IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Howe, J. M. & King, A. (2000). Specialising finite domain programs with
polyhedra. Paper presented at the Logic Programming Synthesis and Transformation 1999,
22 - 24 September 1999, Venezia, Italy.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1706/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Specialising Finite Domain Programs Using Polyhedra

Jacob M. Howe and Andy King

Computing Laboratory
University of Kent, Canterbury, CT2 7NF, UK
{J. M Howe, A M King}@hkc. ac. uk

Abstract. A procedure is described for tightening domain constraifitBnite
domain logic programs by applying a static analysis basetbomex polyhedra.
Individual finite domain constraints are over-approxindalby polyhedra to de-
scribe the solution space oveinteger variables as andimensional polyhedron.
This polyhedron is then approximated, using projectionaas. dimensional
bounding box that can be used to specialise and improve tinaidaconstraints.
The analysis can be implemented straightforwardly and gpiréral evaluation
of the specialisation technique is given.

1 Introduction

Finite domain constraint logic programs classically have tomponents: a constraint
component and a generate component. The constraint comippasts to the store
constraints which characterise the problem and define thelsspace. The generate
component systematically enumerates the search spacea \Vetielling strategy (such
as fail first). Tightening the constraints, for example toendin constraints that bound
the values of the variables, reduces the search space arbytspeeds up the program.

In order to reduce the search space, finite domain constalvérs propagate con-
straints on the values that can be taken by the variablesstfzamt propagation does
not necessarily have to be applied with labelling and maryess, for example the
ECL!PS and SICStus finite domain solvers, can prune the values afhlas before
any labelling is applied. This paper describes in detail emgirically evaluates one
technique for performing constraint propagation at coetpie through program spe-
cialisation.

The analysis in this paper is founded on classic work on pedyal approxima-
tion [5], [6]. Finite domain constraints are interpretedralations over sets of points.
These constraints are over approximated and representedpassibly unbounded)
polyhedron. The intersection of polyhedra correspondstopnsing constraints. Pro-
jection onto an integer grid gives (low-valency) domain stoaints that can be added
to the program without compromising efficiency. The mairhtéque for propagating
constraints in finite domain solvers is by bound propagaifitiis involves substituting
known variable bounds into linear constraints to give neriade bounds. The polyhe-
dral analysis described here is a stronger compiletimentgak than bound propaga-
tion; compiletime bound propagation over linear finite dom@nstraints is subsumed
by the technique described in this paper. The example inr€igyillustrates that poly-
hedral analysis can give considerably tighter approxiomstthan those resulting from

:- use_nodul e(library(clpfd)).
mai n: -
domain([X, Y], 0, 6),
Y#>=X- 1,
Y#=<X+1,
Y#>=4- X,
Y#=<6- X.

Fig. 1. The polyhedron represented py > =z — 1,y <z + 1,y > 4 —z,y < 6 — z} with
variable domaing € [0, 6],y € [0, 6].

bound propagation. In this example, projection onto each@f/ariables gives bounds
3/2 <z <7/2,3/2 <y < 7/2. Tightening to integers defines the finite domain so-
lution setz € [2,3],y € [2, 3], which can be used to specialise the domain constraints
of the original program taomai n([X, Y], 2, 3).Bound propagation does not
tighten the variable bounds at all.

The polyhedral analysis described in this paper develapstttic analysis of con-
straint logic programs outlined in [14]. However, the as@yin this paper is specifi-
cally tailored to specialise finite domain programs. In jgatar, the analysis is designed
to complement runtime constraint propagation technighssthe example above il-
lustrates, polyhedra capture deep inter-variable relatigpps which cannot always be
traced in bound propagation. Note, however, that the teghnis, to a certain extent,
dependent on the data being present in the program — a shatigsé cannot reason
about runtime data. This paper makes the following contidiog:

e it presents a deterministic algorithm (not involving ldime]) based on polyhedra
for refining domain constraints and it shows that the analyah be easily imple-
mented using constraint solving machinery;

it shows how interval and polyhedral approximating techeig can be combined
to reason about non-linear constraints;

the analysis and the associated program transformaticsharen to be correct;

an empirical study and evaluation of the technique appti€2l €Stus finite domain
programs is given. The analysis can significantly improvedheed of programs
(sometimes by several orders of magnitude);

applying the analysis through specialisation means thastiver does not need
to be modified. Specialisation never impedes built-in c@iist propagation tech-
nigues and comes with a no slow down guarantee. Moreovemim®ved domain
constraints often interact with built-in constraint prgption techniques resulting
in further pruning. Interestingly, the analysis can beripteted as a compiletime
solution to combining constraint solvers.

The structure of the paper is as follows: section 2 worksughoan example pro-
gram to illustrate the way in which the analysis works andpitsver; section 3 for-
malises the analysis in terms of abstract interpretatiectien 4 describes the various

mathematical techniques utilised in the analysis; se&ioompares the approach taken
by this paper with bound propagation; section 6 works thhoaigother example pro-
gram to illustrate all of the techniques introduced in thpgrasection 7 describes the
implementation of the analysis and gives the results ofpdieation to some bench-
mark programs; section 8 reviews related work; section ¢lcaies and outlines future
work.

2 Example: Magic Square

This example illustrates the approach taken by this armlgsiwell as its power relative
to compiletime bound propagation.

