCA9>>>>=>>>>;
Observe thatPC describes the convex hull: a pentagon.

4.3 Approximating Non-Linear Constraints

A non-linear inequality cannot be accurately approximatedby polyhedra. However,
suppose that the non-linear inequalityI describes a regionR and thatP is a polyhedron.
The intersectionR \ P can sometimes be approximated by a polyhedronP 0 such thatP 0 � P . This problem arises in the analysis of finite domain programs that contain non-
linear constraints. This section describes an algorithm for computing such aP 0 given
non-linear inequalityI and polyhedronP .

The following approximation technique arose from bound propagation algorithms
for non-linear inequalities [13] and is outlined below:

1. I is rewritten to(^ni=1QXi � QYi) ^ (^mj=1PZj �
j) whereXi; Yi; Zj are
variable multisets and
j is a constant. For brevity the rewrite rules are omitted,
instead a simple illustrative example is given. The non-linear inequalityz � x �(u+ v)� y is rewritten toz � x� a� y; a� u� v � 0; u+ v � a � 0, wherea
is a fresh variable.

2. In each product
QWi, whereWi = fw1; :::; wng, every variablewi has an upper

bound,ui, and a lower bound,li, which can be calculated by projectingP onto
that variable (whereli; ui 2 Q [f+1;�1g). For everyk 2 f1; :::; ng, upper
and lower bounds for the product

QWi are computed bywuk = wk:Qi2S ui andwlk = wk:Qi2S li, whereS = f1; :::; ng � fkg.
3. The upper and lower bounds on the products generate the following linear con-

straint for each non-linear inequality
QXi �QYi, whereXi = fx1; :::; xng; Yi =fy1; :::; ymg: Li = ^fxlk � yuj j k 2 f1; :::; ng; j 2 f1; :::;mgg

4. Finally the regionR \ P is approximated by the polyhedronP 0 = R0 \ P whereR0 is the polyhedron represented by(^ni=1Li) ^ (^mj=1XZj �
j)
Example 2.Consider the regionR = f(x; y; z)jz � x � yg and the polyhedronP =f(x; y; z)j1 � x; 2 � y � 4g. The regionR \ P is approximated by a polyhedronP 0.
The non-linear inequality does not need to be rewritten as itis already in the required
form. ProjectingP ontox andy gives1 � x � 1 and2 � y � 4. Then,x � y has
upper bounds1, 4x and lower boundsy, 2x. z has itself as upper and lower bounds.
These generate the following linear inequalitiesz � 1; y � z; z � 4x; 2x � z. Call
the region generated by these inequalitiesR0. ThenP 0 = R0 \ P .

The inequalities that arise assume the form
1x �
2y rather than
1x �
2. This is
because if a tighter bound onx (or y) is later found, then the inequality
1x �
2y can
potentially tighteny (or x). This can only improve accuracy.

The analysis of non-linear constraints given here is an instance of the special con-
junction operation,̂ FL, given in section 3:R ^FL P = P 0.
4.4 Widening

Widening is required to ensure that the fixpoint calculationwill stabilise, that is, the
polyhedra in the final two iterates coincide. Widenings for polyhedra can be found in
[3], [5] and [6]. To keep the exposition reasonably self-contained, the [5] widening is
detailed here.

Polyhedra are represented by sets of linear inequalities. If the previous iteration has
produced polyhedronPk = fx 2 Qn j ^ Skg, whereSk = fI1; :::; Ilg and the current
iteration has given polyhedronPk+1 = fx 2 Qn j^Sk+1g, whereSk+1 = fJ1; :::; Jmg
(Ii andJj are linear inequalities), then applying the widening results in the polyhedron
given by the following set of linear inequalities:fI 2 Skj ^ Sk+1 j= Ig [fJ 2 Sk+1j9I 2 Sk: ^ ((Sk � fIg) [fJg) = ^Skg:

Example 3.A smaller triangleP1 = f(x; y)jy � x; x � 1; y � 0g, and a larger
triangleP2 = f(x; y)jy � 2x; x � 1; y � 0g are widened to give the regionP1OP2 =f(x; y)jx � 1; y � 0g. The inequalityy � x fromP1 is not satisfied by all points inP2
and the other inequalities inP1 are. The inequalityy � 2x fromP2 does not satisfy the
swapping condition, and the other inequalities describingP2 do.