The magic square puzzle takes a three by three grid and thbergrone to nine
and sets the challenge of placing the numbers in the grided@ttof the rows, columns
and diagonals sum to the same number. The solutions areedrderas to reduce the
number of solutions identical up to symmetry which can bentbuA SICStus finite
domain program to solve this problem is:

:- use_nodul e(library(clpfd)).
square(A, B, C D E F, G H I):-

domain([A, B, C, D E F, G H I], 1, 9),

all different([A B, C D E F, G H 1I1]),

A#<C, AH#H<G A#<l, Y%ymetry constraints

A+B+C #= D+E+F, A+B+C #= GrH+l,

A+B+C #= A+D+G A+B+C #= B+E+H, A+B+C #= C+F+l,

A+B+C #= A+E+l, A+B+C #= C+E+G

| abeling([], [A, B, C, D E F, G H I]).
(In SICStusdomai n(Li st, I nf, Sup) abbreviate$ nf #=<X, X#=<Sup, for
each variableX in Li st .) The finite domain constraints in this program are approx-
imated by a polyhedron (each constraint is interpreted asnastrict inequality with
rational coefficients, these inequalities define the palybe). Theal | _di f f er ent
constraint cannot be captured in an informative way by almdyon, hence is ignored.
The finite domain constraints are abstracted to the polyrediefined by the following
linear inequalities (an equality can be understood as appaiequalities):

1< A,B,C,D,E,F,G,H,] <9

ALC-1 ALG-1 ALI-1
A+B+C=D+E+F A+B+C=G+H+1I
A+B+C=A+D+dG A+B+C=B+E+H
A+B+C=C+F+1 A+B+C=A+E+1

A+B+C=C+E+G

The above inequalities define a polyhedron in nine (the nurobeariables) dimen-
sional rational space. Projection onto each variable viik gational bounds on those
variables. The result of this is as follows:

3/2<A<11/2 4<B<8 T7/2<(C<15/2
5<D<9 3<E<T 1<F<5
5/2<G<13/2 2<H<6 9/2<1<17/2

A specialised finite domain program is obtained by reintetipg these new rational
bounds as finite domain bounds, by tightening to integereslhe constrairdo-
main([A ..., 1], 0, 9) isreplaced inthe program by the finite domain con-
straints given below. The bounds in the left column belowthmse obtained by the
above procedure, those on the right are those that SICStisskinbound propagation.

%ol yhedr al %Bound Propagation
2 #=< A, A #=< 5, 1 #=< A, A #=< 8,
4 #=< B, B #=< 8, 1 #=< B, B #=< 8,
4 #=< C, C #=< 17, 2 #=< C, C #=< 9,
5 #=< D, D #=< 9, 2 #=< D, D #=< 9,
3 #=< E, E #=< 7, 1 #=< E, E #=< 9,
1 #=< F, F #=< 5, 1 #=< F, F #=< 9,
3 #=< G G #=< 6, 2 #=< G G #=< 9,
2 #=< H, H #=< 6, 1 #=< H, H #=< 9,
5 #=<1, | #=<28, 2 #=< 1, | #=<9,

Notice that the propagation of constraints by the polyhledethod is better than that
of bound propagation. That the improvement is a large onébeageen by calculating
the number of points in each of the search spaces. The finibaiovhich results from
the polyhedral analysis h&sx 10° points, whereas the domain resulting from bounds
propagation has approximately x 108 points, nearly 240 times larger a search space.

3 Formalised Analysis

This section formalises both the analysis and the progranstormation described in
this paper, then states their correctness. Details andgpcaa be found in [9].

3.1 Polyhedral Analysis

In order to have confidence in the analysis a mathematid#figadion is essential. The
formalisation is an application of theapproach detailed in [4] and is fairly dense and
complicated. Thus, before giving the formal analysis, darmal overview of the re-
mainder of the section is given, indicating where the opanatdescribed in section
4 are required. Abstract interpretation is used to conndcbacrete) ground seman-
tics for finite domain constraint programs [11], [12] to abg&act)s-semantics [4]. A
Galois insertion links the concrete domain (the set of gdomterpretations) and the
abstract domain (the set of interpretations over congdaimit clauses). The concrete
semantics is essentially the set of solutions for a givegiamm. The abstract semantics
(formulated in terms of a fixpoint) is an over-approximatmfrthis set of solutions,
with each predicate constrained by the conjunction of tmstraints on its body atoms.
The abstract operator approximates non-linear conssramiinear constraints. In or-
der that the formalised analysis is the same as that implesdethe number of unit
clauses is kept small by over-approximation in the form obavex hull calculation.
The termination of the fixpoint calculation is ensured by tise of a widening. The
analysis is proved to be correct, as is the program transfom (which involves the
use of projection with the fixpoint).

Concrete Domain For a (finite domain) progran®?, let I denote the set of predicate
symbols that occur itP and letX' denote the set of integeZ} and function symbols
that occur inP. Let Dgp be the set of finite trees over the signatiitel et Rpp be the
set of constraint predicates. LBEtbe a countable set of variabl€sy p is the system

of finite domain constraints generated frdm-p, Rrp, V and the function symbols.
Elements ofCrp are regarded modulo logical equivalence &ndp is ordered by
entailment=rp. (Crp, Erp,A) is a (bounded) meet-semilattice with bottom and top
elementgrue andfalse. Crp is closed under variable elimination a8k, ..., z,, }¢
(projection out) abbreviatéx, . .. 3z,,.c. 3X ¢ (projection onto) is used as a shorthand
for I(var(c) \ X)c, wherevar (o) denotes the set of variables occurring in the syntactic
objecto. The interpretation base fd? is Bpp = {p(t) | p € II,t € (Dpp)"}. The
concrete domain i§P(Brp), C,N,U), a complete lattice.

Abstract Domain Let Dj;, be the set of rational number®, Let Cy;,, be the sys-
tem of linear constraints ovdpy;,, V, the set of constraint predicat&y ;, and the
function symbolsC';,, is quotiented by equivalence and ordered by entailnfept,, .
(CLin, ELin,\) is @ (bounded) meet-semilattice and is closed under piojecut,
3, and projection onto3. Unit clauses have the form(X) < c wherec € Cp;,.
Equivalence on clauses;, is defined as follows(p(X) < ¢) = (p(X') « ¢) iff
Fvar(X)c = Jvar(X)(c' A (X = X')). The interpretation base for prograis By ;,, =
{[p(X) < c]=|p € II, ¢ € CL;,}. Entailmentinduces an order relatian, onP(Br;,)
as follows:I C I' iff V[p(X) « ¢|]= € I.3[p(X) «]z € I'.c ELin . P(BLin)
ordered byC is a preorder. Quotienting by equivaleneg,gives the abstract domain
(P(BLin)/=, C,), a complete join-semilattice, wher&?, [I;]= = [U2, I;]=.

Concretisation The concretisation map: Cr;, — Crp, interprets a linear constraint
over the rationals as a finite domain constraint as follows:

" n; n " D.n; D.n <
PN G Ty, < == whereD =d. | | d;
7(11 dixl_d) = e Ta 11;11 l

Note that the coefficients of(cL:,,) are inZ. The abstraction magy : Crp — CrLin
can be defined in terms afby a(cyp) = AMcrinlcrp Erp Y(cLin)}. Observe that
«, v form a Galois insertion.

The concretisation map : P(Bpin)/= — P(Brp) On interpretations is defined
in terms of the concretisation map for constraints:

Y([l=2) = {pOIpX) « d= € I, X =1) Frp v(0)}-

The abstraction map : P(Brp) — P(Bri,)/= is defined as follows:

a(J) = {p(x) d=lp® € J,a(x =1 = c}]=

Proposition 1 «, « on interpretations form a Galois insertion.

Concrete SemanticsThe fixpoint semanticst yp, is defined in terms of an immediate
consequences operatbf : P(Brp) — P(Brp), defined by

72(1) = {0

w € Pyw =p(X) < ¢,p1(X1), .., Pn(Xn), }
pi(ti) € I,(X =1) Frp Jvar(X)(Aj, (X =) Ac)

T} is continuous, thus the least fixpoint exists &@idp [P] = Lfp(T}).

Abstract Semantics To define the immediate consequences operator for the abstra
semantics, a special conjunction operatet;, : Crp x Crin — CrLip IS introduced.
The operatonry, is assumed to satisfy the propeetyp A v(crin) Erp v(crp AFL
¢Lin)- This operator allows the approximation of non-linear &rdbmain constraints.
The fixpoint semanticsFr;,, is defined in terms of an immediate consequences
operatorl'y : P(BLin)/= — P(BrLin)/=, defined byl'3([I]=) = [J]=, where

w e Paw = p(Y) — clap1(71)7 7pn(¥n)7
[wi]E € I,U}i :pl(yz) <~ Ci,
J =< [p(X) < d]= |Vi.(var(w) Nvar(w;) = ¢),
Vi # j.(var(w;) Nvar(w;) = ¢),
c=c App (N2 (K =Y3) Aci))

T is continuous, thusfp(T3) exists. SinceP(Br,,)/= is a complete partial order,
Kleene iteration [5] can be used to compiig;, [P] =1fp(T3) = U2, TE 1 i, where
TE10=¢andTp ti+1=Ts(TE1i).

Space-Efficient Over-Approximation To keep the number of unit clausesTii 1 &
small, hence the fixpoint calculation manageafflg,t k is over-approximated by an
interpretation/ (that is,7% 1+ k£ C I) containing at most one unit clause for each
predicate symbol.

The join for the domain of linear constraints,: Cr;, X Crin — Crin, is defined
byci Ves = A{c € CLin|cr ELin ¢, c2 ELin c}. When the constraints are interpreted
as defining polyhedra, the meet corresponds to the closuheafonvex hull. The op-
erator is lifted in stages to an operator on the abstract dorfRast it is lifted to the
interpretation base; : BL;,, x Bi;, — Bi;,,, whereBy, = Br;, U{Ll}, as follows:

[p(X) = c1]= V [p(X) 4= c2]= = [p(X) a1 V ea]=

[P(X) = c1]= V[9(Y) = e2]= = L ifp#q
[p(X) == VL =[p(X) =

1 V[pR) + d= = [p(X) + =

This in turn defines the unary function,: P(Bri,)/= — P(BLi.)/=, on the abstract
domain given by ([I]l=z) = [Uwer{Vuer(wVu)}]=. Since forevery € P(BL,)/=,
TE(I) C VoTg(I),itfollows thatl fp(Tg) C Ifp(V o TE). Hencev does not com-
promise safety.

Termination of the Polyhedral Analysis As before, Kleene iteration can be used to
computd fp(V o T'%). However, the chain of iterataso TS, 1+ k may not stabilise in a
finite number of steps. In order to obtain convergence, witdg(a fixpoint acceleration
technique) [5], is applied.