5 Comparison With Bound Propagation

As noted above, the polyhedral analysis described in this paper subsumes compile-
time bound propagation. Bound propagation is used in finite domain systems, such as
ECLiPSe and SICStus. Good expositions of bound propagation can be found in [1] and
[13]. A brief outline of the technique is given here.

Given any inequality, the known bounds for each of the variables occurring in the
inequality are used to find possibly tighter bounds for thesevariables. One variable
is chosen and the upper and lower bounds for the other variables are used to find a
possible upper or lower bound for this chosen variable. If the bound calculated in this
way is tighter than the previous known bound for that variable, this bound is adopted
in place of the older, weaker one. This process can be repeated for each variable in
the inequality. An equality can be treated as two inequalities. To give a very simple
illustrative example consider the following two variable case:y = x+ 7; 0 � x � 3; 0 � y � 12:
Propagating the bounds onx into the inequalities involvingx andy it is found that7 � y � 10, tighter bounds than previously.

Bound propagation can give good tightening of constraints.For example, bound
propagation in the send more money problem (one of the example programs, see Table
1) actually gives the same results as the polyhedral analysis! However, there are many
examples where the polyhedral analysis improves on bound propagation, for example
the program in Figure 1 of the introduction. Improvement canalso be seen in the pro-
gramalpha (see Table 1). Improvements over bound propagation can occur in any
program with more than one inequality containing more than one variable. In bound
propagation, individual constraints interact with the domain constraints in the store, but
are unable to interact with each other. The power of the polyhedral analysis comes from
allowing this interaction between constraints in order to achieve better propagation.

It can be seen that the polyhedral method subsumes bound propagation for linear
constraints, when both are applied as static analyses. Thisfollows since bound propaga-
tion can be viewed as performing Fourier-Motzkin variable elimination on a subset of
the inequalities comprising the problem: a subset containing only the bounds from the
store and a single inequality with more than one variable. Therefore, as extra informa-
tion can only lead to tighter bounds, variables will be bounded at least as tightly after
Fourier-Motzkin variable elimination for the full problem.

6 Example: Calculating Factorials

This section works through a more complicated example. Performing the analysis auto-
matically on arbitrary (recursive) programs requires machinery which includes, among

other things: convex hulls, projection, and widening. These operations are illustrated by
the example in this section. The example program calculatesfactorials. The objective
again is to infer bounds on the variables. Usually this reduces searching, but in this case
it simply tightens one of the constraints – the point of the example being illustrative.
The program (in SICStus syntax) is as follows:

:- use module(library(clpfd)).
fac(0, 1).
fac(N, NewF):-

N#>=0, NewF#>=0,
NewF#=N*F,
M #= N-1,
fac(M, F).

The clausefac(0,1). is the first considered. The arguments are described by the
polyhedronP1 = f(x; y)jx = 0; y = 1g. Next, the second clause is considered. The
problem here is to compute a two dimensional polyhedron thatdescribes the coordinate
space (N, NewF). First observe thatfac(M, F) can be described by the polyhedronf(N;NewF;M;F)jM = 0;F = 1g. Note too, that the constraintsM #= N - 1, N#>=0,
NewF#>=0 are represented by the polyhedronf(N;NewF;M;F)jM = N � 1;N �0;NewF � 0g. The intersection of these two polyhedra,f(N;NewF;M;F)jM = 0;F =1;M = N � 1;N � 0;NewF � 0g, represents the conjunction of the four constraints.
The non-linear constraintNewF#=N*F cannot, by itself, be accurately represented by
a polyhedron. Note, however, that the polyhedronf(N;NewF;M;F)jNewF = N;M =0;F = 1;M = N � 1;N � 0;NewF � 0g accurately describes all the constraints. Pro-
jecting the four dimensional polyhedron onto the coordinate space(N;NewF) gives the
polyhedronf(N;NewF)jNewF = N; 0 = N� 1g, equivalentlyP 02 = f(x; y)jx = 1; y =1g.