Given a standard widening on polyhedra [3], [5], [6] (or agléntly, on linear
Constralnts)v CLin X CLin = CLin, awideningv : Bi;, x By, — Bi;,, (Where

Lin®

Bt = Brin U{L}) on the interpretation base is induced as follows:

p(8) ¢ er] ¥ [p(X) e2)= = pX) e eVele

[p(X) ¢ c1]= V [q(Y) < c2]l= =L if p#q
[P(X) < ¢cl= V L = [p(X) « c|]=

L V [p(X) ¢ c]= =[p(X) < c]=

This lifts to the abstract domaiW, : P(Bpin)/= X P(BLin)/=— P(Brin)/=

([]=V[l:]= = [Uwern{Vuern (wVu)}]=

3.2 Correctness of the Polyhedral Analysis

This section states the correctness of the analysis. Thapweard iteration of/ o T3,
with widening, stabilises at an interpretatidrwith [fp(T7) C ~(I). The result is a
corollary of Proposition 13 in [5].

Proposition 2 The upward iteration sequencewb 1}, with wideningv is ultimately
stable with limit and is safe, thatisy o T§(I) C I andlfp(TH) C ~(I).

3.3 Program Transformation and its Correctness

Once an upper approximation . [P] is computed, it can be used to transform the
program. This is done by projecting the convex polyhedrenltang from the fixpoint
calculation onto each variable in turn, tightening thigmal constraint to integer values
and adding it to the initial program. The following theoreetalls the transformation
and also asserts safety.

An auxiliary (partial) map;! : Crin — ClLin, is defined in order to tighten bounds
on variables to integer values, as followS= u(c) A (c) where

U(C):{stqJ if (#<q)=c l(c):{:czm if (+2>q)=c

true otherwise’ true otherwise’
Theorem 1 If I fp(T%) C v([I]=), thenFrp[P] = Frp[P'], where

w € Pw=pX) < ¢, p1(X1), -, Pn(Xn),

(wi]= € I,w; = pi(¥;) < ci,

Vi.(var(w) Nvar(w;) = ¢),

Vi # j.(var(w;) N Uar(w]) ?),

d=ch (/\yEUar(w)'Y((Ely Nieq ((X) A cl))))7
w' = p(X) ¢, p1(X1), -, P (Xn)

4 Computational Techniques

The analysis and program transformation strategy is paeaised by the operators
Arr andv. In this section instances of these operators are speciiddlgorithms for
computing other operations, such\aand3, are presented.

In particular this section reviews some computationaltéphes for: calculating the
convex hull of twon dimensional polyhedra; projecting andimensional polyhedra
onto anm dimension space where < n; widening chains of polyhedra; approximat-
ing non-linear constraints by polyhedra.

4.1 Projection

The analysis described in this paper requires a projectiantakes as input a set of
inequalities im variables and outputs a set of inequalities in a subset eéthariables.
The output is such that all solutions of the original set efjualities can be specialised
to a solution of the new, and all solutions of the new set ofjusities represent partial
solutions of the original. Less formally, projection is ttedculation of the shadow cast
by the polyhedron represented by the inequalities ontogheesdefined by the subset of
variables. For example, the projection of a two dimensidghedron onto the variable
x is the shadow cast onto theaxis when the polyhedronis lit from above.

In the implementation of the analysis given in this papeojgution is performed
using Fourier-Motzkin variable elimination (see, for exae [10], [12], [13], [18]), as
this is the algorithm used by SICStus. Fourier-Motzkin &aleé elimination takes a set
of linear inequalities and eliminates variables one at & timtil the only variable occur-
rences left are of those variables being projected ontgualkdies are arranged so that
the variable to be eliminated is on the lesser side of alluadities in which it occurs.
It will either have a positive or negative polarity. All pdsie ways of eliminating the
variable from a pair of inequalities are explored, givingeavrset of inequalities with
one variable fewer. This is illustrated with the followingnple example, projecting
onto the single variable:

<4 <4-
T+ y= shuffle r= y eliminate 0 S _2 - 2y shufie Y S _]. eliminate
r—y>6 ~ —z<-6-y ~ < ~ e,
z2y Z2y =Y y=

z< -1

4.2 Convex Hull

The convex hull of two polyhedra is the smallest polyhedmmtaining both polyhedra.
The convex hull calculations are performed as in [3]. Paliyhere represented as a set
of linear inequalities. The convex hulk-, of two polyhedra,P, and P, is given by
the following (wherex is a vector and4;, B; are matrices, together giving the linear
inequalities that define the polyhedra):

P ={X, € Q"|A1X; < B}, Py = {X; € Q"|A2Xz < By}

PC:{XEQn

X=Y; +V, A A1y, <o1B1 A A3y, <0283
ANor+oo=1AN -0, <0AN —02<0

By projecting outry, 02,Y,,Y,, that is, projecting ontg, the linear inequalities for the
convex hull can be found. In this way, the convex hull caltiakais reduced to variable
elimination.

Example 1.Figure 2 lists a program giving rise to polyhedra that are @asg and
triangle. The trianglé’r and the squar&s are described below:

> :- use_nmodul e(library(clpfd)).
at P(X Y):-
- X+Y#=<1,
3t X#=<2,
1#=<Y
2r P(X Y):-
1#=<X, X#=<3,
1 2#=<Y, Y#=<4.
0

0 1 2 3 4 5

Fig. 2. The Convex Hull of trianglePr and squaré’s

(OGO} 10|35 o<

Putting these together as in the definition, and then priogadut oy, 02,Y,,Y,, the
convex hull,P¢, is found to be

0 -1 -1

1 -1 1

S GIEE
y 0o 1|\ 4

31 1

Observe thaP describes the convex hull; a pentagon.

4.3 Approximating Non-Linear Constraints

A non-linear inequality cannot be accurately approximdigdoolyhedra. However,
suppose that the non-linear inequalitstescribes a regioR and thatP is a polyhedron.
The intersectior? N P can sometimes be approximated by a polyhedrbsuch that
P' C P.This problem arises in the analysis of finite domain progr#mt contain non-
linear constraints. This section describes an algorithntéonputing such @’ given
non-linear inequality and polyhedromP.

The following approximation technique arose from boundoaigation algorithms
for non-linear inequalities [13] and is outlined below:

1. I'is rewritten to(A; [T X: < [[Yi) A (AT X0 Z; < ¢j) whereX,,Y;, Z; are
variable multisets and; is a constant. For brevity the rewrite rules are omitted,
instead a simple illustrative example is given. The noedininequalityz < = x
(u+v) xyisrewrittentoz <z xaxy,a—u—v <0, u+v—a<0,wherea
is a fresh variable.

2. In each producf] W;, whereW; = {w,...,w,}, every variablav; has an upper
bound,u;, and a lower bound,, which can be calculated by projectitdgjonto
that variable (wheré;,u; € Q U {400, —0c0}). For everyk € {1,...,n}, upper
and lower bounds for the produEf I; are computed by} = wy,. [[;cu: and
w), = wg. [I;c5 i whereS = {1,...,n} — {k}.

3. The upper and lower bounds on the products generate tlosviiog) linear con-
straint for each non-linearinequalify X; < [[Y:, whereX; = {zy,...,z,},Y; =
{yb 7ym}

L; = Nz}, < yilke{l,..,n},j€{l,...,m}}

4. Finally the regionk N P is approximated by the polyhedrd® = R’ N P where
R’ is the polyhedron represented by

(A1 Li) A (/\;'n:1 Z Zj <¢j)

Example 2.Consider the regio® = {(z,y, 2)|z < x y} and the polyhedro® =
{(z,y,2)|1 <z,2 <y < 4}. Theregionk N P is approximated by a polyhedrdt.
The non-linear inequality does not need to be rewritten &satready in the required
form. ProjectingP ontox andy givesl < 2 < co and2 < y < 4. Then,z x y has
upper boundso, 4z and lower boundg, 2z. z has itself as upper and lower bounds.
These generate the following linear inequalities oo,y < z,z < 4z,2z < z. Call
the region generated by these inequalifid¢sThenP’ = R' N P.

The inequalities that arise assume the fefm < cyy rather thare;z < ¢o. This is
because if a tighter bound an(or y) is later found, then the inequalityz < ¢,y can
potentially tightery (or x). This can only improve accuracy.

The analysis of non-linear constraints given here is araires of the special con-
junction operationp gz, given in section 3R App P = P'.

4.4 Widening

Widening is required to ensure that the fixpoint calculatiah stabilise, that is, the
polyhedra in the final two iterates coincide. Widenings folypedra can be found in
[3], [5] and [6]. To keep the exposition reasonably selftedmed, the [5] widening is
detailed here.

Polyhedra are represented by sets of linear inequalifiee previous iteration has
produced polyhedro®;, = {X € Q™| A S;}, whereS;, = {I1, ..., I;} and the current
iteration has given polyhedrd?,;; = {X € Q*|A Sk+1}, whereSi11 = {J1, ..., I}
(I; andJ; are linear inequalities), then applying the widening ressul the polyhedron
given by the following set of linear inequalities:

{1 € S| A Spys = 1Y U{J € Spyt |31 € Si A ((Sk — {I1}) U {J}) = ASk}).

Example 3.A smaller triangleP, = {(z,y)ly < z,z < 1,y > 0}, and a larger
triangle P, = {(z,y)|y < 2z,z < 1,y > 0} are widened to give the regidA VP, =
{(z,y)|z < 1,y > 0}. The inequalityy < z from P, is not satisfied by all points i
and the other inequalities iR, are. The inequality < 2z from P, does not satisfy the
swapping condition, and the other inequalities descrilfiingo.

5 Comparison With Bound Propagation

As noted above, the polyhedral analysis described in thigmpaubsumes compile-
time bound propagation. Bound propagation is used in firgt@ain systems, such as
ECL!PS and SICStus. Good expositions of bound propagation canuvelfim [1] and
[13]. A brief outline of the technique is given here.

Given any inequality, the known bounds for each of the vdembccurring in the
inequality are used to find possibly tighter bounds for themgables. One variable
is chosen and the upper and lower bounds for the other vasabk used to find a
possible upper or lower bound for this chosen variable.dfibund calculated in this
way is tighter than the previous known bound for that vaeathis bound is adopted
in place of the older, weaker one. This process can be rapéateach variable in
the inequality. An equality can be treated as two inequalitiTo give a very simple
illustrative example consider the following two variabkese:

y=z+70<x<3,0<y <12

Propagating the bounds aninto the inequalities involving: andy it is found that
7 <y < 10, tighter bounds than previously.