To avoid representing disjunctive information, the solution setP1 [P 02 is over ap-
proximated by its convex hull,P 002 = f(x; y)j0 � x � 1; y = 1g. The bound in-
formation extracted from the convex hull by projection is exactly the same as that
extracted from the union of the original pair of polyhedra byprojection. The convex
hull gives the second iterate. Continuing in this fashion will give a sequence of in-
creasing polyhedra which does not stabilise. A fixpoint acceleration technique, widen-
ing, is therefore used to enforce convergence (albeit at theexpense of precision). The
widening essentially finds stable bounds on the sequence of polyhedra.P1 is widened
with P 002 to give the polyhedronP2 = f(x; y)j0 � x; y = 1g. P2 6= P1, and so the
fixpoint stability check fails and thus the next iteration iscalculated. This results in
the polyhedraP 03 = f(x; y)jx � 1; y � 1g, P 003 = f(x; y)jx � 0; y � 1g andP3 = f(x; y)jx � 0; y � 1g.P2 6= P3 and stability has still not been reached. However,P3 = P4, and the fixpoint is found. ProjectingP3 onto the first and second arguments
gives the boundsx � 0; y � 1.

Specialising the program by adding these bounds results in the following:
:- use module(library(clpfd)).
fac(0, 1):-

0#>=0, 1#>=1.
fac(N, NewF):-

N#>=0, NewF#>=1,
NewF#=N*F,
M #= N-1,
fac(M, F).

The redundant constraints in the first clause can be removed.The second clause has one
of its domain constraint trivially tightened. The specialisation will always preserve the
set of computed answer substitutions.

7 Implementation and Experimental Results

The analysis has been implemented in SICStus Prolog 3.8. Theanalyser uses ratio-
nal constraints rather than real constraints as problematic rounding errors occur with
the CLP(R) package. Thecall residue built-in that comes as part of the SICS-
tus CLP(Q) package is used for projection in this implementation. Other parts of the
analyser, such as the convex hull machinery, are taken from [3]. The analyser uses a
semi-naı̈ve iteration strategy.

The prototype analyser was tested on a selection of programsfrom the benchmarks
suite that comes with the SICStus release of the CLP(FD) package. The programs were
chosen for their compatibility with the parser: those programs which passed through the
prototype front-end (abstractor) without giving error messages were used.

Bound propagation is applied by the finite domain solver at runtime. To demonstrate
that the polyhedral analysis is doing more than shifting some of the work done by bound
propagation from runtime to compiletime, experiments werealso carried out with bound
propagation applied as a compiletime analysis and program transformation.

The programsalpha, crypta, donald andsmm are all cryptoarithmetic prob-
lems. Letters are assigned digits or numbers and equations involving these letters are
given. The solution is an assignment of numbers/digits to letters so that the equations
are satisfied. The programseq10 andeq20 find solutions to sets of linear equations in
seven variables. The programfac calculated factorials (in this case10!). The program
magic finds magic squares (up to equivalence). The programfive is a version of the
zebra problem, where five lists of five elements are assigned the numbers one to five so
that certain relational properties hold. The programpythagor calculates Pythagorean
triples (in this case with individual values up to one thousand).

The results of the analysis can be seen in Table 1. Vars is the sum of the arities
of the predicates that occur in the program; T. Vars is the number of these argument
positions tightened by the analysis; Time is the runtime of the original program (in mil-
liseconds); T. Time is the runtime of the specialised program (in milliseconds); Bound
Prop. is the runtime of the program when specialised by the values obtained by bound
propagation (in milliseconds); Fixpoint is the time taken to calculate the fixpoint (in
milliseconds); Fix and Proj. is the runtime of the analysis including the final projection
stage (in milliseconds). Note that all times are averages taken over one hundred runs.
The experiments were conducted using a PC with a 366MHz Pentium processor and
128Mb of RAM, running Red Hat Linux 6.1.