Bound propagation can give good tightening of constraiRts. example, bound
propagation in the send more money problem (one of the exaprpbrams, see Table
1) actually gives the same results as the polyhedral asaliswever, there are many
examples where the polyhedral analysis improves on boungbgation, for example
the program in Figure 1 of the introduction. Improvement akso be seen in the pro-
gramal pha (see Table 1). Improvements over bound propagation canr dc@ny
program with more than one inequality containing more thae wariable. In bound
propagation, individual constraints interact with the @&mconstraints in the store, but
are unable to interact with each other. The power of the paly&l analysis comes from
allowing this interaction between constraints in orderdbiave better propagation.

It can be seen that the polyhedral method subsumes boundgatipn for linear
constraints, when both are applied as static analysesfdltue/s since bound propaga-
tion can be viewed as performing Fourier-Motzkin variadlmmation on a subset of
the inequalities comprising the problem: a subset comigionly the bounds from the
store and a single inequality with more than one variableré&tore, as extra informa-
tion can only lead to tighter bounds, variables will be boaohdt least as tightly after
Fourier-Motzkin variable elimination for the full problem

6 Example: Calculating Factorials

This section works through a more complicated exampleoPmihg the analysis auto-
matically on arbitrary (recursive) programs requires nigety which includes, among

other things: convex hulls, projection, and widening. Ehegerations are illustrated by
the example in this section. The example program calcufatgsrials. The objective
again is to infer bounds on the variables. Usually this redwsearching, but in this case
it simply tightens one of the constraints — the point of thamgle being illustrative.
The program (in SICStus syntax) is as follows:

:- use_nodul e(library(clpfd)).

fac(0, 1).
fac(N, NewF): -
N#>=0, NewF#>=0,
NewF#=N* F,
M#= N1,
fac(M F).

The clausé ac(0, 1) . is the first considered. The arguments are described by the
polyhedronP;, = {(z,y)|z = 0,y = 1}. Next, the second clause is considered. The
problem here is to compute a two dimensional polyhedrondestribes the coordinate
space K, NewF). First observe thdtac(M F) can be described by the polyhedron
{(N,NewF, M F)|M= 0, F = 1}. Note too, that the constraint$ #= N - 1, N#>=0,
NewF#>=0 are represented by the polyhedrfN, NewF,MF)|M = N— 1N >
0,NewF > 0}. The intersection of these two polyhed{éN, NewF, M F)|M= 0,F =
1,M= N-1,N> 0,NewF > 0}, represents the conjunction of the four constraints.
The non-linear constraiMew#=N* F cannot, by itself, be accurately represented by
a polyhedron. Note, however, that the polyhedfoN, NewF, M F)|NewF = N,M =
0,F=1,M=N-1,N> 0,NewF > 0} accurately describes all the constraints. Pro-
jecting the four dimensional polyhedron onto the coordirssiacéN, Newf) gives the
polyhedron{ (N, NewF)|NewF = N,0 = N— 1}, equivalentlyP; = {(z,y)|z = 1,y =
1}.

To avoid representing disjunctive information, the saotsetP; U P is over ap-
proximated by its convex hullPy = {(z,y)|0 < = < 1,y = 1}. The bound in-
formation extracted from the convex hull by projection isaetly the same as that
extracted from the union of the original pair of polyhedragygjection. The convex
hull gives the second iterate. Continuing in this fashioll give a sequence of in-
creasing polyhedra which does not stabilise. A fixpoint ze¢gion technique, widen-
ing, is therefore used to enforce convergence (albeit agtpense of precision). The
widening essentially finds stable bounds on the sequencelyifigdra.P; is widened
with Pj' to give the polyhedro®, = {(z,y)|0 < z,y = 1}. P» # Py, and so the
fixpoint stability check fails and thus the next iterationceculated. This results in
the polyhedraP} = {(z,y)lz > 1,y > 1}, Py = {(z,y)lc > 0,y > 1} and
P; = {(z,y)|z > 0,y > 1}. P» # P3 and stability has still not been reached. However,
P; = Py, and the fixpoint is found. ProjectinB; onto the first and second arguments
gives the bounds > 0,y > 1.

Specialising the program by adding these bounds resulkeifotlowing:
;- use_nodul e(library(clpfd)).
fac(0, 1):-
O#>=0, 1#>=1.
fac(N, NewF): -

N#>=0, Newr#>=1,

NewF#=N* F,

M #= N1,

fac(M F).
The redundant constraints in the first clause can be remd@bhedsecond clause has one
of its domain constraint trivially tightened. The spedation will always preserve the
set of computed answer substitutions.

7 Implementation and Experimental Results

The analysis has been implemented in SICStus Prolog 3.8amhlkyser uses ratio-
nal constraints rather than real constraints as problematinding errors occur with
the CLPR) package. Theal | _r esi due built-in that comes as part of the SICS-
tus CLPQ) package is used for projection in this implementation.eDiparts of the
analyser, such as the convex hull machinery, are taken fBnThe analyser uses a
semi-naive iteration strategy.

The prototype analyser was tested on a selection of programshe benchmarks
suite that comes with the SICStus release of the GIIP(package. The programs were
chosen for their compatibility with the parser: those peags which passed through the
prototype front-end (abstractor) without giving error 1seges were used.