All but one of the example programs have at least one predicate position tightened
by the analysis, indicating that the analysis can be widely applied. No specialised pro-

Program VarsT. VarsTime T. Time Bound Prop.Fixpoint Fix. and Proj.
alpha 26 25 2390 4 2390 280 2100
crypta 10 3 6 6 6 460 59430
donald 10 3 47 47 47 80 490
eq10 7 7 13 0.7 13 100 110
eq20 7 7 20 0.2 19 130 140
fac10 2 2 0.8 1.0 0.8 260 260
five 25 3 1.8 1.8 1.8 100 190
magic 9 9 6.5 3.2 6.4 100 230
smm 8 3 0.9 0.9 0.9 60 340
pythagor1000 3 0 155 154 154 180 190

Table 1.Test Results

gram runs slower than before. After specialisation, the programsalpha, eq10, eq20
andmagic run significantly quicker than both the original programs and the programs
specialised by adding the results of bound propagation. This indicates that the analy-
sis can significantly prune the search space. The fixpoint analysis times are reasonable
considering that the analyser is a prototype in an early stage of development. In par-
ticular, the iteration technique can be improved. Amongst the more expensive fixpoint
times are those forfac andpythagor. These programs are recursive, and although
the analyser has been designed to deal with all programs, it is expected that most finite
domain programs are not recursive. Notice that the most significant factor in analysing
many of the programs is the cost of the final projection stage.The analyser currently
uses the projection technique that comes with SICStus. It isto be expected that the use
of a projection technique tailored to the specific task of projecting onto a single variable
would give significantly improved performance.

8 Related Work

The use of convex polyhedra to describe the constraints in constraint logic programs
over the reals has been outlined in [14]. The paper does not describe an implementation
and does not directly address the analysis and specialisation of finite domain programs.

The analysis in this paper has its foundations in classic work on polyhedral approxi-
mation [5], [6]. Polyhedral approximation has been appliedin areas as diverse as: argu-
ment size analysis [3]; compiletime array bounds analysis [6]; termination of deductive
databases [21]; off-line partial deduction [15]; parallelisation of imperative languages
[19]; control generation for logic programs [16]; memory management of symbolic lan-
guages based on cdr-coding of lists [8]. The work in this paper directly builds on the
work of Benoy and King ([3]) to show how a finite domain programspecialiser can be
built with off-the-shelf linear constraint solving machinery.

Static analysis of finite domain constraint logic programs is not a new idea. Bagnara
[2] proposes an interval analysis for refining domain constraints. The critical observa-
tion in this paper is that a finite domain solver will usually perform constraint propa-
gation at runtime, for example through indexical based propagation. The static analysis

presented in this paper is designed to complement a runtime constraint analysis: poly-
hedra capture deep inter-variable relationships which cannot always be traced in bound
propagation.

The current work could be viewed as a compiletime approach tothe collaboration of
constraint solvers. There are many recent papers on collaboration of constraint solvers,
such as [17], [20]. Different kinds of constraint solvers will propagate information in
different ways, and mixing technologies often gives the best framework for solving
a problem. Using a variety of solvers can give propagation that cannot be achieved
in a single solver. The approach taken here is attractive because it uses off the shelf
technologies and combines their use, but this has the drawback that the propagation is
not as intelligent as it might be.

Another compilation technique based on projection arises in providing predictable
time-critical user interfaces, [7]. There, however, the objective is to remove runtime
constraint solving altogether.

9 Conclusions and Future Work

Analysis of finite domain constraint logic programs using polyhedra promises to be a
powerful compiletime technique for reducing the search space of finite domain con-
straint logic programs. This analysis can extract more information than bound propa-
gation alone. By using program specialisation, other methods of domain reduction can
still be applied at runtime. The analysis is safe in two senses: the specialised program
is never incorrect; it never runs more slowly that the original. The analysis can be im-
plemented straightforwardly using a rational constraint solver.

The results show that the analysis will tighten the domains of many of the variables
in programs – indeed, the analysis completely solves the problems ineq10 andeq20.
The timing values in the results table, in particular those for the programalpha (where
the analysis time plus the tightened time is less than the original time), indicate that
polyhedral analysis can give a significant speed up. As a compiletime technique, some
extra cost is not prohibitive, however, it is expected that further development will lead
to a significant speedup of analysis. The analysis can therefore be considered practical.
However, the analysis is not as powerful when data is input atruntime: clearly, in this
situation no compiletime specialisation procedure will beeffective. The programs with
which the analyser has been used have all had the data built into the programs. A wider
study of finite domain programs is needed before the significance of this drawback can
be assessed.