Bound propagation is applied by the finite domain solver atinge. To demonstrate
that the polyhedral analysis is doing more than shiftingesoirthe work done by bound
propagation from runtime to compiletime, experiments vedse carried out with bound
propagation applied as a compiletime analysis and progtamsformation.

The programsl pha, cr ypt a, donal d andsnmmare all cryptoarithmetic prob-
lems. Letters are assigned digits or numbers and equatiwolving these letters are
given. The solution is an assignment of numbers/digitsttere so that the equations
are satisfied. The prograrag10 andeq20 find solutions to sets of linear equations in
seven variables. The progrdmac calculated factorials (in this cad6!). The program
magi ¢ finds magic squares (up to equivalence). The prodrame is a version of the
zebra problem, where five lists of five elements are assigreeddambers one to five so
that certain relational properties hold. The proggyt hagor calculates Pythagorean
triples (in this case with individual values up to one thauha

The results of the analysis can be seen in Table 1. Vars isuilmeas the arities
of the predicates that occur in the program; T. Vars is thebemof these argument
positions tightened by the analysis; Time is the runtiméaefdriginal program (in mil-
liseconds); T. Time is the runtime of the specialised prog(a milliseconds); Bound
Prop. is the runtime of the program when specialised by theegaobtained by bound
propagation (in milliseconds); Fixpoint is the time takencilculate the fixpoint (in
milliseconds); Fix and Proj. is the runtime of the analysiduding the final projection
stage (in milliseconds). Note that all times are averagesntaver one hundred runs.
The experiments were conducted using a PC with a 366MHz lamirocessor and
128Mb of RAM, running Red Hat Linux 6.1.

All but one of the example programs have at least one predipadition tightened
by the analysis, indicating that the analysis can be widppliad. No specialised pro-

Program VargT. VargTime|T. Time|Bound PropFixpoint|/Fix. and Proj|
al pha 26 251239 4 2390 280 2100
crypta 10 3 6 6 6 460 59430
donal d 10 3| 47 47 47 80 490
eqlo 7 7 13 0.7 13 100 110
eq20 7 71 20 0.2 19 130 140
fac!® 2 2| 0.8 1.0 0.8 260 260
five 25 3| 1.8 1.8 1.8 100 190
nagi ¢ 9 9] 6.5 3.2 6.4 100 230
smm 8 3| 0.9 0.9 0.9 60 340
pyt hagor 19| 3 0| 15 15 154 180 190

Table 1. Test Results

gram runs slower than before. After specialisation, thgmmsal pha, eq10, eq20
andmagi ¢ run significantly quicker than both the original programd &éme programs
specialised by adding the results of bound propagatiors iRdicates that the analy-
sis can significantly prune the search space. The fixpoinysisdimes are reasonable
considering that the analyser is a prototype in an earlyestdgievelopment. In par-
ticular, the iteration technique can be improved. Amonlgstrhore expensive fixpoint
times are those fdrac andpyt hagor . These programs are recursive, and although
the analyser has been designed to deal with all progransseigected that most finite
domain programs are not recursive. Notice that the mosif&ignt factor in analysing
many of the programs is the cost of the final projection stage. analyser currently
uses the projection technique that comes with SICStustdtli® expected that the use
of a projection technique tailored to the specific task ofguting onto a single variable
would give significantly improved performance.

8 Related Work

The use of convex polyhedra to describe the constraintsrsteaint logic programs
over the reals has been outlined in [14]. The paper does satide an implementation
and does not directly address the analysis and specialigaitfinite domain programs.

The analysis in this paper has its foundations in classikwompolyhedral approxi-
mation [5], [6]. Polyhedral approximation has been appiieareas as diverse as: argu-
ment size analysis [3]; compiletime array bounds analyigérmination of deductive
databases [21]; off-line partial deduction [15]; paradlation of imperative languages
[19]; control generation for logic programs [16]; memorymagement of symbolic lan-
guages based on cdr-coding of lists [8]. The work in this palectly builds on the
work of Benoy and King ([3]) to show how a finite domain prograpecialiser can be
built with off-the-shelf linear constraint solving machiry.

Static analysis of finite domain constraint logic prograsnsat a new idea. Bagnara
[2] proposes an interval analysis for refining domain caists. The critical observa-
tion in this paper is that a finite domain solver will usuallgrform constraint propa-
gation at runtime, for example through indexical based pgagion. The static analysis

presented in this paper is designed to complement a runtim&mint analysis: poly-
hedra capture deep inter-variable relationships whiclnebalways be traced in bound
propagation.

The currentwork could be viewed as a compiletime approatietoollaboration of
constraint solvers. There are many recent papers on cadiibio of constraint solvers,
such as [17], [20]. Different kinds of constraint solverdlywropagate information in
different ways, and mixing technologies often gives thet iesnework for solving
a problem. Using a variety of solvers can give propagatia tannot be achieved
in a single solver. The approach taken here is attractivalmit uses off the shelf
technologies and combines their use, but this has the dakthat the propagation is
not as intelligent as it might be.

Another compilation technique based on projection arisgegoviding predictable
time-critical user interfaces, [7]. There, however, thgeotive is to remove runtime
constraint solving altogether.

9 Conclusions and Future Work

Analysis of finite domain constraint logic programs usindypedra promises to be a
powerful compiletime technique for reducing the searchcepat finite domain con-
straint logic programs. This analysis can extract morerimngtdion than bound propa-
gation alone. By using program specialisation, other mtlud domain reduction can
still be applied at runtime. The analysis is safe in two sentfe specialised program
is never incorrect; it never runs more slowly that the orddjiThe analysis can be im-
plemented straightforwardly using a rational constraier.

The results show that the analysis will tighten the domafmsamny of the variables
in programs — indeed, the analysis completely solves thiel@ms ineq10 andeq20.
The timing values in the results table, in particular thasetie progranal pha (where
the analysis time plus the tightened time is less than ttgirad time), indicate that
polyhedral analysis can give a significant speed up. As a detimpe technique, some
extra cost is not prohibitive, however, it is expected thatfer development will lead
to a significant speedup of analysis. The analysis can thieréle considered practical.
However, the analysis is not as powerful when data is inputraime: clearly, in this
situation no compiletime specialisation procedure wilkfffective. The programs with
which the analyser has been used have all had the data haithimprograms. A wider
study of finite domain programs is needed before the signifieaf this drawback can
be assessed.

Future work will focus on developing the analyser. Beyongroving the convex
hull and projection calculations, there are several ardesework is in progress. The
use of widening could be delayed to improve precision andlim@ar constraints could
be better approximated. The analyser will also be extenalsdipport other finite do-
main solvers. It would be an interesting to investigate Whebr not it is practical to
exploit the extra propagation gained by reanalysing theiapiged programs.

Acknowledgements The work of both authors is supported by EPSRC grant number
GR/M0O8769. The authors would like to thank Florence BenayHrll, Jon Martin and
Barbara Smith for their helpful comments and suggestions.

References

1. K. R. Apt. A Proof Theoretic View of Constraint ProgrammirFundamenta Informaticae
33:1-27, 1998.

2. R. BagnaraData-flow Analysis for Constraint Logic-based LanguadgekD thesis, Univer-
sita di Pisa, 1997. TD-1/97.

3. F. Benoy and A. King. Inferring Argument Size Relatiopshivith CLPR). In J. Gal-
lagher, editorlogic Program Synthesis and Transformationlume 1207 of_ecture Notes
in Computer Scien¢gages 204-224. Springer, 1996.

4. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. Thesemantics Approach: Theory and
Applications.Journal of Logic Programmingl9-20:149-197, 1994.

5. P. Cousot and R. Cousot. Comparing the Galois ConnectidnVdidening/Narrowing
Approaches to Abstract Interpretation. Technical RepofENS-92-16, Laboratoire
d’Informatique de I'Ecole Normal Superiéure, 1992.

6. P. Cousot and N. Halbwachs. Automatic Discovery of Regsaamong Variables of a
Program. IrProceedings of the Fifth Annual ACM Symposium on Principiégogramming
Languagespages 84-97, 1978.

7. H.Harvey, P. J. Stuckey, and A. Borning. Compiling CaaisitrSolving Using Projection. In
Proceedings of Principles and Practice of Constraint Peogming volume 1330 of ecture
Notes in Computer Scienggages 491-505. Springer, 1997.

. R. N. Horspool. Analyzing List Usage in Prolog Code. Unsity of Victoria, 1990.

9. J. M. Howe and A. King. A Semantic Basis for Specialisingrizdn Constraints. Technical
Report 21-99, University of Kent, 1999.

10. T. Huynh, C. Lassez, and J.-L. Lassez. Practical Issu#iseoProjection of Polyhedral Sets.
Annals of Mathematics and Artificial Intelligend&295-316, 1992.

11. J. Jaffar and J.-L. Lassez. Constraint Logic ProgrargmimProceedings of the Symposium
on Principles of Programming Languaggsages 111-119. ACM Press, 1987.

12. J. Jaffar and M. J. Maher. Constraint Logic Programmd3urvey. Journal of Logic
Programming 19-20:503-582, 1994.

13. K. Marriot and P. J. Stuckerogramming With ConstraintdMIT Press, Cambridge, MA.,
1998.

14. K. Marriott and P. J. Stuckey. The 3 R’s of Optimizing Cioaisit Logic Programs: Refine-
ment, Removal and Reordering. Rroceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languaggsages 334-344. ACM Press, 1993.

15. J. C. Martin. Judgement Day: Terminating Logic Program$hD thesis, University of
Southampton, 1999.

16. J. C. Martin and A. King. Generating Efficient, TermingtlLogic Programs. IRroceedings
of the Seventh International Joint Conference on TheoryRuadtice of Software Develop-
ment volume 1214 ofLecture Notes in Computer Sciengmges 273-284, Lille, France,
1997. Springer.

17. E. Monfroy. An Environment for Designing/Executing Gtmaint Solver Collaborations.
Electronic Notes in Theoretical Computer Scignt#(1), 1998.

18. K. G. Murty. Linear Programming Wiley, 1983.

19. W. Pugh. The Omega Test: a Fast and Practical Integerd®noging Algorithm for Depen-
dency AnalysisCommunications of the ACNdages 102—-114, August 1992.

oo

20. R. Rodgek and M. Wallace. A Generic Model and Hybrid Algorithm fooist Scheduling
Problems. IrProceedings of the 4th International Conference on Priats@and Practice of
Constraint Programmingvolume 1520 ofLecture Notes in Computer Sciengages 385—

399. Springer, 1998.
21. A.van Gelder. Deriving Constraints Amongst ArgumerzeSiin Logic ProgramsAnnals

of Mathematics and Artificial Intelligen¢8(2-4), 1991.