Future work will focus on developing the analyser. Beyond improving the convex
hull and projection calculations, there are several areas where work is in progress. The
use of widening could be delayed to improve precision and non-linear constraints could
be better approximated. The analyser will also be extended to support other finite do-
main solvers. It would be an interesting to investigate whether or not it is practical to
exploit the extra propagation gained by reanalysing the specialised programs.

Acknowledgements The work of both authors is supported by EPSRC grant number
GR/MO8769. The authors would like to thank Florence Benoy, Pat Hill, Jon Martin and
Barbara Smith for their helpful comments and suggestions.

References

1. K. R. Apt. A Proof Theoretic View of Constraint Programming. Fundamenta Informaticae,
33:1–27, 1998.

2. R. Bagnara.Data-flow Analysis for Constraint Logic-based Languages. PhD thesis, Univer-
sità di Pisa, 1997. TD-1/97.

3. F. Benoy and A. King. Inferring Argument Size Relationships with CLP(R). In J. Gal-
lagher, editor,Logic Program Synthesis and Transformation, volume 1207 ofLecture Notes
in Computer Science, pages 204–224. Springer, 1996.

4. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. Thes-semantics Approach: Theory and
Applications.Journal of Logic Programming, 19-20:149–197, 1994.

5. P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. Technical Report LIENS-92-16, Laboratoire
d’Informatique de l’Ecole Normal Superiéure, 1992.

6. P. Cousot and N. Halbwachs. Automatic Discovery of Restraints among Variables of a
Program. InProceedings of the Fifth Annual ACM Symposium on Principlesof Programming
Languages, pages 84–97, 1978.

7. H. Harvey, P. J. Stuckey, and A. Borning. Compiling Constraint Solving Using Projection. In
Proceedings of Principles and Practice of Constraint Programming, volume 1330 ofLecture
Notes in Computer Science, pages 491–505. Springer, 1997.

8. R. N. Horspool. Analyzing List Usage in Prolog Code. University of Victoria, 1990.
9. J. M. Howe and A. King. A Semantic Basis for Specialising Domain Constraints. Technical

Report 21-99, University of Kent, 1999.
10. T. Huynh, C. Lassez, and J.-L. Lassez. Practical Issues on the Projection of Polyhedral Sets.

Annals of Mathematics and Artificial Intelligence, 6:295–316, 1992.
11. J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings of the Symposium

on Principles of Programming Languages, pages 111–119. ACM Press, 1987.
12. J. Jaffar and M. J. Maher. Constraint Logic Programming:A Survey. Journal of Logic

Programming, 19-20:503–582, 1994.
13. K. Marriot and P. J. Stuckey.Programming With Constraints. MIT Press, Cambridge, MA.,

1998.
14. K. Marriott and P. J. Stuckey. The 3 R’s of Optimizing Constraint Logic Programs: Refine-

ment, Removal and Reordering. InProceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languages, pages 334–344. ACM Press, 1993.

15. J. C. Martin. Judgement Day: Terminating Logic Programs. PhD thesis, University of
Southampton, 1999.

16. J. C. Martin and A. King. Generating Efficient, Terminating Logic Programs. InProceedings
of the Seventh International Joint Conference on Theory andPractice of Software Develop-
ment, volume 1214 ofLecture Notes in Computer Science, pages 273–284, Lille, France,
1997. Springer.

17. E. Monfroy. An Environment for Designing/Executing Constraint Solver Collaborations.
Electronic Notes in Theoretical Computer Science, 16(1), 1998.

18. K. G. Murty. Linear Programming. Wiley, 1983.
19. W. Pugh. The Omega Test: a Fast and Practical Integer Programming Algorithm for Depen-

dency Analysis.Communications of the ACM, pages 102–114, August 1992.

20. R. Rodo�sek and M. Wallace. A Generic Model and Hybrid Algorithm for Hoist Scheduling
Problems. InProceedings of the 4th International Conference on Principals and Practice of
Constraint Programming, volume 1520 ofLecture Notes in Computer Science, pages 385–
399. Springer, 1998.

21. A. van Gelder. Deriving Constraints Amongst Argument Sizes in Logic Programs.Annals
of Mathematics and Artificial Intelligence, 3(2-4), 1991.

